Massimo Guidolin
Massimo.Guidolin@unibocconi.it
Dept. of Finance

STATISTICS/ECONOMETRICS PREP COURSE – PROF. MASSIMO GUIDOLIN

SECOND PART, LECTURE 4: CONFIDENCE INTERVALS

OVERVIEW

- 1) General notion sample (random) intervals
- 2) Coverage and confidence of intervals
- Finding confidence intervals by inversion of (non-) rejection regions of tests
- 4) A few examples

FROM POINT TO SET (INTERVAL) INFERENCES

- Point estimation of a parameter θ boils down inference to a guess of a single value as the value of θ
- In most situations, it seems more plausible to provide a guess in the form of an interval
- Inference in a set problem is the statement that " $\theta \in \mathbb{C}$ " where $\mathbb{C} \subset \Theta$ and $\mathbb{C} = C(x)$ is determined by the sample of the data
 - If θ is real-valued, then we usually prefer the set estimate $\mathbb C$ to be an interval
- <u>Definition</u>: An interval estimate of a real-valued parameter θ is any pair of functions, $L(X_1, ..., X_n)$ and $U(X_1, ..., X_n)$ of a sample that satisfy $L(\mathbf{X}) \leq U(\mathbf{X})$; if \mathbf{x} is observed, the inference $L(\mathbf{x}) \leq \theta \leq U(\mathbf{x})$ is made and the random interval $[L(\mathbf{x}), U(\mathbf{x})]$ is called an interval estimator
 - Although in the majority of cases we will work with finite values for

FROM POINT TO SET (INTERVAL) INFERENCES

L and U, there is sometimes interest in one-sided interval estimates

- In the definition, using an open or closed interval, [L(x), U(x)], is immaterial
- What is the gain from using interval estimators? On the one hand, we have given up precision, so there must be some gain
- The answer is that we benefit from some confidence or assurance as to our assertions concerning an estimate
 - Let's stop and think: we know that the sample mean is MLE and as such unbiased, consistent, asymptotically efficient, etc. Great, but what is $Pr(sample mean = \mu)$? The answer is $Pr(sample mean = \mu) = 0$!
 - Therefore one needs to broaden the interval in order to obtain a stronger endorsement, e.g., in the case of an IID $N(\mu,\sigma^2)$ population

$$\Pr\left(\mu \in [\bar{X} - a, \bar{X} + a]\right) = \Pr\left(\bar{X} - a \le \mu \le \bar{X} + a\right) = \Pr\left(-a \le \bar{X} - \mu \le a\right)$$

$$= \Pr\left(-\frac{a}{S/\sqrt{n}} \le \frac{\bar{X} - \mu}{S/\sqrt{n}} \le \frac{a}{S/\sqrt{n}}\right) = \Pr\left(-\frac{a}{S/\sqrt{n}} \le T_{n-1} \le \frac{a}{S/\sqrt{n}}\right)$$

COVERAGE AND CONFIDENCE OF INTERVALS

- Sets or intervals? In general one estimates confidence sets, but in finance most of the time one looks for intervals, CIs
- What confidence or assurance?
- <u>Definition</u> [COVERAGE]: For an interval estimator [L(X), U(X)] of a parameter θ , the coverage probability is the probability that the random interval [L(X), U(X)] covers the true parameter, θ , or Pr($\theta \in [L(X), U(X)]$)
- <u>Definition</u> [CONFIDENCE]: For an interval estimator [L(X), U(X)] of a parameter θ , the confidence coefficient is the infimum of the coverage probabilities, $\inf_{\theta} \Pr(\theta \in [L(X), U(X)])$
- CIs are for the random sample, not for the parameter θ : when we write statements such as $Pr(\theta \in [L(X), U(X)])$, these probability statements refer to X, not θ
 - Re-write $Pr(\theta \in [L(X), U(X)])$ as $Pr(L(X) \le \theta)$ together with $Pr(U(X) \ge \theta)$

METHODS TO FIND CONFIDENCE INTERVALS

- Since we do not know the true value of θ , we can only guarantee a coverage probability equal to the infimum, the confidence coefficient
- Now the good news: There is a strong correspondence between hypothesis testing and interval estimation: in general, every confidence set corresponds to a test and vice versa
- So you almost, almost, do not need to separately study this...
 - Example: Let X_1, \ldots, X_n be IID $N(\mu, \sigma^2)$ and consider testing H_0 : $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$ with σ known. For a fixed α level, a reasonable test (in fact, the MPU) has rejection region $\{\mathbf{x}: |\bar{x} \mu_0| > z_{\alpha/2}\sigma/\sqrt{n}\}$ which implies that the null is not rejected for sample points with

$$\left\{\mathbf{x}: z_{\alpha/2}\sigma/\sqrt{n} \leq \bar{x} - \mu_0 \leq z_{\alpha/2}\sigma/\sqrt{n}\right\} \Longleftrightarrow \bar{x} - z_{\alpha/2}\sigma/\sqrt{n} \leq \mu_0 \leq \bar{x} + z_{\alpha/2}\sigma/\sqrt{n}$$

