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Overview

* Three issues in multivariate modelling of CH covariances

= Naive models that extend univariate models to covariances

= Full Multivariate GARCH, part 1: VECH GARCH

= Full Multivariate GARCH, part 2: BEKK GARCH
= Constant Conditional Correlations (CCC) models
* Dynamic Conditional Correlations (DCC) models

= Hints to Estimation and Inference
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BEKK (Baba-Engle-Kraft-Kroner) GARCH
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= Because of the limitations of * 5 1550 1558 3ds 2005 Iewe i
VECH, during the 1990s, one multivariate GARCH model surged to
popularity, Engle and Kroner’s (1995) BEKK (p, q):

S = CC Y'A (Bl Beagy AL TiB i 21— By

Non-negative | = locibon? o
NxN matrices

1=1 J= ]
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BEKK (Baba-Engle-Kraft-Kroner) GARCH

= The special “sandwich” structure of the coefficient matrices guaran-
tees that X, 4| is (semi-)PD without imposing other restrictions

o The popular BEKK that many empiricists have come to appreciate is a
simpler (1,1) diagonal BEKK that restricts the matrices A and B

= BEKK models possess three attractive properties:

(1) When symmetry of A and B is imposed, a BEKK is a truncated, low-
dimensional application of a theorem by which all nonnegative,
symmetric NxN matrices (say, M) can be decomposed as:

M = !n:-'” H’.-']j] _ i [m]}_‘]m;\‘] II]J:&,]II]J{-.‘: ]

21 Moo =1 111]‘{__,2 my mﬁ_,jm;{,g

for appropriately selected vectors m,;
(2) BEKK ensures (S)PD-ness of X 41| because by construction, the
sandwich form and outer vector products have this property
@ BEKK is invariant to linear combinations, i.e., if R, follows a BEKK
GARCH(p, g), then any ptf. of the N assets in R, ; will also follow a BEKK,
see lecture notes for examples and counterexamples under VECH ARCH

o However, the number of parameters in BEKK remains rather large
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Stock-Bond Correlation under BEKK

o In the application to US stock and bond returns, BIC leads to select a t-
Student diagonal BEKK(1,1):

MKT ., =0.582+0.103Bond, + &,,.,., t-Student
' (0.000)  (0.001) ’ parameter v
2 2 2
OMT 41 = 0.080+ 0.0685MK” + 0'915O-MKTJ|I—1 /
Bondt+1 = _?62:95}2+ ?6%§J%Bondt T €pond 41 [EMKT.t+'l gBond,t+1]' IID Mt(0, Et+1lt;?6%§;?]
2 2 2
O Bond t+11t = 0.014 + 0.044830,?” + 0.945c:>'15?mm,tlt_1
O MKT—Bond,t+1]t — —0.002 + O'OSSEMKT,thond,t + O'QBOJMKT—Bond,Ht—l '
o No p-values for second moments as products are in “sandwich form”
o Var (MKT) . Cov(MKT,BOND)
10 Var(BOND) . Corr(MKT,BOND)
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Stock-Bond Correlation under BEKK

Var(MKT) Cov(MKT,BOND)
50 6
40 4
2 -
30+
0 4
20
-2 4
. m ]
0 L | L L T T T 7 T T LI | T T LI | T T LI | T LI -6 T | L LELE| L T L T L T T T T | L LI
85 90 a5 00 05 10 15 85 90 a5 00 05 10 15
Var(BOND) Corr(MKT,BOND)
10 .8
g 6
4
6 -
2 '
4 —
.0
2 -2 4
o————— 1777 -4
85 20 95 00 05 10 15
-.6 -
-8

L e A A L B R R B B
1985 1990 1995 2000 2005 2010

—
2015




Conditional Correlation (DCC and CCC) Models

o Stationarity and moment convergence criteria for multi-GARCH are
complex and explicit results are only available for a few special cases

= [In the practice of risk and asset management, most chattering is
about time-varying correlations and not covariances

o E.g., to debate evidence that correlations increase during crises

= On the one hand, as already exploited in many examples, obvious
that given any type of model to forecast covariances and variances,
one can compute the implied dynamic (prediction of) correlation:
ﬁ}fj*ﬂ e — fﬂT:‘j*ﬂ l|r;’f{{'}:‘*r+ ]|r{'}j*r+ l|r},v~f~_;" =1,..,.N
= On the other hand, fruitful to directly model correlations although
there is one obvious problem, to forecast Zijc+1: €[ — 1, 1]
* Any dynamic estimator implies a need to constrain parameters

= Engle (2002) offers a nifty trick: appealing to model an appropriate
auxiliary variable, g;;,,, than correlations directly

o An auxiliary variable is a by-product of modeling and estimation that
has no direct meaning but that can be used in subsequent steps
Lecture 3: Multivariate GARCH and Conditional Correlation Models 7



