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1. Introduction

In chapter 5 we have made additional progress in our stepwise distribution modeling (SDM) ap-

proach, i.e.:

1. Establish a variance forecasting model for each of the assets individually and introduce meth-

ods for evaluating the performance of these forecasts, which occurred in chapter 4;

2. Consider ways to model conditionally non-normal aspects of the return distribution of the

assets in our portfolio–i.e., aspects that are not captured by time series models of conditional

means and variances, which has been the focus of chapter 5.

The third and crucial step that we take in this chapter consists in

3. Linking individual variance forecasts with correlations forecasts, possibly by modelling the

process of conditional variances themselves.

The simple fact is that most relevant (realistic) applications in empirical finance are actually

multivariate: they involve  ≥ 2 assets/securities/portfolios. If you collect returns on such 

assets or portfolios in a  × 1 vector R ≡ [1 2 ... 

 ]
0 then the variance of a random vector

turns out to be a matrix of second moments, i.e., variances and covariances:1
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1It is immaterial whether you want to call this a variance, a covariance, or a variance-covariance matrix. In

this chapter we shall express a preference for the second term, covariance matrix. Moreover, this definition is easily

extended from the unconditional covariance matrix, [R] to the conditional covariance matrix, [R+1] ≡
[R+1|=]
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Clearly, all variances are collected on the main diagonal, while all covariances are collected off

the main diagonal. Moreover, because [
 


 ] = [


  


] from simple properties of expec-

tations, then [R] is by construction a symmetric matrix. For instance, any portfolio choice

methodology is clearly based on knowledge or estimation of [R] as it is well known that opti-

mal portfolio shares will also depend on the covariance of asset returns considered in pairs. Because

risk management concerns either portfolios of securities or portfolios of investment projects, then

risk management is also intrinsically a multivariate application. Although in many courses, pricing

problems are mostly presented with reference to univariate applications only (i.e., we price one asset

at the time, for instance a derivative written on an individual security), in reality this represents

more the exception than the rule, as we are often called to price assets that concern several cash

flows or underlying securities (think about compound or basket options). Also in this respect, one

needs to develop useful multivariate time series methods to model and forecast quantities of interest

and, among them, surely dynamic covariances and correlations.

In chapters 4 and 5 all of our attention has been directed to developing, estimating, testing, and

forecasting univariate ( = 1) volatility models only. In this chapter, we broaden our interest to

multivariate ( ≥ 2) models that–as far as second moments are concerned–will necessarily also
concern covariances and correlations besides variances. We therefore examine three approaches to

multivariate estimation of conditional second moments. First, we deal with an approach that moves

the core of the effort from the econometrics to the asset pricing, in the sense that covariances will

predicted off factor pricing models (such as, but not exclusively, the CAPM). The advantage of this

way of proceeding is that some of us prefer to do more economics and less econometrics (and this

seems to be a good idea also to the Author of these notes). Unfortunately, most of the asset pricing

theory currently circulating tends to be rejected (sometimes rather obviously, think of the CAPM,

in other occasions only marginally) by most data sets. As a result, the majority of users of financial

econometrics (risk and asset managers, some quantsy types of asset pricers and structurers) prefer

to derive forecasts from econometric models, vs. incorrect, commonly rejected asset pricing models.

Second, we propose models that directly model conditional covariances following a logic similar to

chapter 4: these are in practice multivariate extensions of ARCH and GARCH models. As we

shall see, the idea is similar to when in chapter 3 you did move from univariate time series models

for the conditional mean to multivariate, vector models (such as vector autoregressions). However,

in the case of covariance matrices, we shall see that extending univariate GARCH models to their

multivariate counterparts will present many practical difficulties, unless a smart approach is adopted.

Therefore the corresponding material is presented only in the final, but rather important Section

6. Third, such a smart approach–dynamic conditional correlations (DCC) models–represents the
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other important, key tool that is described in this chapter.

In spite of the difficulties we may encounter with a truly multivariate GARCH approach, its

payoffs are obvious in terms of the questions such a framework make it possible to answer, besides

whether or not correlations do change over time: Is the volatility of one specific market (say, the

U.S.) leading the volatility of other markets? Is the volatility of an asset transmitted to another

asset directly (through its conditional variance) or indirectly (through its conditional covariance)?

Section 2 presents the important distinction between passive and active risk management that

motivates a need of a multivariate approach to the time series analysis of volatility and covariance.

Section 3 investigates the special case in which there is no difference between passive and active

estimation strategies, i.e., in which the econometrics of portfolio returns gives forecasts of variance

that automatically incorporate forecasts of covariances between assets in pairs. Unfortunately,

such an interesting result that could remarkably simplify variance forecasting obtains only when

we assume rather specific asset pricing models that have a linear factor structure. Section 4 deals

with simple, one would say naive, models used to forecast covariances. Section 5 presents the most

imported and arguably best working set of methods to model and forecast dynamic correlations,

Engle’s (2002) DCC model. Section 6 finally extends our horizon to the full family of multivariate

GARCH models, of which the DCC is in a one of the most recent and yet very successful members.

Appendix A presents a few additional results concerning estimation methods, in particular the

feasible GLS approach. Appendix B presents a fully worked out set of examples in Matlab
R°

concerning DCC modelling.

2. Motivation: Passive vs. Active Risk Management

Suppose you are a risk manager in charge of measuring and controlling risk for a given portfolio,

whose return we call 

+1. Although it is easy to read what follows with reference to a portfolio

of securities, more generally, this could be a portfolio of loans or other OTC positions/exposures.

Such a portfolio  is composed of  positions such that:



+1 ≡ 1

1
+1 + 2

2
+1 + +


+1

=

X
=1



+1 = w

0R+1 (1)

where the vector w ≡ [1 2 ...  ]
0 represents the weights that apply between time  and

 + 1. Formally, one could even be more precise and write that 

+1 ≡

P
=1





+1 = w0R+1

to emphasize that w ≡ [1 2 ... 

 ]
0 has been selected at time  The first, simplest choice, is

to ignore the underlying structure and origins of 

+1 in (1): because once the summation on the

right-hand side of (1) has been performed, we are likely to have available a time series {
+1}=0

of data on portfolio returns, one possibility is to just use such returns and apply the univariate

methods covered in chapters 4 and 5. For instance, under the assumption of multivariate normality

3



of the vector of returns R+1, R+1 ∼ (μΣ), one may compute

 

 () = −̂+1Φ

−1()− ̂

+1

where ̂

+1 represents a forecast of the quantity

q
 [


+1] i.e., of volatility at time +1 obtained

from some conditional heteroskedastic model estimated on (applied to) the time series {
+1}=0 for

instance ̂

+1 =

q
̂ + ̂(


 )2 + ̂(̂


 )2. This is called a passive risk management approach: it

is passive because all of these steps are just fine of course, but have a considerable counterindication,

they condition on the vector of portfolio weights between time  and +1 being given and constant,

w+1 = w ≡ [1 2 ... 

 ]
0. Formally, we should then write2

 

 (;w) = −̂+1(w)Φ

−1()

because both ̂

+1 and ̂


+1 condition on the time  portfolio weights, w. Passive risk management

implies that the quant steps (modelling, estimation, forecasting, etc.) are simple because they are

based on univariate tools. However, the results produced by passive portfolio management are

fragile by construction. For instance, even though we may be able to say that for all the assets

( = 1 2 ..., ) ̂+2 ' ̂+1 notice that  

+1() may be completely different from  


 ()

for an obvious reason: if the weights w+1 differ from the weights w, then ̂

+2(w+1) 6= ̂


+1(w)

even though ̂+2 ' ̂+1 for all assets in the portfolio. Probably, in practice, this means that a

passive risk management user will be forced to repeat estimation and all calculations at each point

in time, or at least every time the structure of the portfolio is modified. Moreover, suppose that

your interest lies in understanding how your risk measures could change if you alter the structure

of the portfolio weights, i.e., something like

 

 (;w)




for some  = 1 2 ..., 

Clearly, econometric methods simply applied to the aggregate time series {
+1}=0 will be incapable

of accomplishing that.

A risk manager may indeed resort to active instead of passive risk management methods. Adopt-

ing active methods is equivalent to using multivariate econometric modelling. The advantage of

active methods is that the individual, asset- or security-specific contributions to risk (or portfolio

performance, in the case of asset allocation applications) can be estimated, like  

 (;w)




in the example above. To adopt a multivariate model means to switch focus from modelling and

forecasting  [

+1] to [R+1] or

from  [

+1] to  [w

0
R+1] = w

0
[R+1]w,

where (as we have already noted) there is no difference between [R+1] and  [R+1]. More-

over, remember that for any random vectorX+1, [w
0
X+1] = w

0
[X+1]w in a way similar

2From now on, we resume assuming that 

+1() = 0 and we omit it.
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to the fact that when  = 1,  [+1] = 2  [+1]. However, to come up with models

and estimation methods for [R+1] is a much more serious endeavour than for  [

+1].

We have already stated in the Introduction that modelling [R+1] means to model covari-

ances and/or correlations. Note that the statements are not equivalent, because3

[

+1 


+1] ≡ +1 =

[

+1 


+1]q

 [

+1]

q
 [


+1]

=
+1

+1+1


so that while modelling and forecasting correlations requires modelling and forecasting covariances,

it also implies that one can model and forecast variances, which we can do already using the methods

developed in chapters 4 and 5.

The true nature of active risk management and the fact that it involves correlations and covari-

ances emerges from an example for the case  = 2:

 [w
0
R+1] = w0[R+1]w

= [1 2 ]

"
21+1 12+1

12+1 22+1

#"
1

2

#
= (1 )

221+1 + 2
1


2
 12+1 + (

2
 )
222+1

= (1 )
221+1 + (

2
 )
222+1 + 2

1


2
 12+11+12+1 (2)

The last line shows that under an active risk management approach ( [w
0
R+1]), also dynamic

forecasts of either covariance (12+1) or, equivalently, correlation (12+1) are required. Obviously,

the very last line derives from the definition of a correlation, 12+1 = 12+11+12+1. For a

general  ≥ 2, the expression in (2) generalizes to:

 [w
0
R+1] = w0[R+1]w =

X
=1

X
=1





+1

=

X
=1

X
=1





+1+1+1

=

X
=1

(
)
22+1 + 2

X
=1

X
=+1





+1+1+1 (3)

which still emphasizes that not all the  variance forecasts will matter, but also the ( − 1)2
correlation forecasts.4 For instance, in simple risk-management applications, under active risk

management we shall have:

 

 () = −{w0[R+1]w}Φ−1() = −

⎡⎣ X
=1

X
=1





 ̂+1̂+1̂+1

⎤⎦Φ−1()
3In this chapter +1 and 


+1 +1 and +1 mean the same. Where one places the indices is irrelevant,

provided a Reader is alerted of the meaning. You should also recall that correlations simply represent measure of

linear dependence between pairs of random variables, meaning that more complex form of dependence may exist that

correlations will not necessarily capture.
4Relevant correlation forecasts are only (−1)2 because of the symmetry of the covariance matrix, i.e., +1 =

+1 for all  6= .
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which clearly leads to expressions for the partial derivatives mentioned above, of the type

 

 ()




=

⎡⎣−2

2
+1 + 2

X
=1,  6=



 ̂+1̂+1̂+1

⎤⎦Φ−1()
This gives the contribution of the second moments of the th asset to the -percent VaR of the

portfolio.

The expression in (3) makes it clear that in general, an active risk management problem will

involve the forecasts of  variances and of ( − 1)2 covariances (or correlations). While up
to this point we have generally assumed that given a conditional heteroskedastic model, we always

have sufficient observations to proceed to estimation, we immediately note that when it comes

to multivariate covariance matrix estimation and forecasting, the availability of sufficiently long

time series may become an issue that requires attention.5 For instance, with only 15 assets in a

portfolio–which is a rather sensible and commonly seen portfolio–you will need: (i) 15 variance

forecasts; (ii) (15× 142) = 105 correlation forecasts, for a total of 120 parameters or moments to
forecasts. Suppose, for simplicity, that variances and covariances are constant over time. Then the

120 objects that you care for in this example, simply become parameters to estimate, {̂}15=1 and
{̂} 

=1,  . At this point, with 15 series of return data (because with 15 assets you will have

at least these 15 time series), note that a total of 120 parameters to be estimated on 15 series,

gives you 120/15 = 8 data points per series. Even though you may think that 15 time series are

a lot, for each of them you will need at least 8 observations in order to proceed. However: would

you ever estimate 120 parameters using exactly 120 observations? Hopefully not. In fact, time

series econometricians normally use a simple rule-of-thumb by which one should always have 20

observations per parameter before proceeding to any econometric analysis. The ratio between the

total number of observations and the number of parameters to be estimated is called saturation

ratio. In this case, 20 × 120 = 2 400 observations. This means that for each series, you should

have 2400/15 = 160 observations per series before seriously thinking of tackling this problem. 160

observations per series mean that you should recover almost 14 years of monthly data; or 32 weeks

of daily data. These requirements are moderate, but already not completely negligible when you

deal with over-the-counter instruments or newly floated stocks in the aftermath of IPOs.

If you worked through this example afresh after having increased the number of assets to some-

thing even more realistic such as 100 or so assets, you will come to realize that there is a new

dimension of multivariate time series problems that was unknown before: because the size of the

covariance matrix grows as a function of 2 (formally,  +( − 1)2 = (2)), the size of the

estimation problem and the corresponding data requirements grow quadratically in the number of

5What follows assumes that you have realized prior to today that if you have  parameters to estimate, then you

will need at least    observations. However, it is common to expect that you will have many more observations

than parameters to estimate, say  =  where  is at least 10 or 20 and will be called saturation ratio in what

follows.
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assets (i.e., very quickly).6 In fact, you can read most of the material that follows not only as a an

attempt to develop good multivariate econometric methods that may accurately forecast variances

and covariances, but also as a way to deal with the issue of excessively high number of parameters

that estimating covariance matrices implies.

3. Exposure Mapping (Factor-Based) Approach

A simple way to reduce the dimensionality of the problem of estimating and forecasting portfolio

variance is to impose a factor structure using observed returns as factors. Although, as we shall see

below, the method is considerably more general, let’s start from an analysis of the CAPM. Assume

that the CAPM holds exactly, i.e., that it perfectly describes portfolio returns:



+1 =  +  [


+1 − ] (4)

where  is the riskless rate (assumed to be constant, just to simplify) and 
+1 is the return on

the market portfolio (you know what this means from your asset pricing courses). Also suppose

that you have already managed to estimate the beta of your portfolio, for instance, using simple

OLS methods:

̂ =
d[

+1 −  
+1 − ]d [

+1 − ]


where “hats” refer to sample estimates, i.e., obtained from the data. Once you are through with

that, then d [
+1] = ̂

2


d [

+1 − ]

which is simple enough. At this point, you should be confused (for a short time only) because

the two previous formulas seemingly depend on portfolio returns only (besides the time series of

market portfolio returns). In Section 2 we said that if you just use realized portfolio returns then

your approach will be a passive one, with all its limitations. However, you would be incorrect

in your confusion, because under the exposure mapping approach, it turns out that the passive

and active approaches are identical. Equivalently (and these are excellent news), it turns out that a

passive exposure-based approach to variance forecasting gives the same result as an active approach;

therefore the easier, passive approach is preferred. The reason for this surprising result is that–as

you should recall from your asset pricing courses–CAPM (more generally, factor) betas are linear

in portfolio weights, i.e.,

 (w) =

X
=1


, (5)

6Although a covariance matrix contains 2 elements, it is symmetric and collects variances on its main diagonal.

This means that the number of distinct elements (parameters) collected in Σ ≡ [R+1] is (+1)2 of which 

are variances and (+ 1)2−  = (− 1)2 correlations.
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and ̂ (w) =
P

=1

̂, i.e., the beta of a portfolio is the weighted sum of the individual betas,

with weights equal to portfolio weights. (5) derives from a well-known properties of covariances:

 (w) =
[


+1 −  

+1 − ]

 [
+1 − ]

=
[

P
=1





+1 −  

+1 − ]

 [
+1 − ]

=

P
=1


[


+1 −  

+1 − ]

 [
+1 − ]

=

X
=1




[
+1 −  

+1 − ]

 [
+1 − ]

=

X
=1




Therefore, it is easy to see why passive and active risk management need to give the same result:

 [

+1] =

"
X
=1


̂

#2
 [

+1 − ] (passive)

=  

"
X
=1





+1

#
=

X
=1

X
=1







h

+1 


+1

i

=

X
=1

X
=1







h
 + (


+1 − )  + (


+1 − )

i

=

X
=1

X
=1







h
(


+1 − ) (


+1 − )

i

=

X
=1

X
=1







h

+1 −  

+1 −
i

=

X
=1

X
=1





 

h

+1 −

i


At this point, exploiting our assumption that the CAPM holds exactly, we have:

 [

+1] =

X
=1

(
)
22 

h

+1 −

i
| {z }
 [

+1] from CAPM

+ 2

X
=1

X
=+1





  

h

+1 −

i
| {z }
[

+1

+1] from CAPM

=

X
=1

(
)
22+1 + 2

X
=1

X
=+1





+1 = w

0
[R+1]w (active),

which shows that starting from a seemingly passive approach, one can get to an active one thanks

to the properties of the CAPM.7 In this case, assuming normality,

 

 ()




=

⎡⎣−22 (
+1 − ) + 2

X
=1,  6=



 (


+1 − )

⎤⎦Φ−1()
i.e., the typical partial derivatives of interest in active risk management applications can all be

re-expressed in terms of individual asset betas.

7Make sure to understand why under the CAPM, [
+1 


+1] =  



+1 −


.
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Of course, these results obtain only when the CAPM applies exactly, or equivalently, when the

returns of none of the assets in the portfolio contains any firm- or security-specific idiosyncratic risk.

In other words, asset returns must be entirely explained by systematic risks. To see what happens

in case there is any residual, idiosyncratic risk left in the process of individual asset returns, note

that if


+1 =  + [


+1 − ] + +1 ( = 1 2 ..., ),

where +1 captures such idiosyncratic risk, then

 [

+1] =

(
X
=1

(
)
22 

h

+1 −

i
+

X
=1

(
)
2 [


+1]

)
+

+2

⎧⎨⎩
X
=1

X
=+1





 

h

+1 −

i
+

X
=1

X
=+1





[


+1 


+1]

⎫⎬⎭
=

"
X
=1




#2
 

h

+1 −

i
+

X
=1

(
)
2 [


+1]

= passive mode + active mode applied to

X
=1

(
)
2 [


+1].

Even though the definition of idiosyncratic risk implies that these risks must be uncorrelated across

assets so that [

+1 


+1] = 0 ∀ 6= , fact remains that the terms  [


+1] for  = 1 2,

...,  need to be predicted on the basis of some model that cannot be the CAPM itself (the

CAPM is silent about idiosyncratic risk by construction, being only about systematic risk). This

means at this stage one will be forced to go back to her Matlab copy to perform estimation and

forecasting of { [+1]}=1 using econometric methods, for instance  different GARCH models

for idiosyncratic risk,

2+1 = 0 + 1
2
+1 + 2

2




one for each of the assets in our portfolio. This is of course very active but at the same time also

rather painful which goes to show that the advantages of active and passive management are lost

because of the very existence of idiosyncratic risk.

3.1. Applications to risk management

Assuming the CAPM in (4) is subject to IID shocks from a Gaussian distribution with zero cross-

sectional correlations (i.e., [+1 +1] = 0 for  6=  = 1 2  ),

+1 =  + (+1 − ) + +1 +1 IID (0 2+1) (6)

we now derive an expression for the 1% VaR of a portfolio characterized by weights {1 2  }
and that wants to emphasize that such an expression involves only quantities that are specific to

each of the  assets, i.e., their portfolio weights, their betas, their (estimated) idiosyncratic risk

levels, etc.
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Because +1 ≡
P

=1+1 and the linear properties of the covariance (i.e., [1 +

2] = 1[] + 2[]), we know that the estimate of  in

+1 =  + ̂ (+1 − ) + ̂+1

is ̂ =
P

=1̂ while

 [̂+1] =  

"
X
=1

(+1 − )−
X
=1

̂(+1 − )

#

=  

"
X
=1

(+1 − − ̂(+1 − ))

#

=  

"
X
=1

̂+1

#
=

X
=1

2 ̂
2
+1,

which requires assuming that [+1+1] = 0 for  6=  = 1 2   to also obtain[̂+1 ̂+1]

= 0. Therefore

2+1 = ̂
2


2
+1 + 2 +1 =

Ã
X
=1

̂

!2
2+1 +

X
=1

2 ̂
2
+1

and under normality,

 +1() = −
⎧⎨⎩
Ã

X
=1

̂

!2
2+1 +

X
=1

2 ̂
2
+1

⎫⎬⎭
12

Φ−1() +

−
(
 +

X
=1

̂
b(+1 − )

)


where b(+1 − ) can be simply estimated as the sample mean excess return on the market

portfolio. Notice that if you compute VaRs assuming that the CAPM holds, then

+1 ≡  +

X
=1

̂
b(+1 − ) = 

(
1−

X
=1

̂

)
+

X
=1

̂
b(+1)

will generally be non-zero, unless
P

=1̂
b(+1) = 0 and

P
=1̂ = ̂ = 1 which are

rather special restrictions that in general will not be satisfied. In particular, in the case of a 1%

VaR, we will have that under the assumption of +1 IID (0 2 )

+1 ≡
X
=1

+1 ∼ IID 

Ã
0

X
=1

2 
2
+1

!
(7)

so that

 +1(0.01) = 233

⎧⎨⎩
Ã

X
=1

̂

!2
2+1+

X
=1

2 ̂
2
+1

⎫⎬⎭
12

−
(
 +

X
=1

̂
b(+1-

 )

)


and clearly the risk exposure will entirely depend on the portfolio composition, the betas of the

securities in the portfolio, and their idiosyncratic risk coefficients. Finally, the result in (7) shows
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the key role played by the assumption that +1 IID (0 2) for  = 1 2   . As for the

shocks, their importance needs little emphasizing: while the CAPM as an asset pricing model,

[+1] =  + [+1 −  ] has no empirical implications because it just pins down

expected returns, (6) can be used in risk management but it requires us making some assumptions–

as we did–on the distribution of the +1 as well as on [+1+1].

