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OVERVIEW

1) Null vs. alternative hypotheses and rejection region
2) Likelihood ratio tests

3) Type |l and Il errors: power functions

4) Size of a test

5) Finding a test for given size

6) Uniformly Most Powerful tests and Neyman-Pearson’s
lemma

7) The concept of p-value of a test
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NULL VS. ALTERNATIVE HYPOTHESE

S

* A hypothesis is a statement about a population parameter
 The goal of a test is to decide, based on a sample from the

population, which of two complementary
* Definition: The two complementary hypot

nypotheses is true
neses in a testing

problem are called the null hypothesis and the alternative
hypothesis; they are denoted by H_ and H, , respectively

* |f Ois a population parameter, the general

format of the null and

alternative hypothesesis H_: 0 € ®_and H;: 0 € ©°, where O, is a
subset of the parameter space and ®°¢_ its complement

— For example, H,: 0 =0 versus H,; : 0 #0
— Usually the null hypothesis implies no effect

from a treatment and it

tends to be the hypothesis against the conjecture of a researcher

— Other example: H_: 6 <0 versus H, : 0 >0, 0 = increase in GPA from
attending this prep course
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NULL VS. ALTERNATIVE HYPOTHESES

* In a hypothesis testing problem, after observing a random
sample, experimenter decides whether to reject H, as false

* The subset of the sample space for which H_ will be rejected is
called the rejection or critical region; the complement of the
rejection region is called the non-rejection region

* Typically, a hypothesis test is specified in terms of a test
statistic W(X,, ..., X.) = W(X), a function of the sample

— E.g., a test might specify that H_ is to be rejected if the sample mean,
is greater than 3; in this case W (X) = sample mean is the test statistic
and the rejection region is {x,, ..., X,) : sample mean > 3}

* Four methods of finding a test: Not here. not exolicitly!
OLikelihood ratio tests ® Union-Intersection Tests
© Bayesian methods (not here) O Intersection-Union Tests

* The likelihood ratio method is related to ML estimators and
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LIKELIHOOD RATIO TESTS

is as widely applicable

— Recall that if X,,..., X_ is a random sample from a population with pdf or
pmf f(x; 0) (0 may be a vector), the likelihood function is defined as

L(Qi}{} — L{_E}[:Qg? ...:9}(:3_'3[:1132: ....,ilfn} — f(}:: 9) — 1_[?:1 f(ﬂfi': 9].,92: ---;9.&’)

e Definition [LIKELIHOOD RATIO TEST]: A likelihood ratio test (LRT)
is any test that has a rejection region of the form {x: LRT(x) < c},
where c € [0, 1] and o L(0:x

sup e L(6:x)

— The numerator is the maximum probability of the observed sample, the
maximum being computed over parameters under the null hypothesis;
the denominator is the maximum probability of the observed sample
over all possible parameters

— The ratio of these two maxima is small if there are parameter points in
the alternative hypothesis for which the observed sample is much
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LIKELIHOOD RATIO TESTS

more likely than for any parameter point under the null hypothesis: in this
situation, the LRT criterion says H, should be rejected

— If you think of doing the maximization over both the entire parameter
space (unrestricted maximization)—obtaining supe,L(#:x) --and a
subset of the parameter space (restricted maximization) obtaining
sup o L(6: x) then the correspondence between LRTs and MLEs is clear

— How do you pick ¢? Formally, any number in [0, 1] will do; practically, we
shall see how to optimize such a choice

— Example (Normal LRT): Let X, ..., X, be a random sample from a N(0, 1)
population. Consider H_: 0 =0, versus H,: 0 +0_, where 0, is fixed

— Since there is only one value of 0 specified by H_, the numerator of the
LRT is L(O, ;x); as for the denominator, we know that the MLE of the mean
is the sample mean. So the LRT statistic is

m e 1/ (e g
LRT () = _P00ix)  Lboix) _ (2m) P expl(=1/2) Y (@ — bo)’]

“7 supeL(f:x) L[QML:}{} (2m) ™/ Zexp|(—1/2) > " (z; — Z)?]
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LIKELIHOOD RATIO TESTS
—exp[—(1/2) ) (z: —00)° + (1/2) Y _(z: — )]

