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Abstract

We introduce Cautious Utility, a new model based on the idea that individuals are unsure of trade-
offs between goods and apply caution. The model yields an endowment effect, even when gains
and losses are treated symmetrically. Moreover, it implies either loss aversion or loss neutrality for
risk, but in a way unrelated to the endowment effect, and it captures the certainty effect, providing
a novel unified explanation of all three phenomena. Cautious Utility can help organize empirical
evidence, including some that directly contradict leading alternatives.
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1 Introduction

A prominent place in behavioral economics is held by the endowment effect: the widely
documented observation that the maximum price individuals are willing to pay to acquire
a good (WTP) is often below the minimum price they are willing to accept to sell the same
good if they owned it (WTA) (Kahneman et al., 1991). The far dominant explanation in
economics ascribes it to an asymmetry in the treatment of gains and losses: if selling a good
is perceived as a loss, and losses are overweighted, then individuals are reluctant to sell,
creating the endowment effect.

This paper introduces a new model of the endowment effect built on a different idea:
individuals are unsure of the trade-off they should apply—for example, they may be unsure
whether a mug is worth $3 or $4—and, facing this uncertainty, apply a criterion of caution.
We call it Cautious Utility.
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We show the following features. First, Cautious Utility leads to the endowment effect
even when utilities are symmetric for gains and losses; its extent depends on the degree of
uncertainty about trade-offs. Second, the model yields loss aversion for risky lotteries (sub-
jects reject bets that return identical gains and losses with equal probability, Kahneman and
Tversky 1979), but this is not necessarily related to the endowment effect, in the sense that
individuals may exhibit the endowment effect and be loss neutral, or vice-versa. Third, Cau-
tious Utility captures the certainty effect and other forms of Non-Expected Utility, therefore
providing a novel, unified explanation to Non-Expected Utility and reference effects. In fact,
relying on our previous work (Cerreia-Vioglio et al., 2015), we show that Cautious Util-
ity can be derived from a behavioral property that imposes a form of certainty effect over
bundles, therefore showing a high-level connection between the endowment effect and the
certainty effect. Finally, Cautious Utility can help organize existing evidence, including
where the endowment effect should be prevalent, as well as observations directly at odds
with leading alternatives.

The endowment effect is widely and robustly documented in the lab and in the field
(Horowitz and McConnell, 2002; DellaVigna, 2009; Anagol et al., 2018; O’Donoghue and
Sprenger, 2018; Chapman et al., 2023a). It has acquired a prominent role in behavioral
economics both for its conceptual importance, as it contradicts the standard assumption in
economics that a unique value regulates trade and purchasing decisions, and for its prac-
tical implications, as it leads to regions of no trade that reduce the efficiency of markets.
Understanding its origin and how to model it correctly is key to any attempt to study its
consequences, predict where it should be most prevalent, and design policies to reduce it.

Cautious Utility. In our model, like in standard models of reference dependence, indi-
viduals consider changes with respect to a given reference point; specifically, they evaluate
lotteries over these changes for bundles inR: , where the first dimension is money. Contrary
to most models, in Cautious Utility individuals have not one, but a set of utilitiesW, and
use the most pessimistic one to evaluate each option. Specifically, if E is a utility function
and ? a lottery, call 2 (?, E) the monetary certainty equivalent of that lottery using E—the
amount of money indifferent to ? for utility E . Cautious Utility assigns to ? the value

+ (?) = inf
E∈W

2 (?, E).
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The key ideas are i) individuals may be unsure of how to evaluate bundles—they may en-
tertain multiple utility functions as plausible; and ii) facing this multiplicity, they choose
with caution—using the utility that returns the lowest monetary certainty equivalent.

To illustrate, consider individuals who evaluate bundles of money (dimension 1) and
mugs (dimension 2), as in the famous experiment of Kahneman et al. (1990). These indi-
viduals contemplate two utilities: E1(G1, G2) = G1 + G2 and E2(G1, G2) = G1 + 2G2. It is as if
they are unsure whether a mug is worth $1 (under E1) or $2 (under E2). The multiplicity
of utilities captures the uncertainty about trade-offs. Cautious Utility stipulates that, in the
face of this uncertainty, the individuals use the utility that returns the lowest value (in terms
of monetary certainty equivalents).

We show that Cautious Utility implies the endowment effect. For an intuition, consider
our example, and note that the worst-case scenario when buying a mug is when it is least
valuable: thus, the WTP is calculated using E1 and equals $1. The worst case when selling
the mug is instead when it has the highest value: the WTA is calculated using E2 and equals
$2. Thus, WTA>WTP. Despite its simplicity, this example captures a broader result: we
show that, whenever there is some uncertainty on the trade-off between a good and money,
the WTA is strictly above the WTP, generating the endowment effect.

Our approach differs from the standard explanation based on overweighting losses: note
how in the example above, all utilities are symmetric for gains and losses. The key drivers are
instead the uncertainty about trade-offs and caution. This is a different and independent
channel from any asymmetry in the utilities. To make explicit the role of caution, in parts of
the paper we focus on symmetric sets of utilities—either all utilities are symmetric for gains
and losses, or, if one is not, the set also includes the specular function; we call this case
Symmetric Cautious Utility. We also show that ‘incautious’ individuals, those who use the
sup instead of the inf, exhibit the opposite of the endowment effect (as well as of the other
effects discussed below, loss aversion for risk and the certainty effect).

Aside from the general model, we present two special cases—with linear and power
utilities—that involve few parameters, making applications and estimations much easier
while capturing our behaviors of interest. We also show how our approach extends to ex-
change asymmetries and stochastic reference points and can easily generate the endowment
effect for lottery tickets.

