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Overview
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▪ Three issues in multivariate modelling of CH covariances

▪ Naïve models that extend univariate models to covariances

▪ Full Multivariate GARCH, part 1: VECH GARCH

▪ Full Multivariate GARCH, part 2: BEKK GARCH

▪ Constant Conditional Correlations (CCC) models

▪ Dynamic Conditional Correlations (DCC) models

▪ Hints to Estimation and Inference



▪ Because of the limitations of 
VECH, during the 1990s, one multivariate GARCH model surged to 
popularity, Engle and Kroner’s (1995) BEKK (p, q):
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BEKK (Baba-Engle-Kraft-Kroner) GARCH
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▪ The special “sandwich” structure of the coefficient matrices guaran-
tees that 𝜮𝑡+1|𝑡 is (semi-)PD without imposing other restrictions

o The popular BEKK that many empiricists have come to appreciate is a 
simpler (1,1) diagonal BEKK that restricts the matrices A and B

▪ BEKK models possess three attractive properties:

① When symmetry of A and B is imposed, a BEKK is a truncated, low-
dimensional application of a theorem by which all nonnegative, 
symmetric NxN matrices (say, M) can be decomposed as:

for appropriately selected vectors mk,j

② BEKK ensures (S)PD-ness of 𝜮𝑡+1|𝑡, because by construction, the 

sandwich form and outer vector products have this property

③ BEKK is invariant to linear combinations, i.e., if Rt+1 follows a BEKK 
GARCH(p, q), then any ptf. of the N assets in Rt+1 will also follow a BEKK, 
see lecture notes for examples and counterexamples under VECH ARCH
o However, the number of parameters in BEKK remains rather large
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BEKK (Baba-Engle-Kraft-Kroner) GARCH



o In the application to US stock and bond returns, BIC leads to select a t-
Student diagonal BEKK(1,1):

o No p-values for second moments as products are in “sandwich form”
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Stock-Bond Correlation under BEKK
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Stock-Bond Correlation under BEKK



o Stationarity and moment convergence criteria for multi-GARCH are 
complex and explicit results are only available for a few special cases

▪ In the practice of risk and asset management, most chattering is 
about time-varying correlations and not covariances

o E.g., to debate evidence that correlations increase during crises

▪ On the one hand, as already exploited in many examples, obvious 
that given any type of model to forecast covariances and variances, 
one can compute the implied dynamic (prediction of) correlation:

▪ On the other hand, fruitful to directly model correlations although 
there is one obvious problem, to forecast

▪ Any dynamic estimator implies a need to constrain parameters

▪ Engle (2002) offers a nifty trick: appealing to model an appropriate 
auxiliary variable, qij,t+1, than correlations directly

o An auxiliary variable is a by-product of modeling and estimation that 
has no direct meaning but that can be used in subsequent steps
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Conditional Correlation (DCC and CCC) Models



o DCC approach is based on a generalization of the standard result 
that                                                              to matrices:

o Here 𝑫𝑡+1 is an NxN matrix of predicted standard deviations, σi,t+1, 
the ith element of the diagonal and 0 everywhere else

o 𝚪𝑡+1|𝑡 is a matrix of predicted correlations, ρij,t+1|t with 1s on its 

main diagonal, for instance:

▪ The key step of the DCC approach is based on the ability to 
disentangle the estimation and prediction of 𝑫𝑡+1 from the 
estimation and prediction of 𝚪𝑡+1|𝑡; we proceed in two steps:

① The volatility of each asset is estimated/predicted through a 
GARCH or one of the other methods considered in lectures 6-7

o E.g., NAGARCH(p, q) for some assets and GARCH(1,1) for others
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Conditional Correlation (DCC and CCC) Models



o Homoskedasticity (constant variance is not ruled out)

② Model the conditional covariances of the resulting standardized 
residuals, zi,t+1 i,t+1/σi,t+1|t , derived from the first-step GARCH

o We exploit the fact that the conditional covariance of the 
standardized residuals equals the conditional correlation of 
original residuals:

▪ GARCH-type modeling in the second step will not directly concern 
the covariance of stdzed residuals, but an auxiliary variable qij,t+1
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Conditional Correlation (DCC and CCC) Models



▪ Typically, the most popular model used in this second DCC step is:

a GARCH(1,1) for the auxiliary variable, written in deviations from 
the unconditional, long-run mean correlation, 

▪ An alternative is a RiskMetrics-type model:

o Complex, asymmetric or nonlinear (e.g., power) GARCH are possible

o These models apply to all pairs of assets even when i = j

▪ To go from a forecast of auxiliary variable qij,t+1 to correlations use:

▪ This transformation guarantees that 
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Conditional Correlation (DCC and CCC) Models

Common across assets



o The RiskMetrics/DCC and GARCH/DCC models can be written in matrix 
form as:

o Qt+1 is an NxN symmetric (S)PD matrix that collects the values/predi-
ctions of the auxiliary variables qij,t+1:

o Qt+1 is (S)PD because it is 
a weighted average of (S)PD 
and positive definite matrices

o This will ensure that the correlation matrix 𝚪𝑡+1|𝑡 and the covariance 
matrix, 𝚺𝑡+1|𝑡 will be (S)PD

o When i = j, qij,t+1 in general differs from σ2
i,t+1 from the first step—this 

represents the “approximation burden” of two-step DCC estimation

▪ Covariance stationarity of all the GARCH processes that “populate” 
𝑫𝑡+1 along with covariance stationarity of the (matrix) process for 
𝑸𝑡+1 are sufficient for a DCC model to be weakly stationary and for 
unconditional variances, covariances, and correlations to exist
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Conditional Correlation (DCC and CCC) Models



12

Stock-Bond Correlation under RiskMetrics DCC
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Stock-Bond Correlation under TARCH(1,1,1) DCC



▪ One restricted case of DCC had appeared already in 1990: Boller-
slev’s constant conditional correlation (CCC) multivariate model, 
which is a DCC with constant correlation matrix, 

o This model simply avoids defining and modeling with GARCH-type 
processes the qij,t+1 auxiliary variable

▪ Multivariate GARCH and DCC estimation applies (Q)ML to jointly 
estimate the parameters of (conditional) mean variance equations

o E.g., in the multivariate normal case, the log-likelihood contributions 
(i.e., the PDF values for each of the sample observations) is:

o The asymptotic properties of ML (and QML) estimators in multivariate 
GARCH models are not yet firmly established: while consistency has 
been proven, asymptotic normality of the QMLE is not established

o DCC and CCC models are estimated by QMLE by construction: because 
the model is implemented in three different steps, even though in each 
of these stages a log-likelihood function is written and maximized

o QML efficiency loss derives from treating zi,t+1 as data and not estimates 
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Estimation and Inference



Appendix A: Positive Definiteness in VECH ARCH(1)
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