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Outline of the Course 
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 Lectures	1	and	2	(3	hours):	
 Linear and non-linear functions on 
 Limits, continuity, differentiability, rules to compute 

derivatives, approximation with differentials
 Logarithmic and exponential functions
 Introduction to integration 

 Lecture	3	(1.5	hours):	
 Review of matrix algebra with applications in excel

 Lectures	4	and	5	(3	hours,	1.5	of	which	on	your	laptop):	
 Introduction to optimization: functions of one variable
 Generalization: functions of several variables
 Use of Excel Solver to tackle constrained optimization

A Review of Optimization Methods



Optimization: Statement of the Problem (1/2)
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 Optimization == maximizing (or minimizing)  some objective
function, y = f(x), by picking one or more appropriate values of 
the control (aka choice) variable x

 The most common criterion of choice among alternatives in 
economics (and finance) is the goal of maximizing something 
(like the profit of a firm) or minimizing something (like costs 
or risks)

 For instance, think of a risk-averse investor who wants to 
maximize a mean-variance objective by picking an 
appropriate set of portfolio weights

 Maxima and minima are also called extrema and may be 
relative (or local, that is, they represent an extremum in the 
neighborhood of the point only) or global

 Key assumption: f(x) is n times continuously differentiable
A Review of Optimization Methods
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 In the leftmost graph, optimization is trivial: the function is a 
constant and as such all points are at the same time maxima 
and minima, in a relative sense

 In the second plot, f(x) is monotonically increasing, there is no 
finite maximum, if the set of nonnegative real numbers is the 
domain (as the picture implies)

 The points E and F on the right are examples of a relative 
(local) extrema

 A function can well have several relative extrema, some of 
which may be maxima while others are minima

Optimization: Statement of the Problem (2/2)
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 As a first step we want to identify the “candidate” points to solve 
the optimization problem, i.e., all the local extrema 

 Indeed, global extrema must also be local extrema or end points 
of f(x) on its domain

• If we know all the relative maxima, it is necessary only to select the 
largest of these and compare it with the end points in order to 
determine the absolute maximum

 Key Result 1 (First-Derivative Test): If a relative extremum of the 
function occurs at x = x0, then either f'(x0) = 0, or f'(x0) does not 
exist; this is a necessary condition (but NOT sufficient)

Candidate points: The First-Derivative Test (1/2)
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Inflection point
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 Key Result 1 Qualified: If f ’(x0) = 0 then the value of f(x0) will be:

(a) A relative maximum if the derivative f '(x) changes its sign 
from > 0 to <0 from the immediate left of the point x0 to its 
immediate right

(b) A relative minimum if f '(x) changes its sign from negative 
to positive from the immediate left of x0 to its immediate right

(c) Neither a relative maximum nor a relative minimum if f '(x) 
has the same sign on both the immediate left and right of point 
x0 (inflection point)

Candidate points: The First-Derivative Test (2/2)

A Review of Optimization Methods

NOTE:	we are assuming that the function 
is continuous and possesses continuous 
derivatives => for smooth functions, 
relative extreme points can occur only 
when the first derivative has a zero value  
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One Example

A Review of Optimization Methods



Concave Convex

Inflection point
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 A strictly concave (convex)
function is such that if we pick any 
pair of points M and N on the 
function and join them by a 
straight line, the line segment MN 
must lie entirely below (above) 
the curve, except at points M and 
N

Concavity, Convexity, and Second-Order Derivatives

A Review of Optimization Methods

 If the second derivative ଴ is negative for all x then 
the function is strictly concave

 If the second derivative ଴ is positive for all x then the 
function is strictly convex
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 Key Result 2  (Second-Derivative Test): If the first derivative of a 
function at x = x0 is f ’(x0) = 0 (first-order, necessary	condition),  
then f(x0	0 ), will be:

(a) A relative maximum if f"(x0) < 0
(b) A relative minimum if f"(x0) > 0

 This test is in general more convenient to use than the first-
derivative test, because it does not require us to check the 
derivative sign to both the left and the right of x0

 Drawback: this test is inconclusive in the event that f"(x0) = 0 
when the stationary value f(x0) can be either a relative 
maximum, or a relative minimum, or even an inflection point
• This is what makes the condition sufficient only

Lecture 5 – Review of Optimization Methods

The Second-Order Derivative Test

Second-order, 
sufficient	condition
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Functions with more than one variable
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 We are now going to generalize the earlier results to 
optimization problems for functions of several variables, i.e.,  
 Functions ௡ , i.e.,   ଵ ଶ ௡