Because our result has emphasized the specific role of individual asset portfolio weights, we can

also quantify the VaR (total risk exposure) loss of changing the portfolio weights in the direction of

realizing an optimal degree of diversification such that the condition

X
=1

̆2 ̂
2
+1 ' 0

eventually holds as grows larger and larger. In fact, note that if the portfolio is not well-diversified,

then

 +1() = −
⎧⎨⎩
Ã

X
=1

̂

!2
2+1 +

X
=1

2 ̂
2
+1

⎫⎬⎭
12

Φ−1() +

−
(
 +

X
=1

̂
b(+1 − )

)


If the portfolio is well diversified, then

 −
+1 () = −

Ã
X
=1

̆̂

!
+1Φ

−1()−
(
 +

X
=1

̆̂
b(+1 − )

)


Clearly, because Φ−1()  0 for   05, the suspicion is that

 +1() ≥  −
+1 ()

and the decline can be quantified as the disappearance of the term

−
(

X
=1

2 ̂
2
+1

)12
Φ−1()  0

However to compute the actual difference is a bit of a mess.8

Define +1 =  +
P

=1̂
b(+1− ) and −+1 =  +

P
=1 ̆̂

b(+1−
 ) Notice that

[ +1()]
2 =

Ã
X
=1

̂

!2
2+1

£
Φ−1()

¤2
+

X
=1

2 ̂
2
+1

£
Φ−1()

¤2
+

+2+1 + 2+1

⎧⎨⎩
Ã

X
=1

̂

!2
2+1 +

X
=1

2 ̂
2
+1

⎫⎬⎭
12

Φ−1()

8Those with a weak heart are advised to skip the algebra that follows and to go directly to conclusions to prevent

permanent damage.
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whileh
 −

+1 ()
i2
=

Ã
X
=1

̆̂

!2
2+1

£
Φ−1()

¤2
+(−+1)

2+2−+1

Ã
X
=1

̆̂

!
+1Φ

−1()

The difference is then

[ +1()]
2 −

h
 −

+1 ()
i2

=

⎧⎨⎩
Ã

X
=1

̂

!2
−
Ã

X
=1

̆̂

!2⎫⎬⎭2+1

£
Φ−1()

¤2
+

[(+1)
2 − (−+1)

2] +

X
=1

2 ̂
2
+1

£
Φ−1()

¤2
+

+2

⎧⎪⎨⎪⎩+1

⎡⎣Ã X
=1

̂

!2
2+1 +

X
=1

2 ̂
2
+1

⎤⎦12+
− −+1

Ã
X
=1

̆̂

!
+1

)
Φ−1()

Now notice that if [ +1()]
2 −

h
 −

+1 ()
i2
≥ 0 holds, then it must be that  +1() ≥

 −
+1 (). However, [ +1()]

2−
h
 −

+1 ()
i2
≥ 0 would be guaranteed by the fact that

X
=1

2 ̂
2
+1

£
Φ−1()

¤2
+

⎧⎨⎩
Ã

X
=1

̂

!2
−
Ã

X
=1

̆̂

!2⎫⎬⎭ ≥ 0

⎧⎪⎨⎪⎩+1

⎡⎣Ã X
=1

̂

!2
2+1 +

X
=1

2 ̂
2
+1

⎤⎦12 − −+1

Ã
X
=1

̆̂

!
+1

⎫⎪⎬⎪⎭ ≥ 0

and (+1)− (−+1) ≥ 0 but in general any combination of these three condition may deliver
the result. Importantly, even if it is intuitive to think that setting

P
=1 ̆

2
 ̂
2
+1 ' 0 should bring

a reduction in VaR and this remains likely, formally it is possible that setting the weights in such a

way may cause a reduction in the expected portfolio return so large to over-turn the effect. Indeed,

observe that if we were able to say that +1 = −+1 ' 0 as often assumed in our lectures as
well as in chapters 4-5, then

[ +1()]
2 −

h
 −

+1 ()
i2
=

X
=1

2 ̂
2
+1

£
Φ−1()

¤2
+

+

⎧⎨⎩
Ã

X
=1

̂

!2
−
Ã

X
=1

̆̂

!2⎫⎬⎭2+1

£
Φ−1()

¤2 ≥ 0,
which is likely to hold if the individual security betas are all finite because

P
=1 ̆

2
 ̂
2
+1 ' 0 must

require that
P

=1 ̆
2
 → 0 as the degree of diversification in the portfolio increases (i.e., as  →∞),

while
P

=1̂ remains unrestricted.
9

9This proof is not sufficiently “tight” to be called a proof. However to make the proof compelling would require

imposing assumptions on the asymptotic behavior of the weights what would just increase the formal burden. The

statement is highly likely to hold in most realistic circumstances.
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3.2. Multi-factor exposure mappings

As we have stated while introducing the topic, the exposure mapping approach also works beyond

the simple case of the CAPM. As usual, although the intuition and mechanics remains the same, the

details are a bit more tedious. Consider the following (empirical) asset pricing model for a generic

asset/security/portfolio  = 1 2  (due to Fama and French, 1992):

[+1] =  + [+1 − ] + [+1] + [+1] (8)

where  is the constant riskless rate of return, +1 is the rate of return from a special

long-short (zero net investment) portfolio that goes long in small capitalization stocks and short

in large capitalization stocks, and +1is the rate of return from a special long-short (zero

net investment) portfolio that goes long in high book-to-market ratio (also called value) stocks

and short in low book-to-market ratio (growth) stocks.10 Notice that this an asset pricing model

and not (yet) a ready-to-use econometric framework to be applied in risk management because the

model only imposes restrictions on expected returns, i.e., it is not a model for returns but of their

expectations.11

For instance, how does the expression of the 1% VaR of a portfolio characterized by weights

{1 2  } look like in the case of (8), assuming the asset pricing model is subject to IID
shocks from a Gaussian distribution with zero cross-sectional correlations (i.e., [+1+1] = 0

for  6=  = 1 2  ),

+1 =  + (+1 − ) + +1 + +1 + +1 +1 IID (0 2) ? (9)

In this case it may be simpler to express (9) in matrix form as R+1 −  ι = Bλ+1 + ²+1

where R+1 is a  × 1 vector of asset returns, ι is a  × 1 vector of ones, λ+1≡ [(+1− )

+1 +1]
0 is a 3× 1 vector, and B is  × 3 a matrix that collects in each of its  rows

the exposure coefficients [  ]
0. Finally ²+1 IID (0Ω) where Ω is a × diagonal matrix

that collects the variance coefficients 21 , 
2
2
, , 2 .

We start by noting that +1 ≡
P

=1+1 can be re-written as +1 ≡ R0+1w and

the  × 1 vector x that collects the excess return observations 1 −  , 2 −  , ...,

 −  can be written as

x = Xw,

where X is a  ×  matrix [x1 x2 ... x ] and w a  × 1 vector of portfolio weights. Hence the
estimate of (the 3× 1 column vector) b ≡ [   ]

0 in the stacked regression

x = Λb̂ + ²̂  (10)

10SMB is the acronym for “Small minus Big” and HML is the acronym for “High minus Low” (referred to the

book-to-market ratio). The fact that SMB and HML are two zero net investment portfolios explains why we do not

need to subtract the constant riskless rate from +1 and +1. You must have already encountered this

factor models in at least three of your MSc. courses.
11Morever, under the restrictions  =  = 0 for  = 1 2   (i.e., for all assets under consideration), this model

becomes the CAPM used in the lectures, [+1] = + [+1 − ].
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will be

b̂ = (Λ
0Λ)−1Λ0x = (Λ0Λ)

−1
Λ0(Xw) = ((Λ0Λ)−1Λ0X)w = B̂ω

In (10)  is the sample size, Λ ≡ [λ01 λ02 ... λ0 ]0 is a  × 3 matrix, and ²̂ is the  × 1 vector
that collects the observations ̂1, ̂2, ..., ̂ .

12 However, the expression for b̂ indicates

that this vector of estimated coefficients may be written as weighted combination of the columns of

the 3× matrix B̂ ≡ ((Λ0Λ)−1Λ0X) where each column has an interpretation similar to a vector
of ratios of covariance-type terms between the returns on the factor portfolios and the returns

on each of the  assets (Λ0X) “divided” (loosely speaking) by a 3 × 3 matrix of variance-type
terms concerning (Λ0Λ) returns on the three factor portfolios. The weights of the combinations are

provided by the portfolio weights. Moreover

 [̂+1] =  [̂²0+1w] = w
0
£
²̂+1²̂

0
+1

¤
w = w0Ω̂w.

Therefore

2+1 =  [+1] =  [(ι + B̂λ+1 + ²+1)
0w]

= w0 [(B̂λ+1 + ²+1)0]w

= w0B̂ [λ+1]B̂0w+w0 [²+1]w

= w0B̂ [λ+1]B̂0w+w0Ω̂w = w
0
n
B̂ [λ+1]B̂

0+Ω̂

o
w,

where  [λ+1] is the 3× 3 covariance matrix of the returns on the factor portfolios, i.e.,

 [λ+1] ≡

⎡⎢⎣ 2+1 [+1 +1] [+1 +1]

[+1 +1] 2+1 [+1 +1]

[+1 +1] [+1 +1] 2+1

⎤⎥⎦ .
Finally, it is easy to see that assuming normality,

 +1(0.01) = 233
n
w0
h
B̂ [λ+1]B̂

0 + Ω̂

i
w
o12

− ( ι + B̂̂[λ+1])
0w

= 233{B̂ [λ+1]B̂0 +  [̂+1]}−[+1] (11)

where ̂[λ+1] can be simply estimated as the sample mean of (excess) returns on the factor portfo-

lios. Once more, the risk exposure will entirely depend on the portfolio composition, the exposures

of the securities in the portfolio vs. each of the three priced risk factors as measured by B̂ the

covariance matrix of the factors themselves,  [λ+1], and the idiosyncratic risk coefficients of all

the securities in the portfolio, as captured by the diagonal matrix Ω̂. Although it is algebraically

more involved, also in this case we see that a seemingly passive expression (second line of (11)) gives

the same answer as a perfectly active one (first line of (11)).

12In case this sounds unfamiliar, please review your notes from the first semester of Econometrics to see how the

multivariate regression +1− =  (+1− )+ +1+ +1++1 can be written

in stacked form.
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4. Naive Models of Covariance Prediction

What if the asset pricing models discussed in Section 3 are rejected by the data? Unfortunately,

you may have learned from your courses that this tends to be the case for most models, data sets,

and sample periods. The key alternative idea that populates the financial econometrics literature is

that concepts and tools introduced in chapters 4 and 5 with reference to volatility forecasts can now

be extended to covariances as well (and hence to correlations). This of course starts with rather

simple, naive techniques and models that we have already commented in chapter 4. The simplest

idea is to build time-varying estimates of covariances using rolling (moving) averages:

+1 =
1



X
=1


+1−


+1− 

where  is the window length and we have assumed a zero mean for the returns on both assets 

and . Clearly, when  =  this becomes the rolling window variance estimator already analyzed

in chapter 4. The problem of this rolling window covariance estimator/predictor remains the same

one that we have already encountered in chapter 4: how should one pick the window parameter ?

Obviously, its choice is critical for the estimator that can be obtained. Too long a window makes

the estimator rather smooth but also risks of including in the calculation returns that may have

been originated from a possibly different period or regime, in either a statistical or in an economic

sense. The choice of a small  leads to a jagged and quickly changing estimator. Moreover, the

“box-shaped” spurious effects already discussed in chapter 4 would also characterize this rolling

window covariance estimator, with the risk of covariance prediction at time  changing not because

of events recorded at time  but because returns recorded  periods ago drop out of the rolling

window. Finally, the rolling window estimator attaches equal weights on past cross products of

returns, which may be highly questionable. Figure 1 reports one such example. The appearance of

some “box-shaped” is obvious.

Figure 1: S&P500 vs. USD/Yen return moving average covariance estimate,  = 25

An alternative idea that has had some impact on the practice of risk and asset management

consists of extending the RiskMetrics variance estimator to covariance, i.e., the idea is that of an
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exponential smoother applied to covariances:

+1 = (1− )



 +  (12)

with  ∈ (0 1).13 As already discussed, JP Morgan had originally popularized a choice  = 094

which turns out to work rather well also for covariances. However, the restriction that the coefficient

(1 − ) on the cross product of returns and the coefficient  on past covariance sum to one is not

necessarily desirable. To understand this, consider the model +1 = 0 + 1




 + 2 of

which (12) represents a special case. Because when means are zero, then ̄ = [



 ] we have

that

̄ ≡ [+1] = 0 + 1[




 ] + 2[]

= 0 + 1̄ + 2̄ =⇒ ̄ =
0

1− 1 − 2


However, because in (12), 0 = 0 and 1 + 2 = 1 we have that under the RiskMetrics model,

̄ = 00, i.e., that long-run, unconditional covariance actually fails to exist. This implies that

there is no mean-reversion in covariance: based on the closing price today, if tomorrow’s covariance

is high then it will remain high, rather than revert back to its mean. Equivalently, we say that

under (12) covariance follows a non-stationary, unit root process. Figure 2 shows an example of

predicted covariance dynamics generated from a RiskMetrics model for the same data as in Figure

1. Clearly, RiskMetrics covariance reacts more to shocks to return cross-products than a rolling

window covariance estimator does.

Figure 2: S&P500 vs. USD/Yen return RiskMetrics covariance estimate ( = 094)

In fact, (12) can be easily re-written in the equally familiar format

+1 = (1− )

∞X
=0

−−

13As we shall explain below, we need to set  to be independent of  and  to ensure that the covariance matrix

predicted from the model is semi-positive definite.
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which shows that that this forecast corresponds to an exponentially weighted, infinite moving av-

erage. To see this, we just need to re-write the model in recursive fashion moving backwards in

time:

+1 = (1− ) + 

= (1− ) + (1− )−1−1 + 2−1

= (1− )[ + −1−1] + 2(1− )−2−2 + 3−2

= (1− )[ + −1−1 + 2−2−2] + 3−2

= 

= (1− )

∞X
=0

−−

as lim→∞ − = 0 for  ∈ (0 1).
The model +1 = 0 + 1





 + 2 used above to work on the non-stationarity of the

RiskMetrics estimator shows already an obvious direction in which we ought to be looking at, i.e.,

extending GARCH(1,1) style models to predict covariances besides variances:

+1 =  + 




 +  (13)

where  and  in principle depend on the couple of assets  and  under examination. Similarly

to a GARCH(1,1), one needs  +   1 for the process to be stationary, as

̄ =


1−  − 

is finite if and only if  +   1. However, because covariances can be negative, in this case one

does not need to restrict any of the parameters to be estimated to be positive (or non-negative).

Unfortunately, it is possible to show that unless  =  and  =  for all possible pairs  6= , even

though +1 can be anyway estimated/predicted, when one organizes such estimates/predictions

into a covariance matrix predicted at time  for time + 1,

Σ̂+1 ≡ d[R+1] =

⎡⎢⎢⎢⎢⎣
̂21+1 ̂12+1    ̂1+1

̂12+1 ̂22+1    ̂2+1
...

...
. . .

...

̂1+1 ̂2+1    ̂2+1

⎤⎥⎥⎥⎥⎦ 

unfortunately the resulting Σ̂+1 is not guaranteed to be semi-positive definite (SPD), while it

should be.14 Why do we need so desperately that Σ̂+1 be SPD? As often in this course, the reason

is purely an economic one, not a statistical one. First, let’s recall that a  × square symmetric

matrix A is SPD if and only if ∀x ∈ R  then x0Ax ≥ 0 Second, when applied to our problem
this definition implies that for any vector of portfolio weights w ∈ R , w0Σ̂+1w ≥ 0. So far we
14Notice that instead  is allow to depend on the pair  6= .
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have only applied a mathematical definition. The beauty of this result is that w0Σ̂+1w has a very

precise meaning to us: d [
+1] = w

0
Σ̂+1w ≥ 0

i.e., the SPD nature of Σ̂+1 is necessary (as well as sufficient) to ensure that the variance of any

portfolio is non-negative, as it should be.

To get a feeling for why we need to prevent the GARCH-type coefficients to be a function of

the pair of assets to ensure a good behavior of the covariance matrix, let’s consider the RiskMetrics

case, which a we know it is just a case of zero-intercept, non-stationary GARCH model. We deal

with RiskMetrics because to think about this problem with reference to one parameter only ()

delivers ready intuition with less algebra. Assume the exponential smoothing model is applied to

both variances and covariances in the case of two assets,  = 2, i.e.:

+1 = (1− ) +    = 1 2

so that the dynamic model also applies to variances when  =  The exponential smoothing esti-

mator of the entire conditional covariance matrix is then:

Σ+1 =

"
11+1 12+1

12+1 22+1

#
=

"
(1− )21 + 11 (1− )12 + 12

(1− )12 + 12 (1− )22 + 22

#


Assume now, by the sake of contradiction that the smoothing parameters that apply to conditional

variances and covariances are allowed to be different:15

+1 = (1−  )
2
 +    = 1 2

12+1 = (1− )12 + 12

with  6=  (but both of them still belong to the interval (0 1)). It is relatively easy to use a

simple example to show that  6=  may lead to a conditional correlation between returns on

assets 1 and 2 that fails to be in the interval [−1 1]. The idea is to work by focussing on few returns
setting all other returns to zero, which may of course happen only by accident in reality–recall that

you just need one example, not a general proof. Suppose you have available a sample of +1 paired

returns, i.e., {1 , 2}=0. Then the RiskMetrics processes can be re-written in exponential
smoothing form as:

+1 = (1−  )

X
=0

2− + +1 0  = 1 2

12+1 = (1− )

X
=0

1−2− + +1 120

Assume that at time 0, 0 = 120 = 0 for  = 1 2 and that–just by accident–while 1− =

2− = 0 for  = 0 1   − 1 at time  the returns are potentially non-zero, call them 1 and

15Here +1 is the same as 
2
+1. This derives from the fact that the covariance of a random variable with itself

is the same as the variance. Therefore, this means that  is allowed to differ according to the fact that  =  or not.
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2. Then

+1 = (1−  )
2
  = 1 2

12+1 = (1− )12

and the corresponding conditional correlation is

12+1 =
(1− )12q

(1−  )
2
1(1−  )

2
2

=
(1− )12

(1−  )|1||2| =
(1− )

(1−  )
(12)

where the sign function (12) takes a value of +1 when the sign of 12 is positive and

-1 otherwise. At this point, note that if     then

12+1

(
 1 if (12) = +1

 −1 if (12) = −1

which is clearly inadmissible. As argued above, this shows (although it is just a very special example)

that  =  is sufficient for 12+1 to be in [−1 1] because in that case

12+1 = (12) =

(
+1 if (12) = +1

−1 if (12) = −1


which is again admissible. How does an example of 12+1 ∈ [−1 1] map into our claim that when

the coefficients are allowed to depend on either the assets or the moments (as in this case), then

Σ+1 may fail to be SPD so that it cannot be a covariance matrix used in financial applications?

Recall that if Σ+1 is semi-positive definite, then det(Σ+1) ≥ 0. In our example, we have

Σ+1 =

"
(1−  )

2
1 (1− )12

(1− )12 (1−  )
2
2

#


The determinant of this matrix is simply:

det(Σ+1) = [(1−  )
2
1(1−  )

2
2]− [(1− )12(1− )12]

= (1−  )
221

2
2 − (1− )

221
2
2

= 21
2
2[(1−  )

2 − (1− )
2]

which is non-negative if and only if [(1−  )
2 − (1− )

2] ≥ 0 or
(1−  )

2

(1− )2
≥ 1 =⇒ 1− 

1− 
≥ 1 =⇒  ≥  

Once more, should we be setting     the outcome is that det(Σ+1)  0 which would show

that Σ+1 is negative definite and hence it cannot be a covariance matrix.

Therefore, going through a re-cap of the points above, only setting  =  and  =  for all

possible pairs  6= , i.e., setting the coefficients of (13) to be identical across all pairs of assets and

therefore across models for conditional variance vs. covariance, one guarantees that for any portfolio

that can be formed, d [
+1] ≥ 0. Unfortunately, empirically it is unclear that the persistence
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parameters  and  should be the same for all variances and covariances across assets. Often the

data reject this restriction. Moreover, this business of having to set  =  and  =  for all

possible pairs  6= , has another critical implication. While in principle we would like to use data to

proceed to the estimation of (13) for each possible pair of assets, imposing constraints such as the

ones discussed above, implies that all the dynamics processes underlying the elements of Σ should

be estimated jointly, in one single pass. If this were not enough to scare you, this means that given

 assets, we should jointly estimate the parameters of ( − 1)2 different processes, one for the
covariance of each possible pair of assets. For instance, in the case of (13), this implies the need to

estimate  +2 parameters ( different constant coefficients  plus one single  and one single )

that enter ( − 1)2 different econometric models. At this point, hoping that you are scared by
the perspective of actually implementing this task for a large  , it becomes obvious that we need

to develop better, multivariate econometric models of the conditional covariance matrix.

