

Università Commerciale Luigi Bocconi

Lecture 5 – Introduction to Mean-Variance Analysis: the Opportunity Set and the Efficient Frontier

Prof. Daniele Bianchi

Prep Course in Quant Methods for Finance

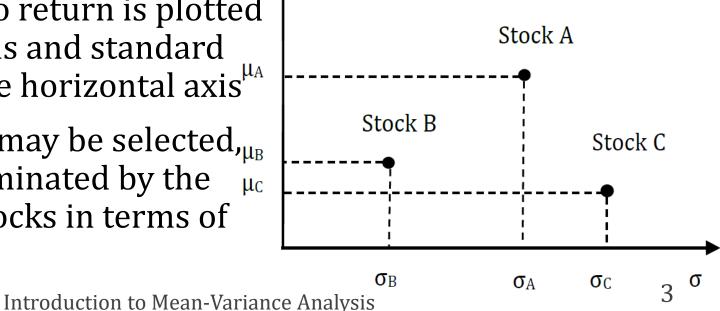
August 2019

Outline and objectives

- Mean-variance and efficient frontiers: logical meaning
 Guidolin-Pedio, chapter 3, sec. 1
- The case of no borrowing and lending and two risky assets
 Guidolin-Pedio, chapter 3, sec. 1.1
- Generalizations to the case of N risky assets
 - Guidolin-Pedio, chapter 3, sec. 1.2
- Two-fund separation result
 - Guidolin-Pedio, chapter 3, sec. 1.2
- Extension to unlimited borrowing and lending
 - o Guidolin-Pedio, chapter 3, sec. 2
- Limited borrowing and lending
 - Guidolin-Pedio, chapter 3, sec. 2
- Short-sale constraints
 - o Guidolin-Pedio, chapter 3, sec. 3

Mean Variance Framework: Key Concepts

- We review the development of the celebrated mean-variance framework introduced by Markowitz in the 1950s
- Initially at least, risky assets only, no borrowing or lending
- Assume that for some reasons, the joint distribution of asset returns is completely characterized by their means, variances, and covariances
- We represent each asset (and portfolio of assets) in a twodimensional diagram, where ^µ expected portfolio return is plotted on the vertical axis and standard deviation is on the horizontal axis^{µA}
- Not all securities may be selected,_{μB}
 e.g., stock C is dominated by the μc remaining two stocks in terms of MV dominance

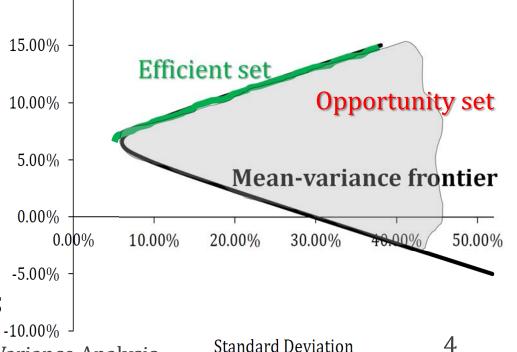


Mean Variance Framework: Key Concepts

- According to MV criterion a portfolio is efficient if and only if there is no other portfolio that allows the investor to achieve the same expected return with a lower level of risk or a higher level of expected return with the same level of risk
- Three key notions: i) the opportunity set (feasible region), which includes all the portfolios (both efficient and inefficient) that the investor is able to build given securities in the asset menu
- (ii) the mean-variance frontier (aka minimum variance frontier, MVF) subset of the opportunity set containing only the portfolio(s) with minimum variance for any target level of expected returns
 20.00%
 15.00%
 5.00%
 0.00%

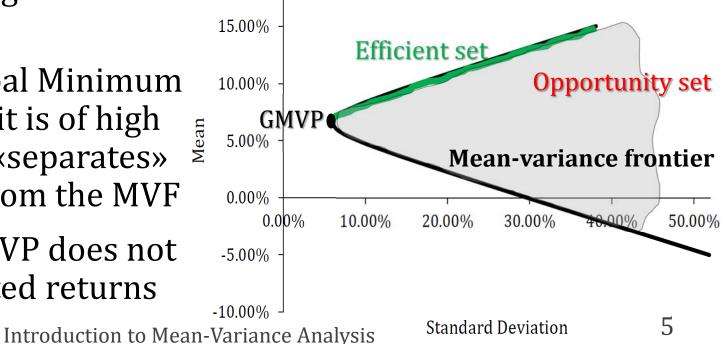
(iii) the **efficient frontier**, which

only includes efficient portfolios



Mean Variance Framework: Key Concepts

- Because it is possible that a portfolio exists which has a higher return than another portfolio with the same level of risk, only portfolios that have a higher expected return than the global minimum variance portfolio (GMVP) are efficient
- The preferences of the investor(s) for risk are not relevant to the determination of the efficient frontier
- In the classical standard dev.-mean space, the MVF is not a function, but a «right-rotated hyperbola"
- The GMPV is Global Minimum Variance Ptf. and it is of high interest because «separates» the efficient set from the MVF
- The structure GMVP does not depend on expected returns