Loss Aversion for Risk. Kahneman and Tversky (1979) note how individuals often reject
bets that return identical gains and losses with equal probability; call this loss aversion for
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risk. Cautious Utility generates (weak) loss aversion for risk, even with symmetric sets of
utilities, ruling out the opposite, even locally.1

Importantly, under Cautious Utility loss aversion for risk is unrelated to the endowment
effect: we may have the endowment effect even with loss neutrality for risk, or loss aversion
for risk and no endowment effect; in our example above, individuals are loss neutral for risk
(because each utility is risk neutral), yet WTA>WTP.

Non-Expected Utility: A Unified Explanation. Cautious Utility generalizes Cautious Ex-
pected Utility of Cerreia-Vioglio et al. (2015) and, like that model, captures the certainty
effect and Allais’ paradoxes. Intuitively, degenerate lotteries that return a given amount of
money have the same certainty equivalent with any utility, making caution irrelevant. But
caution does matter for general lotteries, lowering their value and generating an advantage
for sure amounts. Indeed, the same forces that generate the endowment effect—uncertainty
about the utility and caution—also give the certainty effect and loss aversion for risk, pro-
viding a unified explanation.

Empirical Evidence. In Section 4, we show that several documented empirical patterns
are compatible with Cautious Utility and not with other models, and vice-versa. Most im-
portant is the nature of these patterns: Do they test core aspects of the model? Do they
represent important behavioral regularities that we want to capture? Cautious Utility is
distinct from leading alternatives also in these more critical dimensions.

First, recent evidence contradicts the core idea that the endowment effect is due to loss
aversion. If the endowment effect derives from the overweighting of losses, then it should
be highly correlated with loss aversion for risk—as this is the most direct manifestation of
overweighting of losses. However, Chapman et al. (2023a) robustly show that the endow-
ment effect and loss aversion for risk are not correlated, with a sizable fraction of subjects
exhibiting the endowment effect while being loss neutral for risk (for the same good). This
is in direct contradiction to the core idea of loss-aversion-based explanations. Moreover,
several papers show that the endowment effect holds robustly in several contexts, while the
evidence of loss aversion for risk is much less robust. Cautious Utility, instead, decouples the
endowment effect and loss aversion for risk, allowing for any correlation and loss neutrality
for risk despite an endowment effect.

1We add ‘for risk’ to the standard term ‘loss aversion’ to avoid confusion, as the same term is also used to
denote the asymmetry parameter of Cumulative Prospect Theory (the coefficient _; Section 1.1).
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Second, Cautious Utility can help organize the evidence of where the endowment effect
is strongest and how it reacts to external events. If the endowment effect depends on the
uncertainty about trade-offs, as in Cautious Utility, then it should i) vary with how familiar
the goods are, with higher endowment effect when trade-offs are more uncertain; and ii)
vary with information about the value of the objects, as it affects the trade-offs that subjects
consider, with information pointing to the middle of the range shrinking the effect. Robust
evidence gives strong empirical support to both predictions: meta-studies of the decades of
research on the endowment effect document how the strength and frequency of the endow-
ment effect vary substantially across goods, decreasing with familiarity; and many papers
show how it is also heavily affected by information, diminishing to the point of disappearing
in some cases. Neither pattern is predicted by loss-aversion-based explanations—one would
need to assume that the pain of losing an object is high for unfamiliar goods, and decreases
with information.

Foundation: Endowment Effect from the Certainty Effect. Dillenberger (2010) intro-
duced the property of Negative Certainty Independence to capture the certainty effect over
money. We show that Cautious Utility is characterized by an extension to a form of certainty
effect over bundles, together with basic postulates (e.g., monotonicity). Paired with our result
that Symmetric Cautious Utility returns the endowment effect and loss aversion for risk, our
final result shows that, given symmetry and basic postulates, a form of certainty effect for
bundles formally implies the endowment effect and loss aversion for risk. To our knowledge,
such a formal relationship between Non-Expected Utility and reference effects is novel.

1.1 Related Theoretical Literature

(Cumulative) Prospect Theory. Themost popular model to study our behaviors of interest
is Cumulative Prospect Theory (Tversky and Kahneman, 1992), henceforth CPT, which ex-
tends the original Prospect Theory (Kahneman and Tversky, 1979). Violations of Expected
Utility are captured by probability weighting. Reference dependence is captured separately,
by positing that individuals evaluate changes relative to a reference point and that ‘losses
loom larger than gains.’ The latter is formalized by assuming that the utility is not symmet-
ric for gains and losses and losses weigh more—a common approach is to take _ > 1 and
E (−G) = −_E (G) for G > 0. This asymmetry reduces the value of even bets around zero and
generates a gap between WTA and WTP.
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Cautious Utility is different. Probabilities are taken at face value, not weighted, and
instead of a single asymmetric utility, we have many utilities—possibly all symmetric. All
three biases come from the same source, uncertainty about the utility and caution. The two
models are not only conceptually different but also behaviorally distinct: we show that the
only preferences compatible with both our model and CPT are standard Expected Utility
with no reference effects. In Section 4, we discuss several implications of this difference,
including documented behaviors that are compatible with one model but not the other.