4.1. Comparing the properties of RiskMetrics and GARCH models for covariances

This is one of our traditional stops in the flow of our arguments. What are the effects of selecting a

conditional model for covariance to be of a GARCH vs. of a RiskMetrics type? In this subsection,

we therefore compare the RiskMetrics-style model,

+1 = (1− ) + 

(that we know it is easy to re-write as +1 = (1− )
P∞

=0 
−−, where ES stands for

exponential smoother) and

+1 =  +  +  (14)

where  has been simplified not to depend on  and  for the purposes of this subsection. As a

starting point, we show that the GARCH model in (14) can be written in a format similar to the

ES one. We just need to re-write the GARCH in a recursive fashion moving backwards in time:

+1 =  +  + 

=  +  + [ + −1−1 + −1]

= (1 + ) + ( + −1−1) + 2−1

= (1 +  + 2) + ( + −1−1 + 2−2−2) + 3−2

= 

= 

∞X
=0

 + 

∞X
=0

−− =


1− 
+ 

∞X
=0

−−

which is the desired expression. Clearly, this process for +1 simplifies to +1 = (1 − )P∞
=0 

−− when  = 0  = 1 −  and  =  However, because you now perfectly

understand that the persistence of a GARCH(1,1) process is measured by the sum + , it is also

clear that  = 1− and  =  implies that + = 1−+ = 1 which means that an exponentially
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smoothed process for conditional covariance implies that covariance is integrated of order 1, i.e.,

that +1 has “infinite memory”, in the sense any shock to  will have an impact on future,

subsequent + that lasts forever (  0).

We call ̄ ≡ [] = (1− − ) the unconditional covariance implied by a stationary

GARCH(1,1) model in which +   1. As usual, this is obtained as

̄ ≡ [] =  + [] + [] =⇒ ̄ ≡ [] =


1− − 
.

Therefore (14) can be re-written as

+1 = ̄ + ( − ̄) + ( − ̄)

This follows from

+1 =  +  + 

= ̄(1− − ) +  + 

= ̄ + ( − ̄) + ( − ̄)

as desired. This expression shows that forecasts of future covariance depend on three “ingredients”:

(i) the baseline forecast is represented by the unconditional covariance ̄  which depends on all the

parameters, , , and ; (ii) the deviation of the current cross-product of asset returns  from

the unconditional covariance ̄  weighted by the coefficient ; (iii) the deviation of the current

conditional covariance  from the unconditional covariance ̄  weighted by the coefficient .

Interestingly, (14) can be equivalently re-written as

+1 = ̄ + (+ )( − ̄) + 

µ



− 1
¶

because (using a simple trick, i.e., adding and subtracting ( − ̄) at the right stage and

exploiting the fact that  = 
√

√
):

+1 = ̄ + ( − ̄) + ( − ̄)

= ̄ + ( − ̄)− ( − ̄) + ( − ̄) + ( − ̄)

= ̄ + (+ )( − ̄) + ( − )

= ̄ + (+ )( − ̄) + 

µ



− 1
¶

= ̄ + (+ )( − ̄) + 

µ



√

√


− 1
¶

= ̄ + (+ )( − ̄) + 

µ



− 1
¶


At this point the -step ahead forecast for the variance can be found as:

[

+ ] = ̄ + (+ )([+−2[+−1]]− ̄)+
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+

∙
+−2

µ
+−1

+−1+−1
+−1

− 1
¶¸

= ̄ + (+ )([̄ + (+ )(+−2 − ̄)]− ̄)

= ̄ + (+ )2([+−2]− ̄)

= ̄ + (+ )2([+−3[+−2]]− ̄)

= ̄ + (+ )3([+−3]− ̄)

=  = ̄ + (+ )( − ̄)

where we have exploited the law of iterated expectations by which [+−1] = [+−1[+−1]]

and

+−2

µ
+−1

+−1+−1
+−1

− 1
¶
= +−2 (+−1)+−2

µ
+−1+−1

+−1
− 1
¶
= 0

as +−2 (+−1+−1) = +−1 and +−1 is independent by construction of +−1

and +−1 (think of it: this is a GARCH process and the filtered GARCH covariance just depends

on past shocks).16 Similarly to what found in chapter 4, it is then rather simple to compute forecasts

of future, -step ahead covariances from [

+ ] = ̄ + (+ )( − ̄).

As for the comparison, notice that from

+1 = (1− ) + 

we have that (exploiting that in a RiskMetrics model +  = 1 and [

+ ] = )

[

+ ] = ̄ + (+ )| {z }

=1

 [+−2(+−1 − ̄)]

=  [+−2(+−1)]

=  [+−2] =  [+−3(+−2)] =  [+−3] =  = [] = 

This means that the forecast -step ahead in an exponential smoothing model is simply the current

estimate of covariance. This is what we have alluded to early on when we have claimed that under

(12) covariance follows a non-stationary, unit root process. On the contrary, because

[

+ ] = (+ ) + [1− (+ ) ]̄ 

in the case of the GARCH(1,1) the current covariance receives a weight (+ ) which declines to

zero as  →∞ under covariance stationarity, while the complement to one weight (which therefore

increases to 1 as  → ∞) is assigned to the unconditional covariance ̄ . In fact, because the
RiskMetrics model can be obtained by setting + = 1 in that case the GARCH forecast reduces

to the exponential smoothing one.

16Here you need to pay attention to the notation: +−2 (+−1+−1) is the time  +  − 2 predicted
conditional covariance between +−1 and +−1 that we have denoted +−1. Notice that properties such as

+−


+−+1+−+1

+−+1
− 1

= 0

with  ≥  have to be used repeatedly in the proof.
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5. Dynamic Conditional Correlation (DCC) Modelling

If you listen to trading desk and asset management lingo, they will hardly talk about covariances:

instead the focus will be on correlations, besides volatility. For instance, one interesting (worri-

some) phenomenon is that all correlations tend to “skyrocket” during market crisis (bear regimes)

and this–as well shall see in detail in chapter 7–has recently attracted considerable attention.17

Even though it is obvious that given any type (e.g., GARCH) models for covariances (̂+1) and

variances (̂+1 and ̂+1) separately, one can always compute the implied dynamic (prediction

of) correlation,

̂+1 =
̂+1

̂+1̂+1


one generation of financial econometricians has tried to actually write and estimate models for dy-

namic conditional correlations directly, i.e., when the model directly concerns the behavior of +1

over time. However, that task appears to be far from trivial for one obvious reason: +1 ∈ [−1 1]
and so a dynamic estimator would imply a need to constrain parameter estimates to avoid that for all

times , |+1| exceeds 1. For instance, consider a model +1 = 0+1(

)(


)+2

and try to ask yourself what kind of restrictions on 1 and 2 may keep |+1| from exceeding 1

given that 
 ∈ [−1+∞).18

A more fruitful approach is the one that leads to specify and estimate DCC models. This

approach is based on the idea that it is more appealing to model an appropriate auxiliary variable,

+1. The DCC approach is based on a generalization to the vector/matrix case of the standard

result that +1 ≡ +1+1+1 = +1+1+1:

Σ+1 ≡ D+1Γ+1D+1

whereD+1 is a× matrix of standard deviations, +1, on the th diagonal and zero everywhere

else ( = 1 2 ..., ), and Γ+1 is a matrix of correlations +1 and with ones on its main diagonal.

For instance, in the  = 2 case:

Σ+1 ≡
"

21+1 12+1

12+1 22+1

#
=

"
1+1 0

0 2+1

#"
1 12+1

12+1 1

#"
1+1 0

0 2+1

#


The key step of the DCC approach is based on the ability to disentangle the estimation and predic-

tion of D+1–to obtain D̂+1–and the estimation and prediction of Γ+1, that will give Γ̂+1. In

particular, we proceed in two steps:

1. The volatilities of each asset are estimated/predicted through a GARCH or one of the other

methods considered in chapters 4 and 5. For instance, one can think of 2+1 =  + (
 −

)
2 + 2 for  = 1 2 ...,  .

17The verb skyrocket appears in quotation marks because you should recall that correlations are defined in [−1 1]
and they cannot diverge to +∞.
18Please also ask yourself why 

 ∈ [−1+∞), i.e., why 
  −1 is impossible.
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2. Model conditional covariances of standardized returns, +1 ≡ 
+1


+1, derived from the

first step using GARCH-type models. Here, we exploit the fact that the conditional covariance

of the +1 variables equals the conditional correlation of raw returns:

[

+1 


+1] = 

"

+1

+1



+1

+1

#
=

1

+1+1


h

+1 


+1

i
=

+1

+1+1
= +1

However, the GARCH-type modelling will not concern directly the standardized returns, but

instead an auxiliary variable +1 to be estimated/predicted to be able to compute conditional

correlations. Typically, the most popular model used in this second DCC step is:

+1 = ̄ + (+1

+1 − ̄) + ( − ̄) ∀ 

which is a GARCH(1,1) for the auxiliary variable, written in deviations from the unconditional,

long-run mean, usually set to be equal to the unconditional sample covariance of the data. An

alternative that has been sometimes used is of a RiskMetrics type:

+1 = (1− )+1

+1 +  ∀ ,

with  ∈ (0 1). Note that these models apply to all pairs  and  even when  =  which is used

in (15) below. How do you go now from a forecast of the auxiliary variable +1 to a forecast of

correlations? Here one uses the transformation

+1 =
+1√

+1
√
+1

 (15)

Note that (15) guarantees by construction that +1 ∈ [−1 1].19 Therefore, in the GARCH(1,1)
case, ̄ = (1−−). Interestingly, only the intercept parameter  is allowed to differ across
different pairs of assets: also in this case,  and  are common across different pairs of assets;

the same occurs for the single parameter  in the RiskMetrics-type model. This implies that the

persistence of the correlation between any two assets in the portfolio is the same, which is obviously

unrealistic.20 With reference to same two series of S&P 500 returns and the USD/yen exchange rate

log-changes featured in Figures 1 and 2, Figures 3 and 4 show the predicted, one-step correlations

19Other transformations have been explored in the literature, for instance the Fisher transformation of the cor-

relation coefficient: +1 = [exp(2+1) − 1][exp(2+1) + 1], where +1 can be defined as any GARCH model

using 1+1
2
+1 as innovations. This model is easy to implement because the positive definiteness of the conditional

correlation matrix is guaranteed by the Fisher transformation. However, it is only a bivariate model and it is not

clear how to generalize it to any  ≥ 2.
20In any event, because  is allowed to differ across pairs of assets, the fact that  and  or  must be common

across pairs of assets, does not imply that the level of the correlations at any time is the same across pairs of assets.
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estimated from a DCC RiskMetrics and a DCC GARCH(1,1) model, respectively.

Figure 3: S&P500 vs. USD/Yen return DCC/RiskMetrics covariance estimate ( = 094)

Figure 4: S&P500 vs. USD/Yen return DCC/GARCH(1,1) covariance estimate

Clearly, the two figures are quite different, even though the general dynamics of the correlation

forecasts is qualitatively similar.

The RiskMetrics and GARCH/DCC models can also be written in matrix form as

Q+1 = (1− )zz
0
 + Q

Q+1 = Π+ zz
0
 + Q

where z ≡ [1+1 2+1 ... +1]0,Q+1 is a× symmetric matrix that collects the values/predictions

of the auxiliary variables +1

Q+1 ≡

⎡⎢⎢⎢⎢⎣
11+1 12+1    1+1

12+1 22+1    2+1
...

...
. . .

...

1+1 2+1    +1

⎤⎥⎥⎥⎥⎦
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for   = 1 2...,  and Π is a symmetric SPD matrix.21 Q+1 is SPD because it is a weighted

average of positive semi-definite and positive definite matrices. This will in turn ensure that the

correlation matrix Γ+1 and the covariance matrix, Σ+1, will be positive semi-definite. One often

used variation of the DCC GARCH model features a covariance targeting variant:

Q+1 = (1− − )[zz
0
] + zz

0
 + Q

which guarantees that the unconditional correlation will be identical to the sample unconditional

correlation of the data.

DCC models are enjoying a massive popularity because they are easy to implement in 3 steps:

1. All the individual variances are estimated one by one;

2. The returns are standardized and the unconditional correlation matrix is estimated;

3. The correlation persistence parameters  and  are estimated.22

One point that is worthwhile to make (see Bauwens et al., 2006, for additional details, as well

as Section 6.2 that follows) is that the class of models that is based on non-linear combinations

of univariate GARCH models in which one can specify separately, on the one hand, the individual

conditional variances, and on the other hand, the conditional correlation matrix (this is called a

hierarchical specification strategy) is not composed of DCC models only. For instance, Tse and Tsui

(2002) specify their multivariate DCC as Σ+1 ≡ D+1Λ+1D+1 where Λ+1 follows a GARCH-like

process but it is not necessarily a time-varying correlation matrix and has a factor structure. In

practice, in this case the DCC formulates the conditional correlation directly as a weighted sum of

past correlations.

DCC models are estimated by QMLE by construction: because the model is implemented in

three different steps, even though in each of these stages a log-likelihood function is written and

estimated, the overall outcome only represents a QMLE. In each of the stages, only few parame-

ters are estimated simultaneously using numerical optimization. This feature makes DCC models

extremely tractable for risk management of large portfolios: in the first step, one only estimates

univariate GARCH-type models; the resulting GARCH inferences are then used to compute the

standardized returns, +1 ≡ 
+1


+1; in the final step, one only estimates two parameters–

and –that apply to all pairs of assets. For instance, in the case of  = 2, in the first stage one

solves (in the simple GARCH(1,1) case)

max
, , 

(
−
2
log 2 − 1

2

X
=1

log
£
 + 

2
−1 + 

2
−1

¤− 1
2

X
=1

2

 + 
2
−1 + 

2
−1

)


21Note that +1 is in general different from 2+1 obtained in the first step,  = 1 2 ...,  This is important and

it represents the logical sacrefice on which the two-step DCC estimation is based: the use of first-step predictions for

variances that potentially differ from those that are then used to go from predictions of the +1 to predictions of

correlations constrained to be in [−1 1].
22This last claim and the fact that  has not been mentioned assumes that covariance targeting has been applied

as we shall see in our Matlab session.
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where 20 is initialized at

20 =


1−  − 


In the second step, given the pair of time series +1 ≡ 
+1


+1 and 


+1 ≡ 


+1


+1 one solves

max
, 
−
2
log 2 − 1

2

X
=1

ln(1− 212−1)−
1

2

X
=1

(1−1)
2 + (2−1)

2 − 212−11−12−1
(1− 212−1)



where 12−1 = 12+1[
√
11+1

√
22+1] and +1 follows either a GARCH or a RiskMetrics

model, involving the parameters  and  in the former case (under covariance targeting), and  in

the latter. Notice that the variables that enter the log-likelihood are the standardized returns, ,

and not the original raw returns themselves. We are essentially treating the standardized returns as

actual observations here and this is an alternative way to appreciate the loss of estimation efficiency

that QMLE implies in this application. In theory, we could obtain more precise estimators by

estimating all the volatility models and the correlation model simultaneously, which would yield a

ML estimator. In practice, this is not feasible for large portfolios, i.e. for cases in which  exceeds

3 or 4 different assets.

5.1. One detailed bivariate example

Consider the GARCH(1,1) version of the dynamic conditional correlation model

+1 = [] + ( −[]) + ( −[])


(·)
+1 ≡


(·)
+1q


(·)
+1

(·)
+1

for the case of  = 2 We show that the in the GARCH case, the covariance matrix of returns can

be written as:

Σ
+1 = D

+1 Γ+1+1 D

+1

D
+1 =

q
(Q

+1 ) Γ+1 = (D
+1 )−1Q

+1 (D
+1 )−1

Q
+1 ≡

"
11+1 12+1

12+1 22+1

#
= [zz

0
](1− − ) + zz

0
 + Q

 

where z ≡ [1 2]0 is the vector that collects standardized residuals from a GARCH(1,1) model

and under the special assumption that +1 = +1  = 1 2.23 The point simply consists in

the patient verification of a few matrix expressions. Let’s work backwards:

Q
+1 ≡

"
11+1 12+1

12+1 22+1

#
= (1− − )

Ã"
21 12

12 22

#!
+

23Notice that in this case the same matrix 
+1 appears in the definitions of Σ

+1 and of Γ+1  In

general this does not need to be the case, i.e., as stated in the subsection title, this represents a special example.
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+

"
21 12

12 22

#
+ 

"
11 12

12 22

#

=

"
(1− − )(21) + 21 + 11 (1--)(12) + 12 + 12

(1--)(12) + 12 + 12 (1− − )(22) + 22 + 22

#

which is a matrix collecting standard GARCH dynamic models for the +1 as defined above and

in which

(12+1 ) = (1− − )(12) + (12) + (12 ) = (12)

Next, we need to show that Γ+1 is the correlation matrix implied by the process:

Γ+1 = (D
+1 )−1Q

+1 (D
+1 )−1

=

⎡⎢⎣
1

(1−−)(21)+21+11

0

0 1
(1−−)(22)+22+22

⎤⎥⎦×

×
"
(1− − )(21) + 21 + 11 (1--)(12) + 12 + 12

(1--)(12) + 12 + 12 (1− − )(22) + 22 + 22

#
×

×

⎡⎢⎣
1

(1−−)(21)+21+11

0

0 1
(1−−)(22)+22+22

⎤⎥⎦
=

⎡⎢⎣ (1−−)(21)+21+11√
[(1--)(21)+

2
1+11][(1--)(

2
1)+

2
1+11]

(1−−)(12)+12+12√
[(1--)(21)+

2
1+11][(1--)(

2
2)+

2
2+22]

(1−−)(12)+12+12√
[(1--)(21)+

2
1+11][(1--)(

2
2)+

2
2+22]

(1−−)(22)+22+22√
[(1--)(22)+

2
2+22][(1--)(

2
2)+

2
2+22]

⎤⎥⎦
=

"
1 12+1

12+1 1

#


Finally, if we re-assemble everything, we have:

Σ
+1 = D

+1 Γ+1 D
+1

=

⎡⎣ q11 0

0
q
22

⎤⎦" 1 12+1

12+1 1

#⎡⎣ q11 0

0
q
22

⎤⎦
=

⎡⎣ q
11

q
11 12+1q

22 12+1

q
22

⎤⎦⎡⎣ q11 0

0
q
22

⎤⎦
=

⎡⎣ 11

q
11

q
22 12+1q

11

q
22 12+1 22

⎤⎦
=

"
11+1 12+1

12+1 22+1

#

Just one final remark: in this case we have assumed that  and  are taken to characterize the

dynamic process for Q
+1 as a whole under the assumption of +1 = +1 or, in matrix
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form, that D
+1 = F

+1 in the more general structure:

Σ
+1 = D

+1 Γ+1 D
+1

F
+1 =

q
(Q

+1 )

Γ+1 = (F
+1 )−1Q

+1 (F
+1 )−1

Q
+1 = [zz

0
](1− − ) + zz

0
 + Q

 

As you know from the lectures this need not be the case and in applied work it is typical to first

estimate “some” GARCH models (it does not need to be GARCH(1,1), as it could be N(A)GARCH,

GJR, etc.) for volatilities and then use the corresponding standardized residuals to estimate

Q
+1  This implies additional complexity but the advantage is that the  and  that char-

acterize the dynamic process for correlations needs not to be the same as the one for volatility.

5.2. Asymmetric (GJR-type) DCC models

So far we have considered only symmetric correlation models where the effect of two positive shocks

(i.e., standardized returns) is the same as the effect of two negative shocks of the same magnitude.

But, just as we modeled the asymmetry in volatility (the leverage effect) in the univariate case,

we may want to allow for a down-market effect in correlations. This can be achieved using an

asymmetric DCC model where, for instance (also imposing correlation targeting):

Q+1 = (1− − )̂[zz
0
] + zz

0
 + Q + (gg

0
 − ̂[gg

0
])

where “hatted” expectations will be estimated using sample moments, for instance

̂[zz
0
] =

1



X
=1

zz
0


and the vectors g are defined as the negative part of z as follows:

 ≡
(

 if   0

0 if  ≥ 0
,  = 1  

The term (gg
0
 − ̂[gg

0
]) captures a leverage effect in correlations: When   0 then the

correlation for asset  and  will increase more when  and  are negative than in any other case.

This captures a phenomenon often observed in markets for risky assets: Their correlation increases

more in down markets ( and  both negative) than in up markets ( and  both positive).

6. Multivariate GARCH Models

In our introduction we have already emphasized that a full extension and generalization of simple,

univariate GARCH methods to the multivariate case presents many issues and problems related to
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the large scale of the resulting models and their tendency to be over-parameterized. In this Section

we take this task seriously and attempt to generalize the simple set-up of the first part of the course,

+1 = +1+1 +1 IID N (0 1)

to the case in which returns on  assets collected in R+1, are described by

R+1 = Ω
12
+1z+1 z+1 IID N (0 I) (16)

where I is a  ×  identity matrix, and (similarly to chapter 7), Ω
12
+1 is the square-root, or

Cholesky decomposition, of the covariance matrix, such that24

Ω
12
+1(Ω

12
+1)

0 = Σ+1 ≡  [R+1|=]

Even though in (16) we have specified z+1 IID N (0 I ), in certain situations it is desirable to
search for a better distribution for the innovation process, z+1. A natural alternative to the

multivariate Gaussian density is the multivariate Student density, of which skewed versions exist.