- Assume no borrowing or lending at the risk-free rate
- Re-cap of a few basic algebraic relationships that exploit the fact that with two risky assets, $\omega_B = 1 \omega_A$
 - See textbook for detailed derivations $\mu_P = \omega_A \mu_A + (1 \omega_A) \mu_B$
 - Portfolio mean & variance: $\sigma_P^2 = \omega_A^2 \sigma_A^2 + (1 \omega_A)^2 \sigma_B^2 + 2\omega_A (1 \omega_A) \sigma_{AB}$
 - Using the definitions of correlation and of standard deviation:

$$\sigma_P = \sqrt{\omega_A^2 \sigma_A^2 + (1 - \omega_A)^2 \sigma_B^2 + 2\omega_A (1 - \omega_A) \rho_{AB} \sigma_A \sigma_B}$$

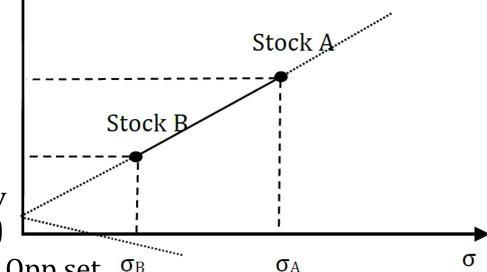
- Solve std. dev equation for ω_A and plug the result into mean equation \Rightarrow a system of 2 equations in 2 unknowns
- The system has in general a unique solution ⇒ the opportunity set is a curve and it coincides with the mean-variance frontier (there is only one possible level of risk for a given level of return)
- The shape of set depends on the correlation between the 2 securities
- Three possible cases: (i) $\rho_{AB} = +1$; (ii) $\rho_{AB} = -1$; (iii) $\rho_{AB} \in (-1,1)$
- <u>Case (i)</u>: $\rho_{AB} = +1$: the expression for σ_P^2 becomes a perfect square sum and this simplifies the algebra

• After algebra (see textbook), we have:

$$\mu_P = \frac{\sigma_P - \sigma_B}{\sigma_A - \sigma_B} \mu_A + \left(1 - \frac{\sigma_P - \sigma_B}{\sigma_A - \sigma_B}\right) \mu_B = \mu_B + \frac{\sigma_P - \sigma_B}{\sigma_A - \sigma_B} (\mu_A - \mu_B)$$

the equation of a straight line, with slope $(\sigma_P - \sigma_A)/(\sigma_A - \sigma_B)$

- In the picture, dashed lines == [|]
 portfolios require short selling
- Without short sales, the least risky stock == GMVP μ_A
- $\circ~$ With short sales, the GMVP has zero risk $$\mu_{B}$$
- In this special case, the opportunity set = mean-variance frontier (MVF)
- With no short sales, EffSet = MVF = Opp set σ_B
- <u>Case (ii)</u>: $\rho_{AB} = -1$: the expression for σ_P^2 becomes a perfect square difference and this simplifies the algebra (see textbook) to yield: $\sigma_P = \omega_A \sigma_A - (1 - \omega_A) \sigma_B$ or to $\sigma_P = -\omega_A \sigma_A + (1 - \omega_A) \sigma_B$
- Yet, each of the equations only holds when the RHS is positive Introduction to Mean-Variance Analysis



7

- The opportunity set is a straight line, but its slope depends on which of the equations above holds
- If the first equation applies, the opportunity set is equal to:

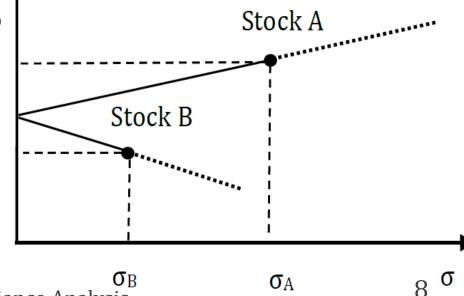
$$\mu_{P} = \frac{\sigma_{P} + \sigma_{B}}{\sigma_{A} + \sigma_{B}} \mu_{A} + \left(1 - \frac{\sigma_{P} + \sigma_{B}}{\sigma_{A} + \sigma_{B}}\right) \mu_{B} = \mu_{B} + \frac{\sigma_{P} + \sigma_{B}}{\sigma_{A} + \sigma_{B}} (\mu_{A} - \mu_{B})$$
while if the second equation holds, the opportunity set is equal to:

