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OVERVIEW
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“As T —» 00”???? What is that?

Convergence in probability and weak law of large numbers
Almost sure convergence and strong law of large numbers
Convergence in distribution and the central limit theorem

Estimators and estimates; methods of estimation

Method of moments

Maximum likelihood estimation (MLE)

Hints to Bayesian estimation

Evaluating estimators: MSE, UMVUE, Consistency

+ Bonus track: an introduction to the delta method
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MODES OF CONVERGENCE IN ECONOMETRICS

* We introduce the idea/abstraction of allowing the sample size to
approach infinity and investigates the behavior of certain sample
guantities as this happens

— Although the notion of an infinite sample size is a theoretical artefact,
it can often provide us with some useful approximations

 We are concerned with three types of convergence:
© Convergence in probability, the weakest type (easy to check)
® Almost sure convergence, a stronger mode
© Convergence in distribution

* Definition [CONVERGENCE IN PROB.]: A generic sequence of

random variables, X, X,, ..., converges in probability to a random
variable X if, for every € > 0,

lim Pr(|X,, — X| > €) =0 or. equivalently, lim Pr(|X, — X| <€) =1

n—00 n—r00
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MODES OF CONVERGENCE IN ECONOMETRICS

— Why the need of that “generic sequence”?

— Differently from lecture 1, X, X,, ... are typically NOT independent and
identically RVs (random variables), i.e., not a random sample

— The distribution of X, may change as the subscript changes

* One famous example of convergence in probability that requires
lID-ness and the concerns sample mean is:

* Key Result 4 [WEAK LAW OF LARGE NUMBERS, WLLN]: Let X,, X,,

... be IID RVs with E[X.] = p and Var[X.] = 62 < «. Then for every € >
0,

. - - _ 1l
Iim Pr(|X,, — e)=1, or X,, = — X;
lim Pr(| pl <€) o1 - ;Zl —

— In words, the (WLLN) elegantly states that, under general condi-tions,
the sample mean approaches the population mean as n —

— Notice that this version requires that the sequence of RVs be IID,
although more general versions exist
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MODES OF CONVERGENCE IN ECONOMETRICS

— Note that if X;, X,, ... converges in probability to a random variable X
and h(-) is a continuous function, then h(X,), h(X,), ... converges in
probability to h(X)

* No problem if X is not a random variable, but a constant, say a

— A type of convergence that is stronger than convergence in probability
is almost sure convergence (sometimes confusingly known as
convergence with probability 1)

e Definition [ALMOST SURE CONVERGENCE]: A generic sequence of
random variables, X, X,, ..., converges almost surely to a random
variable X if, for every € > 0,

Pr (lim X,—X|< E) — ] or, equivalently, X, == X

TL—+ OO

— Note: Pr(lim X, — X| < e) — 1 different from lim Pr(|X, — X| < ¢) = 1

1E—r 0 T —r 0

— To understand the meaning of a.s. convergence, think of the meaning
of RV:a RV is a real-valued function defined on a sample space S
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MODES OF CONVERGENCE IN ECONOMETRICS

— If a sample space S has elements denoted by s, then X _(s) and X(s) are
all functions defined on S

— The definition states that X, converges to X almost surely if the
functions X_(s) converge to X(s) for all s € S except perhaps fors € N,
where Nc Sand P(N)=0

— The key is that N < S and P(N) = 0: what does it mean in practice? If
you want to understand, read the following example

 Example: Let the sample space S be the closed interval [0, 1] with the
uniform probability distribution. Define random variables X (s) =s + s"
and X(s) =s. For everys € [0, 1),s" — 0as n— oo and X, (s) — s = X(s)

* However, X (1) = 2 for every n so X, (1) does not converge to 1 = X(1).
But since the convergence occurs on the set [0, 1) and P([O, 1)) =1, X,
converges to X almost surely

* Convergence almost surely, being the stronger criterion, implies
convergence in probability; the converse is false
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MODES OF CONVERGENCE IN ECONOMETRICS

— The stronger analog of the WLLN uses almost sure convergence:

* Key Result 5 [STRONG LAW OF LARGE NUMBERS, SLLN]: Let X,, X,,
... be 1ID RVs with E[X.] = uand Var[X.] = 62 < c0. Then for every € >
0,

Pr(lim |X, —pul<e)=1, or X, =~ ZX
n—ro0 P

— Also this SLLN requires that the sequence of RVs be IID, although
more general versions exist

e Definition [CONVERGENCE IN DISTRIBUTION]: A generic sequence

of random variables, X,, X,, ..., converges in distribution to a
random variable X if im Fy _(z) = Fx(z)

T —+ 0

— Here F(+) is the CDF of a random variable; we also write X, —P X

— Note that although we talk of a sequence of random variables
converging in distribution, it is really the cdfs that converge
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MODES OF CONVERGENCE IN ECONOMETRICS

— |Is there a link between different modes of convergence? In general no,
but when convergence results refer to RVs, some results exist

* Key Result 6: If the sequence of random variables, X, X,, ...

converges in probability to a random variable X, the sequence also
converges in distribution to X

— A similar statement is that if the sequence of RVs, X, X,, ..., converges
in probability to a constant (say, 0) if and only if the sequence also
converges in distribution to 0; the statements are equivalent:

| | ; | Oifz < @
Pr(|X,—0|>¢€)=0Ve >0+ Pr(X, <zx)= {lii‘mijﬂ
* Applied to the sample mean, convergence in distribution
originates one key result:

* Key Result 7 [CENTRAL LIMIT THEOREM, CLT]: Let X, X,, ... be lID
RVs with E[X.] = p and

Var[X.] = 62 < o0. Define Z, = (X, —p)/(o/vn)
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THE CENTRAL LIMIT THEOREM

Then . - / L2
lim F5 (z) = e ¥/ dy = Dz
. A ] - m Y )

i.e., the standardized sample mean has a limiting N(0,1)
distribution

— Proof is easy making assumptions on MGFs, but that is not necessary

— Starting from virtually no assumptions (other than lIDness and finite
variances), we end up with normality!

— The point here is that normality comes from sums of "small" (finite
variance), independent disturbances

— You will encounter this result in continuous time finance too

— While the CLT gives us a useful general approximation, we have no
automatic way of knowing how good the approximation is in general

— With the availability of cheap computing power, the importance of
approximations like the CLT is somewhat lessened
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METHODS TO FIND POINT ESTIMATORS

— The CLT gives conditions under which a standardized RV has a limit
normal distribution; there are times when we are not interested in the
distribution of the RV, but rather some function of the RV

 The Appendix at the end of this lecture provides one useful tool,
the delta method which can be seen as a CLT extension

 We start by reviewing a number of alternative methods to find
estimators; subsequently we evaluate them

— The rationale behind point estimation is simple: when sampling is from

a population described by a pdf or pmf f(x;0), knowledge of 0 yields
knowledge of the entire population

* We call 0 the parameter(s) of interest; when they are many, then 6
is a Kx1 vector; 8 is then an estimator

— In general, an estimator is a function of the data, formally a function of

a random sample X,, X,, ..., X_, and as such it is a sample statistic, i.e.,
= I-‘I’;(X[:XQ., Xﬂ}
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METHODS TO FIND POINT ESTIMATORS

— An estimator is a function of the sample, and THEREFORE IT IS A
RANDOM VARIABLE WITH A DISTRIBUTION, while an estimate is the
realized value of an estimator (that is, a number) that is obtained
when a sample is actually taken

* Notationally, when a sample is taken, an estimator is a function of the

random variables X, ..., X., while an estimate is a function of the
realized values x,, ..., x,
 Three methods to find estimators:
O Method of moments
® Maximum likelihood estimation

© Bayes’ methods

* The method of moments is the oldest method of finding point
estimators; it is easy and always delivers “some” estimator,
unfortunately it is rarely the best possible one
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METHOD OF MIOMENTS

* Definition [METHOD OF MOMENTS]: Let X, ..., X, be a sample
from a population with pdf or pmf f(x; 6., ..., 6,). Method of
moments estimators are found by equating the first K sample
moments to the corresponding K population moments, and solving
the resulting system of simultaneous equations:

??11_’?1 ZX ,ul 191 92 ...:9}.{)

ngﬂ_l ZXE — ,{1’2(91192: Q.H_J

=1

mﬁ—ﬂ_lZXH w(01,02,...,0)

— This is a system of K equatlons in K unknowns; if a solution 0™ can be

found, then the resulting vector 0" is the MM estimator
— Why “if a solution can be found”? Some or all the K equations may be
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METHOD OF MIOMENTS

non-linear which you may know can be problematic...