Cautious Expected Utility. Our approach builds on Cerreia-Vioglio et al. (2015), which
studies preferences over monetary lotteries on a bounded interval that admit the following
Cautious Expected Utility representation: there exists a set W of strictly increasing and
continuous functions over money such that the value of a lottery ? is given by infE∈W 2 (?, E).
We extend this model and its characterization to bundles of goods (explicitly discussing
gains/losses and symmetry) and to unbounded spaces. We show that, in this extension,
the same forces that generate the certainty effect over money also generate the endowment
effect and loss aversion for risk, providing a new model for these phenomena. Cerreia-
Vioglio (2009) characterizes preferences that satisfy convexity and shows that they can be
represented with a set of utilities and pessimism, connecting convexity with a preference
for hedging in the face of uncertainty about the value of outcomes, future tastes, or the
degree of risk aversion. Our model is a special case, as our preferences are convex.

Incomplete Preferences, Preference Imprecision, and Perception. An alternative ap-
proach to studying reference effects is via incomplete preferences (Bewley, 1986; Masatli-
oglu and Ok, 2005, 2014; Ortoleva, 2010; Ok et al., 2015). (These papers are typically
silent on loss aversion for risk or the certainty effect as they do not study risk preferences.)
Agents have an incomplete preference relation and deviate from their reference point (or
status quo) only if an alternative is better according to that relation, generating status quo
bias and the endowment effect. As incomplete preferences can be represented using multi-
ple utilities, here, too, the endowment effect is related to the inability to compare bundles.

Cerreia-Vioglio et al. (2015) show that Cautious Expected Utility can be derived as a
completion of an incomplete relation, and the same is true here. Indeed, the literature on
incomplete preferences was an inspiration for our work. However, there are three critical
differences. First, our preferences are complete: our agent uses caution as a criterion to
complete them, and this criterion drives our results. Second, risk plays a central role in our
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paper: we derive reference effects from a form of certainty effect and connect the different
phenomena; there is no similar link in the models above. Third, the models above only
specify behavior when the status quo, or the reference point, is available in the choice set
or when there is no status quo; here, instead, the behavior is specified independently of the
availability of the status quo.

Sagi (2006) introduces a notion of acyclicity for complete preferences relations indexed
by a reference point, similar to status quo bias and no regret. He shows that this necessitates
a form of local linearity and that, when extended under risk, it is violated by a specific
extension of CPT to stochastic reference points. The conclusion of the paper notes that
the property would be satisfied by a model similar to ours, except that it does not include
certainty equivalents and distorts probabilities using probability weighting.2

The difficulty in making comparisons also relates to the literature on preference impre-
cision (Dubourg et al., 1994, 1997; Butler and Loomes, 2007, 2011; Cubitt et al., 2015),
imprecise perception and rational inattention (Gabaix and Laibson, 2017;Woodford, 2020),
or cognitive uncertainty (Enke and Graeber, 2023). However, almost none of these papers
studies the endowment effect,3 and none includes the central contribution of our paper,
caution as a rule of choice; we show that it is precisely caution that yields the endowment
effect and loss aversion (while “incaution” yields the opposite).

Other Explanations. Other accounts of the endowment effect are based onmemory (John-
son et al., 2007), while versions of saliency can generate all our behaviors of interest (Bor-
dalo et al., 2012). Weaver and Frederick (2012) propose that an endowment effect emerges
for individuals who consider both a value E and a reference price ?, and i) do not want to
pay more than the smallest of the two, and ii) are not willing to accept less than the largest.
They are unwilling to pay more/accept less than their value, but they think that paying
more/accepting less than the reference price would be a bad deal. This approach is rem-
iniscent of ours because individuals use the maximum of two values for the WTA and the
minimum for WTP. Our approach, however, is built on uncertainty about values, absent in
Weaver and Frederick (2012) (the value and the reference price are assumed to be known),

2A working paper version, gently shared by the author, extends on this and shows that a version without
probability weighting (and no certainty equivalents) can be axiomatized adding a weakening of independence.
This model is closely related to Maccheroni (2002) and exhibits a form of status quo bias and a form of loss
aversion but not the certainty effect. The paper does not include a formal analysis of the endowment effect.

3One exception is the experiment in Dubourg et al. (1994), which finds that preference imprecision has
(some) relation to the endowment effect and that subjects tend to select above the middle of the range for
WTA and below the middle for WTP; both findings are in line with our results.
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as well as caution, with no reference to market mechanisms.
We conclude by noting that, while some aspects of our model are reminiscent of existing

approaches, to our knowledge, new to the literature is our result on the connection between
the certainty effect for bundles and the endowment effect.

2 Cautious Utility

Before we introduce our model, a brief methodological discussion may be useful, for there
are two approaches we can take.

One approach, common in decision theory, is to start from a general functional form
built on the least restrictive axiomatic foundation and show that, despite its generality, this
model delivers the desired reference effects. For this analysis, one would like the most
general model, derived from the weakest axioms, because it gives the strongest results on
its implications.

General models, however, are often hard to use in applications. This is why many papers
in behavioral economics take a different approach: they propose much more restrictive
functional forms with few parameters that are easy to apply and estimate. (This literature
is rarely concerned with axiomatic foundations.)

In this paper, we try to achieve both goals—the generality of decision theory and the
applicability of behavioral economics. We begin by defining the general Cautious Utility
model, which, as we show in Section 5, is derived from a weak set of axioms; in Section 3,
we show that this general form delivers the desired reference effects, proving the strongest
link between weak axioms and reference effects. At the same time, later in this section,
we also define two special cases of our model, Linear Cautious Utility and Power Cautious
Utility, which are easy to use in applications and involve very few parameters. Crucially, we
will show that these special cases can capture our main behaviors of interest.