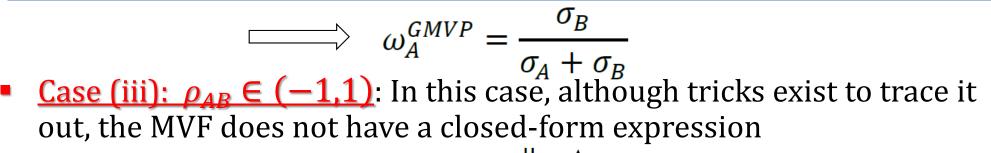
$$\mu_{P} = \frac{\sigma_{B} - \sigma_{P}}{\sigma_{A} + \sigma_{B}} \mu_{A} + \left(1 - \frac{\sigma_{B} - \sigma_{P}}{\sigma_{A} + \sigma_{B}}\right) \mu_{B} = \mu_{B} + \frac{\sigma_{B} - \sigma_{P}}{\sigma_{A} + \sigma_{B}} (\mu_{A} - \mu_{B})$$
• In the picture, dashed lines == μ portfolios require short selling

- $\circ~$ Even without short sales, possible to find a combination that has zero μ_A variance, i.e., it is risk-free
- Such a riskless portfolio is GMVP
- The expression for such a ptf. is: μ_B

$$\omega_A^{GMVP}\sigma_A - (1 - \omega_A^{GMVP})\sigma_B = 0 \text{ or}$$

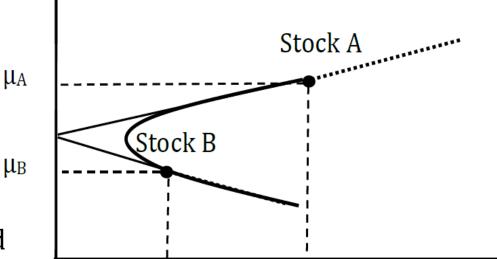
 $-\omega_A^{GMVP}\sigma_A + (1 - \omega_A^{GMVP})\sigma_B = 0$





- The MVF is non-linear, a parabola (i.e., a quadratic function) in the variance-mean space
- Or a a (branch of) hyperbola in standard deviation-mean space
- In such a space, the MVF is not

 a function, it is just a
 «correspondence», a "right-rotated hyperbola"



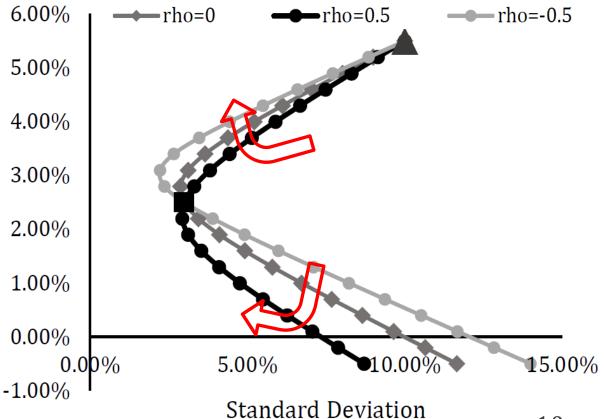
σ

- The efficient set == a portion of the MVF, the branch of the " σ_A " rotated hyperbola" that lies above (and includes) the GMVP
- To distinguish the efficient set from the MVF we have to find the GMVP:

$$\frac{\partial \sigma_P^2}{\partial \omega_A} = 2\omega_A \sigma_A^2 - 2(1 - \omega_A)\sigma_B^2 + 2(1 - 2\omega_A)\rho_{AB}\sigma_A\sigma_B \Longrightarrow \omega_A^{GMVP} = \frac{\sigma_B^2 - \rho_{A,B}\sigma_A\sigma_B}{\sigma_A^2 + \sigma_B^2 - 2\rho_{A,B}\sigma_A\sigma_B}$$
Introduction to Mean-Variance Analysis

One Numerical Example

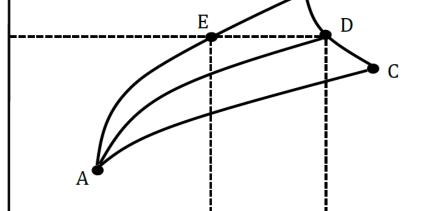
- For instance, consider stock A with $\mu_A = 5.5\%$ and $\sigma_A = 10\%$, and stock B with $\mu_B = 2.5\%$ and $\sigma_B = 3\%$
- Draw MVF in Excel for $\rho_{A,B} = 0$, $\rho_{A,B} = 0.5$, and $\rho_{A,B} = -0.5$
- See textbook for calculations and details and book's website for exercises in Excel related to this case
 - When the $\rho_{A,B} < 0$, it is possible to form ptfs. that have a lower risk than each of the 2 assets 6.00% μ \rightarrow rho=0.5 μ rho=0.5 μ rho=-0.5 μ
 - Clearly, as $\rho_{A,B}$ declines 5.00% risk characterizing the GMVP moves towards the 4.00% left, inward 2.00%
 - The entire MVF rotates upward, less risk may be borne for identical expected portfolio return ^{1.00%}
 - Note that the GMVP often needs to include short positions