Moreover, note that Ω
12
+1 is in no way the matrix of square roots of the elements of the full

covariance matrix Σ+1 (if so, how would you deal with potentially negative covariances?).
25 Our

problem is then to write and estimate appropriate dynamic time series models for Σ+1 knowing

that this matrix contains 05( + 1) distinct elements (because of symmetry these are less than

2), which implies that in principle one would have to write and estimate dynamic models for each

of these elements. However, as already discussed in Sections 4 and 5, constructing positive semi-

definite (PSD) covariance matrix forecasts, which ensures that the portfolio variance is always non-

negative, remains difficult. Appropriate structure needs to be imposed to guarantee the PSDness

of the resulting forecast Σ̂+1 Here one thing needs to be appreciated: although much theoretical

(econometrics) literature has focussed on relatively small multivariate cases of (16), for instance

with  = 2 or 3, practioners need us to develop methods that apply to any value of the cross-

sectional dimension  including limit cases of  being large. In this respect–possibly with an

exception of the diagonal BEKK model presented in Section 6.3 below–DCC remains the best

option available. Therefore the models that are presented in the following are rather interesting on

paper and for small-scale applications (up to  = 4 or 5) but rapidly become unwieldy or even

impossible to estimate for realistic applications with hundreds of assets or securities to be modelled

simultaneously.

This point is easily understood through the case of the straightforward, plain vanilla -dimensional

generalization of a GARCH(1,1) in VEC(H) form:

(Σ+1) = (C) +A(RR
0
) +B(Σ)

24In this section, to make the distinction starker, we denote as Ω
12
+1 the Choleski factor of Σ+1 also for analogy

with the factors Ω
12

+1
that will appear in chapter 7.

25In fact, Ω
12
+1 is a lower triangular matrix appropriately defined according to an algorithm that is implemented in

most software packages (sure enough, in Matlab). Section 10.1 of chapter 7 shows one example for the  = 2 case.
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where (·) (“vector half”) is the operator that converts the unique upper triangular elements of
a symmetric matrix into a 05( + 1)× 1 column vector. For instance



Ã"
21+1 12+1

12+1 22+1

#!
=

⎡⎢⎣ 21+1

12+1

22+1

⎤⎥⎦ 
In this general “VEC model”, each element of Σ+1 is a linear function of the lagged squared

errors and cross-products of errors and lagged values of the elements of Σ+1. Note that while the

(·) of a  ×  symmetric matrix would simply be a 2 × 1 vector, the (·) is instead a
smaller, 05( +1)× 1 vector.26 In the vech-GARCH(1,1) model above, A and B are [05( +

1)]×[05(+1)] square matrices while C is a × symmetric matrix. In this vech-GARCH(1,1)

framework, each element of Σ may affect each element of Σ+1, and similarly for the outer product

of past returns, RR
0
 (note that this is a  × matrix because R is an  -dimensional vector).

However, the structure of C, A and B gives a total of27

05( + 1) + 2[05( + 1)]2 = 05( + 1)[2 + + 1]

= 054 + 053 + 052 + 053 + 052 + 05

= 054 +3 +2 + 05 = (4)

parameters to be estimated. For instance, for  = 100, which represents hardly a large portfolio

or risk management problem, then the vech-GARCH(1,1) model has 51,010,050 parameters to be

estimated. If you need to have at least 20 observations available, with  = 100 assets this means

20× 51 010 050100 = 10 202 010 observations per series, or a daily history of more than 40,484
years per series. This is clearly not feasible.28 More generally, vech-GARCH models that naively

generalize the GARCH models of chapter 4 to the multivariate case, tend to generate a serious

“curse-of-dimensionality” problem, as estimating this many free parameters is obviously infeasible,

both in terms of data availability and in numerical terms (try and propose your Matlab to estimate

51 million parameters and then you will see — you may take a 2,000-year vacation as well).29

Moreover, this is not even the end of the bad news: these (4) parameters, need to be restricted

for them to yield forecasts of the covariance matrix that are eventually SPD, as required. Such a

restrictions are even too complex and involved to be presented here (see Gourieroux, 1997, section

26(·) denotes the operator that stacks the lower triangular portion of a  ×  matrix as a 05( + 1) × 1
vector.
27In what follows, as you may recall from your math classes, the notation (4) indicates that the quantity under

examination grows at the same speed as 4.
28This is the sense in which a textbook example with  = 3 i.e., 78 parameters to be estimated based on, say,

2,600 observations per series, i.e., approximately 10 years of data is not that indicative of the feasibility of this model

in practice.
29The fact over-parameterization represents the key obstacle in the generalization of GARCH to the multivariate

case also explains why in what follows we entertain at most the (1,1) case. Of course, higher order GARCH is

technically feasible but almost always unfeasible.
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6.1).30

As you know, one often invoked trick to deal with the curse of dimensionality in GARCH, and

also to make sure that the implied unconditional moments turn out to be consistent with what the

model implies, consists of the so-called (co)variance targeting. As already mentioned in Section 5,

the intuition is that the model-implied unconditional covariance matrix is constrained to equal a

pre-calculated estimate from the simple sample covariance matrix by setting:

(C  ) = (I05(+1) −A−B)
Ã
1



X
=1

RR
0


!
 (17)

Because by analogy to the univariate case, the unconditional, long-run covariance matrix from a

vech-GARCH model is

(Σ̄) = (I05(+1) −A−B)−1(C)

setting (C) in the way reported above, gives

(Σ̄  ) = 

Ã
1



X
=1

RR
0


!


where “VT” stands for variance targeting and the result is the desired one. This trick avoids

cumbersome nonlinear estimation of (C) and is also useful in a forecasting perspective to

avoid that small perturbations in any of the elements of the matrices A and B may result in

large changes in implied unconditional variances and covariances. However, even though setting

(C) as in (17), does reduce the number of estimable parameters by 05( + 1) the residual

number 2[05( + 1)]2 remains (4) which means that there are still too many parameters to

be estimated simultaneously in A and B when  is large. As a result, further ideas have been

explored in the literature, besides covariance targeting.

6.1. Diagonal and Scalar multivariate GARCH models

One idea that has emerged early on (in the early 1990s) in this literature is that adequate restrictions

on A and B would deliver a sensible reduction in the number of estimable parameters. One such

possibility is offered by a diagonal multivariate GARCH( ), that we state in the general ( )

form to emphasize that GARCH models may in principle be defined for cases more complex than

the standard (1,1) framework, but also incorporating already covariance targeting:

(Σ+1) =
³
I05(+1) −

X

=1
A −

X

=1
B

´Ã 1


X
=1

RR
0


!
+

+
X

=1
A(R+1−R0+1−) +

X

=1
B(Σ+1−)

30For instance, to avoid estimating C, A and B jointly, Ledoit et al. (2003) estimate each variance and covariance

equation separately. The resulting estimates do not necessarily guarantee positive semi-definite Σ+1. Therefore, in

a second step, the estimates are transformed in order to achieve the requirement, keeping the disruptive effects as

small as possible. The transformed estimates are still consistent with respect to the parameters of the diagonal VEC

GARCH model.
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where all the [05( + 1)]×[05( + 1)] matrices {A}=1 and {B}=1 are diagonal matrices,
in the sense that all of their off-diagonal elements equal zero. However, although always useful

because compact, in the case of diagonal M-GARCH, one does not really need vector and matrices

to express the process. It is easy to see that each element of covariance matrix follows a simple

dynamics:

+1 =
³
1−

X

=1
 −

X

=1


´ 1


X
=1

 +
X

=1
+1−+1− +

+
X

=1
+1− 

This expression shows that conditional variances depend only on own lags and own lagged squared

returns, and conditional covariances depend only on own lags and own lagged cross products of

returns. Even the diagonal GARCH framework, however, results in (2) parameters to be jointly

estimated, which is computationally infeasible with large to medium  ; in fact, the number of

parameters is

05( + 1) + 05( + 1) = 05(+ )( + 1).

We also know of another issue that is likely to show up in this case: because the coefficients 

and  are not restricted to be the same across different assets and pairs of assets, constraints will

have to be imposed to keep the resulting Σ+1 that collects the forecasts +1 for   = 1 2 

 PSD. In spite of the reduction of the number of parameters, such constraints may represent a

considerable drag on the estimation speed and ease.

An even more drastic simplification, that we have in fact already examined before, is represented

instead by a scalar GARCH( ):

+1 =
³
1−

X

=1
 −

X

=1


´ 1


X
=1

 +
X

=1
+1−+1− +

+
X

=1
+1− 

which means that ARCH and GARCH coefficients reduce to real scalar parameters common across

assets. In matrix format, the model becomes:

(Σ+1) =
³
1−

X

=1
 −

X

=1


´Ã 1


X
=1

RR
0


!
+
X

=1
(R+1−R0+1−) +

+
X

=1
(Σ+1−)

As we know from Section 4, these strong restrictions do ensure that the resulting covariance matrix

is SPD because all coefficients are restricted to be the same across different pairs  and . Moreover,

the parametric simplification is obvious as the number of parameters now simply becomes  + ,

which is in fact independent of  . However, one is left to wonder about the exact meaning of a

model in which the speed of mean reversion is restricted to be common across  different assets or

portfolios.
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6.2. Constant Conditional Correlation (CCC) GARCH(p,q)

In a way, you are already very familiar with CCC models from Section 5: if you consider a

DCC model and you impose that the correlation matrix in the DCC representation, Σ
+1 ≡

D+1Γ+1D+1, is constant, so that Σ

+1 ≡ D+1ΓD+1 you obtain a CCC in which–indeed–the

first letter of the acronym means “constant”. Of course, tha assumption of constant correlations

over time is unrealistic. However, it simply avoids all the business of defining and modelling with

GARCH-type processes the +1 auxiliary variable. More generally, CCC and DCC models repre-

sents famous but special examples from a more general family that entertains non-linear combina-

tions of univariate GARCH models and allows for models where one can specify separately, on the

one hand, the individual conditional variances, and on the other hand, the conditional correlation

matrix or another measure of dependence between the individual series (like a copula of the con-

ditional joint density).31 For models in this category, theoretical results on stationarity, ergodicity

and moments may not be so straightforward to obtain as for models presented elsewhere in this

Section. Nevertheless, they are less greedy in terms of number of estimated parameters than the

models analyzed above and therefore they have been more successful in practice.

Analogously to the DCC case, a CCC model is based on a generalization to the vector/matrix

case of the standard result that when correlations are constant, time-varying covariances may only

derive from time variation in volatilities, +1 ≡ +1+1 = +1+1:

Σ+1 ≡ D+1ΓD+1

whereD+1 is a× matrix of standard deviations, +1, on the th diagonal and zero everywhere

else ( = 1 2 ..., ), and Γ is a constant matrix of correlations  , with ones on its main diagonal.

For instance, in the  = 2 case:

Σ+1 ≡
"

21+1 12+1

12+1 22+1

#
=

"
1+1 0

0 2+1

#"
1 12

12 1

#"
1+1 0

0 2+1

#


The key step of the DCC approach is based on the ability to disentangle the estimation and predic-

tion of D+1–to obtain D̂+1–and the estimation of Γ, that will give Γ̂. In particular, also in the

case of a DCC, we proceed in two steps:

1. The volatilities of each asset are estimated/predicted through a GARCH or one of the other

methods considered in chapters 4 and 5. For instance, one can think of 2+1 =  + (
 −

)
2 + 2 for  = 1 2 ...,  .

31The so-called copula-GARCH approach makes use of the theorem due to Sklar stating that any -dimensional

joint distribution function may be decomposed into its marginal distributions, and a copula function that completely

describes the dependence between the variables. These models are specified by GARCH equations for the conditional

variances (possibly with each variance depending on the lag of the other variances and of the other shocks), marginal

distributions for each series (e.g. t-distributions) and a conditional copula function. The copula function may be

time-varying through its parameters, which can be functions of past data. In this respect, like the DCC model of

Engle (2002), copula-GARCH models can be estimated using a two-step QML approach.
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2. Estimate constant correlations using a simple sample estimator based on the standardized

returns, ̂+1 ≡ 
+1̂


+1, derived from the first step using GARCH-type models. Here, we

exploit the fact that the conditional covariance of the +1 variables equals the conditional

correlation of raw returns:

̂ =
1



X
=1

̂+1̂

+1

Such constant correlations are then inserted inside Γ̂ to estimate the constant correlation

matrix.

6.3. BEKK GARCH

Given the picture provided above and the fact that DCC is a model popularized around the turn

of the millenium, one may ask what was the state of multivariate GARCH modelling in practice

before DCC became as popular as it is today. Apart from the uncomfortable case of CCC models

that assume constant correlations over time, during the 1990s one of the most popular multivariate

GARCH models had been Engle and Kroner’s (1995) BEKK GARCH( ):32

Σ+1 = CC
0 +
X

=1
A(R+1−R0+1−)A

0
 +

X

=1
BΣ+1−B0 

where the matrices {A}=1 and {B}=1 are non-negative and symmetric. This special product-
sandwich form that is used to write the BEKK ensures the PSD property without imposing further

restrictions, which represent the key reason for the success of BEKK models. In fact, this full matrix

BEKK is easier to estimate than vech-GARCH models, even though it remains rather complex

to handle. In practice, the popular form of BEKK that many empirical analysts have come to

appreciate is a simpler (1,1) diagonal BEKK that restricts the matrices A and B to be diagonal

matrices. BEKK models possess three attractive properties:

1. A BEKK is a truncated, low-dimensional application of a theorem by which all non-negative,

symmetric  × matrices (say, M) can be decomposed (for instance) as

M =

"
11 12

21 22

#
=

2X
=1

"
m0

1m1 m0
1m2

m0
2m1 m0

2m2

#

for appropriately selected vectors m . In a sense, mathematically it is no surprise that

BEKK models often offer a good fit to the dynamics of variance.

2. As already mentioned, it easily ensures PSDness of the covariance matrix.

3. BEKK is invariant to linear combinations: e.g., if R+1 follows a BEKK GARCH( ), then

any portfolio formed from the  securities or assets in R+1 will also follow a BEKK.

32In case you wonder, BEKK means “Baba-Engle-Kraft-Kroner” and the acronym simply compacts the name of

the four econometricians who contributed to its development.
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However, the number of parameters in BEKK remains rather large:

05( + 1) + 05( + 1) + 05( + 1) = 05( + 1)[1 + + ] = (2)

Often, this has still made DCC models preferrable in practice. However, the number of parameters

in BEKK is substantially inferior to those appearing in a full VEC specification. This happens

because the parameters governing the dynamics of the covariance equation in BEKK models are

the products of the corresponding parameters of the two corresponding variance equations in the

same model.

The second and third properties of BEKK models can only be appreciated contrasting the

features of BEKK under linear aggregation with the properties of alternative multivariate GARCH

models, for instance even a simple diagonal vech ARCH. Not all multivariate GARCH models are

invariant with respect to linear transformations.33 For instance, for the case of two asset return series

( = 2), consider as simple diagonal multivariate ARCH(1) model obtained from a simplification

of the diagonal GARCH( ) introduced early on:

(Ω) = (I3 −A)
Ã
−1

X
=1

RR
0


!
+A

¡
R−1R0−1

¢
 (18)

where the helpful variance targeting restriction has already been imposed andA is a diagonal matrix.

Because we have set = 2, Ω will be a 2×2 matrix,A is a 3×3 diagonal matrix,R is 2×1 vector of
asset returns, (Ω) is a 3×1 vector of unique elements from Ω, (

−1P
=1RR

0
) is a 3×1

vector of unique elements from the sum of cross-product matrices −1
P

=1RR
0
, 

¡
R−1R0−1

¢
is a 3× 1 vector of unique elements from the lagged cross-product matrix R−1R0−1. The number

of coefficients to be estimated is of course 3, 11, 22, and 33 in the representation:⎡⎢⎣ 11

12

22

⎤⎥⎦ =
⎛⎜⎝
⎡⎢⎣ 1 0 0

0 1 0

0 0 1

⎤⎥⎦−
⎡⎢⎣ 11 0 0

0 22 0

0 0 33

⎤⎥⎦
⎞⎟⎠
⎡⎢⎣ −1

P
=1

2
1

−1
P

=112

−1
P

=1
2
2

⎤⎥⎦

+

⎡⎢⎣ 11 0 0

0 22 0

0 0 33

⎤⎥⎦
⎡⎢⎣ 21−1

1−12−1
22−1

⎤⎥⎦ =
⎡⎢⎣ (1− 11)−1

P
=1

2
1 + 1121−1

(1− 22)−1
P

=112 + 221−12−1
(1− 33)−1

P
=1

2
2 + 3322−1

⎤⎥⎦ 
As for the conditions that guarantee that 11  0 and 22  0 at all times, i.e., that ensure

PSDness of the model, clearly

(1− 11)−1
X
=1

21 + 1121−1  0 if and only if 11 ∈ (0 1)

(1− 33)−1
X
=1

22 + 3322−1  0 if and only if 33 ∈ (0 1)

33By invariance of a model, we mean that it stays in the same class if a linear transformation is applied to R̃+1 =

FR+1, where F is a square matrix of constants and R̃+1 corresponds to new assets (portfolios combining the original

assets). It seems sensible that a model should be invariant, otherwise the question arises which basic assets should be

modelled.
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At this point the filtered (predicted) correlation coefficient has expression

12 =
22 + 221−12−1q

11 + 1121−1
q
33 + 3322−1



and, as it is obvious, 12 should belong to [−1 1] ∀ ≥ 1. Here we have shortened the notation set-
ting 11 ≡ (1−11)−1P

=1
2
1, 

33 ≡ (1−33)−1P
=1

2
2, and 

22 ≡ (1−22)−1P
=112.

Focussing on the upper bound of the interval this means that

(22 + 221−12−1)2 ≤ (11 + 1121−1)(
33 + 3322−1)

or

(22)2+(22)221−1
2
2−1+2

22221−12−1 ≤ 1133+331121−1+
113322−1+

113321−1
2
2−1

which is equivalent to

[1133− (22)2]21−122−1+ [1133− (22)2] + 331121−1+ 113322−1− 222221−12−1 ≥ 0

which cannot hold for a continuous distribution for the asset return series as, even constraining

[1133 − (22)2] ≥ 0 and [1133 − (22)2] ≥ 0,34

331121−1 + 113322−1 − 222221−12−1 ≥ 0

in general does not hold for 22 6= 0 However, notice that if one sets 22 = 0 then the previous

inequality simplifies to

113321−1
2
2−1 +

⎧⎨⎩
"
(1− 11)−1

X
=1

21

#"
(1− 33)−1

X
=1

22

#
−
"
−1

X
=1

12

#2⎫⎬⎭+
+ 331121−1 + 113322−1 ≥ 0

which has a chance to hold if 11 and 33 are such that"
(1− 11)−1

X
=1

21

#"
(1− 33)−1

X
=1

22

#
≥
"
−1

X
=1

12

#2


which also means that

̄12 =
̄12

̄11̄22
=

−1
P

=112q
(1− 11)−1

P
=1

2
1

q
(1− 33)−1

P
=1

2
2

≤ 1

the unconditional correlation implied by the data and the diagonal bivariate ARCH(1) process is

well-behaved. Therefore, if 11 ∈ (0 1) and 33 ∈ (0 1), then 22 = 0 (and some other restriction on
11 and 33) must be imposed. This means that it is impossible to model the dynamics of volalities

34“At all times” here really means “for all possibile realizations of the continuous bivariate vector R which as

domain [−1+∞) × [−1+∞)”, which alludes to the fact that even under limited responsibility, in finance asset
returns may in principle take very large values
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and covariances simultaneously while satisying the positivity requirement for the volatilities and

keeping Ω semi-positive definite at all times. Equivalently, if one wants to impose that the diagonal

vech ARCH(1) model delivers a filtered covariance matrix Ω that is semi-positive definite at all

times, the diagonal model itself must be turned into a constant covariance multivariate ARCH

model, as you understand that 22 = 0 implies 12 = −1
P

=112 = ̄12 so that

12 =
̄12q

11 + 1121−1
q
33 + 3322−1

and dynamics in conditional correlations will exclusively come from dynamics in volatilities.35

Let’s now examine the issues concerning the fact that while BEKK is “closed” under linear

aggregation, a simpler diagonal vech-GARCH model is not. Consider a portfolio of the two assets,

with weights  and (1−). We show that in spite of the fact thatR−1 is characterized by a diagonal

bivariate ARCH(1), the portfolio returns 

 = 1 + (1 − )2 has a variance process  ≡

 −1[

 ] that fails to display the typical “diagonal form”, i.e., (1−)−1

P
=1


 +

(

−1)

2.

