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1. Introduction

This chapter marks a strong discontinuity when compared to previous chapters: even though our goals

remain the same, i.e.,

• model and forecast the conditional first and second moments (variances and correlations, besides
conditional means) of asset returns, and

• adopt an active approach when necessary, which means that the modelling effort ought to be
spent on the vector of asset returns when appropriate,

in this chapter we focus on models in which the dynamic process followed by such conditional

moments may undergo sudden shifts of regimes. Ironically, the discontinuity mentioned above concerns

the fact this chapter is about discontinuities in dynamic time series processes. Just to fix ideas, while

in earlier chapters we have always focused on dynamic models in which parameters and therefore the

nature of the underlying processes was constant over time, for instance

+1 = +  + +1 +1 ∼ (0 2) (1)

in this chapter we work with models of the type, say

+1 = +1 + +1 + +1 +1 ∼ (0 2+1) (2)

where +1 is a stochastic variable (“S” here stands for state) that is allowed to change over time.

Clearly, (1) represents a standard, Gaussian AR(1) model (see chapter 2); on the contrary, (2) will

be defined as a regime switching (henceforth, RS) AR(1) model with (conditionally) Gaussian shocks.

Although to exactly model the dynamics of +1 represents the deep point of this chapter, one example

could be: +1 = 0 until time 0 (i.e., between  = 1 and  = 0); +1 = 1 from time  = 0 + 1 until

the end of the sample,  =  . Therefore while for  = 1 2, ..., 0 the AR(1) model

+1 = 0 + 0 + +1 +1 ∼ (0 20)

applies, for  = 0 + 1 0 + 2, ...,  it will be the model

+1 = 1 + 1 + +1 +1 ∼ (0 21)



that generates/fits the data, with 0 6= 1, 0 6= 1 and 20 6= 21. Note that when you “switch”

(indeed) from (1) to (2), not only the parameters entering the conditional mean function,

[+1] = +1 + +1

become RS, but the same occurs to the conditional variance function:

 [+1] = {(+1 −[+1])
2} = {2+1} = 2+1 

As we shall see, this family of time series models has the potential to render both conditional means

and conditional second moments time-varying functions, depending on the state variable +1. An

obvious example of an event sufficiently important to trigger “a 0” is Lehman’s bankruptcy in the

Fall of 2008.

More generally, the idea underlying RS models is simple enough: because in finance we care not

just for modelling the relationships among variables/quantities of interest but also about forecasting

the target quantities (as you now understand, not only conditional mean returns, but also variances or

correlations), if and when such relationships are subject to instability over time, then such instability

also needs to be modelled and predicted. RS models are a set of relatively recent and innovative

statistical tools that are used to detect and predict instability (the discontinuities we have referred to

above) in statistical relationships. It is easy to give a number of well-motivated, popular examples for

how such instability manifests itself: in this chapter, we shall discuss in depth the idea of bull and bear

regimes alternating in financial markets, and their economic meaning; the recent financial crisis has

shown that most financial markets are characterized by variations in their liquidity state over time; it is

well known that exchange rates tend to alternate protracted periods of depreciation and appreciation,

which means that it is often possible to detect visible, persistent swings in currencies’ trends; there

is an ever expanding literature on the presence and the origins of regimes in monetary policy (e.g.,

as dictated by the personality of governors and chairmen, think of Ben Bernanke taking over Alan

Greenspan’s chair, or Mario Draghi taking the helm of the ECB from Jean-Claude Trichet).

The financial econometrics literature has captured the idea that statistical relationships may be

unstable but that such instability may contain sufficient structure to allow us modelling (and often,

prediction) in many different ways. There is a literature on regime switching models driven by observ-

able economic variables, sometimes in the form of thresholds. Another literature has instead modelled

regimes as driven by latent (unobservable) stochastic variables, usually with a Markov structure; in

this case we shall speak of Markov switching (MS) models, which is one of the key technical aspects

of this chapter. However, there is also a literature that has examined ways to test for the presence

of structural breaks in parameters, which are unpredictable break-points; recently (but using Bayesian

techniques that are beyond the reach of our technical treatment), techniques to also predict the effects

of future structural breaks have been proposed.1

1See e.g., Guidolin, Ravazzolo, and Tortora (2013) on how to forecast stock, bond, and real estate returns when their

process is subject to random breaks and a resarcher wants to account for this in an APT-style framework. Your former
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Section 2 synthetically shows that in the presence of instability–in particular, when regimes/breaks

may be predicted–standard, simple regressions are insufficient quantitative tools. Section 3 provides

a short primer to RS models (threshold, smooth transitions) that are however not the more widespread

MS models. In this Section we place particular emphasis on switching regressions. Section 4 introduces

the basics concerning the structure and specification of MS models. Because these are special cases

of RS models driven by a first-order Markov chain, this Section also contains a quick and heuristic

review of what Markov chains are and of what properties we need them to possess for our econometric

modelling effort to be effective. Section 5 explains how one should go about estimating MS models.

This is a rather technical section: in practice, nobody really solves with paper and pencils the first-

order conditions reported in Section 5 and yet a user of econometrics is as good as her understanding

of what math coprocessors are crunching out inside your computer or server. Section 6 explains how

one should forecast returns from MS models and one related complication that makes most of the

predictions commonly computed simple (but sometimes useful) approximations to the process.

Section 7 deals with model selection–in particular, with the delicate task of picking the appropriate

number of regimes–and diagnostic checks, i.e., one does one assess whether a MS model successfully

fits the data at hand. This section also contains a multivariate example that emphasizes the MS

may be used to forecast correlations, and discusses a few extensions that show that MS have been

recently combined with the GARCH and DCC models of chapters 4-6. Section 8 shows that MS

models naturally produce (both unconditional and conditional) distributions for asset returns that are

not normal, and such present rich and interesting skewness and kurtosis, even when return shocks are

simply assumed to be IID normal over time. Section 9 explains how it is possible to amend plain-vanilla

MS models for them not to contradict any fundamental asset pricing principles, such as the one that

higher risk ought to lead to higher risk premia. This section represents a sort of side-show and has

the main goal of reassuring users of MS econometrics that their basic finance knowledge is not under

threat. Section 10 presents three applications that were discussed during the lecture, i.e., using MS

VAR models to study contagion, predictability, and in risk management applications. Appendices A-C

present a few additional technical details that may be useful to understand the origin of claims that

appear in the main text. Appendix D presents a fully worked out set of examples in Matlab
R°
.

2. A Naive Approach: When Regressions Are No Longer Enough

A näıve approach is to model the instability in the process followed by financial return data simply

using dummy variables in “regression-type” analysis: One regime applies before the break or regime

switch, the other afterwards. For instance, one estimates (say, by OLS)

+1 = [0{≤0}+ 1{0}] + [0{≤0}+ 1{0}]+ +1 +1 ∼ (0 [20{≤0}+ 21{0}])

colleague Carlo Magnani (2012) has written an MSc. thesis that extends GRT’s framework to compare commercial with

residential real estate, with reference to the subprime crisis in the United States.
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where {≤0} and {0} are standard indicator variables:

{≤0} =

(
1 if  ≤ 0

0 if   0
{0} =

(
1 if   0

0 if  ≤ 0


However, this way of proceeding makes sense if and only if 0 is known for sure. This has two

problematic effects: first, dummy regressions can only be used to estimate RS parameters conditioning

on some other method having been used early on to infer that 0 triggers a regime shift or structural

shift in parameters; such a method remains mysterious;2 second, even assuming that such a method

to isolate breaks or regime shifts may exist, using dummy variables will not allow us to predict future

instability, for instance the average duration of the current regime (i.e., when it is likely to end).3 When

forecasting asset returns or their properties is your crucial objective, estimating simple regressions will

be insufficient.

3. A Short Overview of Threshold and Smooth Transition Models

Econometricians have developed methods in which instability is stochastic, it has structure, and as such

it can be predicted. This reflects the intuition that such regime shifts are caused by some imperfectly

predictable forces that produce the change in the dynamic process of asset returns. Hence, rather than

following the “dummy/break-the-regression approach” in Section 2, it is more elegant to assume that

there is some larger model encompassing all “regressions” (better, dynamic time series models) across

all possible states. For instance, using the same example already proposed in the Introduction, the

new framework may be

+1 = +1 + +1 + +1 +1 ∼ (0 2+1)

where +1 is a stochastic variable that may take  ≥ 1 values, +1 = 1 ... ∀ ≥ 0. Of course,
when  = 1, the model simplifies down to the classical (1); when  ≥ 2 we speak of either a RS or
of a MS model. However, specifying (2) provides at this point an incomplete description of the time

series properties of the data: a complete description of the probability law governing the data requires

a probabilistic model of what causes any time variation in +1. The econometrics literature offers

three key examples of frameworks with regimes:4 (i) threshold models; (ii) smooth transition models;

(iii) MS models. Sometimes, but this is a rather subjective labeling, we call RS models frameworks

of the type (i) and (ii) in opposition to MS models that are admittedly more popular and successful,

at least in quantitative financial applications. In this section, we devote some limited space to a brief

description of what the models grouped under (i) and (ii) are, in case you ever encounter them.

2If you were to object that structural change must consist of something rather major and therefore visible, I will ask

you to alert me (call collect, do not worry) next time you spot stock markets switching for a fact (i.e., you must be able

to observe that with no uncertainty) from a bear to a bull market or viceversa. Nah...
3Either 0 is obvious to predict, which is however an embarrassing claim because the change in parameter values

would then have been discounted by all traders in the market a long time before, or 0 becomes completely unpredictable

which is equivalent to surrender to the randomness of market states.
4This is just a heuristic classification: once you leave the special case of linear models, there are infinite non-linear

models–and among them, RS and MS specifications–you can choose from.
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In a threshold model, +1 assumes  values in dependence of the value taken at time  by some

threshold variable  (typically either one or a combination of a few of them) for instance:

+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if  ≤ ∗1 (+1 = 1 + 1 + +1 +1 ∼ (0 21))

2 ∗1   ≤ ∗2 (+1 = 2 + 2 + +1 +1 ∼ (0 22))
...

...
...

 ∗   (+1 =  +  + +1 +1 ∼ (0 2))



where ∗1, 
∗
2, ..., 

∗
 are estimable threshold parameters that are simply required to exceed the min-

imum value in the sample for  and to be inferior to the maximum for . What is ? An example

could be represented by the Federal Funds (FF) rate, at least in the U.S.: when  = 2 then you may

think that

+1 =  +  + +1 +1 ∼ (0 2)

when  ≤ ∗ (loose monetary policy, high expected returns and low risk), i.e., when the FF rate is

below some threshold ∗ that will need to be estimated; otherwise, when   ∗ (tight policy),

+1 =  +  + +1 +1 ∼ (0 2)

which implies low expected returns and high risk.

More generally, the threshold regression model of Tong (1983) allows for abrupt switching depending

on whether the transition variable is above or below a threshold:

+1 = [1 + (1− )2] + [β1 + (1− )β2]
0X + +1

+1 ∼ (0 [
2
1 + (1− )

2
2])  =

(
1 if (X)  

0 if (X) ≤ 
 (3)

i.e., each of the two regimes applies in dependence on whether (X) exceeds or not a threshold  (to

be estimated), where  : R → R is a function that converts the current values of the predictors in

X into a value to be compared with the threshold  .
5

In a smooth transition model, +1 is drawn from some cumulative probability distribution (CDF)

 (·) whose domain is suitably partitioned into  non-overlapping sub-intervals to allow us to simulate

the regime +1. One possibility is that in practice  is drawn from a discrete probability distribution

 (;) that can take  values and that also depends on some threshold variable ;  (;) is then

a CDF that gives you Pr( = 1), Pr( = 2),. . . , Pr( = ) for instance:

Pr( = 1;) =  (1;)

Pr( = 2;) =  (2;)−  (1;)



Pr( = ;) =  (;)−  ( − 1;).
5Of course, when the function (·) reduces to a selector that “extracts” one variable from X, then the regime is

defined simply on the basis of the extracted variable.
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In this case, it is the change of the shape of  (·;) as  changes that affects the probability of regimes
and hence their dynamics. One may ask why is this model called “smooth”: the reason is that  no

longer deterministically determines the state, but simply the CDF that affects the assessment of the

probability of regimes.

Whilst threshold regressions impart an abrupt non-linear behavior depending on whether the

threshold variable(s) is above or below the threshold value, the smooth-transition variant allows for

possible gradual movements among regimes, and is able to capture two types of adjustment. First, the

parameters of the model change depending upon whether the transition variables is above or below the

transition value. Second, the parameters of the model change depending upon the distance between

the transition variable and the transition value. For instance, a general smooth transition regression

(STR) model is given by:

+1 = 1 + (β1)
0X + [2 − 1 + (β2)

0X − (β1)0X] (e
0
X) + 


+

+1 ∼ (0 [21 + (
2
2 − 21) (e

0
X)]) (4)

where 0 ≤  (e0X) ≤ 1 is the transition function and the th variable in X (selected by the product

e0X) acts as the transition variable.
6 One may also think of generalizing  (e0X) to  ((X)), where

 : R → R a function that converts the current, time values of the predictors in X into a value

to be fed into the transition function. The smooth transition is perhaps theoretically more appealing

over the simple threshold models that impose an abrupt switch in parameter values because only if all

traders act simultaneously will this be the observed outcome. For a market of many traders acting at

slightly different times a smooth transition model is more appropriate. For instance, it may be true

that high Fed funds rates () have a negative effect on future stock returns only when monetary

policy is strongly tightening, meaning that e0X selects ∆ and that  (e
0
X) ' 1 for very high

values of ∆; at the same it may be sensible that high Fed funds rates forecast positive future stock

returns only for extremely negative values of ∆ for which  (e0X) ' 0 In intermediate situations
of ∆ ' 0  (e0X) could take intermediate values so that the effect of ∆ on +1 will be captured

by a weighted combination of elements in β1 and β2.

The STR model allows different types of market behavior depending on the nature of the transition

function. Among the possible transition functions, the logistic has received considerable attention in

the literature and is given by the following, where the full model is referred to as the Logistic STR (or

LSTR) model:

 (e0X) =
1

1 + exp(−(e0X − ))
  0 (5)

where  is the smoothing parameter, and  the transition parameter, both to be estimated. This

function allows the parameters to change monotonically with e0X. As  → ∞,  (e0X) becomes a

6We have already introduced in earlier chapters the fact that the vector e is a special array that contains a 1 in the

th position, and zeroes elsewhere.
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standard dummy function:

 (e0X) =

(
1 if e0X  

0 if e0X ≤ 

and (5) reduces to a threshold regression model. As  → 0, (4)-(5) becomes linear because switching

is impossible.7

A peculiar issue in estimating STR models concerns the smoothing parameter, , the estimation

of which may be problematic. In the LSTR model, a large  results in a steep slope of the transition

function at , thus a large number of observations in the neighborhood of  are required to estimate 

accurately. As a result convergence of  may be slow, with relatively large changes in  having only

a minor effect upon the shape of the transition function. When applying these non-linear models,

another key issue is the choice of the transition variable.

4. Markov Switching: Definition and Basic Properties

MS represents the most widely applied and best known case of RS model in both finance and macroeco-

nomics. Moreover, it is certain that RS and MS models represent by themselves the most important

example of non-linear time series models of current application.8 Because in our lectures we have

dealt with both the case of univariate as well as multivariate MS models, in this chapter we present

the general case of a multivariate model. In particular, we consider the case of a  × 1 random vector

of returns, R. However, especially to convey the necessary intuition, we also present a few examples

based on the limit case of  = 1, in case these make your understanding easier; yet, it is should be

clear that there are very few or no differences between the cases of  = 1 and   1, apart from the

need to use vector and matrices in the latter case. Suppose that the random vector collecting returns

on  different assets follows a -state Markov switching (MS)  () process with heteroskedastic

component, compactly () ( ),

R+1 = μ+1
+

X
=1

A+1R+1− +Ω
12
+1

²+1 +1 = 1 2 ...,  (6)

with ²+1 ∼ IID (0 I).
9 The acronym MS(I)VARH means “Markov switching”, “Vector autoregres-

sive”, “heteroskedastic” model;10  is the number of regimes that you are free to specify (or test for,

7An alternative functional form governing the switches is represented by the exponential, with the resulting model

referred to as the Exponential STR (or ESTR) model:

 (e
0
X) = 1− exp(−(e0X − )

2
)   0

where the parameters change symmetrically about  with e0X. If  → ∞ or  → 0 the ESTR model becomes linear,

while non-linearities require intermediate values for . This model implies that the dynamics obtained for values of the

transition variable close to  differ from those obtained for values that largely differ from .
8In spite of this possible difference among MS and RS models, in this chapter the concepts of regime and state are

now used interchangeably. This derives from the fact that after all MS represents one special case of RS.
9Assume the absence of roots outside the unit circle, thus making the process stationary. See chapter 3 for related

definitions and explanations.
10The “I” in paranthesis is probably superfluous, but it stands there to emphasize that in (6) also the intercept is

regime-dependent. In what follows, we shall often simplify the acronym omitting the “I” when this causes no ambiguity.
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when needed, see Section 7) and  is the number of autoregressive lags that you can select (or again,

test for). μ+1
collects the  regime-dependent intercepts, while the  alternative × {A+1}=1

vector autoregressive matrices capture regime-dependent VAR-type effects at lags  = 1 2..., .11 This

means that with  VAR lags and  regimes, there are a total of  matrices to deal with, each poten-

tially containing–unless restrictions are imposed–2 parameters to estimate. The (lower triangular)

matrix Ω
12
+1

represents the factor applicable to state +1 in a state-dependent Choleski factorization

of the variance covariance matrix of asset returns Ω+1 :
12

Ω
12
+1

(Ω
12
+1

)0 = Ω+1 ≡  [R+1|= +1]

= denotes time  information of all past observations and states (filtered states, see below). Note that

Ω
12
+1

is in no way the matrix of square roots of the elements of the full covariance matrix Ω+1 (if

so, how would you deal with potentially negative covariances?).13 Obviously, a non-diagonal Ω
12
+1

makes the  asset returns simultaneously cross-correlated, thus capturing simultaneous comovements

between returns on different assets. Conditionally on the unobservable state +1 (6) defines a standard

Gaussian reduced form VAR() model, which is the meaning of ²+1 ∼ IID (0 I ). This means that

if one were to take +1 as given and observable (we shall not of course, in practice), then between

time  and + 1, (6) would become a VAR() similar to those already encountered in chapter 3.

We also assume that   1 alternative hidden states are possible and that they influence both the

conditional mean, the conditional variance, and the conditional correlation structures characterizing

the multivariate process in (6), +1 = 1 2  ∀. This regime variable is latent (also said hidden
or unobservable) in the sense that even at time  both the agent/investor of our models and the

econometrician fail to observe +1: at most they can both use the methods that will be described

below to produce data-driven inferences on the nature of +1 over time. Basically, the same sample

data concerning the  variables inR+1 are used to also produce inferences on the sample path followed

by {}=1, besides producing standard inferences on the parameters, see Section 5.1. Finally, given
past regimes, +1 is assumed to be independent of any other random variable indexed at time + 1,

and in particular +1 is independent of +1.

Several special cases of (6) are often used in finance, for instance the simple MSVARH( 1) case:

R+1 = μ+1
+A+1R+1− +Ω

12
+1

²+1 +1 = 1 2 ..., 

which is a simple VAR(1) with  regimes. Of course, in the literature, the case of  = 2 tends to

be the most common, even though Guidolin (2012) explains why there is nothing special or magical

11Here VAR is the acronym for “vector autoregressive” and this has little to do with the acronym VaR (notice the

lowercase “a”), which means value-at-risk.
12 [R+1|= +1] in the expression that follows is a covariance matrix that conditions on time  information, but

the structure of which depends on the regime at time  + 1, +1. We should indeed emphasize that all matrices of

parameters in (6) are made to depend on the regime at time + 1, +1. This regime-dependent covariance matrix has

been called on purpose Ω+1 and not Σ+1 to distinguish it from the GARCH-type covariance matrix, Σ+1
13In fact, Ω

12

+1
is a lower triangular matrix appropriately defined according to an algorithm that is implemented in

most software packages (sure enough, in Matlab). Section 10.1 shows one example for the  = 2 case.
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about setting  = 2 especially when  is relatively large.14 Interestingly, especially when daily and

weekly returns data are used, it is not uncommon to find that the data actually support a choice of

 = 0 which reduces the model to a MSIH() (or MSIH( 0)):

R+1 = μ+1
+Ω

12
+1

²+1 ²+1 ∼ IID (0 I )

However, in the literature you also find many cases in which  = 0 works at all frequencies. The reason

is that when   2 it is possible that our common perception of   1 being needed in standard

single-state VAR() models may be caused by our omitting the presence of regimes in the dynamics

of asset returns.15 Clearly, in the univariate case (6) becomes a simpler MSAR( ), where the “V”

indicating a vector process has been dropped because  = 1:

+1 = +1 +

X
=1

+1+1− + +1+1 +1 = 1 2 ..., 

where +1 ∼ IID (0 1) and +1 has now become a regime-specific volatility. One example of a

two-state bivariate heteroskedastic VAR(1) model is:"
1+1

2+1

#
=

"
1+1
2+1

#
+

"
11+1 12+1
21+1 22+1

#"
1

2

#
+

+

"
1+1 0

12+12+1

q
1− (12+1)22+1

#"
1+1

2+1

#


where 11+1 and 22+1 are MS AR(1) coefficients, while 
12
+1

and 21+1 capture the regime-specific

cross-serial correlation effects of 2 on 1+1 and of 
1
 on 2+1 respectively. The matrix"

1+1 0

12+12+1

q
1− (12+1)22+1

#
is a bivariate Choleski factor. Moreover"

1+1 0

12+12+1

q
1− (12+1)22+1

#
·
"
1+1 12+12+1

0
q
1− (12+1)22+1

#

=

⎡⎢⎢⎣
21+1 12+11+12+1| {z }

12+1

12+11+12+1 (12+1)
222+1 + [1− (12+1)2]22+1

⎤⎥⎥⎦
=

"
21+1 12+1

12+1 22+1

#
= Ω+1 

14Think about collecting in R+1 three different assets or portfolios, each characterized by two specific, not perfectly

synchroneous regimes. Then one ought to expect to find 23 = 8 regimes if the assets or portfolios are truly different.

For instance, Guidolin and Timmermann (2006) use two U.S. stock portfolios and one U.S. Treasury portfolio to find

that because the stocks are largely in synch, four regimes–i.e., two for stocks and two for bonds–are needed to fully

characterize their data.
15Just to complete the list of possibilities, Ang and Bekaert (2002) have used weekly data to make famous a MSH()

model,R+1 = +Ω
12

+1
+1. In principle it is also possible to envision the use of homoskedastic MSI() models, R+1 =

+1 +Ω12+1 with constant covariance matrix. However, the empirical evidence of conditional heteroskedasticity is

empirically so overwhelming that the instances in which MSI() has been found to appropriately fit the data are limited.
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Finally, a typical and famous univariate, two-state MSIH(2) model is:

+1 = +1 + +1+1 +1 = 1 2

where 1  2 and 1  2 which supports the interpretation of regime 1 as a “bear state” of high

variance and of regime 2 as a “bull state” also characterized by lower volatility. For instance, Figure 1

shows such an estimation result for three alternative U.S. excess return (stock and bond) NYSE (New

York Stock Exchange) portfolios, as obtained by Guidolin and Timmermann (2006a):

Figure 1: MSIH(2,0) parameter estimates for U.S. stock and bond portfolios, monthly 1954-1999 U.S. data

In case you are wondering how it may be possible that the highest (lowest) mean return regime may

imply the lowest (highest) risk, at least as measured by portfolio variance here, this will be discussed

in Section 9.16

Consider instead a few univariate MSIAH(2,1) models for the same portfolios as in Figure 1.

