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Outline of the Course

* Lectures 4 and 5 (3 hours, 1.5 of which on your laptop):
= Introduction to optimization: functions of one variable
= (Generalization: functions of several variables

= Use of Excel Solver to tackle constrained optimization
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Optimization: Statement of the Problem (1/2)

= QOptimization == maximizing (or minimizing) some objective
function, y = f(x), by picking one or more appropriate values of
the control (aka choice) variable x

* The most common criterion of choice among alternatives in
economics (and finance) is the goal of maximizing something
(like the profit of a firm) or minimizing something (like costs
or risks)

= For instance, think of a risk-averse investor who wants to
maximize a mean-variance objective by picking an
appropriate set of portfolio weights

= Maxima and minima are also called extrema and may be
relative (or local, that is, they represent an extremum in the
neighborhood of the point only) or global

= Key assumption: f(x) is n times continuously differentiable
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Optimization: Statement of the Problem (2/2)

= In the leftmost graph, optimization is trivial: the function is a
constant and as such all points are at the same time maxima

and minima, in a relative sense

= In the second plot, f{x) is monotonically increasing, there is no
finite maximum, if the set of nonnegative real numbers is the

domain (as the picture implies)

* The points E and F on the right are examples of a relative

(local) extrema

= A function can well have several relative extrema, some of
which may be maxima while others are.minima
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Candidate points: The First-Derivative Test (1/2)

= As afirst step we want to identify the “candidate” points to solve
the optimization problem, i.e., all the local extrema

* Indeed, global extrema must also be local extrema or end points
of f(x) on its domain
* If we know all the relative maxima, it is necessary only to select the
largest of these and compare it with the end points in order to
determine the absolute maximum
» Key Result 1 (First-Derivative Test): If a relative extremum of the
function occurs at x = x, then either f'(x,) = 0, or f(x,) does not
exist; this is a necessary condition (but NOT sufficient)
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Candidate points: The First-Derivative Test (2/2)
* Key Result 1 Qualified: If f'(x,) = 0 then the value of f{(x,) will be:

(a) A relative maximum if the derivative f'(x) changes its sign
from > 0 to <0 from the immediate left of the point x, to its
immediate right

(b) A relative minimum if f'(x) changes its sign from negative
to positive from the immediate left of x, to its immediate right

(c) Neither a relative maximum nor a relative minimum if f'(x)
has the same sign on both the 1mmed1ate left and rlght of point
X, (inflection point) -~ f(x)

NOTE: we are assuming that the function
is continuous and possesses continuous
derivatives => for smooth functions,
relative extreme points can occur only
when the first derivative has a zero value [nflectiog point N

0 - 6
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One Example

Example Find the relative extrema of the function
y=f(x)= x> — 12x* + 36x + 8

First, we find the derivative function to be
f(x)=3x*— 24x + 36

To get the critical values, 1.¢., the values of x satisfying the condition f'(x) = 0,
we set the quadratic derivative function cqual to zero and get the quadratic
equation

3x% — 24x + 36 = 0

By factoring the polynomial or by applying the quadratic formula, we then obtain
the following pair of roots (solutions):

%, =2 [at which we have f/(2) = 0 and f(2) = 40]
X, =6 [at which we have f’(6) = 0 and f(6) = 8]

Since f'(2) = f'(6) = 0, these two values of x arc the critical values we desire.

It 1s easy to verify that f'(x) > 0 for x < 2, and f'(x) < 0 for x > 2, in the
immediate neighborhood of x = 2; thus, the corresponding value of the function
f(2) = 40 1s established as a relative maximum. Similarly, since f(x) < 0 for
x < 6, and f'(x) > 0 for x > 6, in the immediate neighborhood of x = 6, the
value of the function f(6) = 8 must be a relaive minimum.
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Concavity, Convexity, and Second-Order Derivatives

= A strictly concave (convex)
function is such that if we pick any
pair of points M and N on the
function and join them by a 50|
straight line, the line segment MN |
must lie entirely below (above)
the curve, except at points M and

