Mean-Variance Portfolio Choice in Excel

Dott. Monia Magnani/Prof. Massimo Guidolin
20550 - Quantitative Methods for Finance

August 2019

One Quiz on Constrained (Portfolio) Optimization

- John is a quant strategist at "SackingAlpha \& Co."; until last week he had selected the optimal weights of the fund he manages by solving:

$$
\begin{aligned}
\max _{\boldsymbol{\omega}} E\left[r_{t}^{p}\right]-\frac{\lambda}{2} & \operatorname{Var}\left[r_{t}^{p}\right] \text { (mean }- \text { variance objective) } \\
\text { s.t. } \quad \boldsymbol{\omega}^{\prime} \mathbf{1} & =1(\text { definition of weights }) \\
r_{t}^{p} & =\boldsymbol{\omega}^{\prime} \boldsymbol{r}_{t}(\text { definition of ptf.return }) \\
\boldsymbol{\omega} & \geq \mathbf{0} \text { (no short sales) }
\end{aligned}
$$

- Starting on Monday, John has changed strategy and now solves:

$$
\begin{aligned}
\max _{\boldsymbol{\omega}} E\left[r_{t}^{p}\right]-\frac{\lambda}{2} & \operatorname{Var}\left[r_{t}^{p}\right] \text { (mean }- \text { variance objective) } \\
\text { s.t. } \quad \boldsymbol{\omega}^{\prime} \mathbf{1} & =1 \text { (definition of weights) } \\
r_{t}^{p} & =\boldsymbol{\omega}^{\prime} \boldsymbol{r}_{t} \text { (definition of ptf.return) } \\
\mathbf{C} \boldsymbol{\omega} & \geq \boldsymbol{k} \text { (some weird no }- \text { arb constraint })
\end{aligned}
$$

- Will the optimized mean-variance objective (risk-adjusted performance) achieved by John increase or decrease as a result of the switch?

Lecture 6 - Mean Variance Portfolio Choice in Excel - Guidolin/Magnani

One Quiz on Constrained (Portfolio) Optimization

- Mary is another analyst at "Iforgotmyalphaathome" and she happens to solve the second of John's problem with $\mathbf{C}=\mathbf{I}_{n}$ and $\mathbf{k}=\mathbf{0}$; will the optimized mean-variance objective (risk-adjusted performance) achieved by Mary be more or less vs. John, after Monday?

One Quiz on Constrained (Portfolio) Optimization

- Mary is another analyst at "Iforgotmyalphaathome" and she happens to solve the second of John's problem with $\mathbf{C}=\mathbf{I}_{n}$ and $\mathbf{k}=\mathbf{0}$; will the optimized mean-variance objective (risk-adjusted performance) achieved by Mary be more or less vs. John, after Monday?

Answers

- The 2nd problem is a version of the 1 st in which $\boldsymbol{\omega} \geq \mathbf{0}$ has been generalized to $\mathbf{C} \boldsymbol{\omega} \geq \boldsymbol{k}$; one may argue that the 1 st problem is identical to the 2 nd but solved under specific constraints: if specific means tighter, you know that tighter the constraints, the lower the maximized objective function will be
- However, note that \mathbf{I}_{n} is a rather special case-in which all columns and rows are linearly independent-vs. letting \mathbf{C} be any $m \times n$ matrix; for instance \mathbf{C} may contain linerarly dependent rows/columns and therefore constrain the portfolio weights LESS than $\mathbf{C}=\mathbf{I}_{n}$ does
- Therefore without knowing specificaly what \mathbf{C} and \boldsymbol{k} are and actually solving the problem, one cannot really say, since constraints play a first-order role
- Mary is solving the first, older of John's problem: we are asking the same question ahahhahhahhhaha

Lecture 6 - Mean Variance Portfolio Choice in Excel - Guidolin/Magnani

Problem one: the stock-bond asset allocation

- Let's suppose you can only invest in two assets:
- a (US) stock index (here represented by the value-weighted CRSP index)
- a (US) long-term (Treasury) bond index (here represented by the Ibbotson 10-year government bond index)
- You have available the monthly log-returns of the two indices
- First of all, you need to compute the statistics of the two series: the mean and the standard deviation of each series and the pair-wise correlation between them

If you recall log-returns properties (i.e. return over two periods is just the sum of the returns of each period) you can compute the annual mean return: it is simply equal to the monthly mean return over the full sample multiplied by 12

Problem one: the stock-bond asset allocation

> Similarly, the annual standard deviation of log-returns is obtained by multiplying by $\sqrt{12}$

C3 contains the formula => STDEV(Equity)*SQRT(12)

C4 contains the formula => STDEV(Tbond)*SQRT(12)

Finally, we compute the correlation between the two series with the function "CORREL"=> CORREL(Equity, Tbond)

Problem one: the stock-bond asset allocation

- Finally, we construct the variance-
covariance matrix (let's call it \mathbf{V}); as you
know this is a symmetric matrix contains
the variances of each asset in the main
diagonal and the pair-wise covariances
out of the main diagonal
- Recall that the formula for co-variance
is: $\operatorname{Cov}(\mathrm{i}, \mathrm{j})=\varrho \sigma_{i} \sigma_{j}$

Why would you bother to do such a formula when you know that cell B13 is just the variance of equity returns
(i.e. the square of cell C3)?