Figure 2: MSIAH(2,1) parameter estimates for U.S. stock and bond portfolios, monthly 1954-1999 U.S. data

In Figure 2, expected excess returns, risk (as measured by state-specific volatility), as well as the

16You are possibly already objecting that, unless one is dealing with the market portfolio (here, the large capitalization

stocks portfolio), it is mistaken to measure (systematic) risk using variance only. Stay tuned on this point too. Your

former colleague Maria Luisa Magli (2013) has shown that when MS is taken into account, residual non-systematic risk

stops indeed to be priced in stock returns.
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persistence of returns all depend on the unobservable Markov state variable that may take two values.17

For instance, large capitalization stock returns are more persistent in the second state than they are in

the first state; for Treasury bonds, the opposite applies. Note that in these applications from Guidolin

and Timmermann (2006a), as depicted in Figures 1 and 2, the two regimes are always very persistent, in

the sense that estimates of ̂ (sometimes called the “stayer” probabilities) always largely exceed 0.5,

meaning that you are more likely to remain in the initial regime than to switch out of it. For instance,

in the case of 10-year Treasury returns, we have ̂11 = 097 and ̂22 = 093: this means that from the

good (positive risk premium) state, one has only a 0.03 probability of switching to the bad state and

0.97 to remain, between  and  + 1; from the bad (negative risk premium) state, such probabilities

are 0.07 and 0.93, respectively. These considerations on the estimates of the main diagonal of the

transition matrix P imply that when one estimates MS (vector) autoregressive models, two notions of

persistence emerge and these may even be conflicting. On the one hand, persistence is captured by the

usual autoregressive parameters, such as the estimates of the  coefficients in Figure 2. On the other

hand, non-linear persistence in (6) is always captured by the implied persistence level of the Markov

chain that intuitively stems from the size of the estimated transition probabilities on the main diagonal

of P̂.18 An interesting finding of applications of MSIAH(,) models to financial time series, also at

relatively high frequencies, such as weekly, is that it is not true that asset returns are generally not

serially correlated; they are except for a few particular states. For instance, in Figure 2, we see that

large caps excess returns are highly and positively serially correlated in regime 1 (̂1 = 044) but rather

negatively serially correlated in regime 2 (̂2 = −016). It is then not surprising that when one ignores
the existence of regimes (i.e., when  = 1 is imposed without additional thoughts or tests), she tends

to find one single ̂ ' 0 and not statistically significant: if you take ̂1 = 044 and ̂2 = −016 and you
average them (maybe using their ergodic, long-run state probabilities defined below), you are bound

to find a small positive number that is often unlikely to be statistically significant.19

When  is large, (6) implies the estimation of a large number of parameters:

[ + 2 +( + 1)2 + ( − 1)]

In this formula,  is the number of regime-specific intercepts that need to be estimated; 2

is the total number of regime-specific VAR matrix parameters; ( + 1)2 is the total number of

17For instance, conditioning on being and remaining (foreover, which is counter-intuitive of course) in a regime  = 1 2

you could compute the regime-specific risk premium as

[+1 −
 |+1 = ] =


1− 



18Formally, such a non-linear persistence derives from the size of the eigenvalues of P̂0 in the VAR representation used

below in (9).
19It is like asking what is on average the weather like in Milan: averaging the 200 sunny days with the 150 days of rain

and overcast conditions, you get an answer–cloudy with chances of sporadic, timid rain–that is not really an accurate

one (that is a good forecast for London, not Milan). The source of the problem is clear: in Milan one tends to notice the

prevalence of at least two clearly defined regimes, and avaraging across them to just report one simple answer discards

most of the useful information.
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regime-specific lower triangular Choleski factor parameters that are needed; finally, ( − 1) is the
number of elements that can be estimated in the transition matrix, when the by-row summing up

constraints are taken into account. Because the saturation ratio is simply the ratio between the total

number of observations available for estimation ( ) and the total number of parameters, (6) implies

a saturation ratio of


[ + 2 +( + 1)2 + ( − 1)] 

For instance, for  = 2  = 8 and  = 1 (the parameters characterizing some of the applications in

Guidolin and Ono, 2006), this implies the estimation of 218 parameters and–with 35 years of monthly

data–a saturation ratio of (35 × 12 × 8)218 = 154 that, as we know, is much less than reassuring.
Of course, not all MS models imply such low saturation ratios. For instance, for the same example a

simpler MSIH(2) model (i.e., when  = 0) leads to a saturation ratio of (35× 12× 8)90 = 373 which
is quite an acceptable one, even though the burden to proceed to the estimation of 90 parameters

remains considerable. However, Section 5 will introduce an iterative estimation scheme (called E-M

algorithm) that makes this task possible.

MS models are known to capture central statistical features of asset returns. For instance, differ-

ences in conditional means across regimes enter the higher moments such as variance, skewness, and

kurtosis. In particular, the variance is not simply the average of the variances across the two regimes:

the difference in means also imparts an effect because the switch to a new regime contributes to volatil-

ity; this difference in regime means also generates non-zero conditional skewness. Section 8 performs

these calculations in detail. Finally, differences in means in addition to differences in variances can

generate persistence in levels as well as squared values akin to volatility persistence observed in many

return series. Again differences in means play an important role in generating autocorrelation in first

moments: without such differences, the autocorrelation will be zero. In contrast, volatility persistence

can be induced either by differences in means or by differences in variances across regimes. In both

cases, the persistence tends to be greater, the stronger the combined persistence, as measured by the

diagonal transition probabilities collected in P.20 For instance, consider the simple case in which

 = 2 and Pr(+1 = 1|) = Pr(+1 = 1) = 1 and Pr(+1 = 2|) = Pr(+1 = 2) = 1− 1 This

model does not represent a Markov chain switching process: it is a special, simpler case in which the

probabilities of each of the two regimes are independent of the past regimes and information. In this

case, we talk about IID mixture distributions. Yet, even in this case combining two normal densities

delivers arbitrary skewness and excess kurtosis, as shown by the simulated density (once you simulate,

20This is the sense in which Marron and Wand (1992) emphasize that mixtures of normal distributions provide a flexible

family that can be used to approximate many distributions. A mixtures of normals refers to a weighted sum of normal

densities, in which the weights are themselves random. In the case of MS, such weights are given by the random state

probabilities inferred over time, see Section 8. Mixtures of normals can also be viewed as a nonparametric approach to

modeling the return distribution if the number of states, , is allowed to grow with the sample size.
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you can fit it using your favorite kernel density estimator) in Figure 3.

Figure 3: Mixture density with |= 1 ∼ (0 1) |= 2 ∼ (4 1) and Pr(= 1) = 08

In fact, in Figure 3, the departure from normality caused by the mixture is so strong to take the

form of an obvious bimodality. However, a mixture of two Gaussian random variables need not have a

bimodal appearance: Gaussian mixtures can also produce a uni-modal density, and still allow skewness

and kurtosis to differ from those of a single-regime Gaussian benchmark, see for example Figure 4.

Therefore Markov models can clearly capture non-normalities in the data and can be useful in many

risk management applications. Section 10.3 tackles this issue again in greater depth.

Figure 4: Mixture density with |= 1 ∼ (0 1) |= 2 ∼ (2 8) and Pr(= 1) = 06

You will have already reckoned that the concept of MS model invokes the familiar notion of a

Markov random variable (chain). What is the link between MS models and the well-known Markov

chains analyzed in earlier courses, such as Derivatives I? MS models are defined in this way because of

the crucial assumption that the unobservable state  is generated by a discrete-state, homogeneous,

irreducible and ergodic first-order Markov chain such that:21

Pr
³
 = |{}−1=1 {R}−1=1

´
= Pr ( = |−1 = ) =  ∈ (0 1) (7)

21The assumption of a first-order Markov process is not especially restrictive, since a higher order Markov chain can

always be reparameterized as a higher dimensional (i.e., when the number of regimes is expanded to∗  ) first-order

Markov chain.
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where  is the generic [ ] element of the  ×  transition matrix P. Therefore in  , the

first index denotes that starting regime, the one that applies at time  − 1 while the second index
refers to the “landing” regime, that the system reaches at time . P is a transition matrix because

it collects the probabilities that the Markov chain follows when “transitioning” among alternative

regimes. Clearly, the Markov nature of  derives from the fact that given all past information from

both the regimes (albeit unobservable) and the return data–i.e., {}−1=1 {R}−1=1–the probability

of the subsequent states simply depends on the most recent set of states recorded in the system,

Pr
³
 = |{}−1=1 {R}−1=1

´
= Pr ( = |−1 = ). In this sense, it is as if all the “memory” in (6)

is simply retained through the most recent state, −1 = .

For instance, in the special case of  = 3 if you have obtained an estimate of P equal to

P̂ =

⎡⎢⎣ 088 009 003

001 096 003

023 0 077

⎤⎥⎦ 
and regime 1 is a bear state, regime 2 is a normal state, and regime 3 is a bull state, all regimes

are rather persistent with estimated durations of 8, 25 and 4 months, respectively. However, P̂ also

displays a peculiar structure by which while from the bear state it is possible to switch both to the

normal and to the bull state (and the same applies to the normal regime, even though this state

is by itself very persistent), from the bull state the market can only crash back into the bear state

without transitioning through the normal state. This type of structure tends to mimic the occurrence

of boom/bust dynamics, in which strongly bullish–even “bubbly” periods, at least in an empirical

sense–later collapse into bear regimes of declining prices and negative returns.

We now explain in detail the five characterizations/properties that we have attributed above to the

Markov chain process followed by :

1.  follows a discrete Markov chain because it can take only a finite number  of regimes.

2. The Markov chain is a first-order one because Pr
³
 = |{}−1=1 {R}−1=1

´
= Pr ( = |−1 = );

as already discussed, the current state is only affected by the state one period ago. However, this

assumption is not critical because even though one would have Pr
³
 = |{}−1=1 {R}−1=1

´
=

Pr( = |−1 =  −2 = ) if you re-define ̈ = [ −1] then it is clear that

Pr
³
̈ = |{̈}−1=1 {R}−1=1

´
= Pr(̈ = |̈−1 = )

i.e., any th order Markov chain can be re-written as a first-order chain after re-defining the

chain to include  ≥ 2 “copies” of the original states, for a total of  total regimes.

3. Ergodicity implies the existence of a stationary  × 1 vector of probabilities ξ̄ satisfying

ξ̄ = P
0
ξ̄ (8)
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This equation states that if the system in (6) were to be started from a vector configuration for

probabilities ξ̄, this would be simply copied by the multiplication P0ξ̄ in finding ξ̄ again. The

meaning of such multiplication is easily seen when π is a unit vector e ,  = 1 2 ..., :
22

P0π =

⎡⎢⎢⎢⎢⎣
11 21  1

12 22  2
... 

. . .
...

1 2  

⎤⎥⎥⎥⎥⎦e =
⎡⎢⎢⎢⎢⎣

1

2
...



⎤⎥⎥⎥⎥⎦ 
i.e., the product gives the vector of (predicted) probabilities of switching from a fixed, initial

regime  to each of the other possible regimes, besides the (predicted) probability of (6) remaining

in regime ,  . This example illustrates the sense in which (8) defines a  × 1 vector of
ergodic, also called long-run or unconditional state probabilities: if you start the system from a

configuration of current state probabilities equal to ξ̄, then your prediction for the probabilities

of the different regimes one-period forward is identical to ξ̄ itself, i.e., it is as if the system (6)

has indeed reached a steady-state. Appendix A shows that ξ̄ can also be interpreted as the

average, long-run time of occupation of the different regimes by the Markov chain, i.e. (at least

heuristically), as

lim
→∞

1



X
=1

{=} = ξ̄
0
e  = 1 2 ..., 

where ξ̄
0
e simply selects the th element of the ergodic probability vector ξ̄.

An alternative way to think about ergodicity can be developed by first defining δ as a  × 1
vector made of zeros except for the th element that equals 1 to signal  =  and 0 otherwise.

Then, when  follows a first-order Markov chain, it is possible to show (see Hamilton, 1994)

that

δ+1 = P
0δ + v+1 (9)

where v+1 is some error term with [v+1] = [v+ ] = 0, ∀ ≥ 1.23 (9) represents a sort of
VAR(1)-like representation of (a function of) the Markov state variable, δ. (9) is useful because

it gives you a easy way to forecast the state in a MS model:

[δ+1] = [P
0δ + v+1] = P0δ

which is exactly the P0π predictive multiplication used above. Moreover

[δ+2] = [P
0δ+1 + v+2] = P0[δ+1] = (P

0P0)δ

so that one can establish by induction that

[δ+ ] = (P
0)δ

22Note that the following expression uses the transpose of P and not P itself. Therefore because the rows of P need to

sum to 1 by construction, obviously the same applies to sums across columns of P0 which is used in what follows.
23Technically, we say that v+1 is a martingale difference sequence.
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where (P0) ≡ Q
=1P

0. At this point, a Markov chain (hence, the associated MS model) is

ergodic if and only if24

 lim(P0)δ = ξ̄

i.e., if a constant limit for the prediction as the forecast horizon diverges can be found that does

not depend on what time  is. By construction, ξ̄ι = 1 (Appendix A provides details on this

calculation). Note that (P0) as defined above does not yield the same result as taking powers of

each individual element of P0. For instance, while the matrix of squares of a transposed transition

matrix gives "
0952 0192

0052 0812

#
=

"
09025 00361

00025 06561

#


the product of matrices yields"
095 019

005 081

#
·
"
095 019

005 081

#
=

"
09120 03344

00088 06656

#
6=
"
09025 00361

00025 06561

#


4. The Markov chain process followed by  is time-homogeneous because P is a constant matrix

over time, i.e.,  does not change for all pairs  and . This is not a superfluous point because

more complex time-varying transition probability models with a dynamic transition matrix P

have been studied by econometricians and appear to be particularly loved by financial economists

(see Guidolin, 2012, for references and a discussion). Equivalently, in these models  follows a

time-heterogeneous Markov chain, so that  becomes itself a function of time.
25

5. Finally, irreducibility of the Markov chain implies that ξ̄  0 meaning that all unobservable

states are possible over time and no absorbing states or cycles among states exist. Consider for

instance the case  = 3, then

P̆ =

⎡⎢⎣ 11 12 0

21 22 0

0 32 33

⎤⎥⎦ =
⎡⎢⎣ 11 1− 11 0

1− 22 22 0

0 1− 33 33

⎤⎥⎦
implies that it is impossible to reach state 3 from the other two states: as soon as one leaves regime

3, because 33 ∈ (0 1) but 3 = 0 for  = 1 2 it becomes impossible to ever return again to state
3. Therefore, the third element of ξ̄ will have to be zero because lim→∞ 1



P
=1 {=3} = 0.

In practice, the matrixP is unknown and hence ξ̄ can be at most estimated given knowledge/estimates

of P extracted from the (full-sample) information set = = {R}=1. For simplicity, we will denote as
ξ̄ such an “estimated” vector of ergodic (unconditional) state probabilities. Appendix A shows that

besides representing the vector of ergodic probabilities, ξ̄ also represents the vector of unconditional

24Here plim means “limit in probability” as  →∞.
25Note the twisted roller-coaster effect: in this case, the model that is being used to capture instability in statisti-

cal relationships becomes itself unstable, i.e., we would therefore model and forecast the instability of instability, i.e.,

instability2.
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probabilities, i.e., the average frequencies of the  different regimes as the sample size  →∞, some-
times also denoted as π. The Appendix also offers one example of actual calculation of ξ̄ that you

should be familiar with. In the special case of  = 2, one obtains that

̄1 =
1− 22

2− 11 − 22
̄2 =

1− 11

2− 11 − 22


Appendix A shows that the formula P0ξ̄ = ξ̄ implies these expressions for ̄1 and ̄2, where obviously

̄1 + ̄2 = 1

4.1. One three-state example

Before moving to the more technical Sections 5 and 6 of this chapter, it is useful to take a look at one

more example to get additional “feeling” for what the estimation outputs from a MS model may look

like. The spirit is also to educate you to the fact that–although this remains less common–there

is nothing magical or unavoidable in setting  = 2 in a MS exercise. Sure enough,  = 2 is easier

and implies the estimation of less parameters than  = 3 but nothing in the universe is going to

scream for vengeance in case you happen to find that your data require  ≥ 3. Figure 3 shows the
estimation outputs of 6 alternative univariate three-state MS models applied to 1954-1999 monthly US

data on large stocks, small stocks, and long-term (10-year) Treasury bond excess returns, once more

from Guidolin and Timmermann (2006a).

Figure 3: MSIAH(3,) parameter estimates for U.S. stock and bond portfolios, monthly 1954-1999 U.S. data

Columns 2-4 concern estimates of MSIH(3,0) models in which there are no autoregressive compo-

nents; columns 5-7 concerns estimates of MSIAH(3,1) models. To save space (and also because we do

not known yet how to compute p-values for a MS model, or to perform estimation), we have omitted

standard errors of the individual parameter estimates, similarly to Figures 1 and 2. In the case of

equities, and independently of the model estimated, there are three states with a natural economic

interpretation: a bad, bear regime of negative mean excess returns; a normal regime of positive but

moderate mean excess returns; and a (strong) bull regime of exceptionally high mean excess returns.
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Once more, and this remains puzzling at least in the case of large cap excess returns which are quite

similar (i.e., highly correlated) to excess returns on the market portfolio, volatility is higher in the

bear regime than in the two remaining regimes. In fact, in the case of large caps, as the estimate

of  increases across regimes, the estimate of  declines: less risk maps into higher risk premia. In

the case of excess bond returns, the match with the properties described above for stock portfolios is

only partial:26 in the case of bonds, the highest risk premium state also carries the highest variance

and the ordering of the ̂ estimates is the same as the ordering for the ̂  = 1 2 3, which is

sensible. The Markov switching estimates of the AR(1) coefficients in columns 4-7 confirm what we

had observed before: regimes exist in which linear persistence is strong and statistically significant;

on the contrary, at least in the case of equities, the bad, bear regimes imply negative and (you may

check) statistically significant negative AR(1) coefficients, which means that lower excess returns today

forecast a rebound, higher excess returns, in the subsequent period. Finally, all regimes, especially in

the MSIH(3,0) case, are persistent, similarly to what was reported in Figures 1 and 2. Figure 4 reports

the ex-post smoothed probabilities of the three states for large and small cap stock portfolios from the

MSIH(3,0) models.27

Figure 4: MSIH(3,0) smoothed probability estimates for large and small capitalization U.S. stock portfolios

In Figure 4, the two rows of plots refer to large and small cap excess returns, respectively. The

three columns refer each to the three regimes. All regimes are also visibly persistent, especially the

second, normal state: when you enter such a regime, you tend to stay there on average for a few years.

Moreover, the smoothed probabilities of regime 2 is rather similar across small and large caps. Regimes

1 and especially 3 tend instead to be “spikier”, although if you look closely some persistence (average

duration is anyway several months) appears also in this case. In the case of bear state 1, this is most

26Make no mistake: the ordering and labeling of regimes is completely arbitrary, i.e., also in the case of excess bond

returns, the estimates of the regime-specific means can be sorted in the same way we did in the case of stocks.
27As Section 5.1 will clarify, the smoothed probabilities represent full-sample, complete information inferences on the

probability of each of the three regimes at each point in time .
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interesting: indeed when you enter such a bad regime of declining stock prices, you tend to remain

there with probability ̂11 = 074 in the case of large caps and ̂11 = 086 in the case of small caps.

Applying standard results from Poisson distributions, you have that the average durations of a bear

regime are:28

 duration large(1) =
1

1− 074 = 38 months  duration small(1) =
1

1− 086 = 7 months,

respectively. Of course, to a risk managers, to know that markets will be likely to remain bearish for

the next 4 or even 7 months may be incredibly useful. Average duration calculations confirm the high

persistent of regime 2 for both large and small cap stocks:

 duration large(2) =
1

1− 097 = 297 months  duration small(2) =
1

1− 092 = 13 months.

Analogous calculations find that the average durations for regimes 3 are 3 and 2 months, for large and

small stocks, respectively.

Figure 5 concludes showing the smoothed probabilities estimated from a MSIH(3,0) model in the

case of excess bond returns.

Figure 5: MSIH(3,0) smoothed probability estimates for U.S. 10-year Treasuries

Clearly, also in the case of bonds all the regimes are highly persistent, as confirmed by both the

pictures and the large estimates of ̂,  = 1 2 3. Indeed the corresponding average durations in the

case of bonds are 49.8, 12.6, and 36.5 months, respectively. Regime 2 tends to appear more episodically

but when it does, it is highly persistent. Of course a comparison of Figures 4 and 5 shows that the

regime dynamics in U.S. stock and bond excess returns appears to be rather different. Guidolin and

Timmermann (2006, 2007) elaborate on the implications of such differences and their asset management

implications.

5. Estimation of MS models

MS(I)VARH models are estimated by maximum likelihood. However some assumptions have to be

imposed to guarantee at least the local identifiability of the parameters (collected in a vector θ) under

estimation.29 The vector θ collects all regime-dependent parameters in {μ}=1, {A} 
=1 =1  and

28Given a regime  = 1 2 3 with estimated “stayer” probability ̂  1, the average estimated duration, i.e., the

expected time spent in each regime, is defined as () = 1(1− ̂)
29Later on  will be expanded to also include the elements of the transition matrix P, to form a new vector . However,

the conditions discussed here simply concern  in the definition given below.
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{Ω12 }=1. Roughly speaking, local identifiability means that at least in a neighborhood of the true
but unknown vector of parameters θ0 that generates the data in (6), it must be true that θ0 is also the

vector of parameters that maximizes the log-likelihood function. Krolzig (1997, pp. 93-95) generalizes

results in Leroux (1992) to show that under the assumption of multivariate Gaussian shocks (to the

measurement equation, see Appendix B), MSIVARH models are identifiable up to any arbitrary re-

labeling of unobservable states.

Estimation is performed through the EM (Expectation-Maximization) algorithm proposed by Demp-

ster et al. (1977) and Hamilton (1990), a filter that allows the iterative calculation of the one-step

ahead forecast of the state vector ξ+1| given the information set = and the consequent construction of

the log-likelihood function of the data. The algorithm is dividend in two logical steps, the Expectation

and the Maximization steps. Start from the model written in state-space form (see Appendix B for

an explanation of what this means, but even a very superficial understanding of this aspect will not

prevent you from following the argument below),

R = XAξ +Σ ((ξ)⊗ I) ²
ξ+1 = P0ξ + v+1

Here X is a  × (+1) matrix of predetermined variables with structure [1 R0−1R
0
−]⊗ ι  A is

a (+1)× matrix collecting the VAR parameters, both means or intercepts and autoregressive

coefficients, in all regimes

A =

⎡⎢⎢⎢⎢⎣
μ
0
1 μ

0
2 · · · μ

0


A11 A12 · · · A1
...

...
. . .

...

A1 A2 · · · A

⎤⎥⎥⎥⎥⎦ 
Σ is a× matrix collecting all the possible “square root” (Choleski decomposition) covariance

matrix factors [Ω
12
1 Ω

12
2 ... Ω

12
 ] such that ∀, Σ (ξ ⊗ I) (ξ ⊗ I )0Σ0 = Ω  the covariance ma-

trix of the asset return innovations ². For the sake of argument, assume that all the parameters of the

model in A and Σ are known. Because our goal is to perform estimation of {μ}=1, {A} 
=1 =1 

{Ω12 }=1 among the other parameters, and these enter A and Σ , we shall see below how this as-

sumption is later removed. We separately describe the expectation and maximization steps in Sections

5.1 and 5.2, and then bring them together in Section 5.3.

5.1. The expectation step: filtered and smoothed probabilities

The expectation step consists of taking parameter estimates from the previous maximization step as

given (call it θ) and in computing both the time series sequence of filtered probability vectors, {ξ̂|}=1,
and the time series sequence of smoothed probability vectors, {ξ̂|}=1, with the latter depending on
the former. The fact that one needs to use {ξ̂|}=1 and {ξ̂|}=1 to extract inferences concerning
the dynamics of regimes over time (technically, concerning {δ}=1) derives from the latent nature of

{}=1 and therefore {δ}=1 in a MS model.
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Algorithmically, the expectation step is the outcome of a few smart applications of Bayes’ law that

allow us to recursively derive a sequence of filtered probability distributions and then (going backwards)

a sequence of smoothed probability distributions. What filtered and smoothed probabilities are and

how these are inferred from the data is explained below. Starting from a prior on the  × 1 vector of
probabilities ξ, ∀ ≥ 1, defined as30

Pr (ξ|=−1) =
X
−1

Pr
¡
ξ|ξ−1

¢
Pr
¡
ξ−1|=−1

¢
.