2.1 The general model

Given : ∈ N, consider the space of :-dimensional bundles (money, mugs, pens, . . . ). For
ease of reference, the first dimension denotes money and will be used as the unit of account
with which we measure the value of all alternatives.⁴ Because we are interested in refer-

⁴Unlike a numeraire, the choice of money is not entirely without loss. We adopt money because this is the
dimension on which we will impose our key axiom of certainty bias (M-NCI; see Section 5). We could pick
any dimension for which the equivalent postulate holds, which is also any dimension for which there is no
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ence effects, we need to incorporate reference points. We take the standard approach in
reference-dependent preferences, the same used in Prospect Theory, and define Cautious
Utility on relative changes with respect to a given reference point: if ~ is the final allocation
and A the reference bundle, then each bundle is viewed as G = ~ − A . For example, if the
reference point is the current endowment, a bundle that returns an extra $3 and takes away
2 mugs is evaluated as (3,−2). In this aspect, Cautious Utility coincides with Prospect The-
ory, allowing for direct comparisons with other models and giving complete flexibility on
the reference point—it could be the endowment, the allocation of others, the expectation,
etc. For now, we assume that the reference point is deterministic; we extend to stochastic
reference points in Section 6.

Formally, we consider allocations in R: and let Δ be the set of all lotteries, that is,
(Borel) probability measures overR: with compact support. We study a preference relation
< over Δ. Denote by 048 the bundle whose 8-th coordinate takes value 0 ∈ R while all the
others are 0. With a small abuse of notation, denote by 0 both the number and the vector
whose components are all zero. Given G ∈ R: , we interchangeably use G and XG to denote
the degenerate lottery that pays G with certainty. If ? ∈ Δ and E : R: → R is strictly
increasing and continuous, then E? (E) denotes the expected utility using E , i.e.,

∫
Ed?,

while 2 (?, E) ∈ R indicates its monetary certainty equivalent (if it exists), i.e., the unique
monetary value such that E? (E) = E (2 (?, E)41).

The following is the most general version of our model.

Definition 1. A preference relation < admits a Cautious Utility representation if there exists
a setW of strictly increasing and continuous utility functions E : R: → R with E (0) = 0,
such that (i) for each G,~ ∈ R: there exists < ∈ R+ satisfying E (~ + <41) ≥ E (G) ≥
E (~ −<41) for all E ∈ W; and (ii) the function + : Δ→ R, defined as

+ (?) = inf
E∈W

2 (?, E) (1)

is a continuous utility representation of <.⁵

Cautious Utility builds upon two key tenets. First, agents have not one but a set of utili-
ties: they may be unsure of which utility to use. For example, agents may be unsure of the

uncertainty about the trade-off with money (e.g., using dollars vs. euros as the unit of account should not
change anything).

⁵Assuming E (0) = 0 is a convenient normalization; our results hold without it except for point 2 of Propo-
sition 3 where the condition −E (−048 ) ≠ E (048 ) becomes E (0) − E (−048 ) ≠ E (048 ) − E (0).
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trade-off between goods or how risk averse they should be. Second, agents act with caution:
to evaluate each alternative, they use the utility with the lowest monetary certainty equiv-
alent. Using certainty equivalents guarantees that the comparison across utilities is made
after bringing each dimension to the same unit of account (monetary amounts), avoiding
comparisons across utilities, for which normalizations matter. Condition (i) in the definition
guarantees that monetary certainty equivalents are always well-defined.

To illustrate the role of caution, it is useful to define a model that takes the opposite ap-
proach, where the agent uses the utility with the highestmonetary certainty equivalent. We
say that a preference relation admits an Incautious Utility representation if it is represented
by (1) where sup replaces the inf.

Remark 1. Despite the use of the most pessimistic utility, under Cautious Utility agents can be
risk averse, seeking, or have varying risk attitudes: as in Expected Utility, this depends on the
curvature of the utilities inW. Cerreia-Vioglio et al. (2015) show that agents are risk averse
when all functions are concave and risk seeking when all are convex. Similarly, if utilities are
all concave for gains and convex for losses, the individual is risk averse for gains and risk seeking
for losses. Overall, Cautious Utility does not restrict risk attitudes.

Remark 2. Using the inf in Cautious Utility may at first appear too pessimistic, and one
may wish to consider milder formulations. For example, the agent may use some weighted
average of the inf and the sup. A few considerations are in order. First, the set of utilities is
subjective: it reflects the agent’s preferences and is not the set of all possible utilities. Thus,
the inf is taken only over a restricted collection. Second, this representation is not necessarily
very pessimistic. For example, take a finite setW of quasi-linear utilities and some D ∈ W,
and an individual who uses the most pessimistic utility inW′ = {(1 − W) D + WE : E ∈ W}.
Here W can be understood as a ‘pessimism weight:’ the larger W , the larger the span of utilities,
the lower the evaluation. When it is small, the individual is only ‘mildly’ pessimistic, yet these
preferences admit a Cautious Utility representation with setW′. Finally, in Section 5 we show
that Cautious Utility emerges from a natural axiom on the certainty effect; to the extent that
one accepts this requirement, the model necessarily follows.

2.2 Two Convenient Special Cases: Linear and Power Cautious Utility

We now discuss two special cases of Cautious Utility with few parameters and convenient
functional forms that are simple to apply and estimate. For ease of exposition, we mostly
focus on the case of : = 2, but the analysis easily generalizes.
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Linear Cautious Utility. We begin by considering additive linear utilities. When : = 2,
we say that a preference relation < admits a Linear Cautious Utility representation if there
exist 0̄ > 0 > 0 such that

+ (?) = min{E? [G1 + 0̄G2],E? [G1 + 0G2]}.