Introduction to Mean-Variance Analysis

The Case of N Risky Assets

- Usually investors choose among a large number of risky securities
 - E.g., allocation among the 500 stocks in the S&P 500
- Extend our framework to the general case, with *N* risky assets
- The MVF no longer coincides with the opportunity set, which now becomes a region and not a line
 - Ptf. D, a combination of assets B and 0 C, is not MV efficient
 - It gives the same mean return as ptf. Ο E but implies a higher standard dev. and a risk-averse investor would never hold portfolio D



Target mean

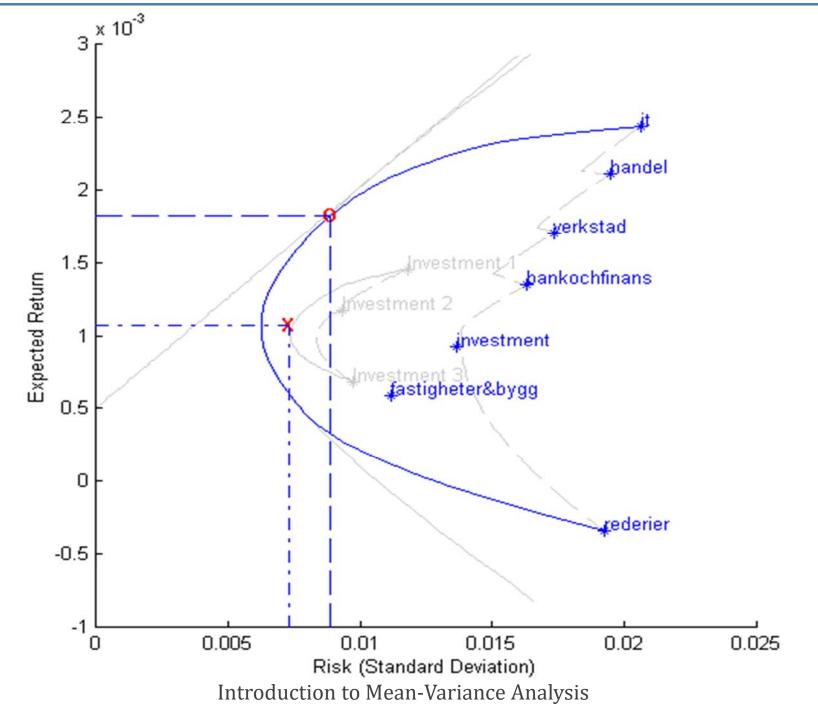
Nx1 vector of 1s

 $\iota'\omega = 1$

- To exclude all the inefficient securities \mathbf{O} and ptfs., as first step the investor needs to trace out the MVF, i.e., select ptfs. with minimum variance (std. dev.) for each level of μ
- Only interested in the upper bound of the feasible region Ο
- $\min_{\{\omega\}} \frac{1}{2} \omega' \Sigma \omega \text{ Subject to}$ We solve the following **quadratic** programming problem: $\mu'\omega = \overline{\mu}$

Introduction to Mean-Variance Analysis

The Case of N Risky Assets



12

The Case of N Risky Assets

- For the time being, no short-sale restrictions have been imposed
 - To solve the program, assume that no pair or general combination of asset returns are linearly dependent
 - → Σ is nonsingular and invertible; in fact, Σ is (semi-)positive definite
- Under these conditions, it is a constrained minimization problem that can be solved through the use of Lagrangian multiplier method
- See the textbook for algebra and details
- If one defines $A \equiv \mu' \Sigma^{-1} \iota$, $B \equiv \mu' \Sigma^{-1} \mu$, $C \equiv (\iota' \Sigma^{-1} \iota)$, and $D = BC A^2$ then the unique solution to the problem, ω^* , is:

$$\boldsymbol{\omega}^* = \mathbf{g} + \boldsymbol{h}\,\bar{\boldsymbol{\mu}} \quad \mathbf{g} = \frac{1}{D} [B(\boldsymbol{\Sigma}^{-1}\,\boldsymbol{\iota}) - A(\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu})], \, \mathbf{h} = \frac{1}{D} [C(\boldsymbol{\Sigma}^{-1}\,\boldsymbol{\mu}) - A(\boldsymbol{\Sigma}^{-1}\,\boldsymbol{\iota})]$$

i.e., any combination of MVF ptf. weights gives another MVF ptf.