— Because K is the both the number of parameters and the number of
equations, this MM is called just-identified

— Example Suppose X, ..., X are IID N(B, 2). Call then 6, =0 and 0,= 6.

Therefore: n v
m,zn_lz}ﬁ:ﬂz‘pﬂ =X

1=1

ma=n'Y X2=60, 467 =0, =n'Y XP- K=
1=1 =1
 Time to switch to the most popular among estimation me-thods,
one that (as you will discover in the Metrics sequence) also
possesses a number of optimal properties

?‘1—182

Tn

— Recall that if X, ..., X, is an lID sample from a population with pdf or
pmf f(x; 0., ..., 0;), then the likelihood function is defined as:
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MAXIMUM LIKELIHOOD ESTIMATORS
LLHXJ — Llilg],ﬂg: ----..'QI{: XL, o, .13_7?1;] — 1_[?:] f[ﬂ?i':ﬂl:eg? ...:9}{)
— The likelihood function is just the joint PDF or PMF of the data, but

interpreted to be a function of the K parameters given the data

* The joint PDF or PFM is instead the opposite: a function of data, given
the values of the parameters

e Definition [MAXIMUM LIKELIHOOD METHOQOD]: For a given sample
X, let 8(x) be a parameter value at which L(0; x) attains its
maximum as a function of 0, with x held fixed; a maximum
likelihood estimator (MLE) of @ based on a sample X is 6(X)

* The intuition is simple: the MLE is the parameter “configuration”
for which the observed sample is most likely
— The maximum of L(0; x) should be a global one

— This is they key problem of MLE: one needs to maximize L(0; x) and
verify that the stationarity point one has found is actually global
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MAXIMUM LIKELIHOOD ESTIMATORS

— If the likelihood function is differentiable in the parameters, then MLEs

are characterized as: 51.(0-
é[x) = arg mﬂa:{L(ﬂ:x) = éH;XJ

— Note that the solutions to this system of K equations are only possible
candidates for the MLE since the first derivatives being O is only a
necessary condition for a maximum, not a sufficient condition

=0

— Furthermore, the zeros of the first derivative locate only extreme points
in the interior of the domain of a function

— Example Suppose X,, ..., X, are lID N(0, 1). Then the likelihood function

IS: JL(6:x) 1 l — MLE - MLE _
= exp | —— (z;, — 0 x;, — 0 ) =10
o = |y e | 3
=0 for all pﬂbi-:il]]le values of #
MLE -MLE ] — _
— - =0=14 =— > z; =X,
Z - g
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MAXIMUM LIKELIHOOD ESTIMATORS

— Moreover, this MLE represents an interior maximum not a minimum, as
it can be verified from:

2
9?>L(0:x) 1 I — MLE MLE
— exp | —— x; — 0 x; — 0 +
352, e = [ 0] (D)

:" ] -
=7 i=1 =1

1 | — 1 | —
T XP [_-) > (- HWLEF] = T P [—.-;, > (@i HWLEF] <0

— In most cases, it is easier to work with the natural logarithm of
L(0; x), InL(0; x), known as the log likelihood function

— This is possible because the log function is strictly increasing on (0, +0),
which implies that the extrema of L(0; x) and InL(0; x) coincide

— Example Suppose X, ..., X, are IID Bernoulli(p). Then the log-lik fnct. is:

InL(p:x)=InJ]—, p™(1l —p) ™ =In [pzfﬂm““(l — pJ”_Zﬁi x‘]
= > z)Inp+(n—>""", z;)In(1 — p)
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MAXIMUM LIKELIHOOD ESTIMATORS

— At this point, taking FOCs and solving, one has the estimator that you
would expect, that is however a MLE:

OL(pix) Y @ (n—3 . =)

