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Overview

* Three issues in multivariate modelling of CH covariances

= Naive models that extend univariate models to covariances

= Full Multivariate GARCH, part 1: VECH GARCH

= Full Multivariate GARCH, part 2: BEKK GARCH
= Constant Conditional Correlations (CCC) models
* Dynamic Conditional Correlations (DCC) models

= Hints to Estimation and Inference
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Motivation: Finance is Multivariate

= Most relevant and realistic applications in empirical finance are
multivariate, that is, they involve N & 2 assets/securities/portfolios

o Collect the N returns in the Nx1 vector, Ry11 = [R} 1R 1 ... R, 1]

o Then CH is about a matrix of second moments, that is, variances and

covariances:
Vf”'[RrH] = E[{Rrﬂ - E[R:H]}{Rrﬂ - E[RH-]]}I]
{Rr]+l _E[Rrﬂ] 2 R (Rr]-l-] _E[Rr]-l-]])([ 41 E[Rr+l] (Rr]-l-] _E[Rrﬂ] Rrw+l o E[RrH] |
_F {RI]H E[RIH] RH] ETR;,,]) (RH] E[R;H])“ e (RH] E[RIH] R;"H E[R:H]
{Rr]+l _E[Rrﬂ] R:VH E[R?H]) (REH E[Rrﬂ])“{?ﬂ _E[Rrﬂ] (R;VH _E[Rrﬂ] 2 i

o All variances are collected on the main diagonal (they are N), while all
covariances are collected off the main diagonal (they are N(N -1)/2)

o Because CoV[Ri,,, R, 1= Cov[R.,,, R, ], Var[R;4,] is NXN symmetric

o See 20135, ptf. choice lectures for examples of applications
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Motivation: Finance is Multivariate

= [n the same way in which we have developed CH models for atz+1|t
we now perform the same operation for Var:[R;,1]|

o The models will be multivariate in nature

o They imply a need to model and forecast conditional covariances

= This goal raises 3 issues:

(1) Because there are N + N(N - 1)/2 = N(N + 1)/2 moments to be
estimated, the availability of sufficiently long-time series may be an issue

o E.g., with 15 assets in a ptf.—as common in asset mgmt—need (i) 15
volatility and (if) 15x14/2=105 covariance forecasts, for a total of 120

o Even when variances and covariances are constant, with 15 series of
returns and 120 parameters = 120/15 = 8 data points per series
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Three Issues with Multivariate VarCov Modelling

o Yet, this is a unit saturation ratio! To get a ratio of 20, you need
160 data points per series, i.e., 7+ months of daily data, 3+ years
of weekly data, 13+ years of monthly data, 40 years of quarterly
data

o These data requirements are moderate, but not negligible for OTC
instruments or recently floated stocks in the aftermath of IPOs

o Try the example before with 100 assets... you will need to
estimate 100 + 100x99/2=5,050 parameters

o Because the size of Var[R;,,] grows as a function of N?, the size
of the estimation problem and the data requirements grow as a
quadratic function of the number of assets (i.e., very quickly)

o To some extent models help in reducing the estimation burden,
through multivariate CH models, concerning Var[R;41]
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Three Issues with Multivariate VarCov Modelling

(2) But models face a unique problem: unless restrictions are imposed, it
is difficult to guarantee that Var;[R;,,] be a positive definite (PD) matrix

o A PD matrix Vary[R;;1] is one such that for any Nx1 vector (of
weights) w, the ptf. Return variance w'Var;[R;,,]w > 0

o A PD matrix = positive variances and all correlations < 1

(3) Many CH models themselves are often over-parameterized and
characterized by low saturation ratios

o Models react to 1), however face issue 2) unless they are rich, issue 3)

= Early idea (late 1980s): each element of Var;[R;, 1] can modelled
separately and using the same models as in lecture 6

l R
o For instance, rolling window moving avg.ojj+1/(R) = EZ Citt 111411
the avg. of the cross-residual products for a pair iBlj =~ =1

o Alternative idea that has had some impact on the practice of risk mgmt
consists of extending RiskMetrics,
with B possibly set at 0.94
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Simple Models Compared: Stock-Bond Correlation