Here, utilities take the simple additive and linear form. By considering both 0̄ and 0,
this special case captures the uncertainty about trade-offs in the most direct way: it is as if
the individual were unsure if a unit of G2 is worth $0̄ or $0. Note that this version has only
two utilities and only two parameters. When : = 2, this is without loss of generality within
additive linear representations: since only the highest and lowest tradeoffs matter, given
any set of additive linear utilities, we can always focus only on the two “extreme” utilities.
(Also without loss of generality is the fact that monetary amounts are unweighted, which
means that monetary certainty equivalents coincide with expected values.) The following
example, which we already alluded to in the introduction, will be useful to illustrate how
this simple form can generate the endowment effect.

Example 1. Consider : = 2, money and mugs. SupposeW = {E1, E2} where E1 (G1, G2) =
G1 + G2 and E2 (G1, G2) = G1 + 2G2. The agent considers two possible trade-offs between money
and mugs: one mug is equivalent to $1 according to E1, and to $2 according to E2. Because of
caution, the value of one mug is + (0, 1) = min{1, 2} = 1.

To extend this model to : > 2 goods, consider a finite set � ⊂ R:
++, with 01 = 1 for all

0 ∈ �, such that < is represented by

+ (?) = min
0∈�

E? [G1 +
∑

8=2,...,:

08G8] .

Power Cautious Utility. The previous form assumes linearity and, thus, risk neutrality.
We now give a form that allows for non-neutral risk attitudes, focusing on CRRA utilities
and allowing for different curvatures for gains and losses. For any U, V ∈ R++, consider
functions 5U,V : R→ R of the form

5U,V (C) =

CU if C ≥ 0

−(−C)V if C < 0.
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With : = 2, we say that < admits a Power Cautious Utility representation if there exist 0 > 0
and Ū > U > 0 such that < is represented by a Cautious Utility representation with

W = {5U,V (G1) + 05U,V (G2) : U, V ∈ {U, Ū}}.

In Power Cautious Utility, individuals consider different curvatures—as if they were un-
certain about how risk-averse they should be. Notably, Power Cautious Utility has the same
number of parameters as an Expected Utility model that includes one parameter for the
weight of the good, one for risk aversion for gains, and one for losses; the extra flexibil-
ity here comes from the mix and match combinations of risk attitude parameters, which
gives multiple utilities. Perhaps surprisingly, as we will see, uncertainty about utility curva-
ture alone is sufficient to generate the endowment effect (even for riskless objects) and loss
aversion for risk. The following example will be useful to illustrate this point later.

Example 2. Consider again : = 2 and assume that the set of utilities isW = {5U,V (G1) +
5U,V (G2) : U, V ∈ {.25, .5}}.

The Linear and Power Cautious Utility models focus on different aspects—uncertainty
about trade-offs between the goods and uncertainty about risk attitudes. They can be easily
combined in a general model, which includes only one parameter beyond the baseline, with
the following set of utilities: for some 0̄, 0, Ū, U ∈ R++,

W = {5U,V (G1) + 05U,V (G2) : 0 ∈ {0, 0̄} and U, V ∈ {U, Ū}}.

3 Cautious Utility and Reference Effects

3.1 The Endowment Effect

We begin by introducing Willingness to Pay (WTP) and Willingness to Accept (WTA).

WTA and WTP. WTP8 (<) is the maximum amount of money that the agent is willing to
pay to purchase< units of good 8 ∈ {2, . . . , :}. Thus, it satisfies

0 ∼<48 −WTP8 (<)41.

In words, the individual is indifferent between not buying (getting 0) and acquiring< units
of good 8 while foregoing WTP8 (<) units of money. Similarly, WTA8 (<) is the minimum
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amount of money that the agent is willing to accept to sell< units of the good, satisfying

0 ∼ −<48 +WTA8 (<) 41.⁶

We say that a preference < exhibits the endowment effect for good 8 if WTA8 (<) ≥ WTP8 (<)
for all< ∈ R+. It exhibits the endowment effect if this is the case for all 8 ∈ {2, . . . , :}. It
exhibits the opposite of the endowment effect when the inequality is reversed.

WTA and WTP under Cautious Utility. Our first result illustrates how Cautious Utility
generates WTA and WTP differently. To state this formally, we first define the WTA and
WTP induced by a utility function over bundles. For any strictly increasing and continuous
utility E , let WTAE8 denote the WTA of an Expected Utility agent using utility E , that is, the
amount such that E (−<48 +WTAE8 (<)41) = E (0). Define WTPE8 analogously.

Proposition 1. If < admits a Cautious Utility representation with setW, then for each< ∈ R+
and 8 ∈ {2, ..., :}

WTA8 (<) = sup
E∈W

WTAE8 (<) and WTP8 (<) = inf
E∈W

WTPE8 (<) .

In words, WTA in Cautious Utility is the highest WTA obtained by the utilities inW,
while the WTP is the lowest of the WTPs. Caution leads individuals to focus on opposite
ends of the range of values, pushing toward the endowment effect. This result follows a
simple intuition, illustrated by reconsidering our first example.

Example 1 (cont.). Consider again Example 1, where : = 2 andW consists of E1(G1, G2) =
G1 + G2 and E2(G1, G2) = G1 + 2G2. Recall that the WTP is the amount $I ≥ 0 that satisfies
(0, 0) ∼ (−I,<) for< ≥ 0. Then,

+ (0, 0) = min {0, 0} = 0 + (−I,<) = min {−I +<,−I + 2<} = −I +<
⇒ 0 = −WTP2(<) +< ⇒ WTP2(<) =<.