:exp[—(l/?) Z:L:I:i — :f:)z — (l/z}n(i‘ — QD}Z + (1/2} Z($“ - 5}2]

=1
—exp[—(1/2)n(Z — o)
which yields the following rejection region:
LRT(x) = exp[—(1/2)n(Z — 6p)*] < c = Sn(i’ —60)> > —1Inc

— (i’ — ﬂg)z

— The LRTs are just those tests that reject H_: 0 = 0, if sample mean dif-
fers from the hypothesized value 0, by more than a specified amount

* In performing a test, an experimenter might be making a
mistake: hypothesis tests are evaluated and compared through

their probabilities of making mistakes
* There are two possible types of errors
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POWER FUNCTION - -

Decision
e Definition [TYPE | ERROR]: If 0 Accept Hy | Reject Hy
: Hg | Correct Type |
= ®.° but the .test incorrectly Truth | decdaion =60
decides to reject H_, then the H, [Type Il | Correct
test has made a Type | Error Error decision
* Definition [TYPE Il ERROR]: If 0 € ®¢_ but the test decides not to

reject H_, a Type Il Error has been made

Py(X € R) = probability of a Type I Error if 6§ € G
1% € %= 1 fone mimis)the probability of a Type Il Error it 0 € 65

* This information is summarized by the: o+

P

* Definition [POWER FUNCTION]: The power |
function of a hypothesis test with 5

rejection region R is the function of 0
defined by 3(0) = Pr(X € R)

B,

B0

— The ideal power functionisOforall6 € ®, o, el
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POWER FUNCTION

and 1forall0 ¢ ©,

— Except in trivial situations, this ideal cannot be attained; therefore
qualitatively, a good test has power function near 1 for most 0 ¢ ©,

and near O for most0 € O,
— Think of picture in the previous page: would you pick 3,(0) or 3,(0)?

* 3,(0) has very good type | error probability but it goes up 1 very late,
which means the type Il probability remains large; 3,(0) has large type |
error probability but it goes up 1 rather fast, which means the type Il

probability declines soon
* For a fixed sample size, n, it is usually impossible to make both
types of error probabilities arbitrarily small
* In searching for a good test, we restrict consideration to tests

that control the Type | Error probability at a specified level;
within this class of tests we then search for tests that have Type

Il Error probability that is as small as possible
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SIZE AND LEVEL

* The following is useful:

e Definition [SIZE OF A TEST]: For 0 <a <1, a test with power
function B(0) is a size-a test if sup,y . o, P(0) = @

— We commonly specify the level of the test at o = 0.01, 0.05, and 0.10

— Remember that, in fixing the level, you are controlling only the Type |
Error probabilities, not the Type Il Error

— In this approach, you should specify the null and alternative
hypotheses so that it is most important to control the Type | Error

— E.g., you want to give support to a particular hypothesis—your
thesis—but you do not wish to make the assertion unless the data give
convincing support, the test can be set up so that the alternative
hypothesis is the one that you “would like” the data to support

* The alternative hypothesis is sometimes called the research hypothesis
* Inthis case it is appropriate to set a size a that is small
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SETTING THE PARAMETER C

— So far, c was unspecified, so not one but an entire class of LRTs was
defined, one for each value of c

* The restriction to size a tests may now lead to choice of one out
of the class of tests, pinning down the optimal value of c
— Example: In our example with X,, ..., X, a random sample from a N(0, 1)

population, we set H_: 0 = 0_ versus H;: 0 +#0_, where 0 is fixed and
concluded that the rejection region was:

Proco,(7 € R) = P1 (|Z| > ~../—21nc) — o — Pr (Z < —-w./—ﬂlnr:) +Pr (Z > 1/—2111(:) — o

v

—a/2 =a/2
where the sum of two terms derives from symmetry
— At this point, the following steps allow is to derive the optimal c and to
see that in this case this corresponds to a normal critical value:

Proco,(? € R) = Pr (|Z| >/2In c) — o — Pr (Z < —vV=2In r:) +Pr (Z > \/—2111{:) —

-

v

:a{{rz :a{E

— Pr (Z > V-2 lnc) — Pr (Z > f_’fa};g) — % —> Za)2 = V-2Inc

—
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UNIFORMLY MOST POWERFUL TESTS