50 |- v x> 12x® - 36x -~ 8

40 1~

10

N :

X,) =0 * -
”( 0) means that the slope of the curve tends to | increase
(x,) <0 | decrease

= Ifthe second derivative f"'(x,) is negative for all x then
the function f(x) is strictly concave

= Ifthe second derivative f''(x,) is positive for all x then the
function f(x) is strictly convex
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The Second-Order Derivative Test

» Key Result 2 (Second-Derivative Test): If the first derivative of a
function at x = x, is f'(x,) = O (first-order, necessary condition),
then f(x,0 ), will be:

(a) A relative maximum if f"(x,) <0 Second-order,
(b) A relative minimum if f"(x,) > 0 sufficient condition

= This testis in general more convenient to use than the first-
derivative test, because it does not require us to check the
derivative sign to both the left and the right of x,

= Drawback: this test is inconclusive in the event that f"(x,) = 0
when the stationary value f(x,) can be either a relative
maximum, or a relative minimum, or even an inflection point

* This is what makes the condition sufficient only
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Two Examples

Example  Find the relative extremum of the function
v=f(x)=4x*—x
The first and second derivatives are
f'(x)=8x—1 and  f"(x) =38
Setting f’(x) equal to zero and solving the resulting equation, we find the (only)

critical value to be X = i, which vields the (only) stationary value f(5) = — 5.

Because the second derivative is positive (in this case 1t 1s indeed positive for any
value of x), the extremum is established as a minimum.

Example Find the relative extrema of the function
y=g(x)=x"—3x"+2

The first two derivatives of this function are
g’(x) = 3x? — 6x and  g’(x)=6x—06

Setting g'( x) equal to zero and solving the resulting quadratic equation, 3x* — 6x
= (. we obtain the critical values X, = 0 and x, = 2, which in turn yield the two
stattonary values:

g(0) =2 [a maximum because g”(0) = —6 < 0]
g(2)= -2 [a minimum because g”’(2) = 6 > 0]



Functions with more than one variable

= We are now going to generalize the earlier results to
optimization problems for functions of several variables, i.e.,

* Functions g:R" - R, i.e,, v = g(xq,X9, ..., Xn)

= In fact, functions from R" to R will be popping up very often
in your future studies

= For instance, the return of a portfolio is a linear function of the returns
of the n assets that compose the portfolio:

Ty = Wil T Wy + -+ wpmy,
= Another example is a utility function U (x{, x5, ..., X;;) of a bundle of

consumption goods

= However, we first need to generalize the concept of derivative
to the case of functions of several variables

= This leads us to the introduction partial derivatives and of
Jacobian derivatives

11
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Partial derivatives and the Jacobian

Definition: Let f: R™ — R. Then for each variable x; at each
pointx? = (x?,x3, ..., x9) in the domain of £, the partial

derivative with respect to x; is

J U.” — (}
f(x]"“rx)_—hmf(xl, y X ) f(x ) ;s y Xy
axt h—t) h

If the limits exists. Only the ith variable changes, while the others
stay constant

= The vector (more generally, matrix) Df o that collects all
partial derivatives

d 0
ore = (2L, 2L e, 2L o)

is called the Jacobian derivative of fat x°

12
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Partial Derivatives: One Example

Example: consider the function f(x;, x,) = 3xx% + 4x,;x5 +

7XZ
Let us compute the partial derivative with respect to x;

Simply treat x, as it was a constant and apply the same rules
of one-variable calculus

df
T 6x x5 + 4x5

Now let compute the partial derivative with respect to x,
df
—— = 6x%x, + 12x; x5 + 7
dxz 142 1 42

The concept can be easily generalized to a function of more

than two variables

13
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Second Order Derivatives and Hessians (1/2)

= If the n partial derivative functions of f are continuous
functions at the point x° in R™ we say that fis continuously
differentiable at x°

= If all the n partial derivatives df /0x; are themselves
differentiable we can compute their partial derivatives
of (a f
ax]' 6xi