Similarly, WTA is the amount $A ≥ 0 such that (0, 0) ∼ (A,−<). Then

+ (A,−<) = min {A −<, A −2<} = A −2< ⇒ 0 = WTA2(<)−2< ⇒ WTA2(<) = 2<.

⁶Formally, for each 8 ∈ {2, . . . , :}, WTP8 : R+ → R+ and WTA8 : R+ → R+ are defined by WTP8 (<) =
max

{
; ∈ R+ : X<48−;41 < X0

}
and WTA8 (<) = min

{
; ∈ R+ : X−<48+;41 < X0

}
. In our model, they are always

well-defined and satisfy the simpler conditions above.
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Therefore, WTA2(<) = 2< > < = WTP2(<) for all< > 0, the endowment effect. Proposition
1 shows how these can be derived also from the WTA and WTP for each utility, which may be
computationally simpler. We have:

E1(−WTPE1
2 (<) ,<) = E1(0, 0) ⇒ −WTPE1

2 (<) +< = 0⇒ WTPE1
2 (<) =<

E2(−WTPE2
2 (<) ,<) = E2(0, 0) ⇒ −WTPE2

2 (<) + 2< = 0⇒ WTPE2
2 (<) = 2<.

Because utilities are symmetric, the WTA is the same as the WTP for each utility. And indeed,
WTP2 is the smallest of the two, while WTA2 the largest.

The two utilities in the example are simple linear functions, yet we have an endowment
effect. The crucial feature is that they entail a different trade-off, or ‘exchange rate,’ be-
tween money and mugs: a mug is worth either $1 or $2. When buying, a cautious agent is
pessimistic about the value of mugs, and the WTP is the lowest one, at $1. When selling, the
opposite happens, and the WTA is the highest, at $2. This creates the endowment effect.
(This also generates an ‘endowment-effect in mugs-terms.’ The minimum number of mugs
the agent is willing to accept to give up $1 is 1, but to obtain $1, the individual is willing
to ‘pay’ only .5 mugs.)

This example shows that uncertainty about trade-offs and caution push WTA and WTP
apart and can yield the endowment effect. However, at this level of generality, one cannot
guarantee an endowment effect: if, for example, the set consists of only one utility E for
which, given< > 0, WTAE2(<) < WTPE2(<) because it underweights losses (like E (G,~) =
5 (G) + 5 (~) with 5 (G) = G if G > 0 and 5 (G) = 1

2G if G ≤ 0), then we have the opposite
of the endowment effect. The underweighting of losses counters the forces of caution (see
Corollary 3 and the discussion thereafter). To highlight the role of caution, we can focus on
“symmetric” sets of utilities, which we introduce next.

3.2 Symmetry and Strict Behavior

Recall that a function E : R: → R is odd if E (G) = −E (−G) for all G ∈ R: , that is, when
there is no asymmetry in the treatment of positive and negative values, and the function is
symmetric with respect to the origin. In line with this, we say that a set of functionsW
is odd if for each E ∈ W there exists E′ ∈ W such that E (G) = −E′ (−G) for all G ∈ R: .
If all utilities are odd, so is the set;W in Example 1 consists of two odd functions and is
thus odd. But a set can also be odd when there are non-odd functions, provided that the

14



specular functions are also included; this is the case of Example 2 above.
We say that < admits a Symmetric Cautious Utility representation if it admits a Cautious

Utility representation with an odd setW. Symmetric Incautious Utility is defined similarly.
We assume symmetry for some of the results below. This is not because symmetry is

necessarily appealing—in many cases, one may want to use utilities and sets that are not
odd. However, we want to show that Cautious Utility can generate reference effects even
with symmetry. As we discuss below (Corollary 3 and the discussion thereafter), adding
typical asymmetries will only strengthen our results. Note how any Linear Cautious Utility
representation is necessarily Symmetric: each utility it involves is odd, and so is the set.
Power Cautious Utility is also always symmetric.

The Endowment Effect with Symmetry. Symmetry guarantees that we do not have any
unevenness in the treatment of gains and losses. In turn, this means that the ‘span’ of WTAs
and WTPs is the same. That is, ifW is odd, then {WTAE8 (<) : E ∈ W} = {WTPE8 (<) :
E ∈ W} for all< ∈ R+. To see this, note that if E, E′ ∈ W are such that E (G) = −E′(−G)
for all G , then WTAE8 = WTPE

′
8 . Combining this observation with Proposition 1 implies the

following result.

Proposition 2. The following statements are true:

1. If < admits a Symmetric Cautious Utility representation, then it exhibits the endowment
effect. If < admits a Symmetric Incautious Utility representation, then it exhibits the
opposite of the endowment effect.

2. If < admits a Symmetric Cautious Utility representation, then for each 8 ∈ {2, ..., :} and
< > 0, the following statements are equivalent:

(i) WTA8 (<) > WTP8 (<);

(ii) There exist E, E′ ∈ W such that WTAE8 (<) ≠ WTAE
′
8 (<);

(iii) There exist E, E′ ∈ W such that WTPE8 (<) ≠ WTPE
′
8 (<).

Part (1) of Proposition 2 shows that even with symmetry in the treatment of gains and
losses, Cautious Utility generates the endowment effect. Caution is crucial: if we consider
the Incautious model, we obtain the opposite behavior.

Part (2) characterizes when we can expect a strict endowment effect. It is enough that
two utilities inW differ either in their WTA or in their WTP to create a strict wedge between
the WTA and WTP of the agent.
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This result can also be expressed using Marginal Rate of Substitutions (MRS). Recall
that, given a differentiable utility E : R: → R, the MRS of good 8 with respect to money is
MRSE8 (G) =

E8 (G)
E1 (G) , where E 9 is the partial derivative of E with respect to G 9 . If two utilities

have different MRSs between goods and money, we have a strict endowment effect.