Note first that

 ≡  −1[

 ] =  −1[1 + (1− )2]

= 211 + (1− )222 + 2(1−)12

= 2(1− 11)−1
X
=1

21 + 21121−1 + (1−)2(1− 33)−1
X
=1

22 +

+(1− )23322−1 + 2(1− )(1− 22)−1
X
=1

12 + 2(1− )221−12−1

which cannot be written in diagonal form, (1−)−1P
=1[1+(1−)2]2+[1+(1−

)2]
2 because for no definition of  it is possibile to show that

2(1− )−1
X
=1

21 + (1− )2(1− )−1
X
=1

22 + 2(1− )(1− )−1
X
=1

12 =

= 2(1− 11)−1
X
=1

21 + (1− )2(1− 33)−1
X
=1

22 + 2(1− )(1− 22)−1
X
=1

12

35In case you are curious, notice that the heuristic proof above is in itself sufficient to derive that 22 = 0 from

11 ∈ (0 1) and 33 ∈ (0 1) and that you do not need to deal with the lower bound of the filtered correlation coefficient
derived from 11, 22, and 33. Just for completess, let us also consider that case of imposing that 0 ≥ 12 ≥ −1
∀ ≥ 1. This lower bound means that

−(22 + 
22
1−12−1) ≤


(11 + 112

1−1)(33 + 332
2−1)

or

(
22
+ 

22
1−12−1)

2 ≤ −(11 + 
11

2
1−1)(

33
+ 

33

2
2−1)

(
22
)
2
+ (

22
)
2

2
1−1

2
2−1 + 2

22

22
1−12−1 ≤ 

11

33
+ 

33

11

2
1−1 + 

11

33

2
2−1 + 

11

33

2
1−1

2
2−1

which is equivalent to

[
11

33 − (22)2]2

1−1
2
2−1 + [

11

33 − (22)2] + 

33

11

2
1−1 + 

11

33

2
2−1 − 222221−12−1 ≥ 0

which is the same condition used above.
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and especially that

21121−1 + (1− )23322−1 + 2(1− )221−12−1 = 221 + (1− )222 +

+2(1− )1−12−1

This means that the Diagonal multivariate ARCH model fails to be invariant to linear combinations:

if you start with  assets that follow a Diagonal multivariate ARCH model, the resulting portfolio

of assets will fail to follow a similar Diagonal model, which is of course problematic if not confusing.

As you should be reading in the paper by Bauwens et al. (2006), the problem of (18) that causes it

to fail the invariance property is very simple to visualize: while in

(Ω) = (I3 −A)
Ã
−1

X
=1

RR
0


!
+A

¡
R−1R0−1

¢
A is diagonal, 


 can be written as [ 1−]R = w

0R and  −1[

 ] = w

0Ωw implies the need

to use a vector of coefficients w0A which is no longer a diagonal matrix (of course, it is not even a

matrix).

It is also easy to see what you need to do in order for the invariance property to obtain: if you

set 11 = 22 = 33, then when  = 11

2(1− )−1
X
=1

21 + (1− )2(1− )−1
X
=1

22 + 2(1− )(1− )−1
X
=1

12 =

= 2(1− 11)−1
X
=1

21 + (1− )2(1− 33)−1
X
=1

22 + 2(1− )(1− 22)−1
X
=1

12

21121−1 + (1−)23322−1 + 2(1− )221−12−1

= 221 + (1− )222 + 2(1− )1−12−1

will trivially hold. But this means that the only way for a Diagonal multivariate ARCH to possess

the invariance property is for it to actually be a Scalar multivariate ARCH, in which the same

ARCH coefficient applies to all conditional equations.

It remains natural to ask why and when researchers and practitioners alike should bother with

complex and over-parameterized models of the multivariate GARCH type. On the one hand, this

is no longer a timely question because we know that CCC and DCC models have been enjoying

growing popularity also because they may be easily implemented in practice. On the other hand,

there is another interesting reason: multivariate GARCH models speak to the heart of finance

theory. To see one example of this feature, consider the case of an investor that maximizes [

+1]

and minimizes  [

+1], with a trade-off coefficient , similarly to what we have seen in a few of

our Matlab workouts:

 (w) = [

+1]−

1


 [


+1] = w

0
[R+1]− 1


w

0 [R+1]w

where w represents the vector of portfolio weights held by the investor and  (w) is an index of the

satisfactor (happyness) of this investor. As you have seen in other courses and we have used in the
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our lab sessions a few times, the optimal portfolio weights (i.e., the demand function of securities

by the investor) is:

ŵ
 =

1


{ [R+1]}−1[R+1] =

1


Σ−1+1[R+1]

At this point, equating demand to supply (say, a given w̄
 ), we have

1


Σ−1+1[R+1] = w̄


 =⇒ [R+1] = Σ+1w̄


 

which represents the mean-variance equilibrium vector of expected returns. At this point, if R+1

follows (say) a BEKK GARCH(1,1) model and pricing errors have a multivariate IID distribution

(not necessarily normal), we obtain that:

R+1 = [R+1] +Ω
12
+1z+1 = Σ+1w̄


 +Ω

12
+1z+1

= 
£
CC0 +A(RR

0
)A

0 +BΣB
0¤ w̄

 +
£
CC0 +A(RR

0
)A

0 +BΣB
0¤12 z+1

At this point, a test of this simple asset pricing model is whether such a regression model may

provide a high R-square thus explaining most of the variation of the  assets included in R+1.

6.4. Leverage Effects in multivariate GARCH

The idea–especially befitting to stock returns–that negative shocks may have a larger impact on

their volatility than positive shocks of the same absolute value already discussed in chapter 4 (and

most often interpreted as a leverage effect) can be easily extended to multivariate models: both

variances and covariances may react differently to a positive than to a negative shock. A useful

and rather general model that takes explicitly the sign of the errors into account is the asymmetric

dynamic covariance (ADC) model of Kroner and Ng (1998):

+1 = +1
p
+1+1 + +1+1 ∀ 6=  2+1 = +1

Θ+1 = QQ0 +A(RR
0
)A

0 +D(vv0)D
0 +BΘB

0

v ≡ max[0−R]

where +1 comes from a DCC-type estimate of Γ+1.

6.5. Factor GARCH models

In Section 3 we have investigated how factor models may be used to estimate and forecast corre-

lations and in that when an exposure mapping approach is used, passive and active approaches to

risk management become perfectly equivalent. The idea that factor models may greatly simplify the

forecasting of conditional second moments may considerably generalized to the case of multivariate

variance and covariance forecasting. The difficulty when estimating a VEC or even a BEKK model

is the high number of unknown parameters, even after imposing several restrictions. It is thus not

surprising that these models are rarely used when the number of series is larger than 3 or 4. Factor
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and orthogonal models circumvent this difficulty by imposing a common dynamic structure on all

the elements of Σ+1. However, we shall see that doing that within a multivariate framework is

not much different from building and estimating special, constrained BEKK models. Suppose that

the  × 1 vector of returns R+1 has a factor structure with 2 factors given by the 2 × 1 vector
f+1 ≡ [+1 Infl+1]0 (these are industrial production and CPI inflation) and time invariant factor
loadings given by the  × 2 matrix B:

R+1 = Bf +1 + ²+1.

Although we consider the special case of two factors only, this example can be generalized to the

case of any  ≥ 2 factors, although the algebra becomes much more involved and challenging.

Also assume that the idiosyncratic shocks in the vector ²+1 have conditional covariance matrix

 [²+1] = [²+1²
0
+1] = Ψ which is constant in time and semi-positive definite, and that the

common factors are characterized by [f+1] = 0, [f+1²
0
+1] = O (a matrix of zeros of the

appropriate dimensions), and [f+1f
0
+1] = {2+1, 2+1}. Because [²+1] = 0, then

[R+1] = 0 which means that the returns have also been de-meaned.

The expression for the conditional covariance matrix of R+1 can be written by explicitly dis-

antangling the role played by the risk exposures, the variance of the risk factors, and the variance

of idiosyncratic risk:

 [R+1] = Σ+1 = B[f+1f
0
+1]B

0 +[²+1²
0
+1] +[f+1²

0
+1]

= B[f+1f
0
+1]B

0 +Ψ = bb0
2
+1 + bb

0


2
+1 +Ψ, (19)

where b is the  × 1 vector that collects the factor loadings of each of the  assets on the IP

factor, and b is the  × 1 vector that collects the factor loadings of each of the  assets on

the inflation factor. We may highlight the role of variances and covariances of the assets through a

simple  = 2 example:"
11+1 12+1

12+1 11+1

#
=

"
(1 )

2 1 2

1 2 (2 )
2

#
2+1 +

"
(

1 )2 


1 


2



1 2 (


2 )2

#
2+1+

+

"
11 12

12 22

#

=

"
(1 )

22+1+(

1 )22+1 + 11 1 2 2+1+


1 


2 2+1 + 12

1 2 2+1+

1 


2 2+1 + 12 (2 )

22+1+(

2 )22+1 + 22

#

At this point, it is revealing to define the 2 factor-mimicking portfolios (with returns ,  = 1 2)

with portfolio weights (φ,  = 1 2) that are orthogonal to all but one set of factor loadings:

+1 = φ0R+1 +1 = φ0R+1

such that φ0B = [1 0]0 and φ0B = [0 1]0. The vector of factor-representing portfolios is

then r+1 = Φ
0R+1 where Φ ≡ [φ φ]. It is then possible to re-write the expression for the
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conditional covariance matrix of r+1 and in particular for  [
1
+1] and  [

2
+1] in terms of the

two factor mimicking portfolios:

 [r+1] = Φ0[R+1R
0
+1]Φ

= Φ0Σ+1Φ = Φ
0bb0Φ

2
+1 +Φ

0bb0Φ
2
+1 +Φ

0ΨΦ.

In particular, notice that

[
1
+1] = φ0bb

0
φ

2
+1 +φ0bb

0
φ

2
+1 + φ0φ11 = 2+1 + 1

[
2
+1] = φ0bb

0
φ

2
+1+φ

0
bb

0
φ

2
+1+φ

0
φ22=

2
+1+2(20)

where  is the [ ] element on the main diagonal of Φ
0ΨΦ,  = 1 2. Each factor-mimicking

portfolio displays the exact time variation as the factor represented, which is why they are called

factor-mimicking portfolios, plus some idiosynchratic risk which is due to the possible need to avoid

complete diversification. At this point, it is possible to bring together the results in (19) and (20)

to derive an expression that links

bb
0
 [r+1] + bb

0
 [r+1]

to the variance of the factors and terms of the type bb
0
 1 + bb

0
2. Recall that

B [r+1]B
0 = BΦ0bb0ΦB

02+1+BΦ
0bb0ΦB

02+1+BΦ
0ΨΦB0

= bb
0


2
+1 + bb

0


2
+1 + bb

0
 1 + bb

0
2

Therefore

bb
0


2
+1 + bb

0


2
+1 = B [r+1]B

0 − bb0 1 − bb02
= bb

0
 +bb

0
 − bb0 1 − bb02,

where +1 ≡  [+1] and +1 ≡  [+1]. Replacing this expression into Σ+1 =

bb
0


2
+1 + bb

0


2
+1 +Ψ found in (19), we have

Σ+1 = bb
0
 +1 + bb

0
+1 − bb0 1 − bb02 +Ψ

= Ψ∗ + bb0 +1 + bb
0
+1

where Ψ∗ = Ψ− bb0 1 − bb02.
However, these labored (and boring) mathematical derivations simply show that the conditional

covariance matrix of returns can be decomposed as a weighted sum of products of beta exposures to

factor mimicking portfolio returns and conditional variance forecasts for each of the two portfolios.

In practice, in order for the model to be implemented, one will need to parameterize +1 ≡
 [+1] ( =  ), for instance as simple GARCH-type processes,

+1 ≡ [
2
+1] =  + 

2
 +   =  
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Clearly, such a specification may be replaced with different ARCH specifications from chapter 4,

without any qualitative differences. As a result, the conditional covariance matrix of returns Σ+1

may be re-written in a BEKK form as:

Σ+1 = Ψ
∗∗ +A (²²

0
)A

0
 +A(²²

0
)A

0
 +BΣB

0
 +BΣB

0
.

This is a very interesting results: all factor GARCH models eventually may be written as special

BEKK models in which the matrix of coefficients (A , A, B  and B) bear functional

relationships to products of the beta exposures (b and b) with row vectors of portfolio weights

(φ0 and φ
0
) defining the mimicking relationships. This can be seen from the fact that

+1 =  + 
2
 + 

=  + (φ
0
²)

2 + −1[2]

=  + φ
0
(²

0
²)φ + φ

0
−1[RR

0
]φ

=  + φ
0
(²

0
²)φ + φ

0
Σφ

As a result, because we have seen that Σ+1 = Ψ
∗ + bb0 +1 + bb

0
+1, we can

write the conditional covariance matrix of returns as:

Σ+1 = Ψ∗ + bb0
£
 + φ

0
 (²

0
²)φ + φ

0
Σφ

¤
+

+bb
0


£
 + φ

0
(²

0
²)φ + φ

0
Σφ

¤
=

£
Ψ∗ + bb0 + bb

0


¤
+ bb

0
φ

0
 (²

0
²)φ +

+bb
0
φ

0
(²

0
²)φ+bb

0
φ

0
Σφ+bb

0
φ

0
Σφ

= Ψ∗∗ + bφ
0
 (²

0
²)φb

0
 + bφ

0
(²

0
²)φb

0
 +

+bφ
0
Σφb

0
 + bφ

0
Σφb

0


= Ψ∗∗ +A (²²
0
)A

0
 +A(²²

0
)A

0
 +BΣB

0
 +BΣB

0


where Ψ∗∗ ≡ Ψ∗+bb0 +bb0, A ≡ √bφ0 , A ≡ √bφ0,
B ≡

p
bφ

0
 , and B ≡

p
bφ

0
. In conclusion, this shows that so that

the 2-factor GARCH model is a special case of the BEKK parametrization, although subject to

restrictions.

6.6. Estimation and diagnostic checks of multivariate GARCH models

Multivariate GARCH estimation is performed using maximum likelihood to jointly estimate the

parameters of the (conditional) mean and the variance equations in

R+1 = μ+1 +Ω
12
+1z+1 z+1 IID N (0 I)

where all the parameters characterizing μ+1 and Ω
12
+1 are collected in some vector θ. Note that

although the GARCH parameters do not affect the conditional mean, the conditional mean para-

meters generally enter the conditional variance specification through the residuals, R+1−μ+1(θ).
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Assuming multivariate normality, the log-likelihood contributions (i.e., the PDF values for each of

the sample observations) for GARCH models are given by:36

N (R+1;θ) ≡ −1
2
 ln(2)−1

2
ln detΣ+1(θ)−1

2
(R+1 − μ+1(θ))Σ

−1
+1(θ)(R+1 − μ+1(θ))

In the case of a Student t-distribution, the contributions are of the form:

(R+1;θ) ≡ ln
Γ
¡
+
2

¢


2

()

2 Γ
¡

2

¢
(− 2)2

1

2
ln detΣ+1(θ)−1

2
(+)×

× ln
"
1 +

(R+1 −μ+1(θ))Σ
−1
+1(θ)(R+1 − μ+1(θ))

− 2

#


where   2 is the “number of degrees of freedom”. The asymptotic properties of ML (and QML)

estimators in multivariate GARCH models are not yet firmly established, and are difficult to derive

from low level assumptions. While consistency has been proven by Jeantheau (1998), asymp-

totic normality of the QMLE is not established generally. However, applied researchers who use

MGARCH models have generally proceeded as if asymptotic normality holds in all cases.37

As usual, you may hesitate before introducing a specific parametric assumption on the distribu-

tion of the (standardized) residuals and may want to proceed instead under the weaker assumption

that

R+1 = μ+1 +Ω
12
+1z+1 z+1 IID D(0 I)

where D is some distribution that is not specified. In this case you will be able to obtain QML

estimates using the same logic illustrated in chapter 4 in the case of univariate GARCH models.

In sum, even though the conditional joint distribution of the shocks z+1 is not normal (i.e.,z+1

IID D(0 I) and D does not reduce to a N ), under some conditions, an application of MLE based
on z+1 ∼IID N (0 I) will yield estimators of the mean and variance parameters which converge
to the true parameters as the sample gets infinitely large, i.e. that are consistent. What are the

conditions mentioned above? You will need that:

• The conditional variance function, Σ+1 seen as a function of the information at time  F

must be correctly specified.

• The conditional mean function, μ+1 seen as a function of the information at time  F must
be correctly specified.

Because estimating M-GARCHmodels is time-consuming, it is desirable to check ex ante whether

the data present evidence of multivariate (G)ARCH effects. This is done both on the individual series

by testing whether squared returns are serially correlated for each individual series, but also testing

36The conditional mean and covariance functions are denoted as +1() andΩ+1() to emphasize their dependence

on the parameter vector .
37Gourieroux (1997, section 6.3) proves it for a general formulation using high level assumptions. Comte and

Lieberman (2003) prove it for the BEKK formulation.
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whether squared returns appear to display any significant cross-correlations, [2 
2
−] 6= 0

for  6=  and  6= 0. See chapter 4 for examples of how this may be done and how one tests for the
significance of (cross-) serial correlations.

Ex post, it is also of crucial importance to check the adequacy of the M-GARCH specification.

However, few tests are specific to multivariate models. Univariate tests applied independently

to each series of (standardized residuals) remain very common, but not completely appropriate.

For instance, as seen in chapter 4, it is typical–when z+1 ∼IID N (0 I ) has been assumed–to
applystandard univariate tests of normality to the standardized model residuals defined as ̂+1 ≡
+1̂+1, where ̂+1 denotes the time series of filtered standard deviations derived from the

estimated volatility model, ̂+1 = e0Σ̂+1e ( = 1 2   , i.e., the th element on the main

diagonal of Σ̂+1). Here, we are clearly exploiting the fact that z+1 ∼IID N (0 I) implies that
each of the elements z+1 must have a marginal normal distrubution.

38 As you know, one commonly

used test is Jarque and Bera’s and measures departures from normality in terms of the skewness and

kurtosis of standardized residuals. A second method exploits the fact that even though normality

has not been assumed (this is the case of QMLE) so that the assumed model for returns is z+1 IID

D(0 I) and D(0 I) is not N (0 I ), a correctly specified anyway implies

z+1 ∼ IID.

As we know, independence implies that ̂

() ' 0 for all  ≥ 1 where

̂

() ≡ 

X
=1

(̂

 )

2 ∼ 2 ̂ ≡
P−

=1 (()− ())((+ )− ())P−
=1 (()− ())2

and (·) is any (measurable) function. Because we are testing the correct specification of a condi-
tional volatility model, it is typical to set () = 2 i.e., we test whether the squared standardized

residuals, ̂2+1 ≡ 2+1̂
2
+1, display any systematic autocorrelation patterns.

39

Although univariate tests can provide some guidance, contemporaneous correlation of distur-

bances entails that statistics from individual equations are not independent. Therefore, truly mul-

tivariate tests have been developed and are routinely applied in practice. Recalling the framework

z+1 IID D(0 I), it is typical to also test ex-post cross-serial correlations of functions of stan-
dardized residuals, e.g., (i) [ 

2
−] = 0 for  6= , (ii) [2 

2
−] = 0 for  6= , (iii)

 [2] = 0 for  = 1 2   and (iv) [ −] = 0 for  6= . These zero cross-serial

correlations are tested as usual using sample correlograms (here, cross-correlograms involving pairs

of series) and Portmanteau Box-Pierce tests, as seen in chapter 4. Moreover, a generalization of the

38As you will recall from your statistics courses, the opposite does not hold: +1 ∼ N (0 1) ∀ 6=⇒ z+1 ∼IID
N (0 I ).
39We face one additional problem when z+1 ∼IID is tested by sequentially applying tests for each of the resulting

 times series of standardized residuals because ẑ+1 derives from a multivariate model and therefore after the first

test has been implemented, the subsequent tests may be affected by the previous inferential methods employed.
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standard Box-Pierce/Ljung-Box test,

() ≡  ( + 2)

X
=1

2

 − 

∼ 2

exist, such as Hosking’s (1980) (here “HM” stands for Hosking’s multivariate test):

() ≡  2
X

=1

( − )[−1 (0) ()
−1
 (0) 0 ()]

∼ 2(max{})2

where Y ≡ (zz
0
) and  () is the sample autocovariance matrix of order  for the series Y.

6.7. One easily implemented multivariate model: PC GARCH

If one leaves the DCC model of Section 5 aside, it seems legitimate to ask whether multivariate

GARCH models only give occasions for pain and sorrow. The simple answer is that unless one makes

smart attempts at getting multivariate estimates by only using univariate GARCH estimates–as

DCC and CCC models accomplish–this tends to be the case, at least when  exceeds low values

such as 3 or 4. In fact, the literature features several such attempts, e.g., the orthogonal GARCH

and the principal component (PC) GARCH.40 In a PC GARCH model, the observed data are

assumed to be generated by an orthogonal transformation of  (or a smaller number of) univariate

GARCH processes. The matrix of the linear transformation is the orthogonal matrix (or a selection)

of eigenvectors of the population unconditional covariance matrix of the standardized returns.41 In

a PC GARCH, estimation is organized in 7 steps. The input is a matrix (R) of returns with rows

representing  points in time and columns representing  assets. The steps are as follows:

1. Estimate a univariate GARCH model for each of the assets or portfolios in R i.e., for the

 columns in the matrix; the GARCH models for each of the assets could be different, as in

Section 5; the parameters are estimated independently by ML or QML.

2. Standardize the residuals with the estimated variance for each asset, obtaining the  to be

collected in a  × matrix Z.

40Principal component analysis models the variance structure of a set of observed variables using linear combinations

of the variables. While we generally require as many PCs as variables to reproduce the original variance structure,

we usually hope to account for most of the original variability using a relatively small number of components (“data

reduction”). The PCs of a set of variables are obtained by computing the eigenvalue decomposition of the sample

variance matrix: Ω = LΛL0, where L is the matrix of eigenvectors and Λ is the diagonal matrix with eigenvalues on

the diagonal. The first PC is the unit-length linear combination of the original variables with maximum variance;

subsequent PCs maximize variance among unit-length linear combinations that are orthogonal to the previous PCs.

PCs may be computed starting from either covariance matrices or correlation matrices; correlations may also be

computed in nonparametric fashion (e.g., Spearman rank-order or Kendall’s tau measures).
41Of course, PC/orthogonal models can also be considered as factor models, where the factors are univariate

GARCH-type processes. Therefore PC/orthogonal models are nested in the BEKK family. In particular, the

PC/orthogonal-GARCH model is covariance-stationary if the  univariate GARCH processes built from  prin-

cipal compoents are themselves stationary.
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3. Compute the  principal components of the matrix of standardized residuals Z, obtaining

the PC matrix P, P = ZL where L is the matrix of loadings of the vectors of standardized

returns on each of the eigenvectors.