) is called the x;x;-second order partial derivative of f

0°f
axixj

and it is generally denoted as

= When i # j then we speak of cross (or mixed) partial
derivatives

= A function of n variables has n? second order partial
derivatives that are usually arranged into a n x n Hessian
matrix

14
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Second Order Derivatives and Hessians (2/2)

= The Hessian matrix is typically denoted as D*f (x) or D?f,

and takes the form

i
6x12
9% f
D*f,

3% f

o f

0X2 09X |

af

(9X| (3)(2 (3.1(22

3 f

\ oxX10X,  O0X20X,

3* f
ax" (')’X]
3 f

ox n axz

3> f

ﬁx,,z

* Young's theorem: the Hessian matrix is a symmetric matrix,
i.e., for each pair of indices i and j

0%f 9%
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One Example

Consider the function f(xy, x3) = 3x2x3 + 4x.x5 + 7x,

Let us compute the Hessian matrix; we already computed

df df
ke 6x x5 + 4x3, e 6xix, + 12x, x5 + 7

Now we need to compute

d%f
dx1X>

2. 0°f
axez

= 6x% + 24x1Xy; = 12x;x, + 12x2

Hessian matrix is
6x2 12x;x, + 12x5
12x1%y + 12x%  6x% + 24x1%,

o0°f _ 0°f
axle - szxl

You can check that

16
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Optimization: the case of n-variable functions

Now we are ready to generalize optimization to the case of n-
variable functions

The strategy remains looking for critical points (relative
extrema) and then try to isolate global ones among them

xY is a critical point for fif it fulfills
Df (x°) = 0,
which means that

0 :
—f(xo) = 0, for each i
axi
If x° is an interior point which is a local maximum or minimum
then it is a critical point

However, the reverse is not true, i.e., the condition is necessary

but not sufficient for an interior point to be a local extremum
17
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Checking the sign of the Hessian matrix (1/2)

= As one may guess from the one-variable case, second order
conditions involve checking the sign of the Hessian matrix

* We need to add a definition to the matrix algebra review that
we discussed in the last lecture

* A principal minor of a square matrix A is the determinant of a
submatrix obtained by eliminating some rows and the

corresponding column; the order of a minor is the dimension of the
considered submatrix

* Aleading principal minor Ay, is a principal minor obtained by
considering the first k rows and columns of the original matrix

 For instance,

aq1) Qg2 413 -

Ay = a11032 — Az1047
dz1 Qdz2| Q23 A3z = the determinant of the
31 Q32 0ds3 3x3 matrix itself

18
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Checking the sign of the Hessian matrix (2/2)

* A square symmetric matrix is said to be

Positive definite: if all its leading principal minors are
strictly positive

Negative definite: if a;; < 0 and then all its leading
principal minors alternate in sign (but are different from
Z€ro)

Indefinite: if we have a nonzero leading principal minor and
at least one leading principal minor does not follow the
patterns above

Positive semidefinite: if every principal minor is
nonnegative

Negative semidefinite: if a;; < 0 and every principal minor
of odd order is < 0 and every principal minor of even order
is= 0

19
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Sufficient second order conditions

= The sufficient second order conditions for a local extremum are
as follows, given that x° is an interior critical point:

« If D%f(x") is negative definite => x° is a local maximum
point

0

- If D?f(x?) is positive definite => xY is a local minimum

point
« If D?f(x°) is indefinite => x" is a saddle point

= Semidefinite cases require further investigation and we shall
skip their discussion

= When the sign of the Hessian matrix does not depend on X, the
local extrema are also global because when the Hessian is
positive (negative) definite over the entire domain the function
is strictly convex (concave)

20
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Example of Unconstrained Optimization (1/2)

= Study the optimization of the following function: 3x* +
3x%y — y3
= Step 1: find the internal critical points
af

| —_— = 3 =
™ 12x° + 6xy =0

w9 a2 a2
ay—Bx 3y =20

= Solving that is non-trivial and time consuming

* You get three critical points:
1 1 11
A(0,0), B(E' o E)' C(_ E' T E)