• Consider two MVF ptfs. P₁and P₂ with mean μ_{P1} and μ_{P2} , and assume that P₃ is a generic portfolio on the MVF: always possible to find a quantity *x* such that $\mu_{P_3} = x\mu_{P_1} + (1 - x)\mu_{P_2}$

• Other MVF ptf:
$$\boldsymbol{\omega}_{P_3} = x \omega_{P_1} + (1-x) \omega_{P_2} = x (\mathbf{g} + \mathbf{h} \mu_{P_1}) + (1-x) (\mathbf{g} + \mathbf{h} \mu_{P_2})$$

= $\mathbf{g} + \mathbf{h} (x \mu_{P_1} + (1-x) \mu_{P_2}) = \mathbf{g} + \mathbf{h} \mu_{P_3}$,

Recap: The Efficient Frontier, in General

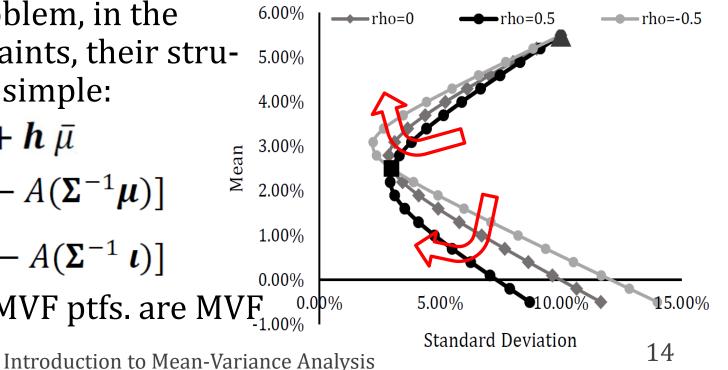
- The GMVP and the entire MVF depend strongly on the correlation structure of security returns: the lower are the correlations (on average), the more the efficient set moves up and to the left, improving the risk-expected return trade-off
- The position and shape of the MVF reflects the diversification opportunities that a given asset menu offers
- Even though, MVF ptfs are solutions of a complex quadratic programming problem, in the 6.00% -rho=0rho=05 absence of constraints, their stru-5.00% cture is relatively simple: 4.00%

$$\boldsymbol{\omega}^* = \boldsymbol{g} + \boldsymbol{h}\,\bar{\boldsymbol{\mu}}$$

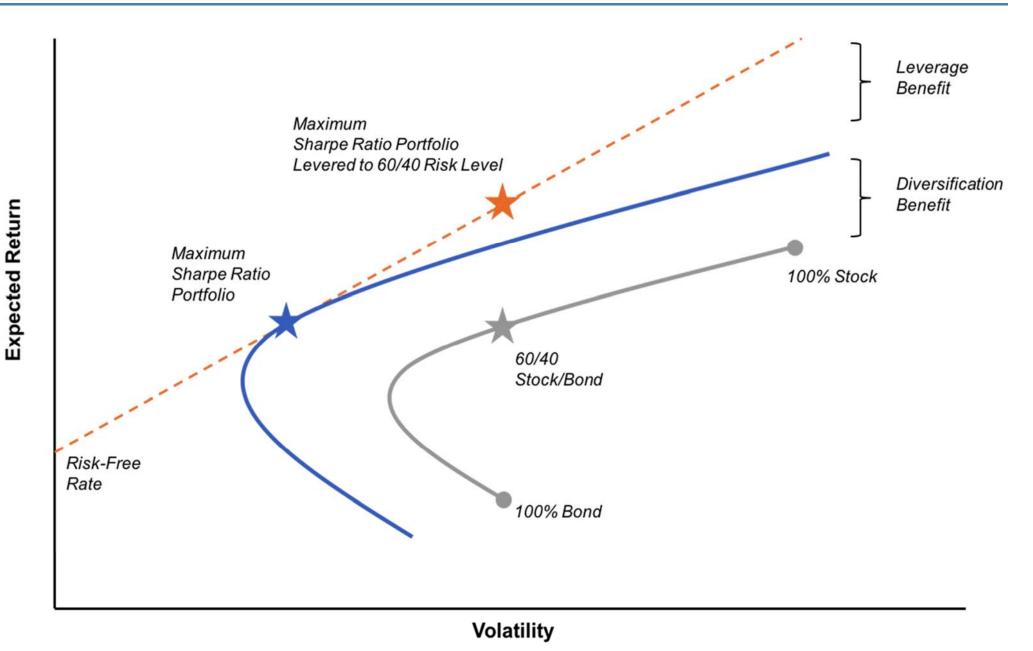
$$\boldsymbol{g} = \frac{1}{D} \left[B(\boldsymbol{\Sigma}^{-1}\,\boldsymbol{\iota}) - A(\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu}) \right] \xrightarrow{\mathbb{Q}}{2.00\%}$$

$$\boldsymbol{h} = \frac{1}{D} \left[C(\boldsymbol{\Sigma}^{-1}\,\boldsymbol{\mu}) - A(\boldsymbol{\Sigma}^{-1}\,\boldsymbol{\iota}) \right] \xrightarrow{1.00\%}$$