Conditional Correlation (DCC and CCC) Models

o DCC approach is based on a generalization of the standard result
that Tjjs+1)r = Tig+ 1t Pjj g +11: T+ 1 tO matrices:

E:f+1|r = Dr+]Fr+l|rDr+]

o Here D, is an NXN matrix of predicted standard deviations, o, ,, ;,
the ith element of the diagonal and 0 everywhere else

o Ttyq)¢ Is a matrix of predicted correlations, p;,,;, with 1s on its
main diagonal, for instance:

)
D o O+ 9120+ | | O+ 0 1 P1ag+1)t || Ole+1 0
f‘l"”f — 2 _ 0 l (-}
T124+1)t 02141 02,0+1 | [ P12p+1]r T2,t+1

= The key step of the DCC approach is based on the ability to

disentangle the estimation and prediction of D, from the
estimation and prediction of I'; ; 1)¢; we proceed in two steps:

(1) The volatility of each asset is estimated /predicted through a
GARCH or one of the other methods considered in lectures 6-7

o E.g., NAGARCH(p, q) for some assets and GARCH(1,1) for others
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Conditional Correlation (DCC and CCC) Models

o Homoskedasticity (constant variance is not ruled out)

(2) Model the conditional covariances of the resulting standardized
residuals, z;,,; BB, ,,/0;., derived from the first-step GARCH

o We exploit the fact that the conditional covariance of the
standardized residuals equals the conditional correlation of

original residuals:

= Pij+1|t

Cit+1 Eit+1 ] B (ff”’r[fff,rﬂq *-’:j,ﬁl]

Cove|zig+1, Zja+1]| = Cm‘r! :
Tig+1)t O+t Tit+11tTj e +1|t

* GARCH-type modeling in the second step will not directly concern
the covariance of stdzed residuals, but an auxiliary variable g;;,,
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Conditional Correlation (DCC and CCC) Models

Typically, the most popular model used in this second DCC step is:

An alternatlve IS d RiSkMetriCS'type mOdel:=~ Common across assets

— P
o Complex, asymmetric or nonlinear (e.g., power) GARCH are possible

............................ o

o These models apply to all pairs of assets even wheni=j

To go from a forecast of auxiliary variable g, to correlations use:

dijt+1
Vit +1/9jje+1

This transformation guarantees that p;;,, €[ — 1, 1]

Piit+1t —
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Conditional Correlation (DCC and CCC) Models

o The RiskMetrics/DCC and GARCH/DCC models can be written in matrix
form as: Qi1 = (1 = Nzz, + A\Q, 7, = [H < Z ]’r
Q. =II +azz  +pQ, ™ Z1¢4+1  22¢+1  ---  ZINt+1

o Q,,; isan NxN symmetric (S)PD matrix that collects the values/predi-
ctions of the auxiliary variables q;;,, :

diig+1  q124+1  ---  GINg+1
o Qg is (S)PD because it is Q. = 1241  4224+1  ---  {2Ns+1
a weighted average of (S)PD ~/"! — ' : ‘ ‘
and positive definite matrices CGINE1 GONg+1 - QNN+l

o This will ensure that the correlation matrix I' ;1 and the covariance
matrix, X; 1|, will be (S)PD

o Wheni =}, q;., in general differs from 62, ,; from the first step—this
represents the “approximation burden” of two-step DCC estimation

* Covariance stationarity of all the GARCH processes that “populate”
D, along with covariance stationarity of the (matrix) process for
Q.. are sufficient for a DCC model to be weakly stationary and for
unconditional variances, covariances, and correlations to exist
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Stock-Bond Correlation under RiskMetrics DCC
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Stock-Bond Correlation under TARCH(1,1,1) DCC
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Estimation and Inference

One restricted case of DCC had appeared already in 1990: Boller-
slev’s constant conditional correlation (CCC) multivariate model,
which is a DCC with constant correlation matrix, 2,;; = D, {I'D,;

o This model simply avoids defining and modeling with GARCH-type
processes the q;;,,; auxiliary variable

Multivariate GARCH and DCC estimation applies (Q)ML to jointly
estimate the parameters of (conditional) mean variance equations

o E.g.,in the multivariate normal case, the log-likelihood contributions
(i.e., the PDF values for each of the sample observations) is:

| 1 I, _
[(R;+1: 0)=— EN In(27) — 51n det ,.1(0) — SEi+ 3 (0)g4

o The asymptotic properties of ML (and QML) estimators in multivariate
GARCH models are not yet firmly established: while consistency has
been proven, asymptotic normality of the QMLE is not established

o DCC and CCC models are estimated by QMLE by construction: because
the model is implemented in three different steps, even though in each
of these stages a log-likelihood function is written and maximized

o QML efficiency loss derives from treating z;,, as data and not estimates
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Appendix A: Positive Definiteness in VECH ARCH(1)