1.00

0.75 1
0.50 1

025 [

0.00

-0.25

-0.50

-0.75

-1.00

Why not GARCH for covariances? 0y 41y =
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RiskMetrics is a non-stationary GARCH, unconditional covariance fails
to exist, and if tomorrow’s covariance is high (low) then it is predicted
to remain high (low), rather than reverting back to its mean

of both covariances and correlations between weekly returns on US
value-weighted stock index and 10-year Treasury notes
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The sample is January 1982-December 2016
Claim that stocks and bonds are negatively correlated is simplistic

Suppose you are in charge of modelling and forecasting the dynamics
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Simple Models Compared: Stock-Bond Correlation
o Inall cases, correlations computed for each asset usmg predlcted stan-
dard deviations generated by a GARCH(1,1) £ .4 =0; 11 / (G s X G rne)
o The estimate of A is higher than the classical 0.94, in excess of 0.99

o Without restrictions (left panel), the RiskMetrics forecast goes below -1
in a few weeks of 2013 & the resulting Vary[R;, 1] is not PD

o One way to correct problem is to estimate RiskMetrics on stdzed
residuals (right panel) + predict correlations in RW case with RW stdev

* The example shows already one case of non-PD predicted Var; [Rt+1]

= Unfortunately, unless a; = aand 3; = § for all possible pairs i, j (w; i
allowed to depend on the pair i and j), even though o;; ;,1); can be

anyway predicted, when one organizes such predictions into a
covariance matrix Var;[R;,1], this is not guaranteed to be PD
o Lecture notes provide a heuristic proof referred to RiskMetrics

o Note that the restriction applies to both variances and covariances, e.g.,
in the GARCH(l 1) case:
{T”H“:W”+m -I-[fﬁ”“ =120 N

Tijr+1)r — Wij T &8 +)G{7u*r|r 1 LF]
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Stock-Bond Correlation under Restricted GARCH

o There is nothing special about a GARCH(1,1), and this can be extended
to more general GARCH(p, q) or RiskMetrics(q) structures

o Unfortunately, the restrictions o
the evidence in the data

o For the stock-bond case, fitting a threshold GARCH(1,1) to capture any
asymmetries (also in dynamic covariances) we obtain

= aand B; = 5 are often contrary to

i 0030065 eaeg?f{w} - %%%%ffwﬂw

Bond, , =—-0.008+0.231Bond, +&;,,,,., &, IID-N(O, O'Bond et

(0.708)  (0.000)  ° PR T

2 CO09EL 0 NEE 2 O ORAT o2
O_Bond,Hllt (20(3(%]5+ (20(3060]5 gBOHd t + (20(3[%)6 1{33‘ 1< } Bond t T (%0%(%% O_Bond -1
o =—-0.018+0.065¢ +0.0361 E E
MKT—Bond,t +1|t (0.000) | (6.000) MKt & Bond, t (6.000) {gﬂ:” P <0} MKT t© Bond, +(202(%)20'MKT Bond, tft—1

o The common persistence index is 0.985

o The asymmetry term means that when shocks had a different sign one
period ago, this increases the negative impact of the current product of

shocks on the predicted covariance, a sort of accelerator effect
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Stock-Bond Correlation under Restricted GARCH
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= Need to impose restrictions paves the way to adoption of complex
fully-fledged multivariate GARCH models

= Key concept: as N grows, such models become over-parameterized

and difficult to estimate, even though they allow PD-restrictions
Lecture 3: Multivariate GARCH and Conditional Correlation Models 10




Fully-Fledged Multivariate GARCH

= [In this lecture only a pair of examples to be treated as such

= [na N-dimensional generalization, our framework is:
12

o MD indicates a generic multivariate density parameterized by 0, such
that the multivariate normal or the multivariate t-Student