4. Estimate a univariate GARCH model for each of the  principal components (that is, for

each column of P); a GARCH(1,1) is generally recommended.

5. Use the loading matrix L to rotate the PC variances back to variable space; at each point in

time compute: C = LDL
0, where D is the time  diagonal matrix of the estimated variances

of the PCs at time . At this point, the matrix C is an approximate correlation matrix for the

original variables at time ; however, there is no guarantee that the elements on the diagonal

of C are equal to 1.

6. Standardize C so that it is a correlation matrix with all of its diagonal elements equal to

1, call the result Corr; practically, this step is simply performed by using any software to

compute the correlation matrix of C.

7. At this point, we scale Corr with the estimated variances of the original GARCH models in

D to get the covariance matrix:

Σ = D
12
 CorrD

12
 .

PC GARCH, although there are no compelling reasons for why it may work or accurately forecast

variances and covariances, can handle any practically interesting value for  : computationally, a

problem would need to have several thousand variables/assets before computing time becomes a

serious issue. In the case of the PC GARCH, experiments have been performed to see if not

performing the GARCH estimates for the smallest–those that explain a smaller percentage of total

variance–PCs may be a good thing, in the sense that not only fitting the time variation of variances

and covariances is not seriously impaired, but there is actually evidence that forecasting accuracy

may benefit. Therefore, in practice PCs with very small contributions to variance may be skipped.

For instance, Alexander (2001, section 7.4.3) illustrates the use of the PC GARCH model (that she

also calls orthogonal GARCH). She emphasizes that using a small number of principal components

compared to the number of assets is the strength of the approach (in one example, she fixes  at

2 for  = 12 assets). However, note that the conditional variance matrix has then reduced rank

(if   ), which may be a problem for applications and for diagnostic tests which depend on the

inverse of Σ.
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Appendix A – A Quick Review of Basic Estimation Methods

1. A1. Where the OLS World Ends...

Consider two time series 1: = {1 2  } and 1: = {1 2  }. At this stage of your
studies in statistics and econometrics you are familiar with linear regression models:

 = 0 + 1 + 

In order to estimate this model by ordinary least squares (OLS), several assumptions need to be “in

place”. Typically, one resorts to the so-called weak OLS hypotheses, i.e. (∀    ∈ {1 2  }):

1. () = 0;

2. ( ) = 0, which can also be written (|) = () (deterministic regressors);

3.  (|) =  () = 2 ∞ (homoskedasticity);

4. ( ) = 0 (no autocorrelation in residuals).

Hypothesis 3 and 4 can be summarized by saying that  (1: ) = I
2. The strong OLS

Hypotheses set implies the four conditions above plus an assumption on the distribution of residuals:

 ∼ (0 2)  = 1 2   .

However, data from many real-life problems often fail to fulfill the OLS conditions, even in their

weak form. In fact:

• Hypothesis 1 is trivially verified if you just add an intercept to your model.

• However, Hypothesis 2 seems considerably more problematic. For instance, suppose that you
observe your independent variable with a random, white noise measurement error: ̃ = +.

In this case your regressor is no longer deterministic, i.e., fixed in repeated samples. Even

if you know that ( ) = 0, what about ( )? There is a wide literature dealing

with stochastic regressors, which uses Two Stage Least Squares (2SLS) and Instrumental

Variables.42

• The potential issues with Hypotheses 3 and 4 are on the contrary particularly relevant in
finance. As you now know so well, for many financial time series, the conditional variance

 (+1|=) (where = is an information set or an information structure determined by

the financial application at hand) is not constant over time. In addition, when fitting OLS

regression models to financial time series, the null of ( ) = 0 is often rejected. We shall

42However, we will not discuss these estimators in this Appendix because these problems are not specific to finance

applications, but you should be aware of the fact that Hypothesis 2 may be often problematic in applications.
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see below that if Hypotheses 3 and 4 are violated, the OLS estimator is not any longer the

best linear unbiased estimator (BLUE), even if it is still consistent. In fact, there is another

unbiased estimator whose variance is smaller than the one of OLS: it is the Generalized Least

Squares (GLS) estimator described below.

In addition, there is a further point that deserves to be discussed in depth. Consider a matrix of

 time series Y = [1, 2, ..., ]
0 (also called a “Panel”) and a set of regressors 1: , 1: ,

1: ,... How would you estimate the relationship between dependent variables and regressors in

this case?

A first way to do that (since you are familiar with OLS) is to run a separate OLS regression for

each time series ,  = 1   . In fact, you know that the OLS estimator is BLUE among the

estimators which are a linear function of . However, your problem involves more than just one

dependent variable. Is it possible to build an unbiased estimator which is a function of both 1,

2,... and is more efficient than the OLS? The answer is yes, and we will talk more extensively

later about models with multiple equations.

In the following subsections we will quickly review some estimators used in the econometrics

literature, which you might find helpful when dealing with problems where OLS are no longer a

feasible (or at least, an efficient) solution.

A2. Generalized (and Feasible Generalized) Least Squares

As already noted, in the OLS framework we assume that  (1: ) =  (²) = I2. Now,

let’s abandon this hypothesis and let’s say that  (²) = Σ, where Σ is any valid (i.e., symmetric

and positive definite) variance-covariance matrix. If the matrix Σ is known (we will come back to

this point later), it is possible to derive an estimator for regression coefficients in a way similar to

what we normally do under OLS. As you shall recall, if the covariance matrix is positive definite

(notice: this does not hold in case Σ is semi-positive definite), you can always invert it and write

Σ−1 = DD0. You can then write your standard Least Squares problem in matrix form as:

Y = Xβ + ²,

Where Y is the  × 1 vector collecting observations for the  dependent variables, X is a  × 

matrix of the  regressors, β is a  × 1 vector of coefficients to be estimated, and ² is a vector of
residuals.43 If we pre-multiply the regression model by the matrix D we get:

D0Y = D0Xβ +D0²

or

Ỹ = X̃β + ²̃,

43If needed, X may be expanded to also include a vector of ones, that will then represent the constant of the

regression model to be estimated as the corresponding element of the  × 1 vector of coefficients .
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where Ỹ ≡ D0
Y, X̃ ≡ D0

X, and ²̃ ≡ D0². Note that  (²̃) = (²̃²̃0) = D0(²²0)D =D0(DD0)−1D =

D0(D0)−1D−1D = I because Σ−1 = DD0 implies that (²²0) = Σ = (DD0)−1.44 Coefficients can

now be estimated by OLS, since any heteroskedasticity has been removed. The estimator will be:

β̂


= (X̃0X̃)−1X̃0Ỹ = (X0DD0X)−1X0DD0Y

= (X0Σ−1X)−1X0Σ−1Y

This estimator is unbiased:

(β̂


) = (X0Σ−1X)−1X0Σ−1(Xβ + ²)

= (X0Σ−1X)−1X0Σ−1Xβ+(X0Σ−1X)−1X0Σ−1(²) = β.

In the same way we can derive the variance-covariance matrix of the GLS estimators:

 (β̂


) = (X̃0X̃)−1X̃0(²̃²̃0)X̃
h
(X̃

0
X̃)0

i−1
= (X̃0X̃)−1X̃0IX̃

h
(X̃

0
X̃)0

i−1
= (X̃0X̃)−1

= (X0DD0X)−1 = (X0Σ−1X)−1

Note that if we were not taking into consideration heteroskedasticity and we were using OLS, our

estimator would have been inefficient, but still unbiased. In fact:

β̂


= (X0X)−1X0Y

implies that (β̂


) = (X0X)−1X0(Xβ + ²) = β. However,

 (β̂


) = (X0X)−1X0(²²0)X(X0X)0−1 = (X0X)−1X0ΣX(X0X)0−1

which can be proven to always exceed  (β̂


) = (X0Σ−1X)−1. In fact, if Σ = I2 the two

estimators are identical and also the two variances are:  (β̂


) =  (β̂


) = 2(X0X)−1.

When Σ 6= I2, we can write their ratio as:

 (β̂


) (β̂


) = (X0X)−1X0ΣX(X0X)0−1(X0Σ−1X)

= (X0X)−1X0DD0X(X0X)0−1(X0D−1D0−1X)

= D0−1X(X0X)−1X0DD0X(X0X)0−1X0D−1

Because X(X0X)0−1X0 is an idempotent matrix, it follows that

 (β̂


) (β̂


) = D0−1X(X0X)−1X0DD0X(X0X)0−1X0D−1

= D−1D0−1DD0X(X0X)0−1X0X(X0X)0−1X0 = X(X0X)0−1X0

which is always greater than 1. This is why the OLS estimator is less efficient than the GLS

estimator.

44 (̃) = (̃̃0) because (̃) = (D0) = D0() = 0.
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We now have to make and important remark. When estimating GLS in actual applications, the

structure of Σ will never be known. You will rather have at your disposal some estimator Σ̂ which

is an estimator of Σ and that–assuming you want to focus only on consistent estimators, as you

should–will converge to the “true” covariance matrix as the sample becomes large (for those of

you who know more, we can say that  Σ̂ = Σ). Our estimator will therefore be the Feasible

Generalized Least Squares (FGLS) estimator:

β̂


= (X0Σ̂−1X)−1X0Σ̂−1Y.

The specification of a peculiar structure/model for the variance-covariance matrix becomes therefore

a problem of key importance. In a finite sample Σ̂ is different from Σ. This might cause a bias in

the GLS estimator, since we are not ex ante guaranteed (especially if the sample is very small) that

[(X0Σ̂−1X)−1X0Σ̂−1²)] = 0.

A3. Completing the Picture: the (Generalized) Method of Moments

The estimators that we have reviewed so far (OLS and GLS) and the ones that we will consider

in the following pages can be derived using Maximum Likelihood Estimation (MLE), which is based

on an assumption (called parametric) on the density of distribution of the residuals. In the case

of OLS, this assumption is part of the Strong OLS Hypotheses set, and can be written as (see also

A1):  ∼ (0 2). Given this hypothesis, it is possible to estimate parameters maximizing the

natural logarithm of the likelihood function. In the OLS case:

ln(Y;β2) = −
2
ln 2 − 

2
ln2 − 1

22
(Y −Xβ)0(Y −Xβ)

However, OLS and GLS estimators do not require any parametric assumption on residuals; they

can just be derived using orthogonality conditions. Parametric assumptions might be used in a

second step, in order to determine the probabilistic properties of the estimators. This is why they

are called semiparametric estimators. The underlying idea is that the sample statistics of a given

sample converge to the true moments of the population if the size of the sample gets larger and

larger. Sample statistics can then be used to impose conditions in order to estimate regression

parameters. As the size of the sample becomes large, parameter estimates will converge to their

true values. OLS and GLS can therefore be included in a wider group of estimation methods , which

is called Generalized Method of Moments (GMM).

To formalize the problem, suppose that we want to identify  parameters  ( = 1  ). We

have to define  ≥  sample moments

̂ =
1



X
=1

(̂1 ̂2  ̂)  = 1  ,

knowing (or assuming) that  lim ̂ = , where  = [(1 2  )] is the true but un-

known population moment. Then parameter estimates may be estimated by imposing the set of 
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conditions:

̄1 − 1(̂1 ̂2  ̂) = 0

̄2 − 2(̂1 ̂2  ̂) = 0

 = 0

̄ − (̂1 ̂2  ̂) = 0 (21)

where ̄ is the sample value of a statistic of interest,  = 1  . Basically, from a mathematical

point of view, all that you are doing is to look for the set of parameter values ̂1 ̂2  ̂

which jointly minimizes the distance between the conditions imposed on parameters and sample

moments. Notice that the number of moment conditions  may exceed the number of parameters

to be estimated, . When  = , we speak of just identified GMM or simply method of moment

estimates: in this case you impose the minimal number of conditions for the system (21) to be

solved–assuming a solution exists–to find ̂1 ̂2  ̂. This is the case we have dealt with in

chapter 5, when t-Student shocks have been introduced. Often in practice, one elects to set   

and in this case one additional problem is how to weight the different moment conditions, because

in a mathematical perspective, it is clear that only by chance ̂1 ̂2  ̂ will exist such that all

the conditions/equations in (21) may find a solution. Although this is a rather advanced topic to be

developed in the appropriate context, one solution, which in fact also delivers a number of optimal

properties consists of estimating β̂


by solving:

min

[m̄− f(β)]0S̃−1[m̄− f(β)] (22)

where m̄ ≡ [1 2 ... ]
0,

f(β) ≡
h
−1

P
=1 1(1  ) 

−1P
=1 2(1  ) ... 

−1P
=1 (1  )

i0
S̃ =  [m̄− f(β̃)]

and β̃ is a first-step estimator that simply minimizes the quadratic form [m̂ − f(β)]0[m̂ − f(β)]
Basically, (22) means that you pick β̂


to minimize a set of  moment conditions weighted

by the inverse of their covariance matrix, so that the moment conditions that are estimated more

precisely in the data sample will receive a higher weight. Clearly, a just identified GMM estimation

problem corresponds to (22) when S̃ = I.

How can we write an OLS or a GLS estimator as a GMM one? Here recall that one of the Weak

OLS Hypotheses stated that ( ) = 0. Thus, the GMM condition for estimating β is:

[²0X] = [(Y −Xβ)0X] = 0.

The same happens for GLS, with the only difference that we have to take into account the structure

of the variance-covariance matrix:

[(Ỹ − X̃β)0X̃] = [(Y −Xβ)0Σ−1X] = 0.
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A4. Dealing with More than One Equation: Seemingly Unrelated Regressions (SUR)

Let’s now consider a situation where there are two or more dependent variables, say  ≥ 2.
The regression model is

Y = Xβ + ²⎡⎢⎢⎢⎢⎣
Y1

Y2



Y

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
X1 0  0

0 X2  0

   

0 0  X

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

β1

β2



β

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣
²1

²2



²

⎤⎥⎥⎥⎥⎦ ,
where β is the vector of coefficients for the th equation,  = 1   . The covariance matrix of the

residuals is:

 (²) = 

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
²1

²2
...

²

⎤⎥⎥⎥⎥⎦
h
²01 ²02  ²0

i
⎞⎟⎟⎟⎟⎠

= 

⎡⎢⎢⎢⎢⎣
²1²

0
1 ²1²

0
2  ²1²

0


²2²
0
1 ²2²

0
2  ²2²

0


... 
. . .

...

²1²
0
 ²2²

0
  ²²

0


⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
I11 I12  I1

I21 I22  I2
... 

. . .
...

I1 I2  I

⎤⎥⎥⎥⎥⎦ = Ω,
where  ≡ ( ) is the covariance between the residuals of regressions  and . As we

said early on, a first approach to the problem would be to estimate a separate OLS model for

each regression equation. However, as we have seen when introducing GLS methods, this might

not be the most efficient solution. If we look at the model above, the equations for the different

dependent variables are apparently unrelated as far as the conditional mean is concerned. However,

relationships exist through the covariance matrix Ω. Working through an algebra very similar to

the one shown in Section 2, it is possible to derive the Seemingly Unrelated Regressions estimator:

β̂


= (X0Ω−1X)−1X0Ω−1Y

This estimator is BLUE with variance

 (β̂


) = (X0Ω−1X)−1.

Also for the SUR estimator we have to bear in mind that usually we do not know the matrix Ω.

This may pose problems in small samples. Interestingly, the OLS equation by equation estimator

and the SUR estimator are equivalent in only two very special situations:

• Ω is a diagonal matrix, or in other words  = 0 if  6= .

• The set of regressors is the same for all the equations: X = X  = 1 2...  .
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When you are dealing with a single regression model ( = 1), the key issue is obviously only

the choice of the right set of regressors. However, as you can understand after our discussion in

this section, in the case of a system of regression models ( ≥ 2), there is another choice you

have to make: you have to decide whether to model a time series “on its own” or along with other

time series. If you choose the right set of time series and regressors, you will be able to exploit

cross-sectional information and improve the efficiency of your estimates by obtaining a GLS-type

estimator.

This is the appropriate point in which we can introduce some ideas on estimation of models with

fixed and random effects.45 These models are useful when you are analyzing a population (e.g., the

set of EU countries) and you want to check whether there are any structural differences among units

in the population (e.g., countries) conditionally on a common set of explanatory variables (GDP,

current account, inflation, etc.). Consider the regression of different vectors of dependent variables,

Y1, Y2, ..., Y , on a matrix of  independent variables X. We can write:

 = 0 +
P

=1

 +   = 1   .

Assume that in this model  =  ∀, (²) = 0, (²²
0
) = I, (²²

0
) = 0. Summing up,

in this model cross-sectional covariances between errors are null, while the set of regressors and

regression slopes are the same for each dependent variable. The only estimator measuring cross

sectional differences is the intercept 0 ( = 1  ). In practice we can think of the intercept as

a constant common to all models plus a fixed component that changes according to the dependent

variable. In formulas: 0 = ̄0+ . This model is known as a model with fixed effects. The name

comes from the fact that the cross-sectional effects captured by the intercept (the s) are “fixed”

for each dependent variable. This model (as usual) has its own BLUE estimator for the regression

coefficients.

In order to use a model with fixed effects, you need to assume that your model encloses the whole

cross-sectional dimension of the population. If you think about it, when you are introducing fixed

effects, you completely neglect any conditional (cross-sectional) volatility of the intercept. This

can be done only if you observe all the individuals (e.g., countries) that are part of the population

and you can perfectly identify the intercept effect for each one of them. If your population is a

sub-sample of a larger set, you need to take into account this conditional volatility and use random

effects. A model with random effects is very similar to a model with fixed effects, even though there

is one key difference. In a random effect model, the intercept for the dependent variable  is

0 = ̄0 + ,

45This is a rather advanced topic and its appearance (while it has not emerged in the lectures and it will not) reflect

from my discomfort with the large number of MSc. Finance students that deal with panels in their theses and in their

jobs: some quick introduction is most needed.
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where  is a random error such that: () = 0, (
2
 ) = 2, () = 0, (²) = 0. So the

model can be re-written as:

 = ̄0 +
P

=1

 +  +   = 1   .

Also random effects have their own BLUE estimator. Greene (2008) represents a great starting

point for additional details and the formulas for the BLUE estimators mentioned above.

A5. Simultaneous Equations and Vector Autoregressive Models

In our discussion so far we have considered very general econometric frameworks. When mod-

eling multiple time series in economics, a key question is the study of contemporaneous and lagged

casual relationships between variables. Simultaneous Equations Models are very popular in macro-

economics, where Structural Models are used to bring theoretical frameworks with large number of

equilibrium equations to the data. A consistent modeling of causality becomes of key importance.

One of the most basic (and most popular) frameworks in this area are Vector Autoregressive Models

(VAR).

VARs are based on the assumption that, given a vector of time series, there is a feedback

relationship between the current value of each time series and lagged values of the same or other

series. In practice this model can be seen as an autoregressive model for multiple time series. In

formulas, a VAR model with  lags, also called VAR() can be written as:

Z = Φ0 +Φ1Z−1 +Φ2Z−2 +  +ΦZ− + ²,

where Z and ² are both  × 1 vectors. Note that this model can always be written as a VAR(1)
by re-arranging the equations in the following state-space form:⎡⎢⎢⎢⎢⎣

Z

Z−1
...

Z−+1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
Φ0

0
...

0

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣
Φ1 Φ2  Φ

I O  O
... 

. . .
...

O  I O

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
Z−1
Z−2
...

Z−

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣
²

0
...

0

⎤⎥⎥⎥⎥⎦ 
Because of this result, let’s focus now on the simple framework: Z = Φ0 + Φ1Z−1 + ². First,

this model is estimated by OLS, because the set of regressors is the same in each equation, and the

SUR estimator coincides with the OLS one. Second, the estimation of this model involves a large

number of parameters. Consider an example in which Z has four elements. Even if you neglect

intercepts you need to fill the full matrix Φ1 (and the variance-covariance matrix of residuals):

Φ1 =

⎡⎢⎢⎢⎢⎣
11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

⎤⎥⎥⎥⎥⎦
The presence of a large number of parameters may pose tricky risks of “over-fitting” the data,

lowering saturation ratios below what is sensible to tolerate. By this, we mean that some of the
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parameters in the matrix Φ1 might come out to be significantly different from zero, even if they do

not explain any meaningful relationship in the data. This is why in estimating VAR matrices econo-

metricians usually impose constraints and set ex-ante some entries to equal zero. The stationarity

condition for a VAR(1) model is somehow similar to the one that we impose for an AR(1) model.

Unconditional moments are:

(Z) = ( −Φ1)−1Φ0
( (Z)) = ( −Φ1 ⊗Φ1)−1(Σ)

where ⊗ is the Kronecker product of two matrices.46 Conditional -steps ahead moments can be
derived as:

(Z+|Z) = Φ0 +Φ1Φ0 +Φ
2
1Φ0 + +Φ−1

1 Φ0 +Φ

1Z

 (Z+|Z) = Σ+Φ1ΣΦ
0
1 +Φ

2
1ΣΦ

20
1 + +Φk−11 Σ(Φ

−1
1 )0

Unconditional moments can then be obtained as the limit of the conditional moments as  → ∞.
Remember that we can always write the eigendecomposition: Φ1 = CΛC; then: Φ


1 = CΛ

C. To

be sure that Φ
1 is well defined for  →∞, we need to ask that Λ is well defined because

Λ =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 2 0 0

0 0  0

0 0 0 

⎤⎥⎥⎥⎥⎦ 
This is equivalent to requiring that all the eigenvalues of Φ1 fall in the unit circle. If this was not

enough and you want to know more, it time to consult Hamilton (1994), which remains the most

complete references on the market for specification and estimation of vector linear models.