— In the above example we used the notation z, ,, to denote the point
having probability a/2 to the right of it for a standard normal PDF

— This standard, general notation: z_ is such that Pr(Z>z ) = a where Z ~
N(0,1); t,1 /2 is such that Pr(T, ;> ¢t ;) = 0/2; %, 1 is such that
Pr(xzIO > sz,l-a) =1- o; all these points are known as cutoff points

* Not always fixing the size of a test delivers a unique choice for
the parameter c; in this case a criterion to rank tests is needed

— The logic is however clear: for fixed size, we want to maximize the
power of a test because type Il error pr. =1 - 3(0) and so large 3(0) =
low type Il error

* Definition [UNIFORMLY MOST POWERFUL TEST]: Let C be a

class of tests forH_: 0 € ®_ vs. H,: 0 € ©°_. A test in C, with
power function [3(0) is a uniformly most powerful (UMP) class C
test if 3(0) > p’(0) for every 0 € ®¢, and every ’(0) that is a
power function of a test in class C
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UMP TESTS: NEYMANN-PEARSON LEMMA

— What is C? For instance, all tests with a fixed size

— At this point, there are good and bad news; bad news, for most
applications, UMP tests do not exist and are always hard to find

— Good news: when the hypotheses are simple (i.e., they both consist of
only one probability distribution for the sample), then we know quite a
lot about the structure of UMP tests, as shown by the famous:

* Key Result 12 [NEYMAN-PEARSON LEMMA]: Consider H_: 0 = 0,
vs. versus H;: 0 = 0, where the pdf or pmf corresponding to 0, is
f(x; ©,), i =0, 1, using a rejection region R that satisfies

x € R if f(x:60,) > kf(x:60) .,
) : . = v = Y — =
{x € Reif f(x:0,) < kf(x: 6) for some k£ > 0 and a = Pryce,(x € R)
(a, sufficiency) Any test that satisfies these conditions is a UMP
level-a test; (b, necessity) if there exists a test satisfying these
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THE CONCEPT OF P-VALUE

conditions with k > 0, then every UMP sized-a test satisfies
them almost surely

— Since we have mentioned the simple ones, let’s add that hypotheses
that assert that a univariate parameter is large, for example, H: 6 >0,
or small, for example, H: 0 < 0, , are called one-sided hypotheses

— Hypotheses that assert that a parameter is either large or small, for
example, H: 0 #+ 0, are called two-sided hypotheses

* After a hypothesis test is done, the conclusions must be
reported in some meaningful way

— One method of reporting the results of a hypothesis test is to report
the size, o, of the test used and the decision to reject H, or not

— The size of the test carries important information. If a is small, the
decision to reject H, is fairly convincing; but if a is large, the decision to
reject H_ is not very convincing because the test has a large probability
of incorrectly making that decision
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THE CONCEPT OF P-VALUE

* Another way of reporting the results of a test is to report the
value of a certain kind of test statistic called a p-value

* Definition [P-VALUE]: A p-value p(X) is a sample statistic sati-
sfying p(x) € [0,1] for every sample point x that captures the
largest possibile size of all tests that reject the null hypothesis

— Formally, let W(X) be a test statistic such that large values of W give
evidence that H, is true; for each sample point x, a p-value p(x) is such
that p(x) = supy < g,Pr(W(X) > W(x)) (note the “sup” under null)

— An advantage to reporting a test result via a p-value is that each reader
can choose the a she considers appropriate and then can compare the
reported p(x) to a

— The smaller the p-value, the stronger the evidence for rejecting H,

— A p-value reports the test result on a more continuous scale, rather
than just the dichotomous decision "Reject H_“, “Not Reject H_"

’
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USEFUL NOTIONS REVIEWED IN THIS LECTURE

* Let me give you a list to follow up to:
* Logical structure of a statistical test of hypothesis
* Rejection vs. non-rejection region

* Likelihood ratio tests

* Type |, type Il errors and power function of a test
* Size of a test

* Uniformly most powerful tests

* The Lehman-Pearson’s lemma

* Concept of p-value from a test
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