-	A	B	C	D
1				
2		Mean	Standard Deviation	Weights
3	Equity	9.06\%	15.57\%	
4	Tbond	6.01\%	7.047\%	
5				
6	CORRELATION MATRIX			
7		Equity	Tbond	
8	Equity	1	-0.18	
9	Tbond	-0.18	1	
10				
11	VARCOV			
12		Equity	Tbond	
13	Equity	0.024235338	-0.001921698	
14	Tbond	-0.001921698	0.004966527	
15				
16				
$\frac{17}{18}$				
19				
20				
21				
20				

Excel makes your life easier when you deal with a LARGE amount of data (e.g. 5 assets imply a 5-by-5 V matrix!)
Now you can just drag and drop!

Problem one: the stock-bond asset allocation

- Now, let's suppose for a minute that we have an equally weighted portfolio and compute portfolio mean and variance (the two asset case is very simple and you do not necessarily need to use matrices... however we want to create a general set up that will be valid also when we add other assets)

```
PORTFOLIO MEAN
E(rp) = w
PORTFOLIO WEIGHTS
    MEAN
SUMPRODUCT(D3:D4, B3:B4)
```


Here we do not formally transpose because the function works without transposing in a single product
(we avoid formally treating cells as vectors in Excel because that forces you to use combinations of keys)

Problem one: the stock-bond asset allocation

- Now, we can compute also the Global Minimum Variance Portfolio, i.e., the portfolio with the minimum possible variance.
- This is an optimization problem that can be solved by using the solver
- To find the GMVP we ask to the solver to find the combination of weights that minimize the variance
- The only constraint is that the sum of weights should be equal to 100\%

Lecture 6 - Mean Variance Portfolio Choice in Excel - Guidolin/Magnani

Problem one: the stock-bond asset allocation

- Notably, we can see from the picture that, as the "T bond only" portfolio is below the GMVP, holding only bonds is NOT EFFICIENT
© Equity
\triangle TBond
* Equally weighted portfolio
- GMVP

Lecture 6 - Mean Variance Portfolio Choice in Excel - Guidolin/Magnani

Problem one: the stock-bond asset allocation

- We can compute any point of the efficient frontier, using the solver
- Compared to what we did to find the GMVP, we ask to the solver to find the combination of weights that minimize the variance given a certain target return
- The only constraint is that the sum of weights should be equal to 100\%
- If we want, we can also restrict the weights to be only positive (i.e., no-short selling allowed)

Lecture 6 - Mean Variance Portfolio Choice in Excel - Guidolin/Magnani

Problem one: the stock-bond asset allocation

- We can generate enough points on the efficient frontier such that we can draw (approximate by interpolation) with the excel scattered plot
- We start from the minimum-variance portfolio (as you know, it is non-sense to invest in anything that gives lower returns than the minimum-variance portfolio)
- We then generate other points on the frontier by setting higher target returns (than the return of the minimum variance portfolio)

Problem two: asset allocation with many assets

- We now consider a more general set up where:
- we have 4 risky assets: equity, Treasury bonds, corporate bonds, and real estate
- the investor can borrow and lend at the risk free rate $\left(\mathrm{R}_{\mathrm{f}}\right)$
- we can consider lending at the riskless rate as investing in an asset with a safe outcome (e.g., T-bill) and borrowing at the riskless rate as selling such security short
- therefore, we consider R_{f} equal to 2.64% (the average return of the T-bill)
- by definition, the variance of the risk free asset is equal to zero
- the formula for the expected return of a combination of a risky portfolio (A) and a risk-free asset is:

$$
\begin{equation*}
\bar{R}_{C}=R_{F}+\left(\frac{\bar{R}_{A}-R_{F}}{\sigma_{A}}\right) \sigma_{C} \tag{CML}
\end{equation*}
$$

Problem two: the tangency portfolio (1/2)

- As you already know, in this framework (with unlimited borrowing and lending at the risk free rate and of any other security) we can split the allocation problem into two parts:
- We now focus on determinating the tangency portfolio (G) => NO NEED TO KNOW INVESTOR'S RISK AVERSION COEFFICIENT as everybody wants to hold the same portfolio
- To solve this problem we need to maximize:
$\tan \alpha=\left(R_{A}-R_{f}\right) / \sigma_{A}$ subject to $\quad \sum w_{i}=1$

Lecture 6 - Mean Variance Portfolio Choice in Excel - Guidolin/Magnani

Problem two: the tangency portfolio (2/2)

- The tangency portfolio is unique, does not depend on the preferences of the investor
—CML —MV Frontier