46The (·) operator simply stacks the elements of a  ×  matrix by concatenating them vertically, i.e., if the

matrix A is written as A ≡ [a1 a2 a] where a is a × 1 vector ( = 1 2... ), then (A) = [a01 a
0
2 ... a

0
]
0 or

(A) =


a1

a2
...

a

 .
The Kronecker product is instead the element-wise multiplication operator. An example will suffice:


11 12

21 22


⊗


11 12

21 22


=


1111 1112 1211 1212

1121 1122 1221 1222

2111 2112 2211 2212

2121 2122 2221 2222
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Appendix B – A Matlab
R°
Workout

You are a European investor with the Euro as a reference currency. Using monthly data in

STOCKINT2013.XLS, construct monthly excess returns (in Euros) using the three price indices

DS Market-PRICE indices for Germany, the US and the UK.

1. For the sample period April 1977 - December 2009, plot the values of each of the three

individual indices (in logarithmic terms) and excess returns for the equally weighted portfolio

denominated in Euros. Make sure to include the dividends paid by each of the three indices in

each of the monthly return series. Notice that the monthly data made available on the course

web site also include data on the dividend yield on index  ( = GER, US, UK), , defined

as:47

 ≡ 

−1


2. Over the same sample, use a GARCH(1,1)-DCC(1) model with constant mean to “estimate”

(filter) the dynamics of the covariance matrix of excess returns at monthly frequency. The

model is:

+1 =  + +1

+1 =  + +1

+1 =  + +1⎡⎢⎣ +1

+1

+1

⎤⎥⎦ ∼ 
³
0Σ


+1

´
,

where +1 denotes excess returns ( = US, UK, Ger). Make sure to extract and print para-

meter estimates, their robust standard errors, and their t-ratios. Also extract the dynamic,

conditional covariance matrix implied by the model and use a three-panel plot to graph the

one-month ahead (predicted) expected excess returns, volatilities, and correlations. [Hint :

You have to use Kevin Sheppard’s MFE toolbox; you can find a link on the course web page;

before blindly proceeding, please make sure to read and understand what the toolbox allows

you to do]

3. Use the dynamic variance-covariance matrix filtered from question 2 and the unconditional

historical means of excess returns to build an in-sample, recursive dynamic Markowitz portfolio

based on the simple expression

w
 = [Σ̂


+1 ]−1μ̂,

47As a result, the log- (continuously compounded) return on the stock index  between − 1 and  will be defined

as:

 ≡ ln




−1
+ 


.

In the following, while  denotes returns,  will denote returns in excess of the Euro riskless rate.
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where μ̂ ≡ [̂ ̂ ̂]
0 and implicitly you have imposed a unit coefficient of risk aversion.

Plot these recursive portfolio weights.

4. Now we turn instead to build and use models for the conditional mean, something we have

avoided so far. As a starter, estimate by OLS a “contagion regression model” for the three

stock indexes:

+1 = 0 + 1 ln  + 2  + 3  + 4  + +1

+1 = 0 + 1 ln  + 2  + 3  + 4  + +1

+1 = 

0 + 


1 ln  + 


2  + 


3  + 


4  + +1⎡⎢⎣ +1

+1

+1

⎤⎥⎦ ∼ (0 
©
2 

2
 

2


ª
).

where , , and  are log-index levels expressed in euros.
48 Make sure to extract

and print conditional mean parameter estimates, their standard errors, and their t-ratios.

Use a three-panel plot to graph the one-month ahead (predicted) expected excess returns,

volatilities, and correlations.

5. Use the dynamic conditional means predicted from question 4 and the unconditional historical

variances and covariances of excess returns to build an in-sample, recursive dynamic Markowitz

portfolio based on

w
 = [

©
̂2 ̂

2
 ̂

2


ª
]−1μ̂,

where μ̂≡ [(+1) (+1) (+1)]
0. Plot these recursive portfolio weights. If

needed, you may decide to cut excessively large and small weights (for instance, exceeding

400% in absolute value) and produce a parallel plot in which visibility may be enhanced. Are

these weights economically sensible?

6. Bring now the models of questions 2-3 and 4-5 together, by estimating by iterated MLE (see

below for details), the following restricted VAR(1) model that jointly captures the presence

of time variation in conditional means, conditional variances, and conditional covariances:49

+1 = 0 + 2  + +1

+1 = 0 + 3  + +1

+1 = 

0 + 


4  + +1

⎡⎢⎣ +1

+1

+1

⎤⎥⎦ ∼ 
³
0Ω


+1

´
.

Notice that by estimating this model you are generalizing the model in question 4 not only

because you are allowing variances to vary over time, but also (or especially) because you

48Estimation by OLS implies that you will not be able to estimate the covariance of the shocks to different stock

indices, which are therefore simply set to be zero throughout the exercise.
49This VAR is restricted because each equation simply features a dependence of future excess returns in market 

from past excess returns in the same market. Please make sure to understand what a full, unrestricted VAR would

imply.
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are no longer constraining the correlations to be always zero. Make sure to extract and

print parameter estimates, their standard errors, and their t-ratios. Use a three-panel plot

to graph the one-month ahead (predicted) expected excess returns, volatilities, and correla-

tions. [Hint : the reference above to “iterated MLE” refers to the fact that Kevin Sheppard’s

GARCH/DCC utilities will not allow you to jointly estimate the regression coefficients and

also the GARCH/DCC dynamic covariance matrix; therefore what you are advised to do is to

first estimate the residuals from the regression models, then fit on them your GARCH/DCC

model, and finally proceed to re-estimate the regression model by GLS when the covariance

matrix is the one estimated by GARCH/DCC].50

7. Using the dynamic conditional means, variances, and covariances predicted in question 6

compute in-sample, recursive dynamic Markowitz portfolios based on

w
 = [Ω̂


+1 ]−1μ̂2 ,

where μ̂2 is now estimated from the second, GLS-type step of question 6. Plot these

recursive portfolio weights. If needed, you may decide to cut excessively large and small

weights (for instance, exceeding 500% in absolute value) and produce a parallel plot in which

visibility may be enhanced. Are these weights economically sensible?

8. With reference to the out-of-sample period January 2010 - December 2012, proceed to compute

optimal weights for two models: the unconditional mean GARCH/DCC model of question 2;

the VAR/GARCH/DCC of question 6. Perform the calculation in the following way: for both

models use the same estimated conditional mean (the intercept in the first case, the restricted

VAR parameters in the latter) and the GARCH/DCC parameters estimated in questions 2

and 6, that you should have saved; compute the dynamic covariance matrix on the basis of

those parameter performing the updating on the basis of the out-of-sample forecast errors

over the out-of-sample period. They weights will come from the classical Markowitz formula.

After obtaining the weights, compute the realized Sharpe ratios over the out of sample period.

Compare these realized Sharpe ratios with those that you would have achieved by simply

investing all of your wealth in each of the three stock indices under consideration. [Hint : In

this case it is a very good idea to use Kevin Sheppard’s dcc mvgarch cov function]

9. Load the daily data set already used on many occasions before. Construct the monthly non-

overlapping cumulative returns and monthly non-overlapping realized variance (RV) series

for the US and German stock indices. Repeat the same exercise to construct monthly non-

overlapping realized covariance (RCOV) series for the US and German stock indices. Plot the

50For our purposes, it will be sufficient to iterate these two estimation steps only once, which is what we normally do

with feasible two-stage GLS. However, one may want to iterate these two steps as long as it takes to reach convergence

in parameter estimates. However, under the assumption of correct specification of the dynamic model, notice that

also the two-stage MLE is consistent. Please see the lecture notes that are available on the class web site.
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resulting monthly realized variances, covariances, and the autocorrelograms of theses series.

Are the natural logarithms of the resulting series normally distributed?

10. Use the first 100 observations of the monthly realized variance sample you have obtained

in point 9 to estimate two univariate AR(1) models for the US and German RVs. Repeat

the same estimation on the basis of the initial 100 observations of the monthly sample to

estimate AR(1) models of the US-German RCOV. Compute a one-step ahead forecast of the

US, German and US-German realized variance and covariance from observation 100 to the end

of the sample by using the estimates obtained in the previous points. At this point, construct

an equally weighted portfolio, compute its returns and the one-step ahead predicted variance

and covariances. Plot the corresponding Q-Q plots for German, US, and the equally weighted

portfolio standardized returns.

Solution

This solution is a commented version of the MATLAB code Ex Modeling correlations 2013.m

posted on the course web site. Note that in this case, all the Matlab functions needed for the correct

functioning of the code have been included. This means that no “Set Path” instructions should be

used (only for this workout Matlab). The loading of the monthly data is performed by the lines of

code:

filename=uigetfile(‘*.txt’);

data=dlmread(filename);

The above two lines import only the numbers, not the strings, from a .txt file.51 The usual lines

of code take care of the strings and are not repeated here. The same applies to the exchange rate

transformations that have now become customary in the first part of our Matlab workouts.

1. Figure A1 plots the values of each of the three individual indices (in logarithmic terms) and

excess returns for the equally weighted portfolio denominated in Euros. Here the message is

that you should always take a solid look at your data before venturing in any analysis. Note

that the lines of code

dy ger m = data(:,4)/(100);

dy ger m = dy ger m/(12); % Monthly dividend yield used in return calculation

lret ger m = log((p ger./lag(p ger))+dy ger m);

dy us m = data(:,6)/(100);

dy us m = dy us m/(12); % Monthly dividend yield used in return calculation

51The reason for loading from a .txt file in place of the usual Excel is to favor usage from Mac computers that

sometimes have issues with reading directly from Excel, because of copyright issues with shareware spreadsheets.
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lret us dol = log((p us./lag(p us))+dy us m);

dy uk m = data(:,8)/(100);

dy uk m = dy uk m/(12); % Monthly dividend yield used in return calculation

lret uk str = log((p uk./lag(p uk))+dy uk m);

make sure that total index returns include dividends.

Figure A1:Monthly portfolio indices and exchange rates

2. We now use the dcc function in Kevin Sheppard’s MFE toolbox

R eq dm = [R eq(:,1)-mean(R eq(:,1)) R eq(:,2)-mean(R eq(:,2))

R eq(:,3)-mean(R eq(:,3))];

[parameters, loglikelihood, SIGMA 1, stderrors, jointscores, diagnostics]=

dcc(R eq dm,[],1,0,1);

to estimate over the monthly sample 1977-2009 a GARCH(1,1)-DCC(1,1) model with constant mean

to and sample correlation (matrix targeting):

+1 =  + +1

+1 =  + +1

+1 =  + +1

⎡⎢⎣ +1

+1

+1

⎤⎥⎦ ∼ 
³
0Σ


+1

´
,

where +1 denotes excess returns ( = US, UK, Ger, i.e., in excess over 3-month euro riskless rates).

Parameter estimates, with QMLE standard errors are printed on the Matlab screen as shown in

Figure A2. Interestingly, also on these monthly return data we find rather precisely estimated and

rather persistent GARCH dynamics. However, the implied persistence indices (̂ + ̂ using our

standard notation) tend to be (at 0.96-0.98) slightly (but only slightly) smaller than those typical

of monthly data.52 More interestingly, the estimated coefficients for the DCC(1,1) model are 0.028

52The only oddity is that the estimates of constant coefficients (,  = US, UK, Ger) in the GARCH(1,1) models

are not statistically significant.
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and 0.969, respectively, and both are estimated at a relatively high level of precision. The reason

for why only two coefficients are estimated in the DCC(1,1) model is that a sample correlation

targeting model–as examined in the lectures–has been specified and estimated:

+1 =

"
1



X
=1



#
(1− − ) +  + 

Figure A2:GARCH/DCC estimates from monthly international excess return indices

The “extraction” of the dynamic, conditional covariance matrix implied by the DCC model is

performed automatically by Sheppard’s dcc function,

[parameters, loglikelihood, SIGMA 1, stderrors, jointscores, diagnostics]=

dcc(R eq dm,[],1,0,1);

where the sequence of (one-month ahead) predictions of the covariance matrix {Σ̂}=1 corresponds
to SIGMA 1. When we plot conditional means, volatilities, and correlations (all at a monthly

frequency) using standard instructions, we obtain Figure A3.

Figure A3-I: Conditional means and volatilities from a GARCH DDC model

62



Figure A3-II: Conditional correlations from a GARCH DCC model

The conditional means, as per the very instructions of the workout, are in fact constant over

time, which implies that unconditional and conditional means are constant in this case. On the

contrary, conditional volatilities are time-varying in ways that are typical of GARCH models, with

spikes that may receive a rather natural economic interpretation in the light of well-known events.

Conditional correlations as estimated by the model appear to be largely increasing over time, after

undergoing a discrete upward jump in the Fall of 1987. Although, as one may expect, the pairwise

conditional correlation between U.S. and U.K. (excess) equity returns is larger than the other two

pair-wise correlations, after 2005 all these correlations converge to similar levels, generally in excess

of 0.7. Such high correlations levels imply that the diversification opportunities across these major,

developed stock markets are limited at best.

3. The mean-variance portfolio weights obtained from the classical formula

w
 = [Σ̂


+1 ]−1μ̂,

where μ̂ ≡ [̂ ̂ ̂]
0 and implicitly you have imposed a unit coefficient of risk aversion,

are computed by the lines of code

Figure A4: Optimal mean-variance portfolio weights from a GARCH DCC model for conditional covariance

for t=1:n

At 1(:,t) = inv(SIGMA 1(:,:,t))*FIT 1’;
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Wt 1(t,1) = At 1(1,t)/sum(At 1(:,t));

Wt 1(t,2) = At 1(2,t)/sum(At 1(:,t));

Wt 1(t,3) = At 1(3,t)/sum(At 1(:,t));

end

where the three ratios defining Wt 1(t,i) ( = US, UK, Ger) are simply enforcing the fact that

weights must be summing to one. Figure A4 plots these recursive portfolio weights.

4. At this point, we replace the constant mean function of questions 2-3 with a regression-based

mean function, that makes the conditional mean time-varying:

+1 = 0 + 1 ln  + 2  + 3  + 4  + +1

+1 = 0 + 1 ln  + 2  + 3  + 4  + +1

+1 = 

0 + 


1 ln  + 


2  + 


3  + 


4  + +1⎡⎢⎣ +1

+1

+1

⎤⎥⎦ ∼ (0 
©
2 

2
 

2


ª
).

where , , and  are log-index levels expressed in euros. This is called a “contagion

regression model” because it implies that lagged stock index levels in country  may forecast

subsequent excess returns in other markets  6= . Moreover, note that in such a model, the

lagged dividend yield in each equity market forecasts subsequent excess stock returns. Because

the covariance matrix is assumed to be diagonal and constant over time (homoskedastic), in

this case (see your Financial Econometrics I notes and readings) simple, classical OLS will be

unbiased and efficient. Interestingly, estimation is performed using

[beta,sigma,resid,cov b] = mvregress([ones(n,1) lDP(1:end-1,i)

regress(1:end-1,:)],R eq(2:end,i));

Naturally, a diagonal covariance matrix implies that all covariances and hence correlations are

constant and identically zero over time. Of course, this is a restriction we have imposed, not an

empirical finding suggested by the data, that we have already noticed imply a dynamics that can be

usefully captured by a GARCH DCC model in question 2. Interestingly, this model is symmetric to

the one in question 2: then, conditional means were constant, but the conditional covariance matrix

time-varying; here the opposite occurs and only conditional means are constant. The estimates and

their robust standard errors (see MVREGRESS in the Matlab manual for details) are printed on
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the Matlab screen in Figure A5.

Figure A5: OLS estimates of regression-based conditional mean functions

Interestingly, most coefficients fail to be statistically significant (none of them are in the case of

UK excess returns) and when they are, these are marginally significant, with t stats close to the

threshold of 2.

Figure A6: Conditional means, volatilities, and correlations from a homoskedastic contagion model

There is however evidence that past high UK stock prices positively infect US stock returns, while

the opposite occurs for past German stock prices. Figure A6 uses the customary three-panel plot to

graph the one-month ahead (predicted) expected excess returns, volatilities, and correlations. As

it is obvious, all volatilities and correlations are constant (the latter are identically zero, as noted

above).

5. When we use conditional means, variances, and correlations to compute recursive dynamic

Markowitz weights when μ̂≡ [(+1) (+1) (+1)]
0, we obtain Figure A7,
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where we have cut excessively large and small weights at 400% in absolute value.

Figure A7: Optimal mean-variance portfolio weights from a homoskedastic, contagion regression model

In fact, the optimal weights occasionally “shoot up” in absolute value to values that are hardly

sensible as they exceed 100%. This derives from the fact that in Figure A6–although con-

ditional means are imprecisely estimated–the forecasts are highly unstable, and this carries

forward onto optimal MV portfolio shares.

6. We now bring the models of questions 2-3 and 4-5 together, by estimating by iterated MLE (see

below for details), the following restricted VAR(1) model that jointly captures the presence

of time variation in conditional means, conditional variances, and conditional covariances:53

+1 = 0 + 2  + +1

+1 = 0 + 3  + +1

+1 = 

0 + 


4  + +1
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´
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Notice that by estimating this model you are generalizing the model in question 4 not only

because you are allowing variances to vary over time, but also (or especially) because you

are no longer constraining the correlations to be always zero and therefore constant over

time.54 The reference above to “iterated MLE” refers to the fact that Kevin Sheppard’s

GARCH/DCC utilities will not allow you to jointly estimate the regression coefficients and

also the GARCH/DCC dynamic covariance matrix; therefore what you are advised to do is to

first estimate the residuals from the regression models, then fit on them your GARCH/DCC

model using the code,

for i=1:3

53This VAR(1) is restricted because it boils down to three different AR(1) models stacked on top of each other.

However, different national stock markets are still allowed to interact and contage each other through the dynamic

covariance matrix.
54Of course, the conditional mean functions are simpler than those in question 4, but you are welcome to propose

the same, identical regression to see what happens.
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var1=strcat(’beta ’,country(i,:));

var2=strcat(’SIGMA ’,country(i,:));

var3=strcat(’RESID ’,country(i,:));

[beta,sigma,resid,cov b] = mvregress([ones(n,1) R eq(1:end-1,i)], R eq(2:end,i));

assignin(’base’,var1,beta);

assignin(’base’,var2,sigma);

assignin(’base’,var3,resid);

assignin(’base’,var4,cov b);

end

Res = [RESID US RESID UK RESID GER];

[parameters, loglikelihood, SIGMA 3, stderrors, jointscores, diagnostics]=

dcc(Res,[],1,0,1);

and finally proceed to re-estimate the regression model by feasible GLS when the covariance

matrix is the one estimated by GARCH/DCC:

SIGMA 3 r = [SIGMA 3 11 SIGMA 3 12 SIGMA 3 13;

SIGMA 3 21 SIGMA 3 22 SIGMA 3 23;

SIGMA 3 31 SIGMA 3 32 SIGMA 3 33];

X = [ones(n,1) R eq(1:end-1,1) zeros(n,2) zeros(n,2);

zeros(n,2) ones(n,1) R eq(1:end-1,2) zeros(n,2);

zeros(n,2) zeros(n,2) ones(n,1) R eq(1:end-1,2)];

Y = [R eq(2:end,1); R eq(2:end,2); R eq(2:end,3)];

BETA = inv(X’*inv(SIGMA 3 r)*X)*X’*inv(SIGMA 3 r)*Y;

OMEGA = inv(X’*inv(SIGMA 3 r)*X);

Figure A8: First-stage GARCH/DCC estimates of demeaned excess returns
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For a refresher on what FGLS are, how different these are from OLS, etc., please consult Appendix

A of this chapter. Figures A8-A9 display the estimated parameters as these are printed on the

Matlab screen:

Figure A9: Second-stage feasible GLS (GARCH/DCC-based) estimates of conditional mean parameters

Also in this case none of the regression coefficients are strongly statistically significant, which should

advise caution before basing your mean-variance asset allocation on such parameters. Figure A10

shows the now customary three-panel plot, in which finally conditional means, variances, and cor-

relations are all time-varying.

Figure A10: Conditional means, volatilities, and correlations from a heteroskedastic restricted VAR(1) model

7. When we use conditional means, variances, and correlations to compute recursive dynamic

Markowitz weights when μ̂ is derived from the fitted values from the restricted VAR(1) in

question 6, as given by the line of command

FIT3 vec = [(BETA(1,1)*ones(n,1)+BETA(2,1)*R eq(1:end-1,1))

(BETA(3,1)*ones(n,1)+BETA(4,1)*R eq(1:end-1,2))

(BETA(5,1)*ones(n,1)+BETA(6,1)*R eq(1:end-1,3))];
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we obtain Figure A11, where we have cut excessively large and small weights at 500% in absolute

value.

Figure A11: Optimal mean-variance portfolio weights from a heteroskedastic restricted VAR(1) model

8. With reference to the out-of-sample period January 2010 - December 2012 we now proceed to

compute optimal Markowitz weights for two models: the unconditional mean GARCH/DCC

model of question 2; the VAR/GARCH/DCC of question 6. For both models we have used

the same estimated conditional mean (the intercept in the first case, the restricted VAR

parameters in the latter) and the GARCH/DCC parameters estimated in questions 2 and

6, but the dynamic covariance matrix has been updated in real time (to produce one-month

ahead forecasts) on the basis of the out-of-sample forecast errors obtained in the earlier step.