This prior simply takes the time − 1 posterior Pr ¡ξ−1|=−1
¢
defined below and turns it into a new

prior, Pr (ξ|=−1)  Note that the elements of Pr
¡
ξ|ξ−1

¢
are simply the elements of the transition

matrix P. The posterior distribution of ξ given = = {=−1R} Pr (ξ|=), is then given by
31

Pr (ξ|=) =
Pr (R|ξ=−1) Pr (ξ|=−1)

Pr (R|=−1)
 (10)

where Pr (R|=−1) =
P


Pr (R ξ|=−1) =

P

Pr (R|ξ=−1) Pr (ξ|=−1) is the unconditional

likelihood of the current observation given its past. For compactness it can also be expressed as

η0ξ̂|−1 = ι0
³
η ¯ ξ̂|−1

´
where ¯ denotes the element by element (Hadamard) product and the  × 1 vector η collects the
possible log-likelihood values as a function of the realized state:32

η ≡

⎡⎢⎢⎢⎢⎣
(R|ξ = e1=−1)
(R|ξ = e2=−1)

...

(R|ξ = e =−1)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

(2)−12|Ω1|−12 exp
£
(R −XAe1)Ω

−1
1 (R −XAe1)

¤
(2)−12|Ω2|−12 exp

£
(R −XAe2)Ω

−1
2 (R −XAe2)

¤
...

(2)−12|Ω |−12 exp
£
(R −XAe)Ω

−1
 (R −XAe)

¤

⎤⎥⎥⎥⎥⎦ 
Of course (10) is nothing but Bayes’ rule applied to our problem. At this point, the vector of filtered

probabilities, ξ̂|, corresponds to the discrete probability distribution of the possible states perceived

on the basis of the information set =:

ξ̂| =
η ¯ ξ̂|−1

ι0
³
η ¯ ξ̂|−1

´  (11)

30In the expression below,


−1
(·) denotes the summation over all the elements of −1. For instance, when  = 2:

Pr


1
 |=−1


=

2
=1

Pr


1
 |−1


Pr



−1|=−1




A prior distribution on some random vector  simply collects your initial views on what sensible values for the elements

of  are. This is of course a good point to stop and review what Bayes’ law is from your undergraduate textbooks and

notes.
31In a Bayesian problem, the posterior distribution of the random vector  collects your views after you have observed

the data up to time  (here it is called =), and therefore reflects a mixture between your initial priors and the data, as
summarized by their likelihood function, in this case Pr (R|=).
32The Hadamard product is a bit different from the Kronecker product. Carefully observe the following example, that

echoes a similar example in chapter 6 for the Kronecker product:
11 12

21 22


¯


11 12

21 22


=


1111 1212

2121 2222




Programmers also refer to ¯ as the “dot product”.
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A filtered probability is the best assessment of (inference on) the current state, based on real time

information. Of course, ξ̂
0
|ι = 1, the filtered probability at time  they all sum up to 1. The

expressions in (10) and (11) emphasize that the filtered probability of being in regime  = 1 2, ...,

 at time  is the ratio between: the sum of the probabilities of reaching regime  from each of the

 possible regimes, including  itself, scaled (divided by) the total probability of R given all past

information.

This algorithm is completed by the transition equation that implies that

[ξ+1|=] ≡ [ξ+1] = ξ̂+1| = P
0ξ̂| (12)

i.e., the predicted probability vector ξ̂+1|–note, what you expect the state probabilities will be at

time +1 on the basis of current information =–is simply P
0 times the vector of filtered probabilities

at time  Of course, this mimics the [δ+1] = P0δ recursion illustrated in Section 4, when δ is

replaced by ξ̂| which means that at time –just because the states are unobservable–you are not

sure of the nature of the starting regime and as such you use the inferred ξ̂| from the previous step

of the algorithm. Assuming that the initial state probability vector ξ̂1|0 is unknown and must be

estimated, (11)-(12) define an iterative algorithm that allows one to generate a sequence of filtered

state probability vectors {ξ̂|}=1.33
The filtered probabilities are the product of a limited information technique, since despite the avail-

ability of a sample of size  each ξ̂| is filtered out of the information set = only, ignoring {R}=+1.
However, once the full time series of filtered probabilities {ξ̂|}=1 has been calculated, Kim’s (1994)
algorithm is easily implemented to recover the sequence of smoothed probability distributions {ξ̂| }=1
by iterating the following algorithm backwards, starting from the filtered (and smoothed) probability

distribution ξ̂ | produced by (11)-(12). Observe that

ξ̂| = Pr (ξ|= ) =
X
+1

Pr
¡
ξ ξ+1|=

¢
(by the definition of probability)

=
X
+1

Pr
¡
ξ|ξ+1=

¢
Pr
¡
ξ+1|=

¢
(by the definition of joint probability)

=
X
+1

Pr
¡
ξ|ξ+1= {R}=+1

¢
Pr
¡
ξ+1|=

¢
=

X
+1

Pr
¡
ξ|ξ+1=

¢
Pr
¡{R}=+1|ξ ξ+1=

¢
Pr
¡{R}=+1|ξ+1=

¢ Pr
¡
ξ+1|=

¢
=

X
+1

Pr
¡
ξ|ξ+1=

¢
Pr
¡
ξ+1|=

¢
=

X
+1

Pr (ξ|=) Pr
¡
ξ+1|ξ=

¢
Pr
¡
ξ+1|=

¢ Pr
¡
ξ+1|=

¢
33This assumption implies that ̂1|0 is a ×1 vector that must be estimated. A simpler alternative is postulate that the

stochastic process had start from a deterministic but unknown state 0 that must be estimated along with the remaining

parameters (in practice it is 0 that is estimated). Alternatively, ̂1|0 might be assumed to correspond to the stationary

unconditional probability distribution such that ̄ = P
0
̄

22



because the first-order Markov structure implies that Pr
¡{R}=+1|ξ ξ+1=

¢
= Pr({R}=+1|ξ+1

=) Hence ξ̂| can be re-written as

ξ̂| =
³
P0
³
ξ̂+1| ® ξ̂+1|

´´
¯ ξ̂| (13)

where ® denotes element-by-element division and Pr ¡ξ+1|ξ=

¢
equals by construction the transition

matrix driving the first order Markov chain.34 (13) is initialized by setting  =  − 1 thus obtaining

ξ̂−1| =
³
P0
³
ξ̂ | ® ξ̂ |−1

´´
¯ ξ̂−1|−1

and so forth, proceeding backwards until  = 135

What is the deep difference between filtered and smoothed probability (vectors)? Clearly, while

the filtered {ξ̂|}=1 condition on information up to time , smoothed probabilities {ξ̂|}=1 condition
on the entire sample and hence reflect more information. Therefore a smoothed probability represents

an ex-post measure of the state of the model at time , where    is possible. A filtered probability

provides instead a recursive, real time assessment (filter) on the current state. One example that may

ease you into an understanding of the difference comes from comparing the two questions:

• Given what I know about what the weather has been like during the past few weeks, what is
chance of recording a high atmospheric pressure today (also given observed conditions today)?

This requires a real-time, recursive assessment akin to the calculation underlying a filtered prob-

ability.

• Given the information on the weather in the past 12 months and up to today, what was the
chance of a high atmospheric pressure today 4 months ago? This requires a full-information, but

backward-looking assessment that employs data that were not yet available 4 months ago.

Obviously, finance people tend to operate in real time, to focus on forecasting future market condi-

tions, and as such they tend to care more for filtered probabilities than for smoothed ones, even though

it is clear that the two concepts always coincide at the end of all available data.36 In fact, using (12),

the focus frequently goes to the vector of predicted -step ahead probabilities, with  ≥ 1:

[ξ+ ] = ξ̂+| = (P
0) ξ̂|

On the contrary, the smoothed probabilities correspond to the logical approach of historians to assessing

events: using all the available information at time  , the researcher wants to understand what the

34The element-wise division operator ® is defined similarly to the Hadamard “dot product”, for instance:
11 12

21 22


®


11 12

21 22


=


1111 1212

2121 2222




35Note that ̂ | and ̂−1|−1 will be known from the application of Hamilton’s smoothing algorithm, and that

̂ |−1 = P
0̂−1|−1

36You will easily recognize that when  =  the end of the available sample, ̂| = ̂ | = ̂| i.e., filtered and

smoothed coincide by definition at the very end of the sample.
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probability of the  different regimes had been at time    Clearly, using information posterior

to time  may easily make our understanding of events more accurate and interesting. Yet, the fact

remains that such a probabilistic assessment would not have been available to investors at time    ,

i.e., in real time.37 However, we will see in Section 5.2 that smoothed probabilities also play a crucial

role in ML estimation of MS models.

5.2. The maximization step

What follows is not for people with a fragile health. Please read and meditate under medical care.

The point of taking a look at the conditions and results that follow is that it is important to have

some idea for what happens behind the curtains of Matlab’s routines. Call θ the vector collecting

all the parameters appearing in the measurement equation and ρ the vector collecting the transition

probabilities in P, i.e. θ ≡ [ (A) |(Σ)] and ρ ≡ (P). The matrices of regime-dependent

parameters are all “vectorized” to make θ into a simpler object.38 Write the likelihood function of our

sample of  asset returns as


¡{R}=1|{ξ}=1θ

¢
=

X
{}=1

Y
=1

(R|ξ=−1;θ) Pr (ξ|ξ0;ρ) (14)

where Pr (ξ|ξ0;ρ) =
P

0=1
0

Q
=1 −1 and the first summation spans the space defined by

ξ1 ⊗ ξ2 ⊗ ⊗ ξ

for a total of  possible combinations. In words, this means that in principle the log-likelihood

function forces you to sum over all possible paths/evolutions of regime probabilities between  = 1 and

 =  . As we know, when the shocks to (6) are assumed to be multivariate normal (as they are most

of the time), then the density function is

(R|ξ=−1;θ) = η ¯ ξ

where the th element of η is defined as (2)
−12|Ω|−12 exp

£
(R −XAe)Ω

−1
 (R −XAe)

¤
, i.e.,

the multivariate normal density. At this point, the parameters [θ0 ρ0]0 can be derived by maximization

of (14) subject to the natural constraints:

Pι = ι (rows sum to 1) ξ00ι = 1 (probabilities sum to one) (15)

ρ ≥ 0 ξ0 ≥ 0 and Σe is (semi-)positive definite ∀ = 1 2  (16)

37Suppose one of you advisors tries and market some product/strategy that exploits a MS model and he/she relies

on a backtesting exercise based on smoothed and not filtered probabilities. The product yields amazing alpha over the

backtesting sample: would you buy it?
38In principle one ought to take (·) of parameters and also remove duplicate parametes that appear in all symmetric

objects. However, because we are reasoning here in terms of lower triangular Choleski factors of regime-dependent

covariance matrices, this caution seems largely superfluous. However, in the case of  ≡ (P) the summing-up

constraints that apply to the matrix P usually reduce the size of  to be less than 2 × 1 (to how many?).
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At this point, it is common to assume that the “non-negativity” constraints in (16) are satisfied and to

take the first-order conditions (FOCs) of a Lagrangian function that explicitly enforces the adding-up

constraints:

∗
¡{R}=1|{ξ}=1θρ

¢
=

X
{}=1

Y
=1

(R|ξ=−1;θ) Pr (ξ|ξ0;ρ)− λ01 (Pι − ι)− 2
¡
ξ00ι − 1

¢
(17)

However, some additional work on the FOCs derived from (17) show a few interesting aspects of the

ML estimator.

If you differentiate the logarithm of (17) with respect to θ, this gives the so-called score function,

 ln∗(θρ)
θ0

=
1

(θρ)

X
{}=1


Q

=1 (R|ξ=−1;θ)
θ0

Pr (ξ|ξ0;ρ)

=
1

(θρ)

X
{}=1

 ln
hQ

=1 (R|ξ=−1;θ)
i

θ0

Y
=1

(R|ξ=−1;θ) Pr (ξ|ξ0;ρ)

=
X

{}=1

X
=1

Pr (ξ|= ;θρ)
 ln (R|ξ=−1;θ)

θ0
,

because from the definition of conditional probabilityQ
=1 (R|ξ=−1;θ) Pr (ξ|ξ0;ρ)P

{}=1
Q

=1 (R|ξ=−1;θ) Pr (ξ|ξ0;ρ)
=

=

Q
=1 (R|ξ=−1;θ) Pr (ξ|ξ0;ρ)

(θρ)
= Pr (ξ|= ;θρ) 

Therefore
X
=1

ξ| (θ̂ ρ̂)
 lnη(θ̂)

θ0
= 00 (18)

provides the first set of FOCs with respect to (w.r.t.) θ Notice that these conditions involve the

smoothed probabilities of the state vector, {ξ̂|}=1 and not the filtered probabilities as one may
naively come to expect. The reason lies in the math shown above. At this point, (18) simply represents

a smoothed probability-weighted standard ML vector FOC,  lnη(θ)θ
0 = 00. This means that in

practice, the special structure of the MS model allows us to perform standard, multivariate normal

PDF-based estimation, with the only caution that because each observation R carries a different

vector of probabilities of coming from any of the  regimes, when the log-likelihood is computed, it

must be weighted by the time series of the smoothed probabilities, {ξ̂|}=1.
The FOCs w.r.t. the transition probabilities are determined as follows. Because

 ln(θρ)

ρ0
=

1

(θρ)

X
{}=1

 Pr (ξ|ξ0;ρ)
ρ0

Y
=1

(R|ξ=−1;θ)

=
1

(θρ)

X
{}=1

 lnPr (ξ|ξ0;ρ)
ρ0

Y
=1

(R|ξ=−1;θ) Pr (ξ|ξ0;ρ)
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=
X

{}=1

X
=1

 lnPr (ξ|ξ0;ρ)
ρ0

Pr (ξ|= ;θρ) 

for each component  of ρ this implies:

 ln(θρ)


=

X
=1

X
−1=e

X
=e

 lnPr
¡
ξ|ξ−1;ρ

¢


Pr
¡
ξ ξ−1|= ;θρ

¢
=

X
=1

X
−1=e

X
=e

1


{−1=e=e} Pr

¡
ξ ξ−1|= ;θρ

¢
=

X
=1

X
−1=e

X
=e

Pr(ξ−1 = e ξ = e |= ;θρ)




which originates the vector expression

 ln(θρ)

ρ0
=

Ã
X
=1

³
ξ̂
(2)

|
´0!

® ρ0

where ξ̂
(2)

| is a 2 × 1 vector of (smoothed) probabilities concerning the matrix of state perceptions
ξ−1| (θ̂ ρ̂)⊗ ξ| (θ̂ ρ̂) capturing how these regime beliefs move between − 1 and . Because the 

adding-up restrictions in Pι = ι can equivalently be written as (ι0 ⊗ I)ρ = ι  it follows that

the FOCs can be written as

∗(θρ)
ρ0

=

Ã
X
=1

³
ξ̂
(2)

|
´0!

® ρ̂0 − λ̂01(ι0 ⊗ I) = 00

In other words,

ρ̂ =

Ã
X
=1

³
ξ̂
(2)

|
´!

® (ι ⊗ λ̂1)

implying

(ι0 ⊗ I)
Ã

X
=1

³
ξ̂
(2)

|
´!

® (ι ⊗ λ̂1) =
Ã

X
=1

³
ξ̂|

´!
® λ̂1 = ι

so that λ̂1 =
P

=1 ξ̂| obtains.
39 Finally, we have

ρ̂ =

Ã
X
=1

³
ξ̂
(2)

|
´!

®
Ã
ι ⊗

Ã
X
=1

ξ̂|

!!
 (19)

which is a highly nonlinear function of estimated smoothed probabilities.

Appendix C explains how you should go about derive the MLE for the initial state probability

vector ξ1|0, which happens to be given by a boundary condition (i.e., the MLE exactly satisfies one of

the constraints):

ξ̂1|0 = argmax
1≤≤

ι0
Y
=1

(θ)e (20)

Note that the FOCs (18)-(20) all depend on smoothed probabilities ξ̂| ≡ Pr (ξ|= ;θρ) and therefore

they all present a high degree of non-linearity in the parameters [θ ]0 Therefore the FOCs have to be

solved numerically.

39(0 ⊗ I)


=1


̂
(2)




produces a  × 1 vector with -th element



=1
̂. (

0
 ⊗ I) is the a communication

(conversion) matrix that converts probability distributions over −1| (̂ ̂)⊗ | (̂ ̂) into a distribution over  only.
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5.3. The EM algorithm

The expectation and maximization steps can be combined and used in an iterative fashion with the

objective of solving numerically (18)-(20). Starting with arbitrary initial values θ̃
0
 ρ̃0, and ξ̃

0

1|0

the expectation step is applied first, thus obtaining a time series sequence of smoothed probability

distributions {ξ̂1|}=1 Given these smoothed probabilities, (19) is then used to calculate ρ̃1, (18) to
derive θ̃

1
, and (20) to find the maximizing ξ̃

1

1|0.40 Based on θ̃
1
 ρ̃1, and ξ̃

1

1|0 the expectation step can

be applied again to find a new sequence of smoothed probability distributions {ξ̂2|}=1.41 This starts
the second iteration of the algorithm. The algorithm keeps being iterated until convergence, i.e. until

[θ̃

ρ̃]0 ' [θ̃−1 ρ̃−1]0, or

[θ̃

ρ̃]0 − [θ̃−1ρ̃−1]0 ' 0

which means that simple tests will have to be applied to check whether two subsequent iterations have

essentially left the corresponding estimates unaltered, so that (say)sX


(̃


 − ̃
−1
 )2 +

X


(̃ − ̃−1 )2  ̄

where ̄ is a number chosen to be small (e.g., typically, 1−04). Note that these conditions normally

exclude the estimate for ξ1|0 At that point one simply sets θ̂


 = θ̃

, ρ̂ = ρ̃, and ξ̂



1|0 = ξ̃
1

1|0.

Importantly, by construction, when the EM iterations are applied, the likelihood function increases at

each step and reaches an approximate maximum in correspondence to convergence (see Baum et al.,

1970).

40Krolzig (1997, pp.103-107) shows that in MS models with autoregressive coefficients that are not switching, estimates

of (A) (here recall that the matrix A contains all intercepts and vector autoregressive coefficients that depend on the

 regimes) can be easily obtained in closed-form by appropriately setting up the log-likelihood function as in a GLS

problem. As for the estimates of (Σ) since the (expected) log-likelihood function can be expressed as

(|{R}=1) ∝ 1

2


=1


=1

ln |Ω−1 |̂| +

−1
2


=1


=1

(R −XA)Ω
−1
 (R −XA)̂|

this leads to

(|{R}=1)
Ω−1

=
1

2
Ω


=1

̂|+

−1
2


=1

(R −XA)(R −XA)
0
= O

and

Ω̂(A) =



=1

̂|

−1 
=1

(R −XA)(R −XA)
0


41Please note this has nothing to do with ̂
(2)

| .
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5.4. Properties and inference concerning ML estimators

As for the properties of the resulting ML estimators, for ergodic, univariate MS models with autore-

gressive components, it has been proven by Karlsen (1990) that  in

+1 = +1 +

X
=1

+1+1− + +1+1 +1 = 1 2 ..., 

where +1 ∼ IID (0 1) follows a strong mixing process (i.e., some sufficient technical property

of the corresponding stochastic process) whose stationarity is implied by the stationarity of the ho-

mogenous Markov chain ξ, so that the functional central limit theorem may be used to derive the

asymptotic distribution of [θ̂


 ρ̂ ]0. Leroux (1992) has formally proved the consistency of MLE

for MSIVAR(0) processes, what we have also called MSI and MSIH processes. More generally, under

standard regularity conditions (such as identifiability, ergodicity and the fact that the true parameter

vector does not fall on the boundaries established by (15) and (16)) we can at least speculate–however

because in finance MSIH models are very popular, it is good to know that for them the result is mathe-

matically exact–the consistency and asymptotic normality of the ML estimator γ̂ = [θ̂


 ρ̂]0:42

√
 (γ̂ − γ) → 

¡
0 I(γ)−1

¢
(21)

where I(γ) is the asymptotic information matrix,

I(γ) ≡ lim
→∞

− −1

"
2 ln

Q
=1 (R|γ)
γγ0

#


Three alternative sample estimators of I(γ) providing estimates g (γ̂) are available and commonly
employed:

1. An estimator based on the conditional scores:

I1(γ̂) = −1
X
=1

[h(γ̂)] [h(γ̂)]
0

h(γ̂) =
 ln (R|=−1; γ̂)

γ
 (22)

2. Alternatively, it is possible to numerically calculate the second partial derivative of the log-

likelihood function w.r.t. to the estimated parameters, simply

I2(γ̂) = −−1
X
=1

∙
2 ln (R|=−1; γ̂)

γγ0

¸
 (23)

3. Finally, it may happen that (22) and (23) widely differ in finite samples. Although this might

simply reveal a poor numerical approximation of the second partial derivative of the log-likelihood

function, it might also be a sign of model misspecification. In this case, the “sandwich” quasi-

maximum likelihood estimator of the information matrix proposed by White (

42Notice though that the estimator for ̂1|0 is inconsistent due to the binary nature of its components. Later we call Γ

the space in which the vector of parameters  is defined.
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4. 1982) may be preferable:

g (γ̂) = −1
h
I2(γ̂) (I1(γ̂))−1 I2(γ̂)

i


As a consequence of these results on consistency and asymptotic normality, and with one important

exception, standard inferential procedures are available to test statistical hypotheses with relevant eco-

nomic content. Starting with the usual aspects of testing procedures, assuming asymptotic normality

for γ̂, as implied by (21), the three classical tests are available. Call  : R → R a function that

imposes  −  restrictions on the -dimensional parameter vector θ Note that θ is a sub-vector of γ.

We want to test 0 : (γ) = 0 vs. 1 : (γ) 6= 0 under the assumption that under both hypotheses the
number of regimes  is identical.43 Such a null hypothesis—in fact this may be a vector of hypotheses,

as signalled by the fact that (γ) = 0 is R → R–may be tested using three alternative procedures

that you have encountered in your undergraduate statistics. First, Lagrange Multiplier (LM) tests are

undoubtedly the preferred tests as they only require the estimation of the restricted model. While the

cumulative scores,

s (θ̂) ≡
X
=1

h(θ̂) =

X
=1

 ln (R|=−1; γ̂)
γ

of an unrestricted model have zero mean vector by construction, as these correspond to the FOCs

for the vector θ, the scores of the restricted model obtained by maximum likelihood and imposing

(θ) = 0 can be used to obtain the standard test statistic:

 ≡ s (θ̃)0
hg (θ̃)i−1 s (θ̃) → 2

where  ≡ rank¡(θ)θ0¢ and θ̃ denotes the restricted estimator.44 The idea is that if the restriction
is rejected by the data, while s (θ̂) = 0 by construction, s (θ̃) will be large. Therefore a suitable

weighted sum of squares of such restricted, non-zero scores over your sample ought to be large. Here

the weighting is performed using the estimated covariance matrix of the restricted estimates, g (θ̃)
which can be computed in one of the three ways listed above. If such a weighted sum of squares

deviations of the restricted scores from zero is large, then given some pre-specified size of the test,

s (θ̃)
0[g (θ̃)]−1s (θ̃) will exceed the critical value under a 2 and cause–as it should–a rejection

of the null hypothesis.