Since the test has size α , this means that Pr(H_o is not rejected | $\mu = \mu_0$) = 1 - α . Combining this with the characterization, we can write

$$\Pr\left(\bar{x} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu_0 \le \bar{x} + z_{\alpha/2}\sigma/\sqrt{n}\right) = 1 - \alpha$$

METHODS TO FIND CONFIDENCE INTERVALS

- This interval is obtained by inverting the (complement of the) rejection region of the level α test
- There is no guarantee that the confidence set obtained by test inversion will be an interval
 - In most cases, however, one-sided tests give one-sided intervals, twosided tests give two-sided intervals, strange-shaped rejection regions give strange-shaped confidence sets
- <u>Example</u>: As another example, we show how do you go about inverting an LRT. Suppose we want a CI for the mean, λ , of an exponential(λ) population, with PDF f(x; λ)=(1/ λ)exp(- x/ λ). We can obtain such an interval by inverting a size α test of H₀: $\lambda = \lambda_0$ versus H₁: $\lambda \neq \lambda_0$.
- If we take a random sample $X_1, ..., X_n$, the LRT statistic is given by

$$LRT(\mathbf{x}) = \frac{L(\lambda_0; \mathbf{x})}{\sup_{\lambda} L(\theta; \mathbf{x})} = \frac{\frac{1}{\lambda_0^n} \exp\left(-\frac{1}{\lambda_0} \sum_{i=1}^n x_i\right)}{\sup_{\lambda} \frac{1}{\bar{x}^n} \exp\left(-n\right)} = \left(\frac{\bar{x}}{\lambda_0}\right)^n e^n \exp\left(1 - \frac{\bar{x}}{\lambda_0}\right)$$

– For fixed λ_0 , the non-rejection region is given by

METHODS TO FIND CONFIDENCE INTERVALS

$$\left\{\mathbf{x}: \left(\frac{\bar{x}}{\lambda_0}\right)^n \exp\left(1 - \frac{\bar{x}}{\lambda_0}\right) \geq k^*\right\} \quad (e^n \text{ absorbed into } k^*)$$

where k* is a constant chosen to satisfy $Pr\{x \in \text{not reject}\} = 1-\alpha$

– Inverting this region gives the 1- α set

$$C(\mathbf{x}) = \left\{ \lambda : \left(\frac{\bar{x}}{\lambda}\right)^n \exp\left(1 - \frac{\bar{x}}{\lambda}\right) \ge k^* \right\} \quad \text{(generalize } \lambda_0 \text{ to } \lambda)$$

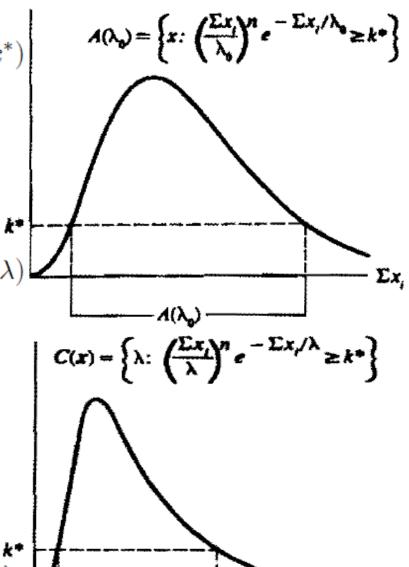
– The expression defining $C(\mathbf{x})$ depends on \mathbf{x} only through the sample mean, so the CI can be expressed in the form

$$C(\bar{x}) = \{ \lambda : L(\bar{x}) \le \lambda \le U(\bar{x}) \}$$

 At this point L and U can be determined by imposing that $Pr\{x \in \text{not reject}\} = 1-\alpha$ and

$$\left(\frac{\bar{x}}{L(\bar{x})}\right)^n \exp\left(1 - \frac{\bar{x}}{L(\bar{x})}\right) = \left(\frac{\bar{x}}{U(\bar{x})}\right)^n \exp\left(1 - \frac{\bar{x}}{U(\bar{x})}\right)$$

for which the solution is numerical



TERMINOLOGY ISSUES AND BAYESIAN CIS

- Notice that it is the CI that covers the parameter, not the opposite; in particular, our claim is not really about the probability of the parameter falling inside a CI
- This is a key remark because the random quantity, the sample statistic, is the interval, not the parameter
 - For instance, suppose a 90% CI for some parameter θ is [0.24, 0.45]
 - It is tempting to say (and many experimenters do) that "the probability is 90% that θ is in the interval [0.24, 0.45]"
 - However, such a statement is invalid since the parameter is assumed fixed and such it cannot go anywhere, it cannot fall or rise...
 - Formally, the interval [0.24, 0.45] is one of the possible realized values of the random CI for θ and, since the parameter does not move, θ is in the realized interval [0.24, 0.45] with probability 0 or 1
 - That the realized interval [0.24, 0.45] has a 90% chance of coverage,
 we only mean that we know that 90% of the sample points of the

Useful Notions Reviewed in This Lecture

- Let me give you a list to follow up to:
- Definition of random confidence interval/set
- Coverage and confidence of a confidence interval
- Terminology issue what a CI really means