= Step 2: compute the Hessian matrix

. D2f = 36x% + 6y 6X
B 6x —6y

= We need to checkitatA, B, and C
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Example of Unconstrained Optimization (2/2)

As an example, I will only check the sign of the Hessian at
11
C(=5,—3)
. (9-3 -3\ (6 -3
Df_(—3 3)_(—3 3)
Al — 6 > O

A, =6x3—-(—3)(-3)=9>0

Then the Hessian matrix is positive definite and the point is a local
minimum

This is an easy problem and yet you see how computationally intense
it is

Sometimes the solution shall ben find numerically anyway

Things get even worse when we introduce constraints (equality
constraints, inequality constraints or both)

We shall now introduce the Excel solver

22
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Excel Solver (1/3)

The Solver is an analysis tool available as an additional package
into Excel

If you do not have it already installed in your Excel you can
download it as Excel add-in from the Excel options

Once you have installed it, you find it under the tab “Data”

The Solver is able to solve optimization problems for you (even
with a number of equality/inequality constraints, as we shall
see later on)

Essentially, it maximizes (minimizes) the value obtained into an
objective cell in which you have to specify a certain function...

...by changing a set of cells (control variables) that you specify
elsewhere as an array in the worksheet

23
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Excel Solver (2/3)

OBJECTIVE FUNCTION: f = 3x?>+ 5y +5x + 4y + 5

= In the cell A6 write a value (almost whatever) for x and in
B6 write a value for y

* The values are only used to initialize the search (in some
situations it may matter where you initialize the search, but
typically the nature of the problem that you are solving
suggests reasonable values)

* For instance, when finding optimal weights for a
portfolio I typically start from equal welghts

5TAGHI*BO+S

* Then write the functions f
lntO the Cell C6 1 MINIMIZE THE OBJECTIVE FUNCTION

f=3x2 45y +5x+ 4y +5

2 X y f(xly]
|- 083 - 0.50 1.92

L4
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Excel Solver (3/3)

= Now open the Solver:

OBJECTIVE CELL

Imposta obiettivo:

A S ivtaxn (® Min
CONT P-.leﬁ‘c§1dn le cellg variabili:

SAS2:5B52

Soggette ai vincoli:

5C52

O Yalore dis

Aggiungi

Cambia

imina

Choose if you
want to look
for a min or

for a max

For now we
. are not

v

[ ] Rendi non negative |2 variabili senza vincoli

Selezionare un GRG non lineare
metodo di
risoluzione:

Metodo dirisoluzione

Reimposta tutto

Carica/Salva

i Opzioni

Selezionare il motore GRG non lineare per i problemi lisci non lineari del Risolutore, Selezionare

il motore Simplex LP per i problemi lineari e il motore evolutivo per i problemi non lisci.

Guida

SOLVEIT

Risolvi

Chiudi
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Hints of Constrained Optimization (1/2)

= Up to these points, all control variables have been independent
of each other: the decision made regarding one variable does
not impinge upon the choices of the remaining variables

* E.g, atwo-product firm can choose any value for Q, and any Q, it
wishes, without the two choices limiting each other

* [If the firm in the example is somehow required to fulfill a restri-
ction (e.g., a production quota) in the form of Q, + Q, =k, how-
ever, the independence between the choice variables will be lost

Free maximum

Z

* The new optimum satisfying
the production quota constitu- » .
tes a constrained optimum, which,
in general, may be expected to
differ from the free optimum

Constrained
maximum

» Key Result: A constrained maxi-
mum can never exceed the free
maximum

-
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Hints of Constrained Optimization (2/2)

= In general, a constrained maximum can be expected to achieve a
lower value than the free maximum, although, by coincidence, the
two maxima may happen to have the same value

O We had added another constraint intersecting the first constraint at

a single point in the xy plane, the two constraints together would
have restricted the domain to that single point