 In fact, functions from ௡ to will be popping up very often 
in your future studies
 For instance, the return of a portfolio is a linear function of the returns 

of the n	assets that compose the portfolio:
𝑟௣ ൌ 𝑤ଵ𝑟ଵ ൅ 𝑤ଶ𝑟ଶ ൅ ⋯ ൅ 𝑤௡𝑟௡

 Another example is a utility function 𝑈 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ of a bundle of 
consumption goods 

 However, we first need to generalize the concept of derivative 
to the case of functions of several variables 

 This leads us to the introduction partial derivatives and of 
Jacobian derivatives

A Review of Optimization Methods



Partial derivatives and the Jacobian
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Definition:	Let ௡ .	Then for each variable ௜ at each 
point ଴

ଵ
଴

ଶ
଴

௡
଴ in the domain of f,	the partial 

derivative with respect to ௜ is

if the limits exists. Only the ith variable changes, while the others
stay constant

 The vector (more generally, matrix) 𝐱𝟎 that collects all 
partial derivatives 

𝐱𝟎
ଵ

଴

ଶ

଴

௡

଴

is called the Jacobian derivative of f	at ଴



Partial Derivatives: One Example
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 Example: consider the function ଵ ଶ ଵ
ଶ

ଶ
ଶ

ଵ ଶ
ଷ

ଶ

 Let us compute the partial derivative with respect to ଵ

 Simply treat ଶ as it was a constant and apply the same rules 
of one-variable calculus

ଵ
ଵ ଶ

ଶ
ଶ
ଷ

 Now let compute the partial derivative with respect to ଶ

ଶ
ଵ
ଶ

ଶ ଵ ଶ
ଶ

 The concept can be easily generalized to a function of more 
than two variables 

A Review of Optimization Methods



Second Order Derivatives and Hessians (1/2)
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 If the n	partial derivative functions of f	are continuous 
functions at the point ଴ in ௡ we say that f	is continuously 
differentiable at ଴

 If all the n partial derivatives ௜ are themselves 
differentiable we can compute their partial derivatives 


డ௙
డ௫ೕ

డ௙
డ௫೔

is called the ௜ ௝-second order partial derivative of f	

and it is generally denoted as డమ௙
డ௫೔௫ೕ

 When then we speak of cross (or mixed) partial 
derivatives

 A function of n variables has ଶ second order partial 
derivatives that are usually arranged into a n	x	n Hessian 
matrix

A Review of Optimization Methods



Second Order Derivatives and Hessians (2/2)
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 The Hessian matrix is typically denoted as ଶ or ଶ
௫

and takes the form

 Young’s theorem: the Hessian matrix is a symmetric matrix, 
i.e., for each pair of indices i and j	

ଶ

௜ ௝

𝜕ଶ𝑓

𝜕𝑥௝𝑥௜

A Review of Optimization Methods
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 Consider the function ଵ ଶ ଵ
ଶ

ଶ
ଶ

ଵ ଶ
ଷ

ଶ

 Let us compute the Hessian matrix; we already computed 
ௗ௙

ௗ௫భ
ଵ ଶ

ଶ
ଶ
ଷ,   ௗ௙

ௗ௫మ
ଵ
ଶ

ଶ ଵ ଶ
ଶ

 Now we need to compute


డమ௙

డ௫భ௫భ
ଶ
ଶ; డమ௙

డ௫మ௫మ
ଵ
ଶ

ଵ ଶ;  డమ௙
డ௫భ௫మ

ଵ ଶ ଶ
ଶ

 Hessian matrix is

ଶ
ଶ

ଵ ଶ ଶ
ଶ

ଵ ଶ ଶ
ଶ

ଵ
ଶ

ଵ ଶ

 You can check that          డమ௙
డ௫భ௫మ

డమ௙
డ௫మ௫భ

A Review of Optimization Methods
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 Now we are ready to generalize optimization to the case of n-
variable functions 

 The strategy remains looking for critical points (relative 
extrema) and then try to isolate global ones among them

 ଴ is a critical point for f	if it fulfills 
଴ ,	

which means that 
డ௙
డ௫೔

( ଴ , for each i

 If ଴ is an interior point which is a local maximum or minimum
then it is a critical point  

 However, the reverse is not true, i.e., the condition is necessary
but not sufficient for an interior point to be a local extremum

Optimization: the case of n-variable functions

A Review of Optimization Methods
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 As one may guess from the one-variable case, second order 
conditions involve checking the sign of the Hessian matrix 