For instance, the GARCH models are used during the out-of-sample period to obtain

̂2+1 = ̂ + ̂(̂ ̂ )
2 + ̂̂

2
 

In the code, this occurs by first computing forecast, then forecast errors, and finally by feeding

such errors inside the GARCH DCC model using Kevin Sheppard’s dcc mvgarch cov func-

tion:55

% Computes forecasts

X = [ones(n,1) R eq(1:end-1,1) zeros(n,2) zeros(n,2);

zeros(n,2) ones(n,1) R eq(1:end-1,2) zeros(n,2);

zeros(n,2) zeros(n,2) ones(n,1) R eq(1:end-1,2)];

Forc h = X*BETA;

Forc = [Forc h(1:n) Forc h(n+1:2*n) Forc h(2*n+1:3*n)];

% Computes forecast errors

Pr err = R eq(2:end,:) - Forc;

55The code below refers to the second, restricted VAR(1) model but they are logically equivalent to those applied

to the constant mean model.
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[GAMMA, D]=dcc mvgarch cov(par dcc,Pr err(:,1),Pr err(:,2),Pr err(:,3),[0

1]*corr([Pr err(:,1) Pr err(:,2)])*[1;0],[0 1]*corr([Pr err(:,1) Pr err(:,3)])*[1;0],[0

1]*corr([Pr err(:,2) Pr err(:,3)])*[1;0]);

Figure A12 presents the weights obtained in this way.

Figure A12: Out-of-sample optimal mean-variance portfolio weights

After obtaining the weights, we compute the realized Sharpe ratios over the out of sample period,

which are presented in Figure A13.

Figure A13: Out-of-sample realized Sharpe ratios from alternative models

Clearly–although these are modest–there can be advantages from adopting a GARCH/DCCmodel

as a base for asset allocation, when the conditional mean model is suffciently restricted and parsi-

monious to avoid excessive variation in forecasts of risk premia (expected excess returns).

9. At this point, we switch to a different data set and load the daily data set already used on

many occasions before. Using daily data, i.e., treating them as high-frequency data (with

 = 22 per month), we compute monthly non-overlapping cumulative returns and monthly
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non-overlapping realized variance (RV) series and realized covariance for US and German

stock indices. The following lines of code perform this task:

start=1+window;

RV(start,:)=sum(RET(2:2+(window-1),:).ˆ2);

RCOV(start,:)=sum(RET(2:2+(window-1),1).*RET(2:2+(window-1),2));

RET CUM(start,:)=sum(RET(2:2+(window-1),:));

for t=start+window:(window-1):T

RV(t-(window-1):t,:)=ones(size(t-(window-1):t,2),1)*sum(RET(t-(window-1):t,:).ˆ2);

RCOV(t-(window-1):t,:)=ones(size(t-(window-1):t,2),1)*sum(RET(t-(window-1):t,1).

*RET(t-(window-1):t,2));

RET CUM(t-(window-1):t,:)=ones(size(t-(window-1):t,2),1)*sum(RET(t-(window-

1):t,:));

end

In Figure A14, we plot the resulting monthly realized variances, covariances, and the autocor-

relograms of theses series.

Figure A14: Monthly realized variance and associated autocorrelogram functions

The ACFs emphasize that realized variances and covariances are rather persistent and therefore

predictable.

10. Finally, we have used the first 100 observations of the monthly realized variance sample that

we have obtained in point 9 to estimate two univariate AR(1) models for the US and German

RVs and for the US-German RCOV. We use these models to compute one-step ahead forecasts

of the US, German and US-German realized variances and covariance from observation 100

to the end of the sample. At this point, we construct an equally weighted portfolio, compute
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its returns and the one-step ahead predicted variance and covariances. Figure A15 shows the

corresponding Q-Q plots for German, US, and the equally weighted portfolio standardized

returns.

Figure A15: QQ plots for standardized returns obtained from realized variances and covariance

This confirms something mentioned during the lectures: when returns are standardized using

realized second moments, the resulting ̂ ( =  Germany) are approximately normal, even

though some problems remain the left tail.

Appendix C – Another Matlab
R°
Workout

You are a European investor with the Euro as a reference currency. Using daily data in STOCK-

INT2013.XLS, construct monthly returns (in Euros) using the three price indices DS Market-PRICE

indices for Germany, the US and the UK.

1. For the sample period January 1, 2007 - December 31, 2010, compute and plot the return

series of each of the three indices expressed in Euros.

2. With reference to the same sample period, compute the unconditional covariance matrix

of the 3 × 1 vector of index returns as well as the unconditional variance of an equally-
weighted portfolio. Based on these sample estimates of variances, compute and plot the 1%

unconditional (Gaussian) VaR measures for each of the three national indices as well as for

the equally weighted portfolio. Moreover, compute an equally weighted average of the three

1% VaR measures and compare it with the 1% normal VaR of the equally weighted portfolio:

why are they not the same? Link this finding to the concepts of passive and active risk

management.
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3. With reference to the post-financial crisis period January 3, 2011 - December 31, 2012 and to

your equally weighted portfolio returns, compute and plot the following 3 recursive, daily 1%

VaR measures: (i) a constant, unconditional Gaussian VaR; (ii) a Gaussian GARCH(1,1) VaR

directly estimated on your portfolio returns (i.e., a passive VaR measure); (iii) a trivariate

Gaussian Constant Conditional Correlation (CCC) GARCH (1,1) VaR in which correlations

are assumed to be constant and equal to the unconditional pair-wise correlations between

first-stage standardized residuals from appropriately defined GARCH(1,1) models. (iii) is an

active risk-management measure because it depends on your specific portfolio weights. [Hint :

Notice that this question implies that you will have to estimate three simple GARCH(1,1)

processes for the three indices and also for your own portfolio over the assigned 6-month

sample]

4. Repeat question 3 with reference to the same sample period, but this time comparing the

daily, recursive, 1% VaR measures for: (i) a Gaussian GARCH(1,1) VaR directly estimated

on your portfolio returns (i.e., a passive VaR measure); (ii) a trivariate Gaussian Constant

Conditional Correlation GARCH (1,1) VaR in which correlations are assumed to be constant

and equal to the unconditional pair-wise correlations between first-stage standardized residuals

from appropriately defined GARCH(1,1) models, (iii) a trivariate Gaussian Dynamic Condi-

tional Correlation GARCH (1,1) VaR in which correlations are estimated from an Exponential

Smoothing, RiskMetrics-style model for the elements of the auxiliary matrix Q as discussed

in Lecture 4 of the second part of the course.

5. Estimate over the 2007-2010 sample a simple constant-mean GARCH(1,1)-DCC(1) model to

filter the dynamics of the correlations of returns at daily frequency. In essence, the model is:

+1 =  + +1

+1 =  + +1

+1 =  + +1

⎡⎢⎣ +1

+1

+1

⎤⎥⎦ ∼ 
³
0Ω
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´
,

where +1 denotes daily returns ( = EU/Ger, US, UK). Also extract the dynamic, condi-

tional correlation matrix implied by the model and plot the (predicted) correlations during

the period January 2011 - December 2012.

6. Compute and plot the 1% VaR from the DCC model of question 5 over the out-of-sample

period January 1, 2011 - December 31, 2012 and compare it with the 1% VaR computed from

the CCC and the RiskMetrics, exponentially smoothed DCC of questions 3 and 4.

7. Estimate over the 2007-2010 sample a constant-mean Principal Component (also called Or-

thogonal) GARCH(1,1) model. Plot the predicted, one-day ahead dynamic volatilities and

correlations resulting from the PC/Orthogonal GARCH model. In the case of volatilities, it

is easier if you compute and plot the volatility over time of your portfolio. Compare such a
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dynamic, conditional volatility with the time series you should have derived from the DCC

GARCH of question 5.

8. Recursively compute and plot 1% VaR over the out-of-sample period January 1, 2011 - Decem-

ber 31, 2012 using both historical and weighted historical simulations with a rolling window of

 = 252 days and–in the case of weighted historical simulations–a decay factor of  = 099

Apply your calculations to each index return series individually as well as to your portfolio

returns. Check whether a simple, weighted-combination of individual asset historical VaRs

equals the historical VaR for your portfolio.

9. Estimate a BEKK-GARCH(1,1) model. In case you fail, try again using a longer sample

Jan. 1, 2003 - Dec. 31, 2010. How long does it take on your computer to estimate a truly

multivariate (and yet, already simplified in some ways, as commented in the lectures) BEKK

model? [Hint : You need to use Kevin Shepard’s full bekk mvgarch function; in case your first

attempt at estimating the BEKK model fails, you will need to change the beginning and end

dates of the sample and then F9 to re-estimate the BEKK, since the code will have stopped at

that point] WARNING: on not-so-good, not-so-new laptops this point of the code may take up

to 15 minutes to run. You can always stop execution by pressing the combination CRTL+C.

Solution

This solution is a commented version of the MATLAB code Ex Multi GARCH 2013.m posted

on the course web site. Note that in this case, all the Matlab functions needed for the correct

functioning of the code have been included. The loading and pre-processing of the data is similar

to Appendix B and therefore it will not be repeated here. The same applies to the exchange rate

transformations that have now become customary in the first part of our Matlab workouts.

1. Figure C1 shows the plots of the daily data and shows no surprises.

Figure C1: Daily index returns (expressed in euros) for the sample 2007-2010
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2. Next, we compute the unconditional covariance matrix of the 3 × 1 vector of index returns
as well as the unconditional variance of an equally-weighted portfolio. Based on these sample

estimates of variances, we compute and plot the 1% unconditional (Gaussian) VaR measures

for each of the three national indices as well as for the equally weighted portfolio. We compare

it to an equally weighted average of the three 1% VaR measures and compare it with the 1%

normal VaR of the equally weighted portfolio. This is accomplished by the following simple

lines of code:

Cov matrix=cov(ret(first:last,:));

Corr matrix=corr(ret(first:last,:));

p=0.01;

VaR port unc=-norminv(p,0,sqrt(w’*Cov matrix*w));

VaR ger=-norminv(p,0,sqrt(Cov matrix(1,1)));

VaR us=-norminv(p,0,sqrt(Cov matrix(2,2)));

VaR uk=-norminv(p,0,sqrt(Cov matrix(3,3)));

VaR sum=[VaR ger, VaR us, VaR uk]*w;

Figure C2: Comparing 1% VaR measures based on unconditional correlation estimates

Figure C2 shows the results. Interestingly, the VaR of the equally weighted portfolio is not the same

as–it is in fact considerably lower (3.2% per day vs. 3.7%)–the equally weighted average of the

VaRs of each individual market. This is caused by the fact that if VaR is computed on the basis of

w0Σw then it becomes a highly complex (non-linear) function of the portfolio weights, which is not

the case when one simply sums and weights the VaR measures obtained for each individual market.

In fact, the figure clearly shows that diversification reduces–as you would expect–risk not only

when the latter is measured by portfolio variance, but also when you measure risk as VaR: this is

the difference between the first bar concerning the VaR of w0Σw and the remaining values, in which
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either diversification is not applied (when you put 100% of your wealth in each of the markets) or

the calculation is incorrectly performed, as the VaR of a portfolio is not the same as the portfolio

of the VaRs.

3. With reference to the post-financial crisis period January 3, 2011 - December 31, 2012 and

the equally weighted portfolio returns, next we compute and plot 3 recursive, daily (i.e., in

correspondence on each single day in this out-of-sample period) 1% VaR measures: (i) a

constant, unconditional Gaussian VaR computed as

VaR port unc=-norminv(p,0,sqrt(w’*Cov matrix*w));

(ii) a Gaussian GARCH(1,1) VaR directly estimated on portfolio returns (i.e., a passive VaR

measure)

VaR garch port=-vol Port*norminv(p,0,1);

(iii) a trivariate Gaussian Constant Conditional Correlation (CCC) GARCH (1,1) VaR in which

correlations are assumed to be constant and equal to the unconditional pair-wise correlations be-

tween first-stage standardized residuals from appropriately defined GARCH(1,1) models:56

% Standardized returns to be used in CCC calculations

ret std GER=ret ger(first:last,1)./sigma GER;

ret std US=ret us(first:last,1)./sigma US;

ret std UK=ret uk(first:last,1)./sigma UK;

ret std Port=port ret(first:last,1)./sigma Port;

% Estimates correlations from a Constant Conditional Correlation (CCC)

Multivariate ARCH

Gamma=corr([ret std GER ret std US ret std UK]);

VaR CCC=NaN(final-last,1);

for i=1:final-last

D=diag([vol GER(i) vol US(i) vol UK(i)]);

VaR CCC(i,1)=-norminv(p,0,sqrt(w’*D*Gamma*D*w));

end

Figure C3 shows the resulting VaR estimates from the three models, plus realized daily returns

(the blue time series). Obviously the unconditional VaR gives a constant 1% VaR that is clearly

and repeatedly violated only in the Summer of 2011. The remaining two models give similar VaR

estimates that are visibly time-varying and–which debunks a myth often entertained–most of

56This question implies that we estimate three GARCH(1,1) processes for the three indices. We omit those Matlab

commands as they are identical to those already commented in chapter 4.
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the time less restrictive than the unconditional VaR. However, between the Summer and the Fall

of 2011, in correspondence to the first bout of the European sovereign debt crisis, the univariate

GARCH-based and the CCC VaRs drastically decline (i.e., VaR becomes larger in absolute value)

and as a result a few of the violations recorded with respect to the unconditional, normal-based

VaR are avoided.

Figure C3: Recursive daily 1% VaR estimates from different alternative models

4. As instructed by the text of the workout, we have repeated question 3 with reference to the

same sample period, but this time comparing the daily, recursive, 1% VaR measures for: (i) a

Gaussian GARCH(1,1) VaR directly estimated on portfolio returns (i.e., a passive VaR mea-

sure); (ii) a trivariate Gaussian Constant Conditional Correlation GARCH (1,1) VaR in which

correlations are assumed to be constant and equal to the unconditional pair-wise correlations

between first-stage standardized residuals from appropriately defined GARCH(1,1) models–

and these are the same models already employed in Figure C3–and (iii) a trivariate Gaussian

Dynamic Conditional Correlation GARCH (1,1) VaR in which correlations are estimated from

an Exponential Smoothing, RiskMetrics-style model for the elements of the auxiliary matrix

Q:

options = optimset(‘fmincon’);

options.Display = ‘iter’;

parm=0.5; LB = 0; UB = 1; A = 1; b = 0.998;

lambda = fmin-

con(@dcc ES 3assets,parm,A,b,[],[],LB,UB,[],options,ret std GER,ret std US,ret std UK);

These lines of code perform manual fmincon-type estimation of a RiskMetrics-based DCC model

that uses as an objective function the routine @dcc ES 3assets that comes with Kevin Sheppard’s

GARCH package. Here LB is the lower bound of the region over which the search for the parameter

lambda, and UB is the upper bound.57 As printed on the Matlab screen, the estimated RiskMetrics

57A = 1 means that the constraint is linear and proportional.
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parameter  is 0.998. Figure C4 shows the recursive daily 1% VaR estimated under the three models.

The three models now all give roughly similar estimates, in spite of the important qualitative

difference between the CCC that assumes a constant correlation and the DCC that estimates a

time-varying conditional correlation.

Figure C4: Recursive daily 1% VaR estimates from different alternative models including RiskMetrics-DCC

Figure C5: Estimation output from GARCH(1,1)-DCC(1,1) model
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5. We estimate over the 2007-2010 sample a simple constant-mean GARCH(1,1)-DCC(1) model

to filter the dynamics of the correlations of returns at daily frequency. The lines of code

accomplishing these instructions are performed using functions that were already used in

Appendix B. The estimates of the parameters are printed on the screen and are shown in

Figure C5.The estimates obtained are rather typical, although the sum of the conditional

covariance () DCC coefficients (0.735) is rather low and surely lower than what we have

already reported in Appendix B. Such a low persistence of covariance also explains why in

Figure C4 the differences between CCC and DCC estimates are modest at best. The dynamic,

predicted correlations implied by the model are plotted for the period January 2011 - December

2012 in Figure C6.

Figure C6: Predicted dynamic conditional correlations from DCC model

The plot confirms–in spite of some peaks and troughs–the approximate constancy of pairwise

correlations from the estimated DCC model, even over the out-of-sample 2011-2012 period.

These predicted correlations are obtained from the lines of code:

%A function designed to compute conditional variances and standardize returns

[sigma2 z]=garchfor(garch p,ret1);

[rho12 for rho23 for rho13 for Gamma dyn garch]=

dcc mvgarch for(par dcc,sret GER,sret US,sret UK,Corr matrix(1,2), ...

...Corr matrix(1,3),Corr matrix(2,3));

6. We compute and plot the 1% VaR from the DCC model of question 5 over the out-of-sample

period January 1, 2011 - December 31, 2012 and compare it with the 1% VaR computed from

the CCC and the RiskMetrics, exponentially smoothed DCC of questions 3 and 4. Figure

C7 shows the 1% VaR from CCC and from two alternative implementations of DCC. Apart

from the very early part of the out-of-sample period, when the RiskMetrics-based DCC risk

measures are lower (in absolute value) than those under CCC and GARCH-DCC, the model
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give very similar results. As seen in Figure C3, the real differences can be computed with

respect to the unconditional VaR and passive measures of VaR that are based on the univariate

time series of portfolio returns.

Figure C7: Recursive daily 1% VaR estimates from alternative CCC and DCC models

7. We estimate over a 2007-2010 sample a constant-mean Principal Component (also called

Orthogonal) GARCH(1,1) model:

% ORTHOGONAL GARCH (or PC-GARCH) - estimation

z pc=[z GER(:,1) z US(:,1) z UK(:,1)];

[H orth, parameters orth, Ht orth, stdresid orth, stderrors orth, A orth, B orth,

weights orth, principalcomponets, cumR2 orth] =...

o mvgarch(z pc,3,1,1);

This uses a toolbox function, o mvgarch for which help information appears in the code. Figure

C8 plots the predicted, one-day ahead dynamic volatilities and correlations resulting from the

PC/Orthogonal GARCH model.

Figure C8: Predicted dynamic conditional correlations from PC/Orthogonal GARCH model
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Figure C9 compares instead the the dynamic, conditional volatility with the time series we have

derived from the DCC GARCH in question 5. Of course, the difference is given by the fact that

the predicted volatilities in the case of a PC GARCH are obtained from the principal components

of returns. The figure shows tha two series–with the exception of the first month of 2011–are

quite similar, which indicates that an application of GARCH to principal components tends to give

results that are close to those obtained from each of the return series individually.

Figure C9: Predicted dynamic volatilities from PC/Orthogonal vs. DCC GARCH models

8. We have recursively computed and plotted 1% VaR over the out-of-sample period January

1, 2011 - December 31, 2012 using both historical and weighted historical simulations with a

rolling window of  = 252 days and–in the case of weighted historical simulations–a decay

factor of  = 099We apply calculations to each index return series individually as well as to

your portfolio returns:

m=253; %Length of the rolling window (approximately one year)

eta=0.99; %Decay parameter in weighted historical simulation

VaR HS=NaN(final-last,4);

VaR WHS=NaN(final-last,4);

for jj=1:4

for k=1:final-last

%Historical Simulation

VaR HS(k,jj)=-quantile(RET all(last+k-m:last+k,jj),p);

%Weighted Historical Simulation

[ret sort I]=sort(RET all(last+k-m:last+k,jj));

weight=(eta.ˆ(m-I)*(1-eta)/(1-etaˆm));

csum=cumsum(weight);

ind=rows(csum(csump));
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if ind==0

VaR WHS(k,jj)=-ret sort(ind+1);

else

lambda=(p-csum(ind,1))./(csum(ind+1,1)-csum(ind));

VaR WHS(k,jj)=-(lambda*ret sort(ind+1,1)+(1-lambda)*ret sort(ind,1));

end

end

Figure C10 shows results for individual stock markets, while Figure C11 for the equally-weighted

portfolio. Clearly for all national stock markets, the late Summer and Fall of 2011 turned difficult

for these rather simple methods of VaR calculation. In both pictures we also notice that the VaR

estimated by simulation tend to be rather “generous”, i.e., to imply high levels for the risk measure,

generally higher than what is required by 99% of all realized returns over long periods of time.

Figure C10: Recursive daily 1% VaR estimates from historical and weighted historical simulations

Figure C11: Recursive daily 1% VaR estimates from historical and weighted historical simulations

9. We estimate a BEKK-GARCH(1,1) model using the code:
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first=datefind(datenum(’01/03/2006’),date);

last=datefind(datenum(’12/31/2007’),date);

[par bekk, llk bekk, Ht bekk, likelihoods bekk, stdresid bekk, stderrors bekk, A, B,

scores bekk] =...

full bekk mvgarch([ret ger(first:last,1) ret us(first:last,1) ret uk(first:last,1)],1,1);

% Display estimation results

disp([’FULL BEKK-GARCH(1,1) PARAMETERS’]);

disp([’ Estimate Std. Error Robust t-stat’]);

disp([par bekk diag(stderrors bekk) (par bekk./diag(stderrors bekk))]);

As advised, we use Kevin Shepard’s full bekk mvgarch function obtaining

Figure C12: Parameter estimates from BEKK GARCH(1,1) model
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As a matter of fact, even on a relatively new and decent laptop, because of its many parameters,

estimation of a BEKK model may take up to 5 minutes.
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Errata Corrige

(21/05/2013, p. 25) The formula for (matrix) covariance targeting in the DCC is:

Q+1 = (1− − )[zz
0
] + zz

0
 + Q

(29/05/2013, p. 12) A term
P

=1
2
 ̂
2
+1

£
Φ−1()

¤2
had been omitted twice in the formulas

appearing in this page. No qualitative effects for the conclusions in this page.
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