Combinations of MVF ptfs. are MVF_1.00%



Recap: The Efficient Frontier, in General



Two-Fund Separation

It is sufficient to know two points (portfolios) on the mean-variance frontier to generate all the others

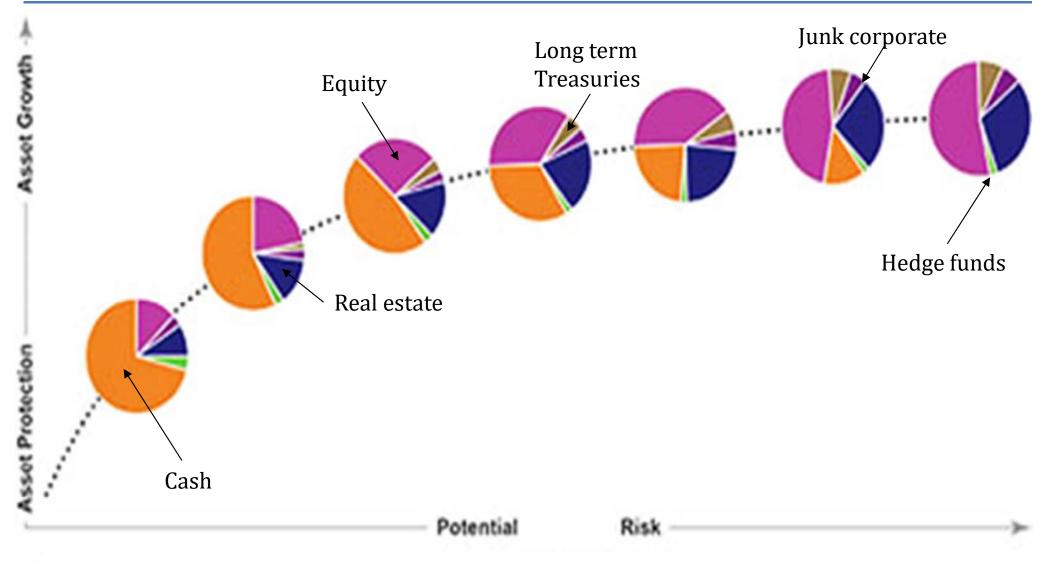
- All MV-optimizers are satisfied by holding a combination of two mutual funds (provided they are MV efficient), regardless of preferences
- Their heterogeneous preferences will only impact the way in which they combine the two funds that they choose to hold
- In equilibrium, if all investors are rational MV optimizers, the market portfolio, being a convex combination of the optimal portfolios of all the investors, has to be an efficient set portfolio
- As for the shape of MVF when *N* assets are available, this is a rotated hyperbola as in case of 2 assets: $\sigma^2 = \frac{1}{2} \left[C(u_1)^2 2Au_2 + B \right]$

$$\sigma_P^2 = \frac{1}{D} [C(\mu_P)^2 - 2A\mu_P + B]$$

- Equation of a parabola with vertex in ((1/C)^{1/2}, A/C), which also represents the global minimum variance portfolio $\Sigma^{-1} \iota \quad \Sigma^{-1} \iota$
- The textbook shows that GMV weights are: $\omega_{GMVP} = \frac{1}{C} = \frac{1}{\iota' \Sigma^{-1} \iota'}$

One Strategic Asset Allocation Example

 Consider three assets – U.S. Treasury, corporate bonds, and equity – characterized by the mean vector and the variance-covariance matrix:



 Always recall that as you move on the MVF frontier, ptf. structure is affected, often in ways that are hard to guess (see the evolution of the green slice)

- So far, we have ignored the existence of a risk-free asset == a security with return R^f known with certainty and zero variance and zero covariance with all risky assets
 - Buying such a riskless asset == lending at a risk-free rate to issuer
 - Assume investor is able to leverage at riskless rate
 - There is no limit to the amount that the investor can borrow or lend at the riskless rate (we shall remove this assumption later)
- Fictional experiment in which the possibility to borrow and lend at *R^f* is offered to investor who already allocated among N risky assets
- X is the fraction of wealth in an efficient frontier, risky portfolio (A) characterized μ_A and σ_A, respectively; a share 1 X is invested in the riskless asset, to obtain mean and standard deviation:

$$\mu_P=X\mu_A+(1-X)R^f=R^f+X(\mu_A-R^f)$$

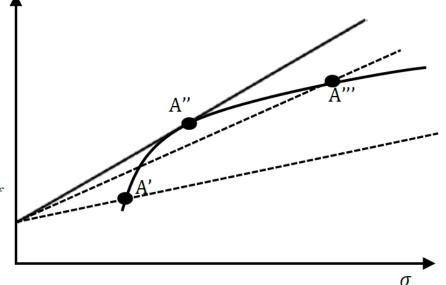
$$\sigma_P = \sqrt{\sigma_P^2} = \sqrt{X^2 \sigma_A^2} = X \sigma_A$$