— — — '[]
dp p I—p
:_l—gii_n— T on l:-l L __n |
p Z?:l L Z?:l Lq p 23:1 L4
1 n ] — _
—_— — = = :}piWLE _Z:EIZXH
p i=1 L T

* A useful property of MLEs is their invariance property: a
distribution is indexed by a parameter 0, but the interest is in
finding an estimator for some function of 0, say t(0)

* Theinvariance property of MLEs says that if 0-hat is the MLE of
0, then, if t() fulfils adequate conditions, t(0-hat) is the MLE of
7(0)
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PROPERTIES OF MLES: INVARIANCE

— Example: if 0 is the mean of a normal distribution, the MLE of sin(0) is
sin of the sample mean

What are the conditions on t(¢) alluded to above?

© The mapping 6 — t(0) is one-to-one (i.e., for each value of 0
there is a unique value of t(0), and vice versa)

 However, such a condition is not helpful in many cases: think of the case
of volatility = square root of variance in finance!

® Under some regularity conditions (“smoothness”) on () then
the invariance property always holds

* Therefore the MLE of volatility is simply the square root of the MLE
estimator of variance,

p
* Note that a function may be one-to-one even when it is not smooth

* Since we can apply more than one of the estimation methods
to each problem, we need to choose between estimators
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EVALUATING ALTERNATIVE ESTIMATORS

— In many cases, different methods will lead to different estimators
* Three main criteria:
© Mean squared error

@® Efficiency (best unbiased criterion)

© Consistency

e Definition [MEAN SQUARED ERROR]: The MSE is a finite-
sample measure of the quality of an estimator W (short for
0 =W(X1, Xz, ..., X») ) of a parameter 0 is Eg[(W - 0)?] and it
measures the average squared difference between the
estimator W and the parameter 0

* |Importantly MSE may be decomposed as:

MSE(W)=Ep[(W — )% = Eg[W? — 2W0 + 6°] = Eg[W?] — 20E,[W] + 67|

= Varg[W?*] + {Eg[W]}? — 20 Eg[W] + 67

_ Lecture 2: Point Estimation— Prof. Guidolin



IMEAN SQUARED ERROR CRITERION
MSE(W)=Varg[W| 4+ {Eg[W] — 0} = Varg[W] + {bias(W)}*
bias(W)

where the bias is the mean difference between the estimator
W and the population parameter, 0

* Definition [UNBIASEDNESS]: An estimator W that has a bias
of O is called unbiased and in this case MSE(W) = Var[W], it is
only the uncertainty on the estimator that matters

— An unbiased estimator with a large Var[W] is one that is on average
correct, but that fluctuates a lot around the true 0, and such is not
precise; such an estimator will also said to be inefficient

— In Lecture 1 we have stated or proven that in the case of a random

(IID) sample both sample mean and variance are unbiased and so:

_ o2 202

E[X]=pu E[S? = ¢® = MSE[X] = —, MSE[S? =

(under normality)

n n—1
— In general, since MISE is a function of the parameter, there will not
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MEAN SQUARED ERROR CRITERION

be one "best" estimator: often, the MSEs of two estimators will cross
each other, showing that each estimator
is better (with respect to the other) in

only a portion of the parameter space 440 L

— The reason that there is no one "best

75 MSE(X)

MSE" estimator is that the class of all 025 MSE(ps)
estimators is too large a class L o
* E.g., the estimator 0-hat =17 cannotbe © 5 L

beaten in MSE at O = 17 but is a terrible estimator otherwise

* One way to make the problem of finding a "best" estimator
tractable is to limit the class of estimators; a popular way of
restricting the class, is to consider only unbiased estimators

* If W, and W, are both unbiased estimators of a parameter 0,
then their mean squared errors are equal to their variances, so
we should choose the estimator with the smaller variance
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UNIFORM MINIMUM VARIANCE UNBIASED

e Definition [BEST UNBIASED ESTIMATOR]: An unbiased estim-
ator W~ for 0 is the best unbiased, if for all possible values of
0, Vary,[W"] < Var,[W] among all other unbiased estimators

e W7 is also called a uniform minimum variance unbiased
estimator (UMVUE) of 0

* [tis then legitimate to ask: how small can this minimum
variance be? It seems a dumb question, but surprisingly, the
following gives the answer:

* Key Result 8 [CRAMER-RAO LOWER BOUND (INEQUALITY)]:
Let X, X,, ..., X, be a sample from a PDF f(x;_0) and let W(X,,

Xy oo X)) be an estimator with - EH (X)] = / 39[ (x) f(x:8)]dx
and Var[W] < o0. Then (4 E[TIG X)))?
Var[W(X)] > —% 5
Fisher information E { [% In f(x; 9)} }
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CRAMER-RAO LOWER BOUND

d o
— In words, the key condition 7 £ (X)] :f_ 35V (x)f(x:0)ldx simply
allows the interchange between integration and differentiation
* Densities in the exponential class, such as the normal, will satisfy this

— As for Fisher’s number, clearly it measures how sensitive the log-
likelihood is to a change in 6; the more this quantity is sensitive, the
lower is the bound, which makes sense: the data, as summarized by
the log-likelihood will contain a lot of information on 0

— How do you use Cramer-Rao bound? Simple, if you have a unbiased

estimator W and can verify that LEW {f"‘i}])2
Var[W(X)] =

then it must be UMVUE E{ 55 1n f(x: 9 }

— Notice that the converse does not hold though, thereis no guarantee
that the bound is sharp: the value of the Cramer-Rao Lower Bound
may be strictly smaller than the variance of any unbiased estimator

e All the criteria considered thus far are finite-sample criteria
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ASYMPTOTICS (CONSISTENCY)

* |In contrast, we may consider asymptotic properties, properties
describing the behavior of an estimator as the sample size
becomes infinite

* The power of asymptotic evaluations is that, when we let the
sample size become infinite, calculations simplify

* The property of consistency requires that the estimator
converges to the "correct" value as n —

— However consistency (as well as all asymptotic properties) concerns a
sequence of estimators rather than a single estimator, although it is
common to speak of a "consistent estimator”

— If we observe X, X, , ... according to a distribution f(x;0), we can
construct a sequence of estimators W =W, (X, X,, ..., X.) merely by
performing the same estimation procedure for each sample size n

* For example, X-bar, = X;, X-bar, = (X;+X,)/2, X5-bar =(X;+X,+X;)/3, etc.
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CONSISTENCY

* Definition [CONSISTENCY]: A sequence of estimators W_=W_
(X4, X,, ..., X)) is a consistent sequence of estimators of the
parameter 0 if, for every € > 0 and every 0 €0,

lim Pr(|W, — 0] <€) =1

— Informally, this says that as the sample size becomes infinite (and the
sample information becomes better and better), the estimator will be
arbitrarily close to the parameter with high probability

— Or, turning things around, we can say that the probability that a
consistent sequence of estimators misses the true parameter is small

— An equivalent statement is: for every € >0 and every § €0, a
consistent sequence W, will satisfy 1im Pr ([IW, —6| > ¢) =0

— This definition says that a consistent sequence of estimators
converges in probability to the parameter 0 it is estimating

— Whereas the definition of convergence in probability dealt with one
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CONSISTENCY

sequence of RVs with one probability structure, consistency deals
with an entire family of probability structures, indexed by 0

— Problem 12 in the first exercise set makes you discover how one
should examine consistency “the hard way”, i.e., using the definition

— In practice, using Chebychev's Inequality there is a simpler way
| E[(W, — 8)?
€

so that consistency obtains if for every 0 €0, lim___E|[(W,, — 6)%]=0
— Furthermore, because E[(W,, — 0)%] =Var[W,] + {E[W, — 4]}
we obtain _ 1’r{1?"[”n] 4 {b]ﬂ&:[[in)}z

* Key Result 9: A sequence of estimators W _=W_ (X, X,, ..., X)) is
a consistent sequence of estimators of the parameter 0 if, for

every € >0 and every 0 €0, (i) lim__,_Var[W_] =0, (ii) lim__
bias(W,) = 0 (this is just a sufficient condition)
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CONSISTENCY OF ML ESTIMATORS