As an alternative, the Likelihood Ratio (LR) test may be employed,

 ≡ 2
h
ln(θ̂)− ln(θ̃)

i
→ 2

43Hypotheses involving elements of  set equal to zero cannot be entertained as simply as the ones in the main text

as they fall on the boundaries of the parameter space and imply a change in the number of the regimes. However

other hypotheses involving  can be tested without special caution, for instance the important statistical hypothesis of

independent regime switching (i.e., P has rank one), when  =  independently of the initial state . In this case, all

the columns of P contain identical numbers. As you may recall, a × square matrix in which all columns are identical,

trivially has a rank of 1.
44For instance, a test of the hypothesis of homoskedasticity (0 : (Ω) = (Ω)  = 1 2 ) implies  =

(−1)(+1)2 restrictions (because of the symmetry of a covariance matrix) and can be formulated as a set of linear
restrictions on the matrix Σ 
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where ln(θ̂) is the maximized log-likelihood under the unrestricted model and ln(θ̃) is the maxi-

mized log-likelihood under the restricted one. Although very simple to compute and understand, this

test requires the estimation of both the restricted and the unrestricted models, which for  large

enough, can be quite cumbersome and require a host of diagnostic checks on the performance of the

EM algorithm in locating a truly global maximum of the likelihood function. However, it remains

the case that a LR test is logically very simple: under the null hypothesis 0 : (γ) = 0 imposes

a restriction involving θ. If this restriction is rejected by the data (they are false), then maximizing

the log-likelihood subject to a false constraint will prevent us from reaching the true maximum of the

log-likelihood. It is like running carrying a heavy weight–you will end up being much slower than you

otherwise would. Therefore ln(θ̃) will be considerable inferior to ln(θ̂) and 2[ln(θ̂) − ln(θ̃)]
will be large. If this is the case, given some pre-specified size of the test (what we sometimes call the

“significance of the test” causing the dead statisticians to roll in their graves), 2[ln(θ̂)− ln(θ̃)] will
exceed the critical value under a 2 and cause–as it should–a rejection of the null hypothesis.

Finally standard  and  statistics can be calculated using a Wald test (really, to call them  or

 is inappropriate and equivalent to name an object based on some of its properties, like a car “the

polluter” or an econometrics professor “the confuser”). Under asymptotic normality of the unrestricted

ML estimator θ̂ and assuming the function (θ) is smooth and one-to-one, one can prove that45

√

h
(θ̂)− (θ)

i
→ 

µ
0

(θ)

θ0

¯̄̄̄
=̂

g (θ̂) 0(θ)
θ0

¯̄̄̄
=̂

¶
and

 ≡  ((θ̂))0
∙
(θ)

θ0

¯̄̄̄
=̂

g (θ̂) 0(θ)
θ0

¯̄̄̄
=̂

¸−1
(θ̂)

→ 2

Interestingly, also a Wald test has an asymptotic chi-square distribution with a number of degrees of

freedom equal to the number  of restrictions that you want to test. However, this is not surprising, as

you know that asymptotically, as the number of degrees of freedom goes to ∞, a t statistic converges
in distribution to a normal; moreover, the definition of  given above employs a quadratic form

that is a weighted square of normals and it is well known that a weighted sum of  squared normals

has a 2 distribution. The idea is that if the restrictions captured by (θ) = 0 are satisfied by θ̂, then

in correspondence to (θ̂) ' 0 and as such the quadratic form

((θ̂))0
∙
(θ)

θ0

¯̄̄̄
=̂

g (θ̂) 0(θ)
θ0

¯̄̄̄
=̂

¸−1
(θ̂) ' 0

so that the null will not be rejected for most/all choices of size of the test under a 2. If, one the

contrary, the quadratic form defined above (and built around the inverse of the covariance matrix of

(θ̂) gives large values, then given some pre-specified size of the test, it will exceed the critical value

under a 2 and cause–as it should–a rejection of the null hypothesis.

45This follows from the fact that if ̂ is an ML estimator, then under suitable technical conditions, also (̂) is an ML

estimator of () and as such consistent and asymptotically normal.
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For instance, the hypothesis that in (6) the matrices of autoregressive coefficients are regime inde-

pendent can be written as:

⎡⎢⎢⎢⎢⎣
O O · · · I −I O · · · O

O O · · · O I −I · · · O

...
...

. . .
...

...
...

. . .
...

O O · · · O O O · · · O

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ1

μ2
...

A011e1
...

A01e
...

A0e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= R(A) = 0

and implies the (F) test statistic:

 θ̂
0
R0
h
Rg (θ̂)R0i−1Rθ̂

This is a simple F statistic because in this case (θ) defines a linear function, as shown by the use of

linear algebra to express the constraints.

What is the difference between LM, LR, and Wald tests? Which one should you be using, given a

set of null hypotheses (θ) = 0 that you would like to test? First, note that all the inferential results

concerning the distribution of the test statistics listed above simply hold asymptotically, when  →∞:
that was the meaning of the claim that   

→ 2. Second, but then this automatically

answers your question, i.e., because we know how the test statistics behave only as the sample size

grows without bounds, and therefore the idea is to assume that this the case, then using any of the three

specific test procedures becomes a matter of indifference. However, as already mentioned above, there

was a time in which–because a LM test imply a need to estimate (6) only under the restrictions implied

by (θ) = 0 (which often means to estimate less parameters than one would find in θ)–CPU-deprived

researchers developed a strong preference for LM tests.46 Yet, it turns out that in general LM tests

have rather poor small sample properties, which means that among the three tests, these are the ones

converging in distribution to 2 more slowly than the other test statistics do. Finally, when it comes

to a choice between LM and Wald tests, it must be added that we still lack of sufficient knowledge for

which of these two tests may perform best in small samples for MS models. However, because of their

clear intuitive meaning and their direct reliance on the maximized log-likelihood function, many quant

researchers tend to have a preference for LR tests, even though these imply estimating two different

MS models, one unrestricted and the other one restricted.

The only exception to these methods to test hypotheses concerns the number of non-zero rows of

the transition matrix P, i.e. the number of regimes . In this case, even under the assumption of

asymptotic normality of the ML estimator γ̂ standard testing procedures suffer from non-standard

asymptotic distributions of the test statistics due to the existence of nuisance parameters under the

46You may object that also under Wald tests, you shall need to estimate only the unrestricted model. This is correct,

but the complication here arises from the need to estimate the quantity ()0|=̂.
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null hypothesis. We defer the discussion of this important and challenging inferential procedures until

the end of Section 7.

6. Forecasting with MS Models

Under a mean squared prediction error (MSPE) criterion, the required algorithms are relatively simple

in spite of the nonlinearity of this class of processes. A MSPE criterion has a simple meaning: you

care for minimizing the square of forecast errors,

η+ ≡ R+ − (R
+ |=)

where R

+ |= is a  × 1 vector of forecasts that simply condition on the information available at

time . Such a criterion is so deeply ingrained in our way of thinking, that stating it may even seem

superfluous (it is not, but that is a different story): for instance, minimizing
P

=1 η
0
η is in some way

the standard objective of ordinary least squares, OLS.

Under such a MSPE criterion and appealing once more to the state-space representation in Appen-

dix B, yields rather intuitive results. Ignoring for the time being the issue of parameter uncertainty,

i.e. the fact that the parameters of the MS process are unknown and must therefore be estimated

(see Section 5), the function minimizing the MSPE is the standard conditional expectation function:

R

+ |= = [R+ |=].

47 For instance, in the case of one-step ahead forecasts, we have:

[R+1|=] = X+1Â
³
ξ̂+1| ⊗ ι

´
where X+1 ≡ [1 R0R0−+1] ⊗ ι , Â collects the estimated conditional mean parameters of the

system, and ξ̂+1| is the one-step ahead, predicted latent state vector to be filtered out of the available

information set = according to the known transition equation

ξ̂+1| = P̂
0ξ̂|

where also the transition matrix P will have to be estimated. Here, although this has been already

discussed, it may be useful a reminder of what the expression X+1Â really means. Because X is

a  × ( + 1) matrix of predetermined variables with structure [1 R0−1R
0
−] ⊗ ι and A is a

( + 1) × matrix collecting the VAR parameters, both means or intercepts and autoregressive

coefficients, in all regimes

Â =

⎡⎢⎢⎢⎢⎣
μ̂
0
1 μ̂

0
2 · · · μ̂

0


Â11 Â12 · · · Â1
...

...
. . .

...

Â1 Â2 · · · Â

⎤⎥⎥⎥⎥⎦ 
47Because we have obtained predictions from conditional expectations as a matter or routine in this course, this means

that the MSPE criterion has been maintained all along.
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then

X+1Â =([1 R0R
0
−+1]⊗ ι )

×(+1)

⎡⎢⎢⎢⎢⎣
μ̂
0
1 μ̂

0
2 · · · μ̂

0


Â11 Â12 · · · Â1
...

...
. . .

...

Â1 Â2 · · · Â

⎤⎥⎥⎥⎥⎦
(+1)×

=

=

⎡⎢⎢⎢⎢⎣
μ̂01 +

P
=1R+1−Â1 μ̂2 +

P
=1R

0
+1−Â2  μ̂ +

P
=1R

0
+1−Â

μ̂01 +
P

=1R+1−Â1 μ̂2 +
P

=1R
0
+1−Â2  μ̂ +

P
=1R

0
+1−Â

...
...

. . .
...

μ̂01 +
P

=1R+1−Â1 μ̂2 +
P

=1R
0
+1−Â2  μ̂ +

P
=1R

0
+1−Â

⎤⎥⎥⎥⎥⎦ 
It follows that

[R+1|=] = X+1Â
³
P̂0ξ̂| ⊗ ι

´
 (24)

For instance in the univariate case of  = 1 and  = 1, i.e., of a MS(I)ARH( 1) model, we have:

[+1|=] =

X
=1

( + )̂


+1|

where ̂


+1| = ξ̂
0
+1|e, i.e., the th element of the vector of predicted probabilities ξ̂

0
+1|. Clearly, this

expression simply means that one forecasts returns conditioning on each of the  regimes, and then

each of this state-specific predictions is weighted by the appropriate predicted probabilities. As usual,

when it comes to forecast conditional means, the regime-specific second moments are irrelevant because

under a standard MS set up, the errors are IID (0Ω+1) and hence have zero mean (vector).

However, for   1-step ahead forecasts the task is much more challenging as: (1) X+ is un-

known and must be predicted itself; (2) [X+ |=] involves sequences of predictions {[R+1|=]...

[R+−1 |=+−2]} and as such {ξ̂+1|  ξ̂+−1|} which are likely to impress patterns of cross-
correlation to the unconditional values of the parameters to be used, because of the presence of regime

switching. For instance, for  = 2  = 1 and ignoring the presence of an intercept term, we have

[R+2|=] = 
h¡
R0+1 ⊗ ι

¢
Â
¡
ξ+2 ⊗ ι

¢ |=

i
= 

h³³¡
R0 ⊗ ι

¢
Â
¡
ξ+1 ⊗ ι

¢
+Σ

¡
ξ+1 ⊗ I

¢
ε

´
⊗ ι0

´
Â
¡
ξ+2 ⊗ ι

¢ |=

i
= 

h³¡
R0 ⊗ ι

¢
Â
¡
ξ+1 ⊗ ι

¢⊗ ι0 +Σ

¡
ξ+1 ⊗ I

¢
ε ⊗ ι0

´
Â
¡
ξ+2 ⊗ ι

¢ |=

i
= 

h³¡
R0 ⊗ ι

¢
Â
¡
ξ+1 ⊗ ι

¢⊗ ι0´ Â ¡ξ+2 ⊗ ι¢ |=

i
which is not the product of the conditional expectations [(R0 ⊗ ι) Â(ξ̂+1|⊗ι)⊗ι0 ]Â(ξ̂+2|⊗ι ) as
the future state vectors ξ+1 and ξ+2 are correlated, ξ+2 = P

0ξ+1+v+2. However, in applied work it

is customary to follow the suggestion of Doan et al. (1984) consisting in the substitution of the sequence

of predicted values {[R+1|=]  [R+−1|=]} in place of {[R+1|=]  [R+−1|=+−2]}. In
this case (24) generalizes to generic   2-step ahead predictions:

̆[R+ |=] = [X+ |=]Â
h
(P̂0) ξ̂| ⊗ ι

i
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which in practice gives a recursive formula since [X+ |=] forces one to forecast a sequence of future

R+ values,  = 1 ...,  − 1 For instance, in the univariate case of  = 1 and  = 1, i.e., of a

MS(I)ARH( 1) model, we have that

[+2|=] =

X
=1

( + [+1|= ̂


+1|])̂


+2|+1

and this not the same as

̆[+2|=] =

X
=1

( + [+1|=])̂


+2|

=

X
=1

̂


+2| +
X
=1

[+1|=]̂


+2|

=

X
=1

̂


+2| +
X
=1



Ã
X
=1

( + )̂


+1|

!
̂


+2|

=

X
=1

̂


+2| +
X
=1



⎛⎝ X
=1

 ̂


+1|

⎞⎠ ̂


+2| +
X
=1



⎛⎝ X
=1

̂


+1|

⎞⎠ ̂


+2|

However, ̆[+2|=] is what is reported in most applied work.

7. Model Selection and Diagnostic Checks

Compared to the standard econometric methods you are familiar with, MS models pose one obvious,

additional problem: selecting the appropriate number of regimes,  ≥ 1. When  = 1, a MS model

boils down to a standard, homoskedastic VAR():

R+1 = μ1 +

X
=1

A1R+1− +Ω
12
1 ²+1 ²+1 ∼ (0 I) or

= μ+

X
=1

AR+1− +Ω12²+1

where the index always equal to 1 can be dropped. Therefore, a first important divide occurs at the

choice of whether  = 1 or  ≥ 2. Once  ≥ 2 has been established, then one may even worry

about whether more than two regimes may be needed. The problem is then: how do we test for

the appropriate number of regimes, or in any event proceed to select them? Of course, selecting the

number of regimes should not be perceived as a problem, something else to worry about, but instead

as an enormous opportunity to make the model as flexible as the data ask for.

The problem with the choice of the number of states is that under any number of regimes smaller

than the starting value ∗, there are a few structural parameters of the unrestricted model–the

elements of the transition probability matrix associated to the rows that correspond to “disappearing

states”–that can take any values without influencing the resulting likelihood function. We say that

these parameters become a nuisance to the estimation. The result is that the presence of these nuisance
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parameters gives the likelihood surface so many degrees of freedom that computationally one can never

reject the null that the nonnegative (better, positive) values of those parameters were purely due to

sampling variation.48 For instance, suppose you start with a MSIH(3) model,

R+1 = μ+1
+Ω

12
+1

²+1 ²+1 ∼ IID (0 I )

+1 = 1 2 3 and you want to test whether  = 2  ∗ = 3 may be optimal. Suppose you are to

compare the maximized log-likelihood obtained from the three-state model, ln(θ̂ ρ̂; = 3), to the

log-likelihood of the restricted model in which  = 2 so that μ3 and Ω
12
3 and especially the (1,3),

(2,3), (3,1), (3,2), and (3,3) elements of the transition matrix can be set to any value without affecting

ln(θ̂ ρ̂; = 2) Unfortunately, this makes the standard LR test invalid, in the sense that even in

larger and larger samples, the distribution of the LR statistic fails to converge to a known 2. There

are however a number of ideas in the literature on how to deal with this nuisance parameters issues:

1. Hansen (1992) proposes to see the likelihood as a function of the unknown and non-estimable

nuisance parameters so that the asymptotic distribution is generated in each case numerically

(i.e., by simulation) from a grid of transition and regime-dependent nuisance parameters. The

test statistic becomes then

 ≤ sup
0∈P

 (ρ)

where the right-hand side converges in distribution to a function of a Brownian bridge (which is a

Brownian motion in which the coefficients are themselves functions of other Brownian motions).

In most of the cases, a closed form expression cannot be found and the bound must be calculated

by simulation and becomes data-dependent. Hansen’s way to empirically compute the p-values

of LR tests is logically straightforward but computationally intensive and related to a set of

statistical techniques generally called bootstrap.

2. Also Davies (1977) bounds the LR test but avoids the problem of estimating the nuisance para-

meters and of resorting to simulations, deriving instead an upper bound for the significance level

of the LR test under nuisance parameters:49

Pr (  ) ≤ Pr ¡21  
¢
+
√
2 exp

³
−
2

´ ∙
Γ

µ
1

2

¶¸−1
3. Davidson and MacKinnon’s (1981)  test for non-nested models can be also applied, since MS

models with  and  − 1 regimes are logically nested but cannot be treated as such on a
48Mathematically, the presence of unidentified nuisance parameters implies that the scores become identically zero and

that the covariance matrix is singular.
49The bound holds if the likelihood function has a single peak (i.e., only one stationary point). A related test is

proposed by Wolfe (1971) and applied in finance by Turner et al. (1989). The modified LR test is:




= − 2

( − 3) [ln(̂)− ln(̃)] → 

2


where ̃ is obtained under the null of simple multivariate normality and  = ( − 1) since in the absence of regime
switching there are ( − 1) which cannot be estimated.
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mathematical basis.50 The test is implemented by estimating the model with  and −1 states
and calculating their full information “fitted” values, R̃

()
 = XÃ

()ξ̃
()

| . Then one can estimate

the regression

R = (I −Υ)XÂξ̂
(−1)
 +ΥR̃

()

 + ε

The p-value of an F-test for the matrix of coefficients Υ gives the p-value for the null of  − 1
regimes against the alternative of  regimes. The intuition is that if tests cannot reject the

null that the matrix Υ ' O then this means that once the fitted return values produced by a
−1-state model have been computed, no significant explanatory power may be further derived
from the fitted values of a larger, -state MS model. On the opposite if the null hypotheses that

Υ = O can be rejected at a given size of the (Wald) test, then it means that there is evidence of

the fact that one also needs the th regime in order to explain returns, so that  regimes may

be preferred to  − 1.

A practical alternative to these tests to diagnose the number of regimes appropriate in a MS model

consists of the use of information criteria. As already discussed in chapter 4, these are penalized

measures of fit which trade-off in-sample fit with parsimony, i.e., whose value increases as the fit to

the data improves but also decreases as the number of estimated parameters increase.51 As you will

recall, in a ML set up, in the same way in which the ̄2 is based on the application of penalties to the

classical coefficient of determination (2), information criteria are based on the concept of applying

additional penalty terms to the maximized log-likelihood. Their general structure is:

−(Maximized Log-Lik) + ((γ̂))

where (·) is a penalty function, and (γ̂) is the notation for a counter of the number of different

parameters in to be estimated in γ ∈Γ. The negative sign attached to the maximized log-likelihood
is due to the fact that, as we have seen, most numerical optimization software actually minimize the

negative of the log-likelihood function. Because the maximized log-likelihood is multiplied by −1 while
the penalty has been added, it is clear that empirically we shall select models that actually minimize

information criteria, not maximize them. Three information criteria are widely employed:

• The Bayes-Schwartz information criterion (BIC): −2L(θ̂) + ((θ̂)( ) ); this criterion is
known to select rather parsimonious models and it appears to be very popular in the applied

literature.
50Two models are nested if one can go from model A to model B just by “turning off” (i.e., setting to zero) a few of

the parameters. For instance a ARCH(1) model is nested in a GARCH(1,1) because the former obtains from the latter

just by setting  = 0. However, mathematically, a MS model with ∗ states cannot be obtained from one with  states

simply by setting a sub-set of the parameters to zero; on the opposite, the latter become unidentified. As such, the former

MS model is not nested with the latter.
51Since your early age you have been familiar with one such measure, the adjusted 2 (often denoted as ̄2) which,

indeed, penalizes the standard 2 with a measure of the parameter vector dimension to prevent that big models have an

unfair advantage over smaller, tightly parameterized ones. Why do we value parsimony? Because in general terms the

forecasting performance of a model improves as the number of parameters used to fit the data in sample declines–i.e.,

smaller models tend to perform better than bigger ones do.
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• The Akaike information criterion (AIC): −2L(θ̂) + 2((θ̂) ); this criterion is also popular
because it has optimal asymptotic properties (it is consistent), although it is also known to select

too large non-linear models in small samples.

• The Hannan-Quinn information criterion (H-Q):−2L(θ̂)+2[(θ̂) log(log( )) ]; this criterion
has been shown to perform very strongly in small samples and for non-linear models; numerically,

it can be shown that it represents a compromise between BIC and AIC.

Interestingly, few papers have addressed the issue of the small-sample and asymptotic performance

of these information criteria specifically for the case of MS models. Because these measures rely on

the same conditions employed in the asymptotic theory of the LR test, their small and large sample

properties are, likewise, largely unknown.

Once a restricted set of (or more simply, one) MS models has been estimated, either the need of

further improvements could arise as the result of a few diagnostic checks or the best model will be

chosen based on the success of such checks. Although the EM algorithm naturally delivers estimates

of the parameters γ̂ and ξ̂
1

1|0 besides the smoothed sequence of probability distributions {ξ̂|}=1 and
would therefore lead to define the (smoothed) residuals as

²̂ = R −XÂξ̂| 

these are not well suited to the use in diagnostic checks as they are full-sample random statistics

and hence they structurally overestimate the explanatory power of MS. On the contrary the one-step

predictions errors

η̂|−1 = R −XÂbP0ξ̂−1|−1
are limited information statistics (being based on filtered probabilities) and uncorrelated with the

information set =−1 since [R|=−1] = XÂbP0ξ̂−1|−1 and therefore form a martingale difference

sequence [η̂|−1|=−1] = 0 Therefore standard tests of this hypothesis (such as Portmanteau tests of

no serial correlation) could be used in order to detect any deviation from the martingale structure.52

Here, recall that [η̂|−1|=−1] = 0 really means that none of the information contained in =−1 can

help forecast subsequent prediction errors, so that [η̂|−1|=−1] = 0 implies the possibility of testing

restrictions such as [η̂|−1η̂
0
−|−−1|=−1] = O ∀ ≥ 1 or [η̂|−1(η̂0−|−−1)|=−1] = O ∀ ≥ 1

where (·) is any function that extracts information from =−1.

In the presence of MS heteroskedastic components, researchers in finance have also suggested to

check whether the smoothed, standardized residuals contain any residual ARCH effects. Standard

LM-type as well as Ljiung-Box tests can be applied. This is a way to check whether MS variance is

52With the caveat that that the one-step ahead prediction errors do not have a Gaussian density and hence the

approximate validity of standard tests can only be guessed. Turner et al. (1989) devise a similar test in which the filtered

probabilities are used as predictors of future variance and test the absence of serial correlation in the resulting regression

residuals.
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sufficient to capture most of the dynamics in volatility, else explicit ARCH-type modeling (even of a

MS nature, see Section 7.2) would be required.53

Finally, common sense suggests that correct specification of a MS model should give smoothed

probability distributions {ξ̂| }=1 that consistently signal switching among states with only limited
periods in which the associated distribution is flatly spread out over the entire support and uncertainty

dominates. Regime Classification Measures (RCMs) have been popularized as a way to assess whether

the number of regimes  is adequate. In simple two-regime frameworks, the early work by Hamilton

(1988) offered a rather intuitive regime classification measure:

1 = 100
2



X
=1

Y
=1

̂


| 

i.e., the sample average of the products of the smoothed state probabilities. Clearly, when a MS model

offers precise indications on the nature of the regime at each time  the implication is that for at least

one value of  = 1  ̂


| ' 1 so that
P

=1 ̂


| ' 0 because most other smoothed probabilities
are zero. Therefore a good MS model will imply 1 ' 054 However, when applied to models with
  2 1 has one obvious disadvantage: a model can imply an enormous degree of uncertainty

on the current regime, but still have
P

=1 ̂


| ' 0 for most values of . For instance, when  = 3 it

is easy to see that if ̂
1

| = 12 ̂
2

| = 12 and ̂
3

| = 0 ∀ then 1 = 0 even though this remains

a rather uninformative switching model to use in practice. As a result, it is rather common to witness

that as  exceeds 2, almost all switching models (good and bad) will automatically imply values of

1 that decline towards 0. Guidolin (2009) proposes a number of alternative measures that may

shield against this type of problems, for instance

2 = 100

"
1− 2

( − 1)2
1



X
=1

Y
=1

µ
̂


| −
1



¶2#


7.1. One multivariate MS example

Before resuming the process of introducing new notions and better dealing with a few loose ends that

have been left behind, we shall pause again one example, this time of a multivariate nature. In essence,

we now want to simultaneously capture the time series dynamics in U.S. large cap, small cap, and 10-

year Treasury monthly excess returns, over a 1954-1999 sample. These are the same data underlying

Figures 1-5 above. The difference is that now we want to develop not three different univariate MS

concerning one series at the time, but instead one unique tri-variate model for all excess returns jointly

considered. Figure 6 presents a table in which we perform a number of the model specification tests

that have been discussed above. For instance, the p-values of the LR tests concerning the number of

53Under the null of regime switching, the resulting asset returns have non-linear stochastic structures that could show

up in significant ARCH-type tests even in the absence of truly ARCH effects in the data generating process.
54On the opposite, the worst possible MSM has ̂

1

| =  = ̂


| = 1 so that


=1 ̂


| = 1
2 and 1 = 100

Therefore 1 ∈ [0 100] and lower values are to be preferred to higher ones.
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regimes are corrected for the presence of nuisance parameters in the way indicated by Davies (1977).55

Figure 6: Model specification search for U.S. stock and bond portfolios, monthly 1954-1999 U.S. data

A few remarks are in order. First, the highest maximized log-likelihood is simply given by the biggest

available model that is taken to the data, in this case a very rich MSIAH(4,3) model that implies the

estimation of 156 parameters with 1,656 observations (saturation ratio is then 10.6 only). This is why

one should penalize the maximized log-likelihood: ruling out numerical problems in the maximization

performed by your Math package, it is easy to inflate the log-likelihood by expanding the number of

parameters, which does not mean this a good idea either in a statistical or in a financial economics

perspective. When you penalize the log-likelihood, for instance in this case by computing the Hannan-

Quinn criterion, the minimum is reached at -12.2263 by a much more parsimonious MSIH(4,0) model

characterized by 48 parameters to estimate (which gives a saturation ratio of 34.5, which appears to

be rather comfortable). Interestingly, this model is characterized by four different states. The closest

model seems to appear a slightly smaller MSIAH(2,1) model that achieves a H-Q score of -12.2213.