 We need to add a definition to the matrix algebra review that 
we discussed in the last lecture
• A principal minor of a square matrix A	is the determinant of a 

submatrix obtained by eliminating some rows and the 
corresponding column; the order of a minor is the dimension of the 
considered submatrix

• A leading principal minor 𝐴௞ is a principal minor obtained by 
considering the first k rows and columns of the original matrix 

• For instance,
𝑎ଵଵ 𝑎ଵଶ 𝑎ଵଷ
𝑎ଶଵ 𝑎ଶଶ 𝑎ଶଷ
𝑎ଷଵ 𝑎ଷଶ 𝑎ଷଷ

Checking the sign of the Hessian matrix (1/2)

A Review of Optimization Methods

𝐴ଵ ൌ 𝑎ଵଵ
𝐴ଶ ൌ 𝑎ଵଵ𝑎ଶଶ െ 𝑎ଶଵ𝑎ଵଶ

𝐴ଷ ⇒ the determinant of the 
3x3 matrix itself
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 A square symmetric matrix is said to be
• Positive definite: if all its leading principal minors are 
strictly	positive	

• Negative definite: if ଵଵ and then all its leading
principal minors alternate in sign (but are different from 
zero)

• Indefinite: if we have a nonzero leading principal minor and 
at least one leading principal minor does not follow the 
patterns above 

• Positive semidefinite: if every principal minor is 
nonnegative

• Negative semidefinite: if ଵଵ and every principal minor 
of odd order is and every principal minor of even order 
is 

Checking the sign of the Hessian matrix (2/2)

A Review of Optimization Methods



20

 The sufficient second order conditions for a local extremum are 
as follows, given that ଴ is an interior critical point:

• If ଶ ଴ is negative definite => ଴ is a local maximum 
point

• If ଶ ଴ is positive definite => ଴ is a local minimum 
point

• If ଶ ଴ is indefinite => ଴ is a saddle point

 Semidefinite cases require further investigation and we shall 
skip their discussion

 When the sign of the Hessian matrix does not depend on , the 
local extrema are also global because when the Hessian is 
positive (negative) definite over the entire domain the function 
is strictly convex (concave)

Sufficient second order conditions

A Review of Optimization Methods
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Example of Unconstrained Optimization (1/2) 
 Study the optimization of the following function: ସ

ଶ ଷ

 Step 1: find the internal critical points


డ௙
డ௫

ൌ 12𝑥ଷ ൅ 6𝑥𝑦 ൌ 0


డ௙
డ௬

ൌ 3𝑥ଶ െ 3𝑦ଶ ൌ 0

 Solving that is non-trivial and time consuming 
 You get three critical points:

 A(0,0); B(ଵ
ଶ

, െ ଵ
ଶ
ሻ; C(െ ଵ

ଶ
, െ ଵ

ଶ
)

 Step 2: compute the Hessian matrix 

 𝐷ଶ𝑓 ൌ 36𝑥ଶ ൅ 6𝑦 6𝑥
6𝑥 െ6𝑦

 We need to check it at A, B, and C

A Review of Optimization Methods
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Example of Unconstrained Optimization (2/2)   
 As an example, I will only check the sign of the Hessian at 

C( ଵ
ଶ

ଵ
ଶ
)

𝐷ଶ𝑓 ൌ 9 െ 3 െ3
െ3 3 ൌ 6 െ3

െ3 3
 𝐴ଵ ൌ 6 ൐ 0
 𝐴ଶ ൌ 6𝑥3 െ െ3 െ3 ൌ 9 ൐ 0
 Then the Hessian matrix is positive definite and the point is a local 

minimum

 This is an easy problem and yet you see how computationally intense 
it is 

 Sometimes the solution shall ben find numerically anyway

 Things get even worse when we introduce constraints (equality 
constraints, inequality constraints or both)

 We shall now introduce the Excel solver
A Review of Optimization Methods
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Excel Solver (1/3)
 The Solver is an analysis tool available as an additional package 

into Excel

 If you do not have it already installed in your Excel you can 
download it as Excel add-in from the Excel options 

 Once you have installed it, you find it under the tab “Data”

 The Solver is able to solve optimization problems for you (even 
with a number of equality/inequality constraints, as we shall 
see later on)

 Essentially, it maximizes (minimizes) the value obtained into an 
objective cell in which you have to specify a certain function…

 …by changing a set of cells (control variables) that you specify 
elsewhere as an array in the worksheet

A Review of Optimization Methods
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Excel Solver (2/3)
OBJECTIVE	FUNCTION:	 ଶ ଶ