— Because the sample mean has no bias and has variance o%/n, clearly,
the sufficient conditions are satisfied which shows consistency

— We close by showing that MLEs possess all these asymptotic
properties
* Key Result 10: Let X, X,, ..., X, be an IID sample and let OM! the
MLE of 0. Let t(0) be a continuous function of 8. Under some
regularity conditions on the PDF f(x;0), t(6M) is consistent

— Another useful asymptotic property relates to efficiency, which is
concerned with the asymptotic variance of an estimator

* Definition [ASYMPTOTIC EFFICIENCY]: A sequence of
estimators W =W_ (X, X,, ..., X.) is asymptotically efficient for
a parameter 0O if (W, —0) 2 N(0,v(0))  v(f) = .
E{[5mnfx0)]"}
that is, the asymptotic variance of W, reaches the Cramer-Rao
lower bound
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ASYMPTOTIC NORMALITY OF ML ESTIMATORS

* Key Result 11: Let X, X,, ..., X, be an IID sample and let 6M! the
MLE of 0. Let t(0) be a continuous function of 8. Under some
regularity conditions on the PDF f(x;0), n1/2(t(OML) - ¢(0)) —
N(O, v(0)), where v(0) is the Cramer-Rao Lower Bound
— l.e., T(6MY) is a consistent and asymptotically efficient estimator of t(0)

 These asymptotic formulas are important because they often
provide us with approximate variances, provided we are ready
to invoke expanding samples, n — o0
— For any fnct h(0), the variance of the ML of 6 can be approximated as:
h'(6) h'(6) N h'(6)
E{[%lnﬂx:ﬂjr} _E{agzlﬂﬂxf} }‘ —E{ﬁflnfxﬂ}
— The variance estimation process is a two-step procedure, (i) first we

approximate Var[h(0)], (ii) then we estimate the resulting
approximation, usually by substituting the ML of 6 for 0

Var[h(8)] ~
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BAYESIAN MIETHODS

 The Bayesian approach to statistics is fundamentally different
from the classical approach that we have been taking

— In the classical approach the parameter, 0, is thought to be an
unknown, but fixed, quantity

— A random sample X, ..., X is drawn from a population indexed by 0
and, based on the observed values in the sample, knowledge about
the value of 0 is obtained

* |n the Bayesian approach 0 is considered to be a quantity

whose variation can be described by a probability

distribution (called the prior distribution)

— This is a subjective distribution, based on the experimenter's belief,
and is formulated before the data are seen

* A sampleis then taken from a population indexed by 0 and
the prior distribution is updated with this sample information

 The updated prior is called the posterior distribution
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BAYESIAN MIETHODS

— If we denote the prior distribution by (0) and the sampling

distribution by f(x; 0), then the posterior distribution, the
conditional distribution of 0 given the sample, x, is

— f(x,0) _ f(x|9'}?r(9‘} Marginal distribution
B ff(K;Q}dx B ff(:ﬁ{|9]r-r{9}dx/ of x

* The posterior distribution is now used to make statements
about 0, which is still considered a random quantity

— E.g., the mean of the posterior distribution can be used as a point
estimate of 0

* Although lots of interesting financial econometrics is
performed with Bayesian methods, we shall not pursue it

— This reflects the presumed structure and contents of your
econometrics sequence in the first year of the MSc.

— Optional exams may be selected for you to get an exposure to the
practice of Bayesian econometrics
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USEFUL NOTIONS REVIEWED IN THIS LECTURE

Let me give you a list to follow up on:
Weak and Strong laws of large numbers
The central limit theorem

Converge in probability, almost-sure convergence, and
convergence in distribution

Estimates vs. estimators

Method of moments estimators

Maximum likelihood estimators and their properties
Mean-Squared Error criterion

Unbiased and efficient estimators estimators

The Cramer-Rao lower bound

Consistency and asymptotic normality of estimators
Brief overview of Bayesian methods
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APPENDIX: REVIEW OF THE DELTA METHOD

— Motivating example on estimating the odds ratio. Suppose we
observe X, X,, ..., X, independent Bernoulli(p) random variables.
The typical parameter of interest is p, the success probability, but
another popular parameter is p/(1 - p), the odds

* For example, if the data represent the outcomes of a medical
treatment with p = 2/3, then a person has odds 2 : 1 of getting better
— As we would typically estimate the success probability p with the
observed success probability p* = sample mean of outcomes (the
proportion of successes), we might consider using p*/(1 - p*) as an
estimate of p/(1 - p)

— What are the properties of this estimator? How might we estimate
the variance of p*/(1 - p*)?