Finally, in this case it is clear that formally testing for the number of regimes using an adjusted LR

test always rejects the null of  = 1 against  ≥ 2 and that this happens for  = 2 3 and 4.

Figure 7 reports instead parameter estimates for the MSIH(4,0) that was selected by the H-Q

criterion. You can read a summary interpretation of what the four different regimes may be taken to

represent next to the regime labels in the Figure. Interestingly, asset volatilities are strongly time-

varying but tend also in this trivariate model to be higher in the two extreme regimes (especially in

the bear regime) than they are in the slow growth and bull states. Moreover, also dynamic correlations

become now time-varying because these depend on the Markov state variable. Correlations between

large and small stocks are very high and highly statistically significant in bear markets, but at least

bonds provide considerable hedging. Equity correlations are instead smaller in regimes 3 and 4, when

space to exploit diversification benefits seem to exist.

Figure 8 shows the smoothed probabilities computed from the MSIH(4,0) estimated in Figure 7.

Note that there is now only one set of smoothed probability plots (differently from the 9 figures that

55In the table, you read about MMSIAH( ) models becase the first M stands for “multivariate”. You can simply

disregard the first M for practical purposes.
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have appeared in Figures 4 and 5), one for each of the  = 4 regimes. While regimes 2 and 3 are rather

persistent (with average durations of 6.8 and 8.5 months, respectively), regime 4 is less persistent (3.2

months), and the first bear state is not persistent at all, capturing situations of unpredictable market

crashes. A casual inspection confirms that the period captured by high smoothed probabilities of

regime 1 approximately correspond to those that have already appeared in Figure 4 for large and small

stocks. The same is true of all other regimes. The implication is that bond-specific regimes seem to

be not reflected by the behavior of the unique, multivariate Markov state  that has been estimated

here or, equivalently that such a  is more affected by 
large
 and small than it is by bond . Why this

may be the case and what its effects may be for portfolio and risk management is a topic currently

under investigation.

Figure 7: MLE estimates of MSIH(4,0) model for U.S. stock and bond portfolios, monthly 1954-1999 U.S. data

Figure 8: Smoothed probabilities from MSIH(4,0) model for U.S. stocks and bonds, monthly 1954-1999 U.S. data
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7.2. Extensions: Markov switching ARCH

One may wonder about the positioning of MS models within the logical path covered so far in chapters

5-6. The path was marked by three incremental steps: (i) even after fitting relatively sophisticated

GARCH models, standardized residuals from financial returns often remain non-Gaussian with ev-

idence of thick tails and asymmetries, so that in chapter 5 we have developed methods to model

non-Gaussian returns; (ii) to deploy active risk management methods, you need to model correlations,

besides variances; (iii) DCC models are the most promising multivariate models of heteroskedastic

dynamics in second moments. Instead of representing a separate approach, MS models perfectly fit

the logical sequence marked by (i)-(iii) above, in at least two ways:

• MS models represent distinct, practical and powerful solutions to problems (i)-(ii) above;

• MS methods can be easily combined with everything else we have seen in chapters 5-6 and
therefore are not in contradiction with the development in (iii) above.

As for the first point, we have already seen in Section 4 that in general MS models generate strong

non-normalities in asset returns, such as non-zero skewness and excess kurtosis. Moreover, our example

in Section 7.1 has shown that multivariate MS models may lead to the estimation of regime switching

correlations, which is clearly relevant to (ii) above.

As for the second bullet point, although at some frequencies–mostly monthly, when the residuals

of well-specified MS models often reject the need of also introducing ARCH effects–MS directly

competes with GARCH, at high (daily, weekly) frequencies MS, ARCH, DCC, and t-Student variants

are compatible with Markov switching. For instance, efforts have been made to produce MS models

with switching ARCH and GARCH effects; the same applies to DCC models. Although GARCH

models driven by normally distributed innovations and their numerous extensions can account for a

substantial portion of both the volatility clustering and excess kurtosis found in financial return series,

a GARCH-type model has yet to be constructed for which the filtered residuals consistently fail to

exhibit clear-cut signs of non-normality. On the contrary, it appears that the vast majority of GARCH

models, when fitted to returns over weekly and shorter horizons, imply quite heavy-tailed conditional

innovation distributions. A natural solution has consisted of developing GARCH frameworks that

incorporate the original assumption of normal innovations but in which the conditional distribution

is mixture of normals, as under MS. As for the frequency, the empirical result that seems to rule in

most of applied econometrics holds: the higher the frequency, the higher the chances that MS GARCH

may genuinely be needed, with little peril of over-fitting the data. As a rule of thumb, most papers

that analyze daily or weekly data, normally specify some form of MS GARCH process; at a monthly

frequency, there is much more uncertainty as to what the right choice may be;56 at quarterly or annual

frequencies, strong evidence of both regimes and ARCH seems unlikely.

56For instance, using U.K. equity and bond data, Guidolin and Timmermann (2005) formally test for (bivariate) ARCH

effects in a three-state MSIH-type model and found that the null of no ARCH cannot be rejected. On U.S. monthly equity

data, Guidolin and Timmermann (2007), have reported similar evidence in a four-state model.
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What does a MS GARCH look like? Cai (1994) develops a MS ARCH model to examine the issue

of volatility persistence in monthly excess returns of 3-month T-bills: Cai was concerned that the

high volatility persistence commonly reported from ARCH models might be spuriously inflated by the

presence of a small number of regime shifts. Cai proposed to model occasional shifts in the long-run,

ergodic variance of a MS ARCH process. In this case, the conditional variance is no longer determined

by an exact linear combination of past squared shocks, as in a standard ARCH: the intercept in the

conditional variance is allowed to change in response to occasional discrete shifts. Thus the model is

able to retain the volatility-clustering feature of ARCH and, in addition, to capture the discrete shifts

in the intercept in the conditional variance that may cause spurious persistence in the process. In the

simplest of the two-regime cases explored by Cai (1994), his MSIAR(2,1) ARCH process is:

+1 = +1 + ( − +1) +

q
2+1+1 +1 ∼ IID (0 1)

2+1 = +1 +

X
=1


2
+1− +1   ≥ 0

where  = 1 2 follows a first-order, homogeneous and irreducible two-state Markov chain. A related,

but slightly different approach is Hamilton and Susmel’s (1994) who have proposed a (SWARCH)

model in which changes in regime are captured as changes in the scale of the ARCH process,

+1 = +
q
+1

q
2+1+1 +1 ∼ IID (0 1)

2+1 =  +

X
=1


2
+1−  ≥ 0,  = 0 1 2,

so that  follows a standard ARCH() process and the MS component concerns the scaling factor

+1 . This is obviously different (and in some sense more powerful) than Cai’s MS ARCH in which a

shift to the volatile regime only affects the unconditional (long-run) variance, while in Hamilton and

Susmel’s SWARCH also the dynamic process of conditional variance is affected. This model is flexible

enough to attribute most of the persistence in the volatility of stock returns to the persistence of the

low-, moderate-, and high-volatility regimes, which typically last for several years.

Both of these models simply focus on augmenting ARCH with regimes. In a way, this is natural

because the point of the literature has been to show that the high persistence of asset return volatilities

often reported in the GARCH literature may have been spuriously inflated by the presence of regime

shifts and/or breaks. As we have seen in chapter 4, the reason why Bollerslev (1986) had proposed

the GARCH generalization of ARCH was to increase the persistence of the ARCH conditional het-

eroskedastic family within a parsimonious parameterization. Therefore, the early prominence of MS

ARCH models over MS GARCH models should not come a surprise. However, one may still wonder

how we should go about specifying and estimating MS GARCH models. Unfortunately, combining

the MS model with GARCH induces tremendous complications in estimation. As a result of the par-

ticular lag structure of a GARCH model–by which all past lags of squared shocks affect conditional

variance–the standard equations characterizing the EM algorithm for MS parameter estimation would
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depend on the entire history of the Markov states through the smoothed probabilities. Because each

of the Markov states may take  values, this implies a total of  probabilities that need to be

computed and stored, which would make most MS GARCH models extremely difficult to estimate for

sample sizes of more than 100 observations. Direct maximum likelihood estimation (i.e., not based on

the EM algorithm) via a nonlinear filter also turned out to be practically infeasible. Gray (1996) has

developed a two-state generalized MS ARCH model for the U.S. short-term riskless nominal interest

rate (1-month T-bill, ):

∆+1 = +1 + +1 +

q
2+1+1  ∼ IID (0 1)

2+1 = +1 + +1
2
 + +1

2
  (25)

( = 1 2) which implies an infinite memory because  [∆+1|+1] = +1 + +1
2
+ +1

 −1[∆|], which can be solved backwards to show that conditional variance depends on the entire
history of shocks to the short-term rate, 0 1  . Gray tackles the problem of path dependence

in MS GARCH adopting an approach that preserves the essential nature of GARCH and yet allows

tractable estimation. Under conditional normality, the variance of changes in the short rate at time 

is given by

̄2 = −1[(∆)2]− {−1[∆]}2 = Pr(=2|F−1)[22 + 2 (−1=2|F−1)]+

+[1− Pr(=2|F−1)][21 + 2 (=1|F−1)]− {Pr(=2|F−1)2 − [1− Pr(=2|F−1)]1}2

which is not path-dependent and corresponds to a difference of averages across regimes (with proba-

bilities given by filtered probabilities) of the the first and second moments. This value of ̄2 can now

be used in the MS GARCH (1,1) specification (25) to replace 2 ().

Figure 9: 1-month predicted volatility from single- vs. three-state GARCH models of U.S. excess stock returns

For instance, Figure 9 below is copied from Guidolin (2009) and shows the differences in filtered

volatility for U.S. excess stock monthly returns between a standard GARCH(1,1) model and a three-

regime MS GARCH model with structure similar to (25). Visibly, their dynamics appears to be similar,
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but the three-state GARCH allows one-month predicted volatility to sometimes go below the level

allowed by the single-state model in the first portion of the sample, while during the bear market period

of 1999-2002, the opposite occurs–some volatility spikes are estimated under MS that fail to be visible

under a plain-vanilla GARCH. Guidolin (2009) shows that volatility forecasts obtained incorporate

regime switching are considerably more accurate than those obtained from standard methods.

The extensions discussed above only concern univariate ARCH and GARCH models. What about

their multivariate counterparts? Pelletier (2006) has recently proposed an extension of Bollerslev’s

(1990) constant conditional correlation (CCC) multivariate framework to incorporate MS dynamics in

the conditional variance and covariance functions. As it is well known, applied econometricians face

considerable identification and numerical problems when they try to write truly multivariate models

of volatility and correlations. This is because not only must the variances be positive, the variance

matrix must also be positive semi-definite at every point in time. Another important problem is the

curse of dimensionality; because applied researchers need models that can be applied to more than a

few time series, it is problematic to directly generalize the plain vanilla univariate GARCH models,

and even relatively parsimonious and carefully constructed multivariate variations such as the BEKK

model do suffer from a tendency to over-parameterize the estimation problem. Chapter 6 has discussed

these issues at length. Similarly to a standard DCC model, Pelletier’s (2006) regime switching dynamic

correlation (RSDC) model decomposes the covariances into standard deviations and correlations, but

these correlations are allowed to change over time as they follow a MS model:

R+1 = Σ
12
+1²+1 ² IID (0 I ) Σ+1 = D+1Γ+1D+1

where D+1 is a diagonal matrix composed of the standard deviations (Pelletier simply suggests that

each of them may follow a standard univariate GARCH(1,1) process) of  return series and the regime-

dependent matrix Γ+1 contains the correlations that are assumed to be constant within a regime but

different across regimes. This feature implies that in the evaluation of the likelihood, the correlation

matrix can only take  possible values so we only have to invert  times a  × matrix, which–

especially when the number of time series is large–can be a computational advantage over models

such as a DCC, where a different correlation matrix has to be inverted for every observation.

Pelletier shows that the RSDC model has many interesting properties. First, it is easy to impose

that the variance matrices are PSD. Second, it does not suffer from a curse of dimensionality because

it can be estimated with a two-step procedure. Third, when combined with a ARMACH model for

standard deviations (here the ACH stands for absolute conditional heteroskedasticity),

+1 =  + ||+ 

(in its simplest (1,1) version), this correlation model allows analytic computation of multi-step ahead

conditional expectations of the whole variance matrix.57 Finally, by modelling time variation in corre-

57Although it may seem natural (as in chapter 6) to adopt a GARCH(1,1) to model the process of univariate conditional

variances, because the covariance is the product of a correlation and the square-root of the product of two variances, the

square-root introduces non-linearities that will prohibit analytic computation of conditional expectations of correlations.
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lations as a MS model, the variances and covariances are not bounded which is the case when they are

the ones following a regime switching. Estimation is made simpler by adopting a two-step quasi-ML

estimation procedure as in chapter 6: in a first step, we can estimate the univariate volatility models

and in a second step, we can estimate the parameters in the correlation matrix conditional on the first

step estimates. In an empirical application to exchange rate data, Pelletier also shows that a simple

two-state RSDCM can produce a better fit than the celebrated DCC model.

8. Non-Normal Returns under MS Mixture: Implied Conditional Moments

In Section 4 we have generically argued that mixtures of normals driven by MS models may lead to

strong non-normalities in returns. This makes MS an interesting alternative to other routes explored in

chapter 5 to generate realistic skewness and excess kurtosis. Although these issues are rather algebra-

intensive and can actually best seen also from rich sets of simulations, some insight may be gained

from considering a simple univariate MSIH() model with  = 2, written as

+1 = +11 + (1− +1)0 + [+11 + (1− +1)0]+1 +1 ∼ (0 1),

in which +1 = 0 1 is unobservable at all points in time. You can easily see that in this special  = 2

case, +11+(1−+1)0 reproduces the +1 dependence; the same applies to +11+(1−+1)0.
Let’s start by checking moments for the benchmark, single-regime case in which  = 1. Because

these will be important below, we compute both unconditional and conditional moments. When = 1,

it is as if  = 0 always, which means there is only one regime and  and  may loose the pedix that

refers to the regime. Therefore, when we perform calculations for time  conditional moments and for

unconditional moments, respectively, we have:

[+1] = [+ +1] = + [+1] = 

[+1] = [+ +1] = + [+1] = 

 [+1] =  [+ +1] = 2 [+1] = 2

 [+1] =  [+ +1] = 2 [+1] = 2

[+1] =
[(+1 −[+1])

3]

( [+1])15
=

[(+ +1 − )3]

3

=
3[

3
+1]

3
= 0 (as +1 ∼ (0 1))

[+1] =
[(+ +1 − )3]

3
=

3[3+1]

3
= 0

[+1] =
[(+1 −[+1])

4]

( [+1])2
− 3 = [(+ +1 − )4]

4
− 3

=
4[

4
+1]

4
− 3 = 0 (as +1 ∼ (0 1))

[+1] =
[(+ +1 − )4]

4
− 3 = 4[4+1]

4
− 3 = 0

Because +1 ∼ (0 1) and +1 =  + +1 and  is constant, we have that +1 has a normal
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conditional and unconditional distribution.

Things are a tad more involved when  = 2. In this case, when you apply the conditioning, you

will also need to condition with respect to the current state, :

[+1|] = [+11 + (1− +1)0 + (+11 + (1− +1)0)+1|]
= [+1|]1 +[(1− +1)|]0 +[+1|][1+1|] +

+[(1− +1)|][0+1|]
= Pr(+1 = 1|)1 + (1− Pr(+1 = 1|))0

[+1] = [+11 + (1− +1)0 + (+11 + (1− +1)0)+1]

= [+1]1 +[(1− +1)]0 +[+1][1+1] +[(1− +1)][0+1]

= 11 + (1− 1)0

where 1 is the unconditional probability of regime 1, and (1− 1) is the unconditional probability of

regime 2.58 Insofar as 1 6= Pr(+1|) and (1− 1) 6= 1− Pr(+1|), clearly [+1|] 6= [+1]

as the first moment will be a time-varying one. As for variances:

 [+1] = Pr(+1 = 1|)[(1 + 1+1 − Pr(+1 = 1|)1 − (1− Pr(+1 = 1|))0)2|]+
+ Pr(+1 = 0|)[(0 + 0+1 − Pr(+1 = 1|)1 − (1− Pr(+1 = 1|))0)2|]

= Pr(+1 = 1|)[((1− Pr(+1 = 1|))(1 − 0) + 1+1)
2|]+

+ Pr(+1 = 0|)[(Pr(+1 = 1|)(0 − 1) + 0+1)
2|]

= Pr(+1 = 1|)(1− Pr(+1 = 1|))2(1 − 0)
2 + (1− Pr(+1 = 1|))×

× (Pr(+1 = 1|))2(1 − 0)
2 +Pr(+1 = 1|)21 + (1− Pr(+1 = 1|))20

= Pr(+1 = 1|)(1− Pr(+1 = 1|))(1 − 0)
2[(1− Pr(+1 = 1|))+

+ (Pr(+1 = 1|))] + Pr(+1 = 1|)21 + (1− Pr(+1 = 1|))20
= Pr(+1=1|)21 + (1− Pr(+1=1|))20 +Pr(+1=1|)(1− Pr(+1=1|))(1 − 0)

2

because [(1− Pr(+1 = 1|)) + (Pr(+1 = 1|))] = 1. Instead

 [+1] = 1[(1 + 1+1 − 11 − (1− 1)0)
2]+

+ (1− 1)[(0 + 0+1 − 11 − (1− 1)0)
2]

= 1[((1− 1)(1 − 0) + 1+1)
2]− (1− 1)[1(1 − 0) + 0+1)

2]

58The reason why

[+1+1|] = [+1|][+1|] = 0  = 0 1

is that given , +1 is independent of any other random variable indexed at time  + 1, and in particular +1 is

independent of +1 (just think of the way we have “manually simulated” returns from Markov switching at the very

beginning of lecture 5). Moreover, [1+1|] = 1[+1|] = 1[+1] = 0 because [+1] = 0 by construction in

a Markov switching model. The same applies to

[+1+1] = [+1][+1] = 0  = 0 1
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= 1(1− 1)
2(1 − 0)

2 + (1− 1)
2
1(1 − 0)

2 + 1
2
1 + (1− 1)

2
0

= 1(1− 1)(1 − 0)
2[(1− 1) + 1)] + 1

2
1 + (1− 1)

2
0

= 1
2
1 + (1− 1)

2
0 + 1(1− 1)(1 − 0)

2

In both cases, notice that

 [+1] 6= Pr(+1 = 1|)21 + (1− Pr(+1 = 1|))20
 [+1] 6= 1

2
1 + (1− 1)

2
0

with the difference represented by the terms Pr(+1 = 1|)(1−Pr(+1 = 1|))(1−0)2 in the case
of the conditional variance and 1(1 − 1)(1 − 0)

2 in the case of the unconditional variance. This

means that in a MSIH(2 0) model, not only the regime-specific variances will be weighted in the overall

variances across regimes, but also the (squared) size of the between-regime “jumps” in regime-specific

means, 1 − 0, will contribute to the variability of the process.

We now move to compute conditional and unconditional skewness:

[(+1−[+1])
3] = Pr(+1=1|)[(1+1+1−Pr(+1=1|)1−(1−Pr(+1=1|))0)3|]+

+ Pr(+1 = 0|)[(0 + 0+1 − Pr(+1 = 1|)1 − (1− Pr(+1 = 1|))0)3|]
= Pr(+1 = 1|)(1− Pr(+1 = 1|))3(1 − 0)

3 + (1− Pr(+1 = 1|))×
× (Pr(+1 = 1|))3(0 − 1)

3 + 31[
3
+1|] + 30[

3
+1|]+

+ 3Pr(+1 = 1|)(1− Pr(+1 = 1|))(1 − 0)
2
1[

2
+1|]+

− 3Pr(+1 = 1|)(1− Pr(+1 = 1|))(1 − 0)
2
0[

2
+1|]

= Pr(+1 = 1|)(1− Pr(+1 = 1|))(1 − 0)
3[(1− Pr(+1 = 1|))2 − (Pr(+1 = 1|))2]

+ 3Pr(+1 = 1|)(1− Pr(+1 = 1|))(1 − 0)(
2
1 − 20)

where [3+1|] = 0, [2+1|] = 1, [(1 − Pr(+1 = 1|))2(1 − 0)
21+1|] = [(Pr(+1 =

1|))2 (0 − 1)
2 0+1|] = 0 so that

[+1] = (1 − 0)
1+1(1− 1+1)

©
(1 − 0)

2[(1− 1+1)
2 − 21+1] + 3(

2
1 − 20)

ª
[1+1

2
1 + (1− 1+1)

2
0 + 1+1(1− 1+1)(1 − 0)

2]32


where we have shortened the notation by defining 1+1 ≡ Pr(+1 = 1|), as in Section 5. Similarly,
straightforward but tedious algebra reveals that

[+1] = (1 − 0)
1(1− 1)[(1 − 0)

2[(1− 1)
2 − 21] + 3(

2
1 − 20)]

[1
2
1 + (1− 1)

2
0 + 1(1− 1)(1 − 0)

2]32


This finding is very interesting:

[+1] 6= 0 if and only if 1 6= 0

[+1] 6= 0 if and only if 1 6= 0
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i.e., you need switching in conditional means in order for non-zero skewness to obtain. However, it is also

clear that even when 1 6= 0 it is possible for both conditional and unconditional skewness coefficient

to be zero when (this is just a sufficient condition): (i) 1+1 = 0 or 1 = 0; (ii) 1+1=11 = 1.