• Solving from X in the first equation and plugging into the second:

$$\mu_{P} = R_{F} + \frac{\sigma_{P}}{\sigma_{A}} (\mu_{A} - R^{f}) = R^{f} + \frac{(\mu_{A} - R^{f})}{\sigma_{A}} \sigma_{P}$$
Introduction to Mean-Variance Analysis (19)

The capital transformation line measures at what rate unit risk (st. dev.) can be transformed into average excess return (risk premium)

- The equation of a straight line with intercept R^f and slope $(\mu_A R^f)/\sigma_A$
- This line is sometimes referred to as capital transformation line
- The term $(\mu_A R^f)/\sigma_A$ is called **Sharpe ratio** (SR), the total reward for taking a certain amount of risk, represented by the st. dev.
 - SR is the mean return in excess of the risk-free rate (called the risk premium) per unit of volatility μ
 - The plot shows 3 transformation lines for 3 choices of the risky benchmark A (A', A'', and A''') on the efficient frontier
 - Points to the left of A involve lending_{R^f} at the risk-free rate while the ones to the right involve borrowing



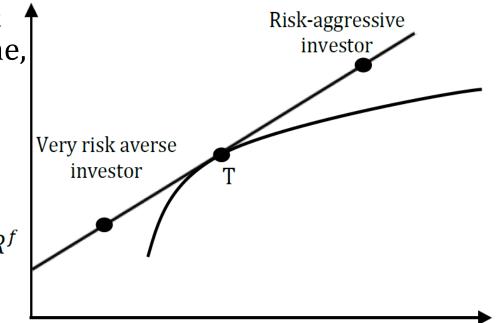
 As investors prefer more to less, they will welcome a "rotation" of the straight line passing through R^f as far as possible in a counterclockwise direction, until tangency Introduction to Mean-Variance Analysis

The Tangency Portfolio and the Capital Market Line

Under no frictions and homogeneous beliefs, there exists a tangency ptf. that maximizes the slope of the transformation line

- Assuming beliefs are homogeneous, there are no frictions or taxes, and that individuals face the same R^{f} and identical asset menus, all rational, non-satiated investors hold the same tangency portfolio
- It is combined with a certain share of risk-free lending or borrowing
- While the share of wealth an investor lends or borrows at *R^f* depends on the investor's preference for risk, the risky portfolio should be the same for all the investors
- The steepest CTL gets a special name, the **Capital Market Line** (CML)
- Special case of two-fund separation
- To determine the tangency ptf. one needs to $(\boldsymbol{\omega}'\boldsymbol{\mu}-R^f)$ R^{f} solve: $\max_{\{\boldsymbol{\omega}\}}$ $(\boldsymbol{\omega}'\boldsymbol{\Sigma}\boldsymbol{\omega})^{\frac{1}{2}}$ $\omega'\iota = 1$

subject to



The Tangency Portfolio and the Capital Market Line

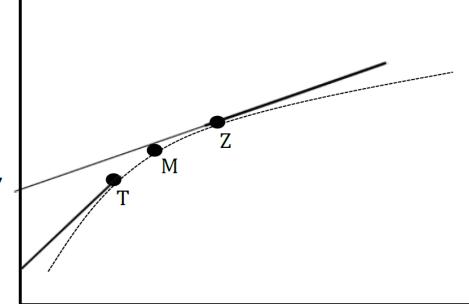
- The textbook explains how the problem may be written as a simple unconstrained max problem that we can solved by solving the FOCs: $\max_{\{\omega\}} \frac{\omega'(\mu R^f \iota)}{(\omega' \Sigma \omega)^{1/2}}$
- The resulting vector of optimal ptf. weights is: $\omega_T = \frac{\Sigma^{-1}(\mu R^f \iota)}{A CR^f}$
- Using the same data as in the strategic asset allocation example on three assets – U.S. Treasury, corporate bonds, and equity – we have:

$$\boldsymbol{\omega}_{T} = \frac{1}{18.5 - 282.11 \cdot 2.5\%} \begin{bmatrix} 402.11 & -223.16 & 58.95 \\ -223.16 & 254.74 & -48.42 \\ 58.95 & -48.42 & 50.53 \end{bmatrix} \begin{bmatrix} 3.50\% \\ 5.00\% \\ 6.50\% \end{bmatrix} = \begin{bmatrix} 0.59 \\ 0.16 \\ 0.25 \end{bmatrix}$$