Corollary 1. Let < admit a Symmetric Cautious Utility representation. Given 8 ∈ {2, ..., :},
if each E ∈ W is continuously differentiable and there exist E, E′ ∈ W such that MRSE8 (G) ≠
MRSE

′
8 (G) for all G ∈ R: with G1, G8 ≠ 0, then WTA8 (<) > WTP8 (<) for all< ∈ R++.

Comparisons Across Goods. Cautious Utility allows the endowment effect to vary across
goods and also provides simple comparative statics. As is standard, we use the ratio between
WTA and WTP to define the strength of the endowment effect. As opposed to other models,
this strength can vary with the good or the quantity of each good.

Example 3. Consider E1(G1, G2, G3) = G1 + G2 + UG3 and E2(G1, G2, G3) = G1 + G2 + VG3, with
U > V > 0. IfW = {E1, E2}, there is an endowment effect for good 3 but not for good 2:
WTA3 (<)
WTP3 (<) =

U
V
> 1 =

WTA2 (<)
WTP2 (<) for all< > 0.

Example 4. Consider E1(G1, G2) = G1 + UG2 (for U > 0) and E2(G1, G2) = G1 + G3
2 . If

W = {E1, E2}, the endowment effect varies with the quantity: for< ≠ <′ with<<′ ≠ U , we
have WTA2 (<)

WTP2 (<) ≠
WTA2 (<′)
WTP2 (<′) .

In general, the strength of the endowment effect depends on the range of possible trade-
offs that the agent considers for each good: the endowment effect is more substantial when
the range is larger. We will revisit this result when we discuss the empirical evidence in
Section 4. For any set �, denote by co(�) its convex hull.

Corollary 2. Let < admit a Symmetric Cautious Utility representation with finite setW. For
each 8, 9 ∈ {2, . . . , :} and<,<′ ∈ R++,

co
({

WTAE8 (<) : E ∈ W
})
⊃ co

({
WTAE9 (<′) : E ∈ W

})
=⇒ WTA8 (<)

WTP8 (<)
>

WTA 9 (<′)
WTP 9 (<′)

.

We conclude this discussion with a result on the role of symmetry. The following is true
even without assuming it.

Corollary 3. The following statements are true:
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1. If < admits a Cautious Utility representation W and there exists E ∈ W and 8 ∈
{2, . . . , :} such that WTAE8 (<) ≥ WTPE8 (<) for all< ∈ R+, then < exhibits the endow-
ment effect for good 8.

2. There exists < which admits a Cautious Utility representationW such that, for some
8 ∈ {2, . . . , :}, we have WTAE8 (<) ≤ WTPE8 (<) for all< ∈ R+ and E ∈ W, and yet <
exhibits the endowment effect for good 8.

The corollary above should clarify that we consider Symmetric Cautious Utility merely
to highlight the role of caution even under symmetry. Without symmetry, Cautious Utility
gives the endowment effect if at least one utility overweights losses (for example, it is con-
cave); this follows immediately from Proposition 1 and is point 1 of Corollary 3. In general,
asymmetries of this kind simply add to the other forces highlighted above. It is only if all
utilities underweight losses that Cautious Utility may not exhibit the endowment effect, de-
pending on the relative strength of the underweight of losses and multiplicity of utilities
(point 2 of Corollary 3).⁷

3.3 Loss Aversion for Risk

Following Kahneman and Tversky (1979), we use loss aversion for risk to indicate the rejec-
tion of even bets around zero (see also Markowitz, 1952). Formally, a preference < is loss
averse for risk on dimension 8 ∈ {1, . . . , :}, if for each 0 ∈ R++

X0 <
1
2
X048 +

1
2
X−048 .

It is loss averse for risk if this is the case for all 8 ∈ {1, . . . , :}. Gain seeking and loss
neutrality for risk are defined analogously, with < replaced by 4 and ∼, respectively. Finally,
< is strictly loss averse (resp. gain seeking) for risk on dimension 8 if this also holds strictly
for some 0 ∈ R++.

Proposition 3. The following statements are true:

⁷For example, takeW = {E, E ′} where E (G1, G2) = 5 (G1) + 5 (G2) and E ′(G1, G2) = 5 (G1) + W 5 (G2), with
5 (0) = 0 for 0 > 0 and 5 (0) = _0 for 0 ≤ 0, with _ > 0 and W > 1. Both utilities underweight losses if _ < 1,
while the bigger W is, the bigger the uncertainty about the trade-off. Note that for< ≥ 0, WTA2 (<) = <W_
and WTP2 (<) = <

_
, which means WTA2 (<) ≥ WTP2 (<) if and only if _ ≥ 1√

W
. Therefore, even when _ < 1

and all the utilities underweight losses and would give the opposite of the endowment effect, the model may
still return the endowment effect if there is enough uncertainty about trade-offs (W high enough).
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1. If < admits a Symmetric Cautious Utility representation, then it is loss averse for risk. If
< admits a Symmetric Incautious Utility representation, then it is gain seeking for risk.

2. Let < admit a Symmetric Cautious Utility representation. Given 0 ∈ R++ and 8 ∈
{1, . . . , :}, < is strictly loss averse for risk on dimension 8 at 0, that is, X0 � 1

2X048+
1
2X−048 ,

if and only if −E (−048) ≠ E (048) for some E ∈ W.