 In the cell A6 write a value (almost whatever) for x	and in 
B6 write a value for y	

 The values are only used to initialize the search (in some 
situations it may matter where you initialize the search, but 
typically the nature of the problem that you are solving 
suggests reasonable values)
 For instance, when finding optimal weights for a 

portfolio I typically start from equal weights 
 Then write the functions f	

into the cell C6 

A Review of Optimization Methods
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Excel Solver (3/3)
 Now open the Solver: 

A Review of Optimization Methods

OBJECTIVE CELL

CONTROLS

Choose if you 
want to look 
for a min or 

for a max

For now we 
are not 
putting 

constraints 

SOLVE	IT
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 Up to these points, all control variables have been independent 
of each other: the decision made regarding one variable does 
not impinge upon the choices of the remaining variables
• E.g., a two-product firm can choose any value for Q1 and any Q2 it 

wishes, without the two choices limiting each other
• If the firm in the example is somehow required to fulfill a restri-

ction (e.g., a production quota) in the form of Q1 + Q2 = k, how-
ever, the independence between the choice variables will be lost

• The new optimum satisfying 
the production quota constitu-
tes a constrained optimum, which, 
in general, may be expected to 
differ from the free optimum

 Key Result : A constrained maxi-
mum can never exceed the free 
maximum

Hints of Constrained Optimization (1/2)

A Review of Optimization Methods



27

 In general, a constrained maximum can be expected to achieve a 
lower value than the free maximum, although, by coincidence, the 
two maxima may happen to have the same value

o We had added another constraint intersecting the first constraint at 
a single point in the xy plane, the two constraints together would 
have restricted the domain to that single point

o Then the locating of the extremum would become a trivial matter
• In a meaningful problem, the number and the nature of the 

constraints should be such as to restrict, but not eliminate, the 
possibility of choice
o Generally, the number of constraints should be less than the 

number of choice variables
 Under C < N equality constraints, when we can write a sub-set 

of the choice variables as an explicit function of all others, the 
former can be substituted out:

௫భ,௫మ,…,௫ಿ
ଵ ଶ ே

ଵ ଶ ே ஼ ஼ାଵ ே

Hints of Constrained Optimization (2/2)

A Review of Optimization Methods
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becomes:
௫಴శభ,௫಴శమ,…,௫ಿ

஼ାଵ ஼ାଶ ே

an unconstrained problem
 However, the direct substitution method cannot be applied 

when the C constraints do not allow us to re-write the objective 
functions in N – C free control variables
• Even if some of the variables become implicit functions of others, 

it would be complex to proceed because the objective would 
become “highly composite”

 In such cases, we often resort to the method of Lagrange 
(undetermined) multipliers
• The goal is to convert a constrained extremum problem into a 

form such that the first-order condition of the free extremum 
problem can still be applied

• For instance, consider an objective function z = f(x.y) subject to 
the constraint g(x,y)=c	where c is a constant

Hint: Lagrange Multiplier Method (1/2)

A Review of Optimization Methods
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 The Lagrangian problem is: 
max
௫,௬,ఒ

𝑓 𝑥, 𝑦 െ 𝜆ሾ𝑐 െ 𝑔 𝑥, 𝑦 ሿ
௅௔௚௥௔௡௚௘ ௙௨௡௖௧௜௢௡

 The necessary FOC is then:

Lagrange Multiplier Method (2/2)

The stationary values of the 
Lagrangian function Z will 

automatically satisfy the constraint

The optimal value 𝜆* 
provides a measure of 
the sensitivity of the 
Lagrangian function to a 
shift of the constraint

A Review of Optimization Methods
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Excel Solver for constrained optimization (1/2)
 Lagrange multiplier method gives us critical (candidate) points, 

but also in this case we need to check second order conditions

 This requires to check positive (negative) definiteness of large 
square matrices (bordered Hessian matrices) – we shall skip 
the details

 Again, the Excel Solver may help us!

 First of all, the Solver easily solves “Kuhn-Tucker” type of 
problems (that is, problems in which choice variables are 
restricted to only take positive values)

 It is sufficient to tick the box “make all unconstrained variable 
positive)

 Try with the problem we did before (the new minimum will be 
at (0,0), quite intuitively)

A Review of Optimization Methods
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Excel Solver for constrained optimization (2/2)
 Now let us add constraints to our problem





 Click on “add” to add equality / inequality constraints

A Review of Optimization Methods
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Exercises

 Solve the following exercises using Excel Solver

o Maximize the function

o Minimize the function 

o Minimize the function 

A Review of Optimization Methods