- Textbook gives indications on how to use Microsoft Excel'sl Solver[®]
 - The Solver will iteratively change the values of the cells that contain the weights until the value of the Sharpe ratio is maximized
- Up to this point, we have assumed that the investor can borrow money at the same riskless rate at which she can lend
- More reasonable assumption: the investor is able to borrow money, but at a higher rate than the one of the risk free (long) investment

When lending and borrowing is possible at different rates, it is no longer possible to determine a single tangency portfolio

- The figure shows how the CML is modified when borrowing is only possible at a rate $R^{f'} > R^{f}$ μ
- There are now two CTLs, both tangent to the efficient frontier
 - All the points falling on the portion of the efficient frontier delimited by T (below) and Z (above) will $R^{f'}$ be efficient even though these do not fall on the straight, CML-type line R^{f}



- While constructing the efficient frontier, we have assumed "equality" constraints (e.g., portfolio weights summing to one), but no "inequality" constraints (e.g., positive portfolio weights)
- Inequality constraints complicate the solution techniques
- However, unlimited short-selling assumption is often unrealistic (see margin accounts)
 Introduction to Mean-Variance Analysis
 23

Short-Selling Constraints

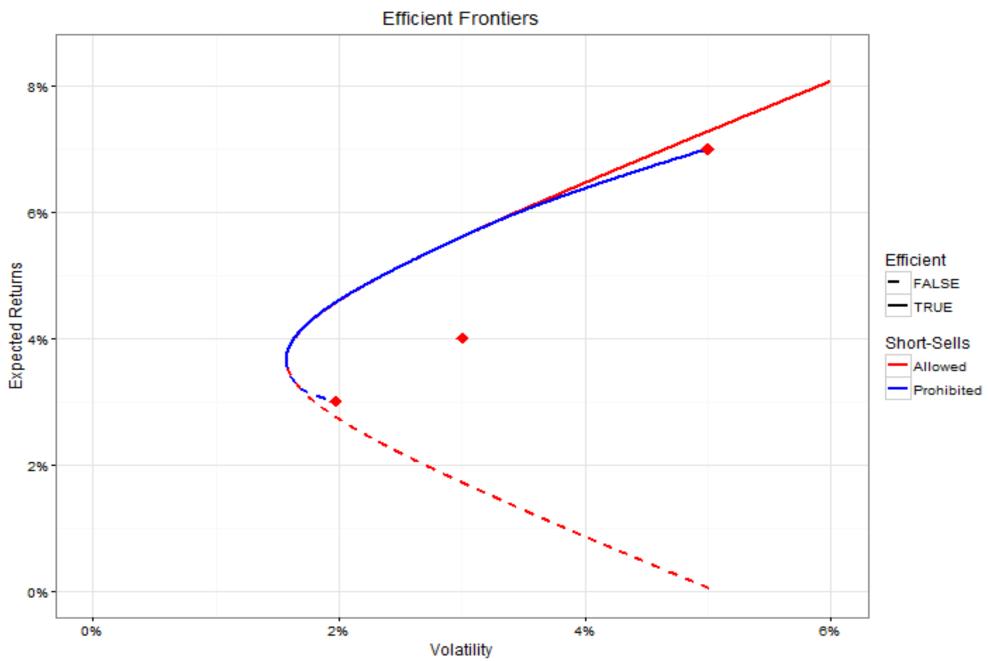
- When short-selling is not allowed, portfolio weights should be positive, i.e. the constraint $\omega \ge 0$ (to be interpreted in an element-by-element basis) has to be imposed
 - $\circ~$ When ω has to be positive, the unconstrained maximum may be at a value of that is not feasible
 - Therefore, it is necessary to impose the Kuhn-Tucker conditions
 - The textbook gives a heuristic introduction to what these are
 - Fortunately, Microsoft's Excel Solver[®] offers the possibility to solve the problem numerically, by-passing these complex analytical details
- Consider again our earlier strategic asset allocation example and let's set $\bar{\mu} = 9\%$ [-56.66%]
 - In the absence of constraints, the solution is $\omega_T = \begin{bmatrix} -56.66\% \\ 113.33\% \end{bmatrix}$
 - This makes sense because the second asset is characterized by a large Sharpe ratio and hence must be exploited to yield a high mean return by leveraging the first security

0%

24

- Selling -57% of the first security is a major hurdle
- Under nonnegativity constraints we obtain: $\boldsymbol{\omega}_T^{constrain} =$

Short-Selling Constraints



Introduction to Mean-Variance Analysis