® z;:f;“ is the square-root, or Cholesky decomposition, of the
covariance matrix, such that E,’f}lr{zf]f;“}’ = X1 = Var[Re1|34]
o This matrix is in no way the matrix of square roots of elements of the

full covariance matrix (how would deal with negative covariances?)
= A first, highly parameterized multi-GARCH is the VECH-GARCH:
vech(2; 1) = vech(C) + ALT’[‘J!(E;E;’) + Bvech( 3 )‘

where vech(B) (“vector half”) converts the unique upper triangular
elements of a symmetric matrix into a 0.5N(N-1) column vector that

removes any duplicates, e.g.: )
a2 019 O1t+1]t
. ([ 1t+ 1|t 12,6+ 1|t -
vech 2 — | O12+1]¢
12,0+ P24 1) 2
o T2 t+1)t
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VECH GARCH Model

o Inan unrestricted VECH model, each element of 2, is a linear

function of the lagged squared errors, the cross-products of past
errors for all assets, and the lagged values of the elements of 2 ;4

o A and B are 0.5N(N+1)-dimensional square matrices, whereas C is
an NXN symmetric matrix, for a total number of parameters equal

to:
0.5N(N + 1)+ 205NN+ 1P = 0.5N(N + D[N* +N +1] | Growsatthe

= 0.5N* + N> + N2+ 0.5N = O(N*) [Samespeedas

o E.g., for N=100,a VECH-GARCH(1,1) model has 51,010,050
parameters to be estimated!

o If you need a saturation ratio of at least 20 = 20x51,010,050/100 =
10,202,010 obs. per series or a daily history >> 40,484 yrs per

series!
o More generally, VECH- GARCH(p, q) models,
vech(3; 1)) = vech(C Z Ajvech(g i€ 1-5) + Z Bivech(X41-ji—)

that naively generallze GARCH to the multivariate case, tend to

generate a serious curse of dimensionality problem
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VECH GARCH Model

o Inan unrestricted VECH model, each element of X, ,; is a linear

function of the lagged squared errors, the cross-products of past
errors for all assets, and the lagged values of the elements of X;;_;

o Tricks—such as covariance targeting—are often invoked to deal with
the curse of dimensionality in VECH GARCH:

ﬂ I
vech(Cyr) = (Iosvv+1) — A — B)vech TZ &E ;)

r=1
o Appropriate restrictions on A and B = reduction in the number of

parameters, e.g., a diagonal multivariate VECH GARCH, A and B
diagonal
o Algebra shows that then each element of the varcov matrix follows:

P q l T p q
O+t = | 1 — Z i — Z P TZ Exrlly T Z Ol ik p+1-ilg+1—-i T Z P Tk +1-lt-j
i=1 =1 =1 i=1 P

o But then conditional variances depend only on own lags and own
lagged squared residuals, and conditional covariances depend only on
own lags and own lagged cross products of residuals
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VECH GARCH Model

o This is restrictive because it prevents the detection of any causality in
variance, that past shocks to some variable forecast variances of
others

o Even the diagonal GARCH framework results in O(N?) parameters

o Other issue: the coefficients are not restricted to be the same across
different assets and pairs = constraints will have to be imposed

o Appendix A gives a taste for such conditions in a VECH ARCH(1) case

o We now apply VECH-GARCH models to investigate the dynamics of the
correlation between stock and bond returns

o We specify a restricted bivariate VAR(1) as a conditional mean model,
in which only lagged bond returns forecast both stocks and bonds
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Stock-Bond Correlation under VECH GARCH

o Using BIC, a full C diagonal t-Student VECH GARCH(1,1) is preferred:

MKT,, =0574+0.098 Bond, +&,57,., t-Student

MET 1 0001)  (0.000)

(0.000)  (0.003)
parameter v

=0.092+0.074 &, . +0.906 6, . 1
9&3 1)

(0.000)

BondHl - _0003—'_ 0247Bondt + gBond,Hl [gMKT,Hl 88011d.t—1]1 HD Mt[[)’ Et—1|t; (0.000)

(0.888)

not a problem, uncond.

covariance can be <0

(0.000)

: =0.020+0.062¢2 ,, +0.92362, .,

Bond t+1lt — "6008)  (0.000) (0.000)

=—0.0002+0.028 8,7 Epona +0-963C ser pon s -

0 f—
MKT—Bond, t+1|t (0.895) (0.000) (0.000)

o Conditional variances react to shocks much more (0.074 and 0.062)
than conditional covariances do (0.028)

o After printing ML estimates and their standard errors, E-Views
warns us that “Coefficient matrix is not SPD,” and this is a reason for

concern
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