 The Delta Method allow you to obtain reasonable, approximate
answers to these questions

* Itis based on using a Taylor series approximation to approximate
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APPENDIX: REVIEW OF THE DELTA METHOD

the mean and variance of a function of a RV and then apply CLT

* Taylor’s theorem states that if a function g(x) has derivatives of
order r, that is, gl"(x) = d"'g(x)/x" exists, then for any constant g,
the Taylor polynomlal of order r about a is:

E Q’ T (x — .-_'1 " (eg.ifg(z)=lnzanda=2,Th(z) =In2+——————")
, L.
i—0

and the remainder from the approximation, g(x) - T.(x), always
tends to O faster than the highest-order explicit term

— Generalizing to the multivariate case (when Z is a K x 1 random vector
that collects K RVs), and forgetting the remainder, we have that a
first-order expansion of g(Z) around the vector of means 0 gives the

approximation: 5
+ ZQ’HHJ(% — ;)
=

— At this point, taking expectations of both sides, note that
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Elg(z)] =~ Elg( ]+2919JE(E—9J] =g(0)
—_—— T4

=0
— Therefore the variance of g(Z) can be_apprOX|mated as:

Varlg(z)|=El[(g(z) — Elg(2)])*] ~ E (Z 9 (0)E[(z; — ﬂ;)])

K

Z 0))*Var|z —I—)Zg 0)Cov|z;, z;]

1>

— This apprOX|mat|on is useful because it gives us a variance formula
for a general function, using only simple variances and covariances

— For instance, consider g(p*) = p*/(1 - p*), so that K=1 (univariate)
and g’(p) = 1/[(1 - p)?]. Then

7 ;U* ~ (a 217 __ 1 _ __
Var L_p*]\_;_,(g (p))” Var|p] = Tl —p) =

m Var of Bi(n,p)

np
(1—p)?
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* The delta method generalizes this intuition and the CLT to any
function g(+) of a normal random variable in a formal way

* Let Y. be a sequence of RVs that satisfies n'/2(Y_- u) — N(O, ¢?)

in distribution. For a given function g and a specific value of 0,
suppose that g'(0) exists and is not 0. Then

vV (g(Y,) —g(8) = N (0,[d'(8))%?)

— In words: any “smooth” (differentiable) function of a sequence of

RVs to which a CLT applies, has its own approximate CLT with
variance [g'(0)]%c?

 Why to stop at the first-order? You do not have to. First, notice
1

g(z) =~ g(0)+4'(0)(z—0)+ 59”(9)(3 —0)?
Elg(z)] =~ g(0) + ¢'(O)E[(z — )] + 2g" (O)E[(z — )]
— Varlg(z)] ~ [¢'(0)]*Var[(z — )] + lg (0)]*Var[(z — 0)*]+
+4¢'(0)g (0)E{[(z—0) — E[(z —0)]][(z — 6)* — E[(= — 6)*]]}
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— Therefore there is also a second-order delta method that is
particularly useful when g'(0) =0:

* Let Y be asequence of RVs that satisfies n'/2(Y_- u) — N(O, ¢2) in
distribution. For a given function g and a specific value of 9,
suppose that g'(0) =0 and g”(0) exists and is not 0. Then

1" 9
Vi (9(Y,) — 9(6)) 2 f”

— Oddly enough, this is a sort of “chi-squared” version of the CLT, in the
sense that because of the second-order Taylor approximation, the
distribution of the sequence g(Y,) does not converge to a Normal, but
instead to a (hon-central, with dislocation g(0)) chi-squared
distribution with 1 d.f.

* As alast touch, one exercise helps you “discover” that

2 2 2
E{EIE'&—T Far[{]EHEX (UEX—I—E—EJJ{Y)
Hy

2.2
g X4
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