Consider the case of two assets (N =2 ) and a simple diagonal multi-
variate ARCH(1) model,

' T
vech(XZ,.,,) = (I, — A)vech ( T >, J + Avech(g,g,'),
=1

where the covariance targeting restriction has already been im-
posed and A is a diagonal matrix. Because we haveset N=2, ¥

t+1je

will be a 2x2 matrix, A is a 3x3 matrix, vech(X,, , )isa 3x1 vector

+1|t

of unique elements from X

t+1t

,and Vech(T‘IZ::l £.E, ') isa 3x1vector

of unique elements from the sum of cross-product matrices

T
L EE '. The number of coefficients to be estimated is of course 3,
11 22 33 . ;
a , a”,and a in the representation:
2 11 ' 15T .2
O trtpe 1 0 O a 0 0 T ">._.&1,
_ 22 -1 T
Clo et | = 0O 1 0|—| O a 0 T 2>..5 €2 :
2 33 -1 T 2
&2 0 0 1 0 0 a TiyT &2,
at 0 o0 ;. (1-a' T '], +a'el,
+ 0 a’ 0 E16%2: |5 (1-a* )T 23;131;52; +a2281,r52,r
0 0 a*| & (1-a®)T '3 82, +a*s?,

and o2

As for the conditions that guarantee that both &7 2 41l

1,t+1|¢ are
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Appendix A: Positive Definiteness in VECH ARCH(1)

positive at all times, i.e., that help ensure semi-positive definiteness

of X ., clearly, because under a continuous distribution past

squared shocks are unbounded,

T
(1-a')T ' >'e, +a e, >0ifand onlyifa’ €(0,1)
t=1

T
(1-a”)T"Ye,, +a’e,, >0ifand only if a™ (0,1).
t=1
At this point the filtered (predicted) correlation coefficient has ex-
pression

c”*+a*e, g,
Piz,e+1 = — :
\/ c''+a'le], \/ c*+a*e;,

where we have shortened the notation defining ¢! =(1-a") T3 &,

P =(1-a®)T" 3 s, and ¢ =(1-a®)T" ¥ ¢, ¢,,. Focusing on the

upper bound of the interval this means that

22 22 2 11 11 .2 33 33 .2
(¢ +a~ e &, ) <(c +a &, )(c”+a’e;,) or

2242 2242 2 2 22 22 11 33 33 11 .2 11 _33 2 11 _33 2 2
(c™)+(a™) &6, +2c7a e, 5, Scc7+cTa g tcave, ta aveE, 16



Appendix A: Positive Definiteness in VECH ARCH(1)

which is equivalent to
[a11a33 _(a22)2 ]812’t822I + [011633 . (622 JZ] +

33 11 2 11 33 2 22 22 ’
+chave, +cave,, —2c"ave, &, 20

which cannot hold for a continuous distribution for the two return
series as, even imposing [a a” —(a**)’]=0 and [c¢"'c* —(c**)*]=0,
c”a'el, +c'a¥e;, —2¢%a% e, &, 20
in general does not hold for @ #0. However, notice that if one sets
a” =0, then the inequalities simplify to
allaBSEIZthit + [C11C33 —(C22]2]+ C330118i2't + Clla33822l’t 2 0 ’

which has a chance to hold if a’ and a- are such that

2
T T T
{(1—a“)T123§t}{[1 —a* )le(ejt} > {Tliﬁﬁz;} ,
t=1 t=1 t=1
which also means that

5 = G, T_IZ::LEMEM <1
12 - = — -
70 J1-a T sLel, J1-a*)T 5L e, 17




Appendix A: Positive Definiteness in VECH ARCH(1)

the unconditional correlation implied by the data and the diagonal
bivariate ARCH(1) process is well-behaved. Therefore, if a** (0,1)

and a’’ €(0,1), then @” =0 (and possibly some other restrictions

on d and @ such that the condition above holds) must be im-
posed. This means that it is impossible to model the dynamics of vol-
atilities and covariances simultaneously while satisfying the positiv-
ity requirement for the volatilities and keeping the covariance ma-
trix SPD at all times. Equivalently, if one wants to impose that the
diagonal VECH-ARCH(1) model delivers a filtered covariance matrix
XY . that is SPD at all times, the diagonal model itself must be

t+1je
turned into a constant covariance multivariate ARCH model, as you
understand that @ =0 implies Op = T > 1E1,E, = 0, so that

C)-l 2

P = ,
: 11, 112 33 , 33 2

and dynamics in conditional correlations will exclusively come from
dynamics in volatilities. 18