The two sets of restrictions do not carry the same meaning though, as 1 = 0 or 1 really means you

are not facing a MS model, in the sense that the underlying MC may be clearly reduced to a single

state, while 1+1 = 0 or 1 just means that as of time  you are certain that in the following period

you are either in the first regime or in the second.59

Finally, we deal with conditional and unconditional excess kurtosis:

[(+1−[+1])
4] = Pr(+1=1|)[(1+1+1−Pr(+1=1|)1−(1−Pr(+1=1|))0)4|]+

+ Pr(+1=0|)[(0 + 0+1 − Pr(+1=1|)1 − (1− Pr(+1=1|))0)4|]
= Pr(+1 = 1|)(1− Pr(+1 = 1|))4(1 − 0)

4 + (1− Pr(+1 = 1|))×
× (Pr(+1 = 1|))4(1 − 0)

4 + 6Pr(+1 = 1|)(1− Pr(+1 = 1|))2(1 − 0)
221[

2
+1|]+

+ 6(1− Pr(+1 = 1|))(Pr(+1 = 1|))2(1 − 0)
220[

2
+1|] + 41[

4
+1|] + 40[

4
+1|]+

= Pr(+1=1|)(1− Pr(+1=1|))(1 − 0)
4[(1− Pr(+1=1|))3 + (Pr(+1=1|))3]+

+ 6Pr(+1=1|)(1− Pr(+1=1|))(1 − 0)
2[(1− Pr(+1=1|))21 +Pr(+1=1|)20]+
+ 3Pr(+1=1|)41 + 3(1− Pr(+1=1|))40

where [+1|] = [3+1|] = 0, [2+1|] = 1, [4+1|] = 3, so that

 [+1] =
1+1(1− 1+1)

©
(1 − 0)

4[(1− 1+1)
3 + 31+1] + 6(1 − 0)

2

[1+1
2
1 + (1− 1+1)

2
0 + 1+1(1− 1+1)(1 − 0)

2]2
+

+
[(1− 1+1)

2
1 + 1+1

2
0]
ª
+ 31+1

4
1 + 3(1− 1+1)

4
0

[1+1
2
1 + (1− 1+1)

2
0 + 1+1(1− 1+1)(1 − 0)

2]2
− 3

where we have shortened the notation by defining 1+1 ≡ Pr(+1 = 1|), as in the lectures. Similarly,
straightforward but tedious algebra reveals that

 [+1] =
1(1− 1)

©
(1 − 0)

4[(1-1)
3 + 31] + 6(1 − 0)

2[(1− 1)
2
1 + 1

2
0]
ª

[1+1
2
1 + (1− 1+1)

2
0 + 1+1(1− 1+1)(1 − 0)

2]2

+
31

4
1 + 3(1− 1)

4
0

[1+1
2
1 + (1− 1+1)

2
0 + 1+1(1− 1+1)(1 − 0)

2]2
− 3

59If that seems more plausible, consider that based on the results in the lectures, we have that

Pr(+1 = 1|) = (1− 00)Pr( = 0|=) + 11 Pr( = 1|=)

which can be 1 if and only if either (1−00)Pr( = 0|=) = 1 (but that means that 00 = 0), 11 Pr( = 1|=) = 1 (but
that means that 11 = 1), or the sum happens to be one. The first two cases do indicate problems with the irreducibility

of the MC. The third case is more interestig. If

1 = (1− 00)Pr( = 0|=) + 11 Pr( = 1|=) = e02P0 = e02[+1]

where  is the 2× 1 vector that collects time  filtered probabilities and e2≡ [0 1]0, this means that as of time  you are
forecasting with certainty that time  + 1 will be dominated by regime 1. That is rather odd, if you think of it, and it

may pose of periodicity of the underlying MC.
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This finding is once more very interesting. First of all, notice that also in this case, when 0 = 1,

 [+1] =
31+1

4
1 + 3(1− 1+1)

4
0

[1+1
2
1 + (1-1+1)

2
0]
2
−3 = 3

"
1+1

4
1 + (1− 1+1)

4
0

21+1
4
1 + (1-1+1)

240 + 21+1(1-1+1)
2
0
2
1

-1

#

which is less than the expression found above: regime switching means simply adds to the excess

kurtosis of a series. Moreover, in this case MS will generate positive excess kurtosis if and only if

1+1
4
1 + (1− 1+1)

4
0  21+1

4
1 + (1− 1+1)

240 + 21+1(1− 1+1)
2
0
2
1

Moreover, notice that if one also has 20 = 21 = 2, then

 [+1] =
4[31+1 + 3(1− 1+1)]

4[1+1 + (1− 1+1)]
2
− 3 = 0

as it should be because when 0 = 1 and 20 = 21, there is no MS left in the process.

Because in the single-regime case, the normality of the shocks +1 carries over to returns, it is

sensible to ask what are the conditional and unconditional distributions of returns under the two-state

MS process. Here the point is that even a simple two-state MSIH model such as the one in this question

may generate substantial departures from normality. Given

+1 = +11 + (1− +1)0 + [+11 + (1− +1)0]+1 +1 ∼ (0 1),

in which +1 = 0 1, it is clear that conditioning on +1–which is equivalent to say that either the

regime is observable (but that violates our assumptions) or that, again oddly, +1 may be perfectly

predicted–+1 ∼ (+1  
2
+1

) which a simple Gaussian distribution. However, as we have stressed

in the lectures, in a MS model, +1 is unobservable, while the case in which +1 may be perfectly

predicted given time  information appears to be rather bizarre.60 In fact, even if you were to somehow

know what the current, time  regime  is, notice that in general Pr(+1 = | = ) represents the

generic [ ] element of the transition matrix P. If the Markov chain is ergodic and irreducible, you

then know that Pr(+1 = | = )  1   = 1 2. Because of this fact the conditional distribution

of +1 returns is:

(+1|=) = (+1|) = Pr(+1 = 1|)(1 21) + (1− Pr(+1 = 1|))(0 20),

where (1 
2
1) is a normal density function with mean 1 and variance 

2
1. Such a density is called

a mixture, with probabilistic and time-varying weights Pr(+1 = 1|) and (1− Pr(+1 = 1|)), of
two normal densities and it is NOT itself a normal density. Therefore, even conditioning on time 

information and on knowledge (still difficult to obtain) of the current state , returns in a two-state

MS will not have a normal distribution, unless 0 = 1 and 20 = 21 when (trivially)

(+1|=) = (+1|) = Pr(+1 = 1|)( 2) + (1− Pr(+1 = 1|))( 2)
= [Pr(+1 = 1|) + (1− Pr(+1 = 1|))]( 2) = ( 2).

60Please read the previous footnote in case you have skipped it.
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In fact, also notice that when 0 = 1 and 20 = 21, from results obtained above we have

[+1] = (− )
1+1(1-1+1)

©
(− )2[(1-1+1)

2 + 21+1] + 3(
2 − 2)

ª
[1+1

2 + (1− 1+1)
2 + 1+1(1− 1+1)(− )2]32

= 0

 [+1] =
1+1(1-1+1)

©
(-)4[(1-1+1)

3+31+1] + 6(-)
2[(1-1+1)

2+1+1
2]
ª

[1+1
2 + (1− 1+1)

2 + 1+1(1− 1+1)(− )2]2

+
31+1

4 + 3(1-1+1)
4

[1+1
2 + (1− 1+1)

2 + 1+1(1− 1+1)(− )2]2
− 3 = 0

which is consistent with the conclusion that +1 follows a normal distribution.

As for the unconditional density of returns, i.e., the density of +1 not conditioning on any

precise prior information, it is logical to state that absent any information on either  or at least

Pr(|=), the best assessment we can make of each of the regimes is simply that Pr( = 1) = 1 and

Pr( = 0) = 1 − 1. Therefore, on average, returns will come 1 percent of the time from (1 
2
1)

and (1 − 1) percent of the time from (0 
2
0) The result is that the unconditional distribution of

+1 is:

(+1) = 1(1 
2
1) + (1− 1)(0 

2
0),

which is another mixture (in this case, not time-varying, being unconditional) of two normal distribu-

tions and that, as we know, this will imply (assuming 1 ∈ (0 1))

[+1] = (1 − 0)
1(1-1)[(1 − 0)

2[(1− 1)
2 + 21] + 3(

2
1 − 20)]

[1
2
1 + (1− 1)

2
0 + 1(1− 1)(1 − 0)

2]32
6= 0

 [+1] =
1(1-1)

©
(1 − 0)

4[(1-1)
3+31] + 6(1 − 0)

2[(1-1)
2
1 + 1

2
0]
ª

[1+1
2
1 + (1− 1+1)

2
0 + 1+1(1− 1+1)(1 − 0)

2]2
+

+
31

4
1 + 3(1− 1)

4
0

[1+1
2
1 + (1− 1+1)

2
0 + 1+1(1− 1+1)(1 − 0)

2]2
− 3  0

Additionally, when 0 6= 1, notice that even the variance of (+1) fails to simply be the probability-

weighted average of 21 and 
2
0 because, as we know,  [+1] = 1

2
1+(1−1)20+1(1−1)(1−0)2.

9. Markov Switching and the Risk-Return Trade-Off

Despite its key role in many applications, estimating and understanding the dynamics over time of

the market risk premium has proven difficult. As you will recall from your theory of finance sequence,

the market risk premium can be defined as the mean of market returns in excess of some risk-free

rate, say [+1 −  ].61 For instance, even though classical finance theory suggests estimating the

risk premium based on the theoretical relationship between mean returns and the contemporaneous

variance of returns, for a long time empirical research has failed to document a significantly positive

relationship between average returns and the filtered/predicted levels of market volatility (see e.g.,

Glosten, Jagannathan, and Runkle, 1993). In fact, a number of researchers have instead unveiled a

61Here, one may also stress a distinction between ex-ante and ex-post risk premia, with the ex-ante quantity being an

expectation (i.e., population mean), and the ex-post one being an estimator of such a mean. One could also define a

conditional risk premium, in obvious ways: [+1 − |=].
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negative relationship between volatility and market prices, the so-called volatility feedback effect. As

already discussed in chapter 4 (where it was called leverage effect), this feedback effect refers to the

intuitive idea that an exogenous change in the level of market volatility initially generates additional

return volatility as stock prices adjust in response to new information about future discounted expected

returns.

Because the aggregate stock market portfolio remains one of the most natural starting points

to an understanding of asset pricing phenomena, it is surprising that there is still a good deal of

controversy around the issue of how to measure risk at the market level. Recent empirical studies have

documented two puzzling results. First, there is evidence of a weak, or even negative, relation between

conditional mean returns and the conditional volatility of returns. Second, they document significant

time variation in this relation. For instance, in a modified GARCH-in mean framework using post-

World War II monthly data, Glosten et al. (1993) find that the estimated coefficient on volatility in

a return/volatility regression is negative: a higher conditional volatility would depress the conditional

risk premium, not the opposite. Or, equivalently, negative news that depress the risk premium, would

increase conditional variance, which was already discussed in chapter 4.

More recently, Lettau and Ludvigson (2001) have provided evidence suggesting the failure to find a

positive relationship between excess returns and market volatility may result from not controlling for

shifts in investment opportunities, i.e., regimes. However, within applications of MS models in financial

economics, this idea dates back at least to a seminal paper that had traced a connection between MS

as a time series technique and asset pricing theory, Turner, Startz and Nelson (1989, henceforth TSN).

TSN introduce a model of the aggregate market portfolio (the Standard and Poor’s index) in which the

excess return ( ≡ −
 ) is drawn from a mixture of two normal densities because market portfolio

returns are assumed to switch between two states. The states are characterized by the variances of

their densities as a high-variance state and a low-variance state. The state itself is assumed to be

generated by a first-order Markov process,

 =  +   (0 2),

where 21 ≥ 20 and the conditional mean  ≡ [|=−1] is discussed below. Of course this is an odd

MSIH(2) model, in the sense that variance is MS in the usual way and the intercept varies according

to some function that will also involve the Markov chain . TSN develop two models based on the

heteroskedastic structure discussed above. Each incorporates a different assumption about agents’

information sets. In the first model, economic agents know (because they observe it) the realization

of the Markov state process, even though the econometrician does not observe it. There are two risk

premia in this specification. The first is the difference between the mean of the distribution in the

low-variance state and the riskless return. Agents require an increase in return over the riskless rate to

hold an asset with a random return. The second premium is the added return necessary to compensate
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for increased risk in the high-variance state:

[|] =
(

0 if  = 0

1 if  = 1


The parameter estimates from this model suggest that whereas the first risk premium is positive, the

second is negative, ̂0  0 and ̂1  0. Monthly data on S&P 500 index returns for 1946-1987 reveal

that the two regimes identified by 21 ≥ 20 and ̂1 6= ̂0 are highly persistent, with median durations

of 3 months for the high variance regime and of 43 months for the low variance one. Estimates of this

simple MSIH model, in which agents are assumed to know the state, do not support a risk premium that

increases with risk, which is puzzling: parameter estimates indicate that agents require an increase

in annual return over T-bills of approximately 10% to hold the risky asset in low -variance periods.

The estimates also suggest, however, that the premium declines as the level of risk increases, that is,

̂1  ̂0. Further, not only is ̂1 significantly less than ̂0, it is also significantly negative. Therefore

TSN reject the hypothesis of a risk premium increasing in the variance.

As we have seen in Section 4, Figure 1, this occurs also with reference to more recent, different

data, such as those in Guidolin and Timmermann (2006a).

Figure 1: MSIH(2,0) parameter estimates for U.S. stock and bond portfolios, monthly 1954-1999 U.S. data

Here the column that is relevant to this discussion is especially the first one, where the portfolio of

large stocks (the top two annual deciles of the market capitalization distribution over time) is almost

the same as TSN’s S&P 500 index.

As already hinted at, misspecification is a likely explanation for this result. If agents are uncertain

about the state, so that they are basing their decisions on forecasts of the regime in the following

period, estimates assuming they know the state with certainty will be inconsistent. Accordingly, in

their second model TSN assume that neither economic agents nor the econometrician observe the states.

In each period, agents form probabilities of each possible state in the following period conditional on

current and past excess returns, and use these probabilities in making their portfolio choices. Each

period, investors update their prior beliefs about that period’s state with current information using

Bayes’ rule, as in Section 5.1. The parameter of interest is then the increase in return necessary to

compensate the agents for a given percentage increase in the prior probability of the high-variance
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state. Agents’ portfolio choice may be specified as a simple function of this probability:

 = + Pr( = 1|F−1)

where the constant, , represents agents’ required excess return for holding an asset in the low-variance

state. Note that this is an intuitive and yet ad-hoc model: there is no reason for  to depend linearly

on the filtered probability of a high-variance state, Pr( = 1|F−1). Yet, this simple model means that

agents require an increase in the excess return in period  when faced with an increase in their prior

probability that the high-variance state will prevail in that period, and this intuition is sufficiently

sound for the model to represent a starting point. In fact, TSN generalize slightly this model to

 = (1− )0 + 1 + Pr( = 1|F−1).

TSN are able to sign all the parameters in this simple empirical model. The stock price at time 

should reflect all available information. This requires that the price at  should fall below its value at

− 1 if some new unfavorable information about fundamentals, such as an increase in variance, arrives
between −1 and . This fall is necessary to ensure that the return from time  to +1 is expected to be
higher than usual so as to compensate stockholders for the added risk. According to this scenario, the

return between −1 and  will be negative on average for those periods in which adverse information is
newly acquired, and positive on average when favorable information is acquired. This means that the

coefficient  attached to Pr( = 1|F−1) represents the effect when agents anticipate as of time − 1
that the return of time  will be drawn from the high-variance distribution. According to standard

mean-variance theory, foreknowledge of a high-variance should be compensated by a higher expected

return. The predicted variance in this model is simply

[2 |F−1] = [1− Pr( = 1|F−1)]20 +Pr( = 1|F−1)21+
+ [1− Pr( = 1|F−1)] Pr( = 1|F−1)(1 − 0)

2

Thus when Pr( = 1|F−1) ∈ (0 12) is high, because

[2 |F−1]
 Pr( = 1|F−1)

= (21 − 20) + [1− 2Pr( = 1|F−1)](1 − 0)
2

is positive when Pr( = 1|F−1)  05, the expected excess return should be positive so that the

parameter  is positive. On the other hand, it could be that today’s high-variance state,  = 1, was

not anticipated in the previous period. In this case Pr( = 1|F−1) is small so that the average return

between  − 1 and  is dominated by 1. During a period in which agents are surprised by the event

 = 1, the stock price must fall below what would have been seen had  = 0 occurred instead. This

will make the return between  − 1 and  lower and will show up as a negative value for 1. Similar

reasoning suggests that if the variance unexpectedly decreases, the return between −1 and  will turn
out to be higher than usual, suggesting that 0 should be positive.
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TSN also manage to establish the sign of a linear combination of the parameters. The risk premium

in  is given by the expected value of  conditional on the current information set. Thus, the risk

premium is

 = [1− Pr( = 1|F−1)]0 + (1 + ) Pr( = 1|F−1)

If agents are risk-averse, this equation should always be positive and increase with Pr( = 1|F−1).
The expectation will always be positive as long as 0 ≥ 0 and 1 +  ≥ 0 Finally, if both of these
conditions hold with inequality and 1 +   0 then

[|F−1]
 Pr( = 1|F−1)

= 1 +  − 0  0

i.e., the risk premium will increase with agents’ prior probability of the high-variance state.

When estimated on S&P 500 monthly data, this model yields parameter estimates that are largely

consistent with asset pricing theory. The estimates (̂0 = 070% ̂1 = −336% and ̂ = 288)

provide support for a risk premium rising as the anticipated level of risk rises. If the agents are

certain next period’s return will be drawn from the low-variance density, agents anticipate a monthly

return of 5% percent. Likewise, if agents are certain next period’s return will be drawn from the high-

variance density, then agents will require a monthly return of 180% annually. These estimates suggest

that agents perceive stocks to be a very risky asset during high-variance periods. The unconditional

probability of the high-variance state is however only 0.0352. This means that in spite of that 180%

spike in expectation during high-variance regimes, the risk premium will average approximately 9% on

an annual basis. This number is close to the average excess return observed in the data, 7.5%.62

10. Some Applications

10.1. Using MS models to study contagion

MSVAR models are particularly suitable to model and study contagion dynamics. Contagion repre-

sents an important topic in empirical finance because studies concerning this phenomenon answer the

question of whether it is possible to use performance in any market or country to forecast what will

happen in other markets or countries. Typical questions are whether and how today’s performance

in the U.S. equity markets drive the performance in European markets in the subsequent period; or

whether the current return in some ABS (asset-backed securities) market drives returns in other credit

markets, or the corporate bond market. Typically, the literature has used simple, single-state ( = 1)

VAR() models to model contagion. For instance, in the easiest case of a homoskedastic VAR(1) model

62However, one problem remains: because ̂1 + ̂ − ̂0 = −118  0, the risk premium does not increase with the

anticipated variance; the variance of the linear combination is large in relation to the point estimate, the t-statistic is

-0.21, so that the model provides no evidence for a risk premium changing with or against the variance. This result

is consistent with French, Schwert, and Stambaugh’s (1987) who also find little evidence of a relation between the risk

premium and volatility.
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for  = 2 (say, the ABS market and the corporate bond market), one may try and estimate:63"
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where Ω12 is the Choleski decomposition of the return shock covariance. In such a VAR(1) model,

contagion–say, from the ABS market to the corporate bond one–may occur in two ways: (i) because

  0 and large, so that a large ABS return today affects subsequent, realized corporate

bond returns; (ii) because   0 and large, so that a large shocks to ABS returns today

contemporaneously affects realized corporate bond returns. Typically, the literature has found that

such two channels are insufficient to capture the overall comovements of markets during periods of

financial crisis.

One simple and yet intuitive extension of this simple VAR(1) framework, consists of linking some

(or all) of its parameter vectors and matrices to the dynamics of a Markov chain state variable +1:"
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where +1 = 1 2 . This is of course a MSVARH(2,1) models for the bivariate vector that includes

both ABS and corporate bond returns. Such a model implies three types of contagion effects:

1. Simultaneous, through the off-diagonal elements of Ω12
+1

that capture the dynamics across

regimes of non-zero correlations.

2. Dynamic and linear, through the VAR components, which now become themselves potentially

regime-switching.

3. Dynamic and non-linear, through the fact that the regime variable that drives the process of all

variables in R+1 is common to all variables, in this case both asset markets under consideration.

63You can easily think of conditional heteroskedastic extensions along the lines of chapter 6. However, this is not

essential for the point we want to make here. Also, your lecture slides contain a similar but not identical example

concerning the contagion from the U.S. to the Italian stock market.
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The intuition is that if the vectors and matrices of parameters switch with similar effects on

realized returns as +1 evolves over time, patterns of contagion that are neither linear nor

exclusively related to the structure of the covariance matrix may be captured.

Interestingly, the third, MS-related contagion pattern may occur independently of all other patterns

listed above. This means that one may have contagion even in the simple MSI() model:"
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provided that in the regimes in which 
+1

is low, also 
+1

and viceversa. Note that the previ-

ous example also stresses an implied capability of MS models: to capture and forecast time-varying

variances and correlations, similarly to ARCH and DCC models.

There is one last form of contagion that has been explored in the finance literature: in our previous

example, suppose that 
+1 is driven by a specific Markov state 

+1 and 
+1 by 

+1 . A

form of interesting and testable contagion pattern is then whether:


+1 = 

 

i.e., whether the state in the corporate bond market at time  + 1 is deterministically driven by the

market state in the ABS market as of last period. The workout example in Appendix D shows one

way in which this hypothesis can be formally tested.

10.2. MS predictability

MS models have had wide applications to the debate on the predictability of financial returns. Because

MS models come in a variety of ways, in the following we consider a simple example to examine a few

of the interesting issues that arise when you approach the quantitative modelling of predictability in a

MS framework. Consider the (restricted) two state MSVARH(2,1) for US and Canadian stock returns

in which lagged values of the US dividend yield predict stock returns in both markets, formally:

y+1 = μ+1
+A+1y + ²+1 ²+1 ∼ (0Ω+1)

where  follows an ergodic, irreducible, first-order Markov chain with constant transition matrix P

and y ≡ [
 

  ]0. The MS VAR model is restricted because we assume that the US dividend

yield is not directly (i.e., linearly, in a regression sense) affected by lagged values of stock returns in

either the US or Canada. In explicit form, the model can be written as:
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The model implies a long list of estimable parameters: 1 , 2 , 


1 , 


2 , 


1 , 


2 ,



1 , 


2 , 1 , 2 , 
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1 , 
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1 ,



2 , 1 , 2 , 1 , 2 , 
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1 , 


2 , 


1 , 


2 , 


1 , 


2 , plus the two

elements from the transition matrix:

P =

"
11 1− 11

1− 11 22

#


Notice that the elements are only two, because the rows of P need to sum to one. If you count them,

this gives you a total of 2× 3 = 6 parameters in the vector of intercepts, μ+1
, 2 × 7 = 14 elements

from the restricted VAR(1) matrix defined in the question,

A+1 =

⎡⎢⎣ 

+1



+1



+1



+1



+1



+1

0 0 

+1

⎤⎥⎦
and 2× (3× 4)2 = 12 elements from the Markov switching covariance matrix. The total is 6 + 14 +

12 + 2 = 34 parameters to be estimated, which may seem a lot but it is actually not, at least in a

trivariate VAR-type model.

Suppose you somehow know–as normally this is not observable information, as we have seen in

Sections 4 and 5–what regime will prevail at time  + 1, call it +1 (this can be either 1 or 2). If

we knew that next period the regime will be +1 = +1, then forecasting returns (say, U.S. ones)

one-period ahead is simple:

[
+1|+1 = +1] = +1 + +1


 + +1


 + +1

 

as [+1|+1 = +1] = 0. On the opposite, if the nature of the regime in + 1 were not known and

unobservable, then:

[
+1| = ] = Pr(+1 = 1| = )

h
1 + 


1 

 + 

1 

 + 

1 

i
+

+Pr(+1 = 2| = )
h
2 + 


2 

 + 

2 

 + 

2 

i


It is easy to see that in general [
+1|+1 = +1] 6= [

+1| = ] The exceptions may be

summarized in two sets of conditions: (i) when there are no differences across regimes in conditional

mean parameters, i.e., 1 = 2 , 

1 = 


2 , 


1 = 


2 , 


1 = 


2 ; (ii) or when

it happens that Pr(+1 = +1| = ) = 1, i.e., from state the current  =  one can only switch

the state +1 = +1 assuming this will occur. This shows that the unobservable nature of the regime

becomes an essential and realistic feature of the practical use of MS models.

Another curiosity may concern the conditions under which you can state that Canadian stock

returns do not depend in any linear fashion from US economic conditions, including both US stock
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returns and dividend yields. Given
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it is clear that you will need 

1 = 


2 = 0, 


1 = 


2 = 0, 


1 = 


2 = 0, and



1 = 


2 = 0 from Canadian markets not to depend in any way on U.S. economic conditions.