O Then the locating of the extremum would become a trivial matter

* In a meaningful problem, the number and the nature of the
constraints should be such as to restrict, but not eliminate, the
possibility of choice

O Generally, the number of constraints should be less than the
number of choice variables

= Under C < N equality constraints, when we can write a sub-set

of the choice variables as an explicit function of all others, the

former can be substituted out:
max [ (xq, Xy, ..., Xy)
X1,X2,oXN

S.t.x; =9y, e, XN), s Xe = G(Xoiqy s XN) -
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Hint: Lagrange Multiplier Method (1/2)

becomes: max F(Xcr1, Xct2) eoer XN,
XC+1XC+2,-+XN

an unconstrained problem

= However, the direct substitution method cannot be applied
when the C constraints do not allow us to re-write the objective
functions in N - C free control variables

* Even if some of the variables become implicit functions of others,
it would be complex to proceed because the objective would
become “highly composite”

* In such cases, we often resort to the method of Lagrange
(undetermined) multipliers

* The goal is to convert a constrained extremum problem into a
form such that the first-order condition of the free extremum
problem can still be applied

* For instance, consider an objective function z = f(x.y) subject to

the constraint g(x,y)=c where c is a constant

28
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Lagrange Multiplier Method (2/2)

* The Lagrangian problem is:

maxf(x y) —Ale —g(x,y)]

Lagrange function

= The necessary FOCisthen: 7z, =¢ - g(x,y)=0

The stationary values of the 7 = f s 0
Lagrangian function Z will X Ex =
automatically satisfy the constraint Z f — A g, =
Example Find the extremum of d
z = Xy subject to G ) T j1 . }\ d fl .
The first step i1s to write the Lagrangian function ;\ - an ;Z n

Z=xy+ A6 —-x—y)

For a stationary value of Z, it is necessary that
Z, =6 —x—y=0 X+y=6
Z =y—A=0 or =N +y=0
Z.—x k=0 —A+ X =0

Thus, by Cramer’s rule or some other method, we can find
A=3 Xx=3 v =3

The optimal value A*
provides a measure of
the sensitivity of the
Lagrangian function to a

shift of the constraint

The stationary value is Z = 7z = 9, which needs to be tested against a second-order
condition before we can tell whether it is a maximum or minimum (or neither).

That will be taken up later.
A Review of Optimization Methods
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Excel Solver for constrained optimization (1/2)

Lagrange multiplier method gives us critical (candidate) points,
but also in this case we need to check second order conditions

This requires to check positive (negative) definiteness of large
square matrices (bordered Hessian matrices) - we shall skip
the details

Again, the Excel Solver may help us!

First of all, the Solver easily solves “Kuhn-Tucker” type of
problems (that is, problems in which choice variables are
restricted to only take positive values)

[t is sufficient to tick the box “make all unconstrained variable
positive)

Try with the problem we did before (the new minimum will be

at (0,0), quite intuitively)

30
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Excel Solver for constrained optimization (2/2)

= Now let us add constraints to our problem

= x+y=10
m y > )
= (Click on “add” to add equahty / mequallty Constralnts

MINIM[ZE THE OB]ECTIVE FUNCTIDN BUT UNDER CDNSTRAINTS
f =3x%+5y*+5x+4y +5

s.t.

= x+y=10
=y > 2
X y f(x,y)
5.00
Riferimento di cella:
$B59
SUM

31
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Exercises

= Solve the following exercises using Excel Solver

O Maximize the function

hl(I:y:z) =I2+y2+32 — 2

T.1y.z) =y under constraint h(zx.vy.z) =
flz,y,2) =y (2,9,2) {hg(m,y,z)=y—z

O Minimize the function

f(z,y) =z + vy + 1 under constraint ¢;(z,y) =z +y* —2 <0

O Minimize the function

. hi(z,y,z) =x+y+z
2 _ 1\ %~y d !
f(z,y,z) = z°4+x+2 under constraint h(z,y, z) = { ho(z.y, 2) = 2% + 3% — 1

32
A Review of Optimization Methods