The last two sets of restrictions imply that shocks to either US stock markets or to the US dividend

yield will fail to correlate with shocks to Canadian stock returns. Under these restrictions, the model

clearly simplifies to:
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and the Canadian stock market would appear to be completely isolated from US markets. However,

note that because one single, common Markov state  drives both US and Canadian markets, some

dependence would be left in this model. For instance, suppose that 1  2 and 1  2 

Then it is natural to expect that low Canadian returns will tend to appear simultaneously with low US

returns, impressing a positive correlation pattern that may derive from the existence of effects from

US economic conditions onto Canadian equity valuations.64

10.3. Value-at-Risk in (simple) MS models

This subsection summarizes work in Guidolin and Timmermann (2006b) on the effectiveness and

benefits of MS modelling in risk management applications. Consider the simple univariate MSIH(2 0)

model,

+1 = +11 + (1− +1)0 + [+11 + (1− +1)0]+1 +1 ∼ (0 1),

in which +1 = 0 1 is unobservable at all points in time. As we know from Section 8, this way of

writing a MSIH(2,0) model is equivalent to (6) when  = 2. As usual, in the limit case in which

 = 1 which is a benchmark single-state linear model, to compute (say) 1% VaR is identical to what

has been done in chapter 5 and that has appeared a few times already in your lecture slides. Because

when  = 1 the model collapses to a simple +1 = ++1 with +1 ∼ (0 1), it is straightforward

64However, no causality may be established. Although this would be hard to persuasively argue, such a positive

correlation might even derive from effects from Canadian economic conditions on US stock valuations.
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to obtain that:

001 = Pr(+1  − 001+1 ( = 1)) = Pr

µ
+1 − 


 − 

001
+1 ( = 1) + 



¶
= Pr

µ
+1  −

 001+1 ( = 1) + 



¶
= Φ

µ
− 

001
+1 ( = 1) + 



¶
so that, after defining Φ−1(·) as the inverse CDF of a standard normal distribution,

Φ−1(001) = Φ−1
µ
Φ

µ
− 

001
+1 ( = 1) + 



¶¶
= − 

001
+1 ( = 1) + 



=⇒  001+1 ( = 1) = −Φ−1(001)− 

Now, moving to the  = 2 case, let’s start from an approximate way to look at the problem

of computing 1% VaR: one colleague in your risk management department is proposing to use the

following conditional 1% VaR measure:

 001+1 ( = 2) = − £Pr(+1 = 1|)21 + (1− Pr(+1 = 1|))20¤Φ−1(001) +
− [Pr(+1 = 1|)1 + (1− Pr(+1 = 1|))0] 

in which the colleague is obviously conditioning with respect to the current state, , but still applying

a normal distribution result. Unfortunately, you should not agree with his/her proposal, or at least

should clarify to the team that this is simply an approximation. The reason is that in Section 8 we

have found that

(+1|=) = (+1|) = Pr(+1 = 1|)(1 21) + (1− Pr(+1 = 1|))(0 20)
6= 

¡
[Pr(+1=1|)1+(1-Pr(+1=1|))0] Pr(+1=1|)21 + (1-Pr(+1=1|))20

¢
,

and that (+1|=) does not actually follow a Normal distribution, but a probability-weighted mixture

of two normal distributions which is itself not a Normal distribution. As a result, the way of proceeding

to VaR calculations proposed by the colleague may turn out to be grossly incorrect as it employs

Φ−1(001) where the use of the standard normal CDF was previously coming from the fact that

+1 ∼ ( 2). When this assumption breaks down, the procedure is clearly invalid. Moreover, you

know from Section 8 that

 [+1] = Pr(+1=1|)21 + (1-Pr(+1=1|))20 +Pr(+1=1|)(1- Pr(+1=1|))(1 − 0)
2

6= Pr(+1 = 1|)21 + (1− Pr(+1 = 1|))20

unless 0 = 1 which is generally not the case in a MSIH(2,0) model.

After you have made your objection during his presentation, this colleague of yours revises his/her

proposal to use the following conditional 1% VaR measure:

 001+1 ( = 2) = −[Pr(+1=1|)21 + (1-Pr(+1 = 1|))20 +Pr(+1=1|)(1- Pr(+1=1|))×
×(1 − 0)

2]Φ−1(001)− [Pr(+1 = 1|)1 + (1− Pr(+1 = 1|))0] 
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Your reaction should remain negative: unfortunately, making one claim “less wrong” does not make it

correct. Even though it is now correct that

 [+1] = Pr(+1=1|)21 + (1− Pr(+1=1|))20 +Pr(+1=1|)(1− Pr(+1=1|))×
×(1 − 0)

2,

the fact remains that

(+1|=) = (+1|) = Pr(+1 = 1|)(1 21) + (1− Pr(+1 = 1|))(0 20)
6= ([Pr(+1=1|)1 + (1-Pr(+1=1|))0] £

Pr(+1=1|)21 + (1-Pr(+1=1|))20
¤
+Pr(+1=1|)(1- Pr(+1=1|))(1 − 0)

2)

so that VaR cannot be computed in that simply way.

Finally, it seems time for you to suggest how this should be done correctly. Here you may be in

trouble, though: unfortunately there is no closed-form solution which means that you will have to

resort to simulation-based (Monte Carlo) methods. The problem is that

(+1|) = Pr(+1 = 1|)(1 21) + (1− Pr(+1 = 1|))(0 20)

fails to have a closed-form representation and as such it impossible to simply draw from some well-

specified PDF or CDF. This means that your proof of the functional form of 1% VaR in

001 = Pr(+1  − 001+1 ( = 1)) = Pr

µ
+1 − 


 − 

001
+1 ( = 1) + 



¶
= Pr

µ
+1  −

 001+1 ( = 1) + 



¶
= Φ

µ
− 

001
+1 ( = 1) + 



¶
simply fails because it is not true that Pr

³
+1  − 001+1 (=1)+



´
can be measured using Φ(·). What

you can do is (very simply, indeed) the following. First, simulate a large number  of one-month

returns assuming  = 0 from

+1 = +11 + (1− +1)0 + [+11 + (1− +1)0]+1 +1 ∼ (0 1),

when +1 = 1 with probability 01 = (1 − 00) and +1 = 0 with probability 00. Call these 

one-month ahead returns
©

+1( = 0)

ª
=1

.65 Second, simulate a large number  of one-month

returns assuming  = 1 from

+1 = +11 + (1− +1)0 + [+11 + (1− +1)0]+1 +1 ∼ (0 1),

when +1 = 1 with probability 11 and +1 = 0 with probability 1 − 11. Call these  one-month

ahead returns
©

+1( = 1)

ª
=1

. Finally, you need to “aggregate” this 2 simulations in a unique

65This means that when +1 = 1 you will simulate from +1 = 1 + 1+1; when +1 = 0 you will simulate from

+1 = 0 + 0+1. How do you simulate a two-point (also called Bernoulli) random variable that takes value 1 with

probability 1− 00 and 0 with probability 00? Simple, you draw a uniform defined on [0,1] and you set +1 = 1 if the

uniform draw is less than (or equal to) 1− 00, and you set +1 = 0 otherwise.
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set, using:


+1 = Pr( = 1|=)


+1( = 1) + (1− Pr( = 1|=))


+1( = 0)  = 1 2  .

At this point, your 1% VaR will be simply defined as: the simulated returns in the set
©

+1

ª
=1

that

leaves exactly 1% of your total  simulations (after your aggregation step, i.e., 100 simulations,

which better be an integer) below the 1% VaR value.

Appendix A – More on Ergodic Markov Chains

Consider a -state, first-order Markov chain (MC) with transition matrix with generic element

 ≡ Pr(+1 = | = ):

P ≡

⎡⎢⎢⎢⎢⎣
11 12  1

21 22  2
... 

. . .
...

1 2  

⎤⎥⎥⎥⎥⎦ 
Notice that in general P 6= P0 although many of the claims that follow refer to P0.66 Suppose that one
of the eigenvalues of P0 is unity and that all other eigenvalues of P0 are inside the unit circle (i.e., they

are less than 1).67 Then the MC is said to be ergodic and the  × 1 vector of ergodic probabilities for
the chain is denoted as ξ̄. This vector ξ̄ is defined as the eigenvector of P0 associated with the unit

eigenvalue, that is, the vector of ergodic probabilities ξ̄ satisfies P0ξ̄ = ξ̄ and it is normalized to sum

to unity, (i.e., ξ̄
0
ι = 1, where ι ≡ [1 1 ... 1]0 is a  × 1 vector of ones).

First, noting that the eigenvalues of P and P0 are identical by construction and using the standard

properties of a (discrete) probability law (measure), it is easy to prove that Pι = ι so that at least

one eigenvalue of P0 is equal to one:

Pι =

⎡⎢⎢⎢⎢⎣
11 12  1

21 22  2
... 

. . .
...

1 2  

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
1

1
...

1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

11 + 12 + + 1

21 + 22 + + 2
...

1 + 2 + + 

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
1

1
...

1

⎤⎥⎥⎥⎥⎦ ,
where the last equality derives from the law of total probability, i.e., the fact that starting from any

state  = , the sum of the probabilities of either staying in regime  or of switching to any other

regime must always be 1:

Pr(+1 = 1| = ) + Pr(+1 = 2| = ) + +Pr(+1 = | = ) = 1

Recall now from your math courses that the expression Pι = ι is equivalent to the definition of one

specific set of eigenvector/eigenvalue of a matrix P, in the sense that Pι = ι identifies 1 as one of

66P0 is in fact playing the role of matrix of vector autoregressive coefficients in the +1 = P0 + v+1 process seen in

Section 4.
67The eigenvalues of the transition matrix P0 for any -state Markov chain are found from the solutions to |P0−I |

= det(P0 − I) = 0.
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the eigenvalues of P. Also notice that if Pι = ι holds, then also Pι = ι , with  ∈ R some

scalar, which means that  will be an eigenvalue of P as well.

At this point, if P is the transition matrix for an ergodic Markov chain with  distinct eigenvalues,

then

lim
→∞

(P0) = ξ̄ι
0
 =

⎡⎢⎢⎢⎢⎣
1 1  1

2 2  2
... 

. . .
...

   

⎤⎥⎥⎥⎥⎦ ,
where (P0) is the matrix P0 multiplied by itself  times, i.e., (P0) ≡Q

=1P
0. Recall that when the

 eigenvalues are distinct, P0 can always be written in the form P0 = QΛQ−1 where Q is a  ×

matrix whose columns are the eigenvectors of P0 and Λ is a diagonal matrix whose diagonal contains

the corresponding eigenvalues of P0, sorted in descending order (so 1 will occupy the (1,1) position).

It is elementary (try it with a  = 2 example) to show that

(P0) = QΛQ−1

Since the (1,1) element of Λ is unity and all other elements of Λ are inside the unit circle, Λ converges

to a matrix with unity in the (1, 1) position and zeros elsewhere. For instance

lim
→∞

⎡⎢⎢⎢⎢⎣
1 0  0

0 2  1  0
... 

. . .
...

0 0    1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
lim→∞ 1 0  0

0 lim→∞ 2  0
... 

. . .
...

0 0  lim→∞ 

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
1 0  0

0 0  0
... 

. . .
...

0 0  0

⎤⎥⎥⎥⎥⎦ 
Hence,

lim
→∞

(P0) = xy0

where x is the first column of Q and y0 is the first row of Q−1. The first column of Q is the eigenvector

of P0 corresponding to the unit eigenvalue, which eigenvector was defined as ξ̄ in P0ξ̄ = ξ̄, so x = ξ̄.68

Moreover, the first row of Q−1, when expressed as a column vector, corresponds to the eigenvector of

P associated with the unit eigenvalue, which eigenvector was seen to be proportional to the vector 1 in

1a, Pι = ι, with  some scalar. Therefore y = ι. At this point, substituting x = ξ̄ and y = ι

into the limit expression for (P0) as  →∞, we have:

lim
→∞

(P0) = ξ̄ι
0
.

68Here we have used without proof the fact that the first row of Q−1, when expressed as a column vector, corresponds

to the eigenvector of P associated with the unit eigenvalue.
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Because (P0) can be interpreted as a matrix of (predicted) transition probabilities, each column must

sum to unity. Thus, since the vector of ergodic probabilities ξ̄ was normalized by the condition that

ξ̄
0
ι = 1, it follows that the normalizing -constant  must be unity, establishing that

lim
→∞

(P0) = ξ̄ι
0
.

This means that as the forecast horizon for predicted transition probabilities  diverges, all the elements

of the resulting  -step ahead transition matrix P will simply collapse to be identical to the ergodic,

unconditional probabilities.

For instance, in the special case of  = 3 if you have obtained an estimate of P equal to

P̂ =

⎡⎢⎣ 088 009 003

001 096 003

023 0 077

⎤⎥⎦ 
the ergodic probabilities ξ̄ characterizing this three-state model can be derived resorting to a computer

(just type “eigenvalues” in the Matlab on-line guide). It turns out that both P̂ and P̂0 share the same

eigenvalues, i.e., 1, 0.87 and 0.74. Here we care only for the unit eigenvalue. Your math software will

also inform you that the eigenvector of P̂0 associated to the unit eigenvalue is:

[0.3926 0.8834 0.1664]0

This eigenvector is not yet ξ̄ because it fails to have unit length. In fact the eigenvector ends up

summing to 1.4424 while ξ̄
0
ι = 1 by definition. However, it is now sufficient to scale the eigenvector

so to have unit length, which is done by simply dividing its entries by their sum, 1.4424. The resulting

estimated (because implied by P̂) ξ̄ is:

ξ̄ = [0.272 0.613 0.125]0.

Finally, the vector of ergodic probabilities can also be viewed as indicating the unconditional

probability of each of the  different states, π = ξ̄. We have seen in Section 4 that if we define δ+1

to be a  × 1 vector that lists a 1 in its th position if the MC is in state  at time  and 0 otherwise,
then [δ+1] = [δ+1|] = Pr(+1|) and will equal the th column of the matrix P0 if  = .

This is the vector of conditional probabilities of all possible  states, given  = . Correspondingly,

the unconditional probabilities of each of the  regimes may be defined as a vector Pr(+1):

[δ+1] = Pr(+1) = [P0δ + v+1]

= P0 Pr(+1) +[v+1] = P
0 Pr(+1)

Then it is clear that the vector Pr(+1) satisfies Pr(+1) = P
0 Pr(+1) At this point, please compare

with the definition of ergodic probabilities ξ̄ = P
0
ξ̄: clearly ξ̄ =Pr(+1) so that ξ̄ can also be inter-

preted as the vector of long-run, unconditional probabilities for each of the  regimes. Alternatively,

as seen in Section 4, because

lim
→∞

(P0) = πι0 .
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and Pr() ≡ [δ] = lim→∞[δ+ |] = lim→∞(P0)δ, then

Pr() = πι0δ = π

as by construction ι0δ = 1. As a result, ξ̄ = [0.272 0.613 0.125] will also give the long-run, uncondi-

tional frequencies of the bear, normal, and bull phases of the market. As one would expect, the normal

regime occurs on the majority of time, in excess of 60% of any long sample. The finding above that

Pr() = P0 Pr() extends more generally to show that

[δ+1] = ξ+1| = Pr(+1|=) = [P0δ + v+1|=]

= P0 Pr(|=) +[v+1|=] = P
0δ

Moreover, but to show it is a bit tedious, also the recursion ξ+1| = Pξ holds.

Appendix B – State-Space Representation of a MS Model

The first step towards estimation and prediction of a MSVARH model is to put the model in state-

space form. This Appendix offers a heuristic idea of what that means but it is in no way binding for

the purposes of your exam preparation. Let’s collect the information on the time  realization of the

Markov chain in a random vector

ξ ≡

⎡⎢⎢⎢⎢⎣
( = 1)

( = 2)
...

( = )

⎤⎥⎥⎥⎥⎦ 
where ( = ) is a standard indicator variable. In practice the sample realizations of ξ will always

consist of unit versors e characterized by a 1 in the th position and by zero everywhere else. As we

have seen in Section 4, another important property is that [ξ|ξ−1] = P0ξ−1. The state-space form
is composed of two equations:

R = XA (ξ ⊗ ι) +Σ (ξ ⊗ I ) ² (measurement equation)

ξ+1 = Fξ + v+1 (transition equation) (26)

where X is a  × (+1) matrix of predetermined variables with structure [1 R0−1R
0
−]⊗ι A is

a (+1)× matrix collecting the VAR parameters, both means or intercepts and autoregressive

coefficients, in all regimes

A =

⎡⎢⎢⎢⎢⎣
μ
0
1 μ

0
2 · · · μ

0


A11 A12 · · · A1
...

...
. . .

...

A1 A2 · · · A

⎤⎥⎥⎥⎥⎦ 
Σ is a× matrix collecting all the possible “square root” (Choleski decomposition) covariance

matrix factors [Ω
12
1 Ω

12
2 ... Ω

12
 ] such that ∀, Σ (ξ ⊗ I) (ξ ⊗ I)0Σ0 = Ω  the covariance
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matrix of the asset return innovations ² Moreover, ² ∼IID (0 I ) and in the transition equation

v+1 is a zero-mean discrete random vector that can be shown to be a martingale difference sequence.

Also, the elements of v+1 are uncorrelated with ²+1 as well as ξ−  ²−  R−  and X− ∀ ≥ 0 To
operazionalize the dynamics state-space system (26), assume that the multivariate process (6) started

with a random draw from the unconditional probability distribution ξ̄ Finally, from the definition of

transition probability matrix in Section 3, it follows that since [v+1|ξ] = 0 by assumption, then

[ξ+1|ξ] = Fξ

implies that F corresponds to the transpose of the transition probability matrix, P0.69

Appendix C – The Expression for the ML Estimator of the Initial
State Probability Vector

Consistently with our assumption that ξ1|0 is an unknown  × 1 vector of parameters that must
be estimated, we now note that the likelihood function can be alternatively be written as:


¡{R}=1|{ξ}=1θ

¢
=

Y
=1

X
{}=1

(R|ξ=−1;θ) Pr (ξ|=−1;θρ)

=

Y
=1

η0ξ|−1 =
Y
=1

η0P
0ξ−1|−1

= ι0
Y
=1

diag(η)P
0ξ̂−1|−1 = ι0

Y
=1

Kξ1|0

where (θ) ≡diag(η(θ))P0 (see Krolzig, 1997, p. 81, for a proof of the last line). Since the likelihood
function is linear in ξ1|0 the solution is a boundary one:

ξ̂1|0 = argmax
1≤≤

ι0
Y
=1

(θ)e

Appendix D – A Matlab
R°
Workout

Construction of your portfolio: You are a European investor and your reference currency

is the Euro. Using monthly data in STOCKINT2013.XLS and/or derived .txt files that collect the

data, construct monthly excess returns (in Euros) using the two price indices DS Market-PRICE

INDEXes for two economies, Germany and the US.

69Observe that in general, this dynamic state-space model is neither linear (as the state vector  also influences the

covariance matrix of the process) nor Gaussian, as the innovations driving the transition equation are non-Gaussian

random variables.
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1. For the sample period January 1988 - December 2008, plot the values of each of the two individual

indices (in logarithmic terms) and the excess returns for each of the two indices when denominated

in Euros. Make sure to include the dividends paid by each of the two indices in each of the monthly

return series. Notice that the monthly data made available on the course web site also include

data on the dividend yield on index  ( = GER, US, UK), , defined as

 ≡ 

−1


2. Over the same sample, estimate a two-state Markov switching model with no VAR component but

regime-dependent covariance matrix (i.e., a MSVARH(2,0) also called MSIH(2,0) in our lectures)

on excess returns data,

+1 = +1 + +1

+1 = 

+1

+ +1"
+1

+1

#
∼ 

¡
0Ω+1

¢


in which expected excess returns (i.e., the means), the variances and covariances all depend on

the same two-state Markov chain +1 with constant transition matrix across regimes. Use the

function “MS VAR Fit” from the Markov Switching toolbox that has been provided through

the class web site to print on your screen the parameter estimates obtained in the two regimes.

How can you interpret–on the basis of the parameter estimates–the economic nature of the

first regime? How about the second regime? Plot the dynamics of (i) expected excess returns,

(ii) standard deviations, and (iii) the full-sample, ex-post smoothed probabilities implied by the

two-state Markov chain. Finally, compute and plot the dynamics of the conditional correlations

implied by the two-state model using only real time information (i.e., using filtered and not

smoothed probabilities, analogously with what “MS VAR Fit” does automatically). In comput-

ing dynamic correlations, make sure to adjust for the effects on both variances and covariance of

the joint presence of switches in expected excess returns, as explained in the lectures.

3. Use the dynamic variance-covariance matrix and the dynamic conditional means filtered from

question 2 to build an in-sample, recursive dynamic Markowitz portfolio based on the simple

expression

w
 =

1


[Ω̂]

−1μ̂,

where μ̂≡ [̂ ̂]
0 and  = 02 (this is of course a measure of aversion to risk). Plot the

corresponding recursive, real-time portfolio weights (notice that because you are solving the

problem using excess returns, what is not allocated to stocks must be allocated to the riskless

asset, here a short-term euro-denominated bond).

4. Repeat question 2 for the case of a two-state (restricted) Markov switching VAR(1) model with
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regime-dependent covariance matrix

+1 = +1 + 

+1

 + 

+1

 + +1

+1 = 

+1

+ 

+1

 + 

+1

 + +1"
+1

+1

#
∼ 

Ã
0

"
2+1 0

0 2+1

#!


where the restriction consists of the fact that the covariances in both regimes are restricted to

be zero, i.e., the only source of correlation in the system is the fact that the same Markov state

variables drives the first two moments for both countries.70 Plot the dynamics of (i) expected

excess returns, (ii) standard deviations, and (iii) the full-sample, ex-post smoothed probabilities

implied by the two-state Markov chain. Finally, compute and plot the dynamics of the conditional

correlations implied by the two-state model using only real time information (i.e., using filtered

and not smoothed probabilities). In computing dynamic correlations, make sure to adjust for

the effects on both variances and covariance of the joint presence of switches in expected excess

returns, as explained in the lectures. [Hint : Although this question can be done applying simple

modifications to your use of “MS VAR Fit” in question 2, it is now a good exercise to try and

use a different function, “MS Regress Fit”]

5. Use the dynamic variance-covariance matrix and the dynamic conditional means filtered from

question 4 to build an in-sample, recursive dynamic Markowitz portfolio based on the simple

expression

w
 =

1


[Ω̂]

−1μ̂,

where μ̂≡ [̂ ̂]
0 and  = 02. Plot these recursive, real-time portfolio weights. Why are

these more stable than what found in question 3?

6. With reference to the out-of-sample period January 2009 - December 2012, proceed to com-

pute optimal weights for the two-state Markov switching model in questions 4-5. Perform the

calculation in the following way: use the same estimated conditional mean parameters (the

regime-switching intercepts and VAR parameters) and the regime-dependent covariance matrix

parameters estimated in question 4, that you should have saved. Compute the dynamic means

and covariance matrix on the basis of those parameter performing the updating on the basis of

the out-of-sample forecast errors over the out-of-sample period. Importantly, you need to derive

predicted regime probabilities from the end-of-sample smoothed probabilities using the formulas

derived in the lectures. The weights will then come from the classical Markowitz formula. After

obtaining the weights, compute the realized Sharpe ratios (for the pure equity, risky portfolio)

over the out of sample period. Compare these realized Sharpe ratios with those that you would

70Notice that also in this case, the expected returns (i.e., both the intercepts and the AR(1) coefficients), the variances

and covariances all depend on the same two-state Markov chain +1 with constant transition matrix across regimes.
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have achieved by simply investing all of your wealth in each of the three stock indices under

consideration.

7. Going back to the sample period January 1988 - December 2008, estimate now two distinct, uni-

variate Markov switching first-order autoregressive (MSARH(2,1)) models with regime-dependent

variance for excess stock returns on the US and the German index:

+1 = 
+1

+ 
+1

 + −
+1

− + +1 +1 ∼ 
³
0 2

+1

´
,

where  = US, Germany, and − means Germany if  = US, and − means US if  = Germany.

Notice that the Markov chain 
+1 driving the switching dynamics in the two models is now

country-specific, i.e., 
+1 follows a chain that is potentially different (possibly, independent) of



+1. For each of the two countries, proceed to plot the dynamics of (i) expected excess returns,

(ii) standard deviations, and (iii) the full-sample, ex-post smoothed probabilities implied by the

two-state Markov chain.

8. Estimate now the same bivariate two-state MSVARH(2,1)) model as in question 4 (but just to

make it interesting, please now use “MS VAR Fit” as in question 2):

+1 = +1 + 

+1

 + 

+1

 + +1

+1 = 

+1

+ 

+1

 + 

+1

 + +1"
+1

+1

#
∼ 

Ã
0

"
2+1 0

0 2+1

#!


This is a restricted version of the pair of univariate models for US and Germany estimated in

question 7 in which +1 = 
+1 = 


+1, i.e., a unique Markov chain is assumed to drive switches

in both US and German data. In particular, the model of this question may be obtained from

the model in question 7 when (i) the mean and variance parameters are set to be identical; (ii)

11 = 11 = 

11 and 22 = 22 = 


22 which amounts to imposing 4 equality restrictions.71

Use a likelihood ratio test (LRT) to assess the null hypothesis that this restriction (formulated

as a null hypothesis) cannot be rejected based on the available data. How do you interpret a

rejection of this restriction? [Hint : Notice that because of the diagonal structure of the covariance

matrix, the total log-likelihood for the pair of univariate models for US and Germany estimated

in question 7 can be simply computed as the sum of the individually maximized log-likelihood

functions. In order to work on this question, make sure to read the toolbox manual related to

Markov switching, on how to constrain coefficients in estimation.]

9. Repeat point 7 above when the marginal distribution of the errors is assumed to follow a t-student

distribution, i.e., the model is

+1 = 
+1

+ 
+1

 + −
+1

− + +1 +1 ∼ 
³
0 2

+1
; 
´
,

71Technically, one also needs the two country-specific regimes to be initialized to be identical at the beginning of the

sample.
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where  = US, Germany, and - means Germany if  = US, and - means US if  = Germany.

For each of the two countries, proceed to plot the dynamics of (i) expected excess returns, (ii)

standard deviations, and (iii) the full-sample, ex-post smoothed probabilities implied by the

two-state Markov chain.

Solution

This solution is a commented version of the MATLAB code Markov switching 2013.m posted on

the course web site. Also in this case, all the Matlab functions needed for the correct functioning of

the code have been included. The loading of the monthly data is performed by the usual lines of code:

filename=uigetfile(‘*.txt’);

data=dlmread(filename);

The above two lines import only the numbers, not the strings, from a .txt file. The usual lines

of code take care of the strings and are not repeated here. The same applies to the exchange rate

transformations that have now become customary in the first part of our Matlab workouts.

1. Figure A1 plots the values of each of the two individual indices (in logarithmic terms) and the

excess returns denominated in Euros. Although it is not the same because the indices are two

and the sample period is different, this plot resembles the one in workout 3, chapter 6.

Figure A1:Monthly portfolio indices and returns expressed in euros
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2. We now use the Perlin’s m files toolbox to estimate a two-state Markov switching model with

no VAR component but regime-dependent covariance matrix (i.e., a MSIVARH(2,0) also called

MSIH(2,0) in our lectures) on excess returns data,

+1 = +1 + +1

+1 = 

+1

+ +1"
+1

+1

#
∼ 

¡
0Ω+1

¢


We do that by using the function “MS VAR Fit” from the toolbox. In fact, in code the following

lines pass to toolbox the specification of the model and a few estimation options:

dep=R eq; % Defines the dependent variables in system

nLag=0; % Number of vector autoregressive lags in 2x1 system ()

k=2; % Number of states/regimes ()

doIntercept=1; % Add intercept to equations (1= Yes; 0= No) (whether μ is MS)

advOpt.distrib=‘Normal’; % The Distribution assumption (only ’Normal’ is allowed for

MSVAR)

advOpt.std method = 1; % Defining the method for calculation of standard errors.

advOpt.diagCovMat = 0; % Whether we will estimate by MLE also MS covariances (

feature)

advOpt.doPlots = 0; % Does not produce automatic plots (you are in charge of that!)

advOpt.printIter = 1; % When set to 0, does not print iterations to the screeen

[Spec Out 1]=MS VAR Fit(dep,nLag,k,doIntercept,advOpt);

Some numerical optimization alterations and parameter estimates are therefore printed at the

screen, as shown in Figure A2. This estimation output gives a wealth of information on the MS model.

First, as you notice convergence is rather slow: unless you have are working on a server, an average

2-year old laptop may indeed take up to 4 minutes to complete estimation. This is becase the iterative

EM algorithm that implements MLE in the case of MS models tends to be slower to converge because

the need to iterate on both steps before the convergence criterion is eventually satisfied. The final

maximized log-likelihood is then -1443.1062. The model implies the estimation 12 parameters–i.e., 4

different means, 6 elements of the two regime-specific covariance matrices (a total of 4 variances and

2 covariances), and 2 transition probabilities, 11 and 22.
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Figure A2 : EM parameter estimates for MSIH(2,0) model for US and German excess stock returns

I know, the package states 14 but this derives from a mis-counting of the number of the free parameters

appearing in P̂ which as we know is equal to 2, not 4 (because of the summing up constraint on

the rows). The two state-dependent vectors of conditional mean excess returns (that we may call

conditional risk premia) are (with p-values under the ML estimates; these p-values are obtained from

Wald tests applied to invidual coefficients obtained in the way explain in Section 5):

μ̂ =

"
̂

̂



#
=

⎡⎢⎣ 113
(000)

136
(000)

⎤⎥⎦ μ̂ =

"
̂

̂



#
=

⎡⎢⎣ −107(012)

−150
(005)

⎤⎥⎦ 
In the bear regime, US risk premia are negative but not precisely estimated (hence one may consider

to set them to zero, although we have already discussed that this is a bit rushed), but the German

risk premium is negative and significant at 5%. In bull regime, both countries are characterized by

positive and highly statistically significant risk premia. The estimated transition probability matrix

characterizes both states as highly persistent with ̂ = 090 and ̂ = 094 and these are
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both highly significant. Figure A3 shows that these estimated transition probabilities imply consid-

erable average durations of 15.5 and 9.7 months, respectively. In fact, that bear states tend to last

on average more than bull states do is a common finding in the literature. Figure A3 completes the

picture by reporting the two regime-specific covariance matrices.72 As noticed in Sections 4 and 9, also

for these recent international equity data, the bear regime features variances that 3-4 times what is

found in the bull state. Moreover, the implied state-specific correlations are:

̂ =
̂



̂̂



=
786677√

1463377
√
1138909

= 061 ̂ =
̂



̂̂



=
3381489√

4310577
√
5555218

= 069

The fact that international correlations grow during bear markets is also a well-known phenomenon.

Of course, such linear correlations are just the tip of the iceberg, in the sense that another source

of comovements between these two markets in this case comes from the fact that ̂  ̂ and

̂

  ̂


, i.e., the Markov state moves both intercepts in the same direction and at the same

time, which makes the standard correlation a useful and yet imperfect measure of comovements across

different markets.73

Figure A3:EM parameter estimates for MSIH(2,0) model for US and German excess stock returns

As requested by the question, we also plot the dynamics of (i) expected excess returns, (ii) standard

deviations, and (iii) the full-sample, ex-post smoothed probabilities implied by the two-state Markov

chain in Figure A4. The smoothed state probabilities show a rather clear state definition with regimes

going from values close to 0 to values close 1 and few periods of lingering uncertainty on the nature

of the underlying regime. The main bear periods are characterized as late October 1987, 1989-1990,

the Summer of 1998, several bouts during 2000-2003, and of course the great financial crisis of 2008-

2009. The first two plots in Figure A4 show instead because both mean risk premia and volatilities

are “in synch” across countries as far as the two regimes are concerned, both means and volatilities

largely move together, reflecting the shapes of the evolution of smoothed probabilities in the third

plot. Finally, in Figure A5 we have computed and plotted the dynamics of the conditional correlations

implied by the two-state model using only real time information (i.e., using filtered and not smoothed

72Note that because the symmetry of covariance matrices, standard errors and p-values are not computed for the terms

of the matrices that are simply copied across the main diagonal.
73However, how such correlations may be computed to take synchroneous regimes into account is an advanced topic.
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probabilities, analogously with what “MS VAR Fit” does automatically).

Figure A4:Implied conditional means, volatilities, and smoothed probabilities from MSIH(2,0)

In computing dynamic correlations, we have made sure to adjust for the effects on both variances and

covariance of the joint presence of switches in expected excess returns, which is accomplised by the

following lines of code:

%Extracts transition matrix from parameter vector

p11=Spec Out 1.param(11);

p22=Spec Out 1.param(14);

%Computes ergodic probabilities; notice the numerator, (1-p22) to compute ergodc1

ergodic1=(1-p22)/(2-p11-p22);

ergodic2=(1-p11)/(2-p11-p22);

%Computes unconditional mean estimates

mubar1=ergodic1*Spec Out 1.param(7)+ergodic2*Spec Out 1.param(8);

mubar2=ergodic1*Spec Out 1.param(9)+ergodic2*Spec Out 1.param(10);

%Transforms structure that contains covariance matrix into matrix

Covarmat=cell2mat(Spec Out 1.Coeff.covMat);

cov reg1=Covarmat(1,2); cov reg2=Covarmat(1,4);

%Extracts standard deviations and covariances

Sigma1 reg1=sqrt(Covarmat(1,1)); Sigma1 reg2=sqrt(Covarmat(1,3));

Sigma2 reg1=sqrt(Covarmat(2,2)); Sigma2 reg2=sqrt(Covarmat(2,4));

%Computes filtered covariance over time

cov dyna=Spec Out 1.filtProb(:,1).*cov reg1+Spec Out 1.filtProb(:,2).*cov reg2;

%Adjusts filtered covariance to take into account the effects of regime switches

[sizevec,cc]=size(Spec Out 1.condMean(:,1));
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cov dyna=cov dyna+Spec Out 1.filtProb(:,1).*Spec Out 1.filtProb(:,2)

.*(Spec Out 1.condMean(:,1)-mubar1*ones(sizevec,1))

.*(Spec Out 1.condMean(:,2)-mubar2*ones(sizevec,1));

%Computes filtered standard deviations over time

Sigma1 dyna=Spec Out 1.filtProb(:,1).*Sigma1 reg1ˆ2+

Spec Out 1.filtProb(:,2).*Sigma1 reg2ˆ2;

Sigma2 dyna=Spec Out 1.filtProb(:,1).*Sigma2 reg1ˆ2

+Spec Out 1.filtProb(:,2).*Sigma2 reg2ˆ2;

%Adjusts filtered variance to take into account the effects of regime switches

Sigma1 dyna=Sigma1 dyna+Spec Out 1.filtProb(:,1)

.*Spec Out 1.filtProb(:,2).*(Spec Out 1.condMean(:,1)-mubar1*ones(sizevec,1))

.*(Spec Out 1.condMean(:,1)-mubar1*ones(sizevec,1));

Sigma2 dyna=Sigma2 dyna+Spec Out 1.filtProb(:,1).*Spec Out 1.filtProb(:,2)

.*(Spec Out 1.condMean(:,2)-mubar2*ones(sizevec,1)).*

(Spec Out 1.condMean(:,2)-mubar2*ones(sizevec,1));

Sigma1 dyna=sqrt(Sigma1 dyna);

Sigma2 dyna=sqrt(Sigma2 dyna);

%Computes filtered correlation over time

cor dyna=cov dyna./(Sigma1 dyna.*Sigma2 dyna);

figure(3);

plot(date(ss:se)’,cor dyna,‘b’, ‘LineWidth’,2);

dateaxis(‘x’,12)

set(gca,‘fontname’,‘garamond’,‘fontsize’,13);

ylabel(‘Dynamic Markov Switching Correlations’);

title(‘Q2: MSVARH(2,0) (or MSIH(2,0)) Model: Dynamic Correlations’,

‘fontname’,‘Garamond’,‘fontsize’,16);

Figure A5:Implied conditional correlations from MSIH(2,0)
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3. We now use the dynamic variance-covariance matrix and the dynamic conditional means filtered

from question 2 to build an in-sample, recursive dynamic Markowitz portfolio based on the simple

expression

w
 =

1


[Ω̂]

−1μ̂,

where μ̂≡ [̂ ̂]
0 and  = 02 (this is of course a measure of aversion to risk). These

calculations are performed by the lines of code:

%Extracts filtered vectors of expected returns and regime-specific covariance matrices

filtProb1 = Spec Out 1.filtProb;

Sigma s1 = Spec Out 1.Coeff.covMat{1};
Sigma s2 = Spec Out 1.Coeff.covMat{2};

%These instructions build column vectors of mean parameter estimates

mu s1 = [Spec Out 1.Coeff.S Param{1,1}(1);Spec Out 1.Coeff.S Param{1,2}(1)];
mu s2 = [Spec Out 1.Coeff.S Param{1,1}(2);Spec Out 1.Coeff.S Param{1,2}(2)];

%Builds recursive filtered expected returns based on filtered probabilities

FIT 1 = repmat(filtProb1(:,1),1,2).*(repmat(mu s1’,n+1,1))...

+ repmat(filtProb1(:,2),1,2).*(repmat(mu s2’,n+1,1));

%Computes filtered matrices of covariances of returns

SIGMA 1 = zeros(2,2,n); rho 1 = zeros(1,n);

vol 1 1 = zeros(1,n); vol 1 2 = zeros(1,n); vol rt 1 = zeros(1,n);

for t=1:n+1

Sigma vec = filtProb1(t,1)*vec(Sigma s1)+filtProb1(t,2)*vec(Sigma s2)...

+ filtProb1(t,1)*filtProb1(t,2)* vec((mu s1-FIT 1(t,:)’)*(mu s2-FIT 1(t,:)’)’);

SIGMA 1(:,:,t) = reshape(Sigma vec,2,2);

rho 1(1,t) = SIGMA 1(1,2,t)/sqrt(SIGMA 1(1,1,t)*SIGMA 1(2,2,t));

vol 1 1(1,t) = sqrt(SIGMA 1(1,1,t));

vol 1 2(1,t) = sqrt(SIGMA 1(2,2,t));

vol rt 1(1,t) = vol 1 1(1,t)/vol 1 2(1,t);

At 1(:,t) = inv(0.2*SIGMA 1(:,:,t))*FIT 1(t,:)’;

Wt 1(t,1) = At 1(1,t);

Wt 1(t,2) = At 1(2,t);

Wt 1(t,3) = 1-At 1(1,t)-At 1(2,t);

end

The corresponding recursive, real-time portfolio weights (that include a reminder allocated to the
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riskless asset, here a short-term euro-denominated bond) are plotted in Figure A6.

Figure A6:Recursive (filtered probs-based) mean-variance weights computed under  = 02 from MSIH(2,0)

Even though on average almost 80% of the portfolio is allocated to cash, during bull markets both stock

weights shoot up (especially the German portfolio share) to exceed 30 and 10 percent, respectively,

thus lowering the percentage allocated to cash to less than 60%. However, during bear markets, the

weights on both stock markets turn (slightly negative), as it is sensible, to indicate that one ought to

short them in order to allocate more than 100% into safe cash. For instance, this would have been the

optimal strategy suggested with reference to late 2008 and early 2009, clearly a rather attractive one.

4. At this point, we simply repeat point 2 with reference to a full-MSIVARH(2,1) in which however

correlations are imposed to equal zero in both regimes. Figure A7 plots the dynamics of (i)

expected excess returns, (ii) standard deviations, and (iii) the full-sample, ex-post smoothed

probabilities implied by the two-state Markov chain for this case.

Figure A7:Implied conditional means, volatilities, and smoothed probs from zero-correlation MSIVARH(2,1)
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We simply comment the key differences vs. Figure A4. The plot of smoothed probabilities tells

a story that is similar to the one emphasized before, but now the state probabilities are much

frequently removed from both 0 and 1.74 For instance, in 2000-2001 the existence of substantial

uncertainty is obvious. In this case, the conditional standard deviations of the shocks to US

returns is always, systematically lower than that for German returns. However, you need to

recall that in the case of a MSVARH model, the regime-specific covariance matrix that you

estimate simply concerns ²+1 and not the vector of excess returns, as these are also affected

by the state-specific VAR components. In fact, the first plot in Figure A7 shows that in such a

model, the conditional expectations of excess returns become considerably volatile over time, as

a result of lagged stock returns forecasting subsequent ones. In fact, the corresponding estimates

concerning the first row of the model (i.e., the equation for U.S. excess returns) as printed on

the Matlab screen are:

Figure A8 : EM estimates from a zero-correlations MSIAH(2,1) model

In this case, ̂ = −032 and ̂ = 047 but none of these intercepts is statistically significant;
moreover, ̂


 = 033 and ̂


 = 012 are again not significant; finally, ̂


 = 019 and

̂

 = −034 with the latter coefficient being highly statistically significant (this may indicate
that with a one-month lag, the two markets substitute for each other). Please make sure to

74One idea would be to compute RCM1 for the models in questions 2 and now 4 and compare them. The plots suggest

that while the first model will have a RCM1 close to 100, the second will not.
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visualize and interpret the remaining estimates, although it remains the case that most of them

fail to be significant, which may an indication that while a MSIH(2,0) is an interesting model, a

MSIVARH(2,1) is not.

Also note that in this case the estimation has been performed using the command MS Regress Fit

with the commands:

% Defining a constant vector in mean equation

constVec=ones(length(dep),1);

% Defining explanatory variables in the two equations (one lag of both returns)

indep{1}=[constVec R eq(1:end-1,1) R eq(1:end-1,2)];

indep{2}=[constVec R eq(1:end-1,1) R eq(1:end-1,2)];

% Defining which parts of the two equations will switch states

S{1}=[1 1 1 1];
S{2}=[1 1 1 1];

advOpt.distrib=’Normal’;

advOpt.std method=1;

advOpt.diagCovMat = 1; % This means that we will NOT estimate by MLE also MS

covariances

advOpt.doPlots = 0;

advOpt.printIter = 0; % When set to 0, does not print iterations to the screeen

[Spec Out 2]=MS Regress Fit(dep,indep,k,S,advOpt);

The line before the last specifies that no lengthy iteration information is to be printed on the Matlab

screen. MS Regress fit is a toolbox function that is fit to estimate MS regressions, besides MS VAR

models like in this specific application. Figure A9 computes and plots the dynamics of the conditional

correlations implied by the two-state model using only real time information (i.e., using filtered and

not smoothed probabilities).

Figure A9:Implied conditional correlations from zero-correlations MSIAH(2,1)
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5. At this point, we replicate question 3 and use the dynamic variance-covariance matrix and the

dynamic conditional means filtered from question 4 to build an in-sample, recursive dynamic

Markowitz portfolio when  = 02. Figure A10 shows such optimal weights.

Figure A10:Recursive (filtered-based) MV weights under  = 02 from zero-correlation MSIAH(2,1)

These are clearly different than those in Figure A6. On the one hand, all these weights are very

stable over time, and oscillate around zero in the case of the stock allocations. On the other

hand, visibly, an investor using filtered probabilities from the model in Figure A8, would end up

always investing close to 100% in cash, which is probably due to the imprecise estimates of most

of the parameters.

6. With reference to the out-of-sample period January 2009 - December 2012, we proceed to compute

optimal weights for the two-state Markov switching model in questions 4-5. We use the same

estimated conditional mean parameters and the regime-dependent covariance matrix parameters

estimated in question 4 but compute the dynamic means and covariance matrix on the basis of

those parameter performing the updating on the basis of the out-of-sample forecast errors over

the out-of-sample period. Figure A11 shows the results.

Figure A11:Recursive out-of-sample MV weights from zero-correlation MSIAH(2,1)
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The weights behave in a way similar to what already found in the workout example of chapter 6:

the financial crisis in early 2009 is marked by a shock to U.S. excess returns that, even though

only temporarily draws an investor away from U.S. markets and towards the European ones.

After obtaining the weights, we havel compute the realized Sharpe ratios (for the pure equity,

risky portfolio) over the out of sample period, obtaining:

Although the MSIAH(2,1) model does not yield the highest of the Sharpe ratios, our earlier

concerns on the specification of the model make the chances of this model outperforming all

other models rather slim.

7. We now estimate two distinct, univariate MSARH(2,1) models with regime-dependent variance

for excess stock returns on the US and the German index:

+1 = 
+1

+ 
+1

 + −
+1

− + +1 +1 ∼ 
³
0 2

+1

´
,

where  = US, Germany, and − means Germany if  = US, and − means US if  = Germany.

The Markov chain 
+1 driving the switching dynamics in the two models is now country-specific,

i.e., 
+1 follows a chain that is potentially different (possibly, independent) of 


+1. For each

of the two countries, Figure A12 plots the dynamics of (i) expected excess returns, (ii) standard

deviations, and (iii) the full-sample, ex-post smoothed probabilities implied by the two-state

Markov chain.

U.S. data German data

Figure A12:EM estimation outputs from two univariate MSIAH(2,1) models

Although parameter estimates and their standard errors are not reported here, please make sure
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to visualize and study them on your Matlab output screen. Figure A12 makes it clear that the

dynamics over time of 
+1 and 


+1 are rather different.

8. Next, we have estimated the same bivariate two-state MSVARH(2,1)) model as in question 4;

just to make this repetition interesting, we have now used the function MS VAR Fit from the

toolbox. This model is however interesting in connection to question 7 because it is a restricted

version of the pair of univariate models for US and Germany estimated in question 7 in which

+1 = 
+1 = 


+1, i.e., a unique Markov chain is assumed to drive switches in both US

and German data. In particular, the model of this question may be obtained from the model in

question 7 when (i) the mean and variance parameters are set to be identical; (ii) 11 = 11 = 

11

and 22 = 22 = 

22 which amounts to imposing 4 equality restrictions.

75 Because of the diagonal

structure of the covariance matrix, the total log-likelihood for the pair of univariate models for

US and Germany estimated in question 7 can be simply computed as the sum of the individually

maximized log-likelihood functions:

dep=R eq;

nLag=1;

k=2;

S{1}=[1 1 1]; S{2}=[1 1 1];
doIntercept=1;

advOpt.distrib=’Normal’;

advOpt.std method=1;

% THIS IS IMPORTANT: this MSVARH(2,1) model obtains as a restriction of the two

univariate models in question 7 only when the simultaneous covariance coefficient is

restricted to be zero

advOpt.diagCovMat = 1;

advOpt.doPlots = 0;

advOpt.prinIter = 1;

advOpt.printOut = 1;

advOpt.constCoeff.nS Param{1}={’e’};
advOpt.constCoeff.nS Param{2}={’e’};

advOpt.constCoeff.S Param{1}=
{mu us(1), mu us(2); var us1(1), var us1(2); var us2(1), var us2(2)};

advOpt.constCoeff.S Param{2}=
{mu ger(1), mu ger(2); var ger1(1), var ger1(2); var ger2(1), var ger2(2)};

advOpt.constCoeff.covMat{1}(1,1)={variance us(1)};
advOpt.constCoeff.covMat{1}(2,2)={variance us(2)};

75Technically, one also needs the two country-specific regimes to be initialized to be identical at the beginning of the

sample.
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advOpt.constCoeff.covMat{2}(1,1)={variance ger(1)};
advOpt.constCoeff.covMat{2}(2,2)={variance ger(2)};

advOpt.constCoeff.p={’e’,’e’; ’e’,’e’};
[Spec Out 3]=MS VAR Fit(dep,nLag,k,doIntercept,advOpt);

% Performs Likelihood Ratio test:

% Log-likelihood of restricted case, MSVARH(2,1)

LL A = Spec Out 3.LL;

% Log likelihood of general case with separate regime process (from univariate

estimations)

LL B = Spec Out us.LL + Spec Out ger.LL;

% Likelihood ratio test has structure 2*(Unrestricted Log-lik - Restricted Log-Lik)

LRT = 2*(LL B-LL A);

We have then used a likeihood ratio test (LRT) to assess the null hypothesis that this restriction

(formulated as a null hypothesis) cannot be rejected based on the available data, finding:

The LRT of almost 255 under 4 restrictions leads to a rejection because the 21099 = 1328 This means

that the restriction can be rejected, i.e., 
+1 6= 


+1, the regime driving U.S. and German data are

different and therefore, at least at this non-linear level, there is no evidence of contagion.

9. Finally, we have repeated point 7 above when the marginal distribution of the errors is assumed

to follow a t-student distribution, i.e., the model is

+1 = 
+1

+ 
+1

 + −
+1

− + +1 +1 ∼ 
³
0 2

+1
; 
´
,

where  = US, Germany, and - means Germany if  = US, and - means US if  = Germany. In

this case, for instance for the German data, we obtain the outputs in Figure A13. Interestingly,

the degrees of freedom of the t-Student (̂) are strongly time-varying. Changing the marginal

error distribution does affect parameter estimates and ends up making both regimes considerably
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more persistent than what found in question 7, to the point that ̂22 ' 1.

Figure A13:EM estimation outputs from two univariate t-Student MSIAH(2,1) models
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