Part (1) of Proposition 3 shows that Cautious Utility entails (weak) loss aversion for
risk, even under symmetry. Once again, this is due to uncertainty about the utility and
caution. But while the endowment effect is due to uncertainty about trade-offs between
money and goods, loss aversion for risk is due to uncertainty about how to aggregate gains
and losses. This difference is easily illustrated by our Example 1. In that case, we have
E 1

2X048+
1
2X−048
(E) = E (0) for both utilities, thus+ ( 12X048 +

1
2X−048 ) = min{0, 0} = 0 = + (X0) for

8 = 1, 2 and for all 0 ∈ R++, giving us loss neutrality for risk. Yet, we have seen that in this
case we have the endowment effect. This shows that in Cautious Utility, the endowment
effect may emerge even without loss aversion for risk.

Part (2) shows that to obtain strict loss aversion for risk, we need at least one utility to
be not odd. This is illustrated by reconsidering our second example.

Example 2 (cont.). Consider again Example 2. As opposed to Example 1, money and mugs are
treated identically, but the individual considers different curvatures. With lottery 1

2X041+ 1
2X−041 ,

0 > 0, 0 ≠ 1, at least one of the utilities must return a negative expected utility, that is,

min
{

1
2
0.25 − 1

2
0.5,

1
2
0.5 − 1

2
0.25

}
< 0,

(noting that 1
20

.25− 1
20

.25 = 0 = 1
20

.5− 1
20

.5). But then, since E (0) = 0 for all E ∈ W, also the
minimum of the certainty equivalents must be negative, and so must be the value of the lottery,
that is,

+

(
1
2
X041 +

1
2
X−041

)
< 0 = + (X0).

This is strict loss aversion for risk on money, and the same is true for mugs since utilities are
the same. For the endowment effect, by Proposition 1, for any< > 0

WTP2(<) = min {
√
<,<2,<} and WTA2(<) = max {

√
<,<2,<}.

Hence WTA2(<) > WTP2(<) for all< ≠ 1.
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In this example, the individual considers several utilities, one for each combination of
curvatures. Some of these utilities are not odd, and for those the utility of 041 is not minus
the utility of −041, creating an asymmetry. But the set is odd, and if one utility has an asym-
metry in favor of one direction, the other has the opposite. This means that the expected
utility of 1

2X041 + 1
2X−041 is negative for at least one utility, and so is the certainty equivalent.

Cautious individuals must then assign a negative value to this lottery, giving loss aversion
for risk.

We have seen that under Symmetric Cautious Utility, exhibiting a strict endowment
effect implies neither strict loss aversion nor loss neutrality on any dimension. The converse
is also true: the agent may be strictly loss averse for risk on all dimensions yet exhibit
no endowment effect. For example, consider a small variation of Example 2, withW =

{5U,V (G1+G2) : U, V ∈ {.25, .5}}. Here, we have strict loss aversion for risk on each dimension
but no endowment effect. In general, in Cautious Utility, the endowment effect and loss
aversion for risk are not necessarily related. We will revisit this observation when discussing
the empirical evidence in Section 4.

3.4 The Certainty Effect

Following Kahneman and Tversky (1979), we say that < exhibits the certainty effect if for
all G,~ ∈ R and U, V ∈ (0, 1), if UX~41 + (1 − U)X0 ∼ XG41 , then UVX~41 + (1 − UV)X0 <

VXG41 + (1− V)X0. When the latter holds strictly, this corresponds to the Allais’ paradoxes—
the Common Ratio or Common Consequence effects.

Cautious Utility exhibits the certainty effect while ruling out the opposite violation of
Independence (the case where < above is reversed and holds strictly at least once). This
follows directly from the functional form. Intuitively, while the agent acts with caution
when evaluating general lotteries, caution does not play any role when evaluating monetary
amounts—the monetary certainty equivalent of a degenerate lottery that yields $< is< for
any utility. The implication is deeper: Section 5 shows that Cautious Utility can be derived
from positing a form of certainty effect on risk preferences. (We postpone formal statements
about these implications to that discussion.)

Conceptually, this feature sets Cautious Utility apart. In most other models, loss aversion
for risk and the endowment effect are linked by one parameter, while Non-Expected Utility
is conceptually separate. For example, under CPT, the first effects are ascribed to the over-
weighting of losses, while the certainty effect is due to probability weighting. In Cautious
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Utility, instead, loss aversion for risk, the endowment effect, and violations of Expected Util-
ity are conceptually related and stem from the same source—uncertainty about the utility
and caution. As such, Cautious Utility offers a unified explanation of three phenomena at
the core of behavioral economics. This, however, does not mean that the phenomena must
manifest themselves together.

Observation 1. If < admits a Symmetric Cautious Utility representation, then:

(i) The agent may exhibit the certainty effect for monetary lotteries yet be loss neutral for
risk or exhibit no endowment effect.

(ii) The agent may follow Expected Utility for monetary lotteries yet exhibit the endowment
effect. The agent may follow Expected Utility for monetary lotteries with only gains or
only losses yet exhibit loss aversion for risk.

We can have violations of Expected Utility without loss aversion for risk or the endow-
ment effect, and the endowment effect independently of the certainty effect on monetary
lotteries. This is intuitive: we have seen how the endowment effect can emerge from un-
certainty about the trade-off between different goods, while violations of Expected Utility
for monetary lotteries are due to uncertainty about how to evaluate monetary amounts.⁸

3.5 Cautious Utility and Prospect Theory are Fully Distinct

We now show that Cautious Utility is not only conceptually different from CPT, but also fully
behaviorally distinct, in the sense that the only preferences compatible with both models
are those featuring none of the phenomena we are interested in.

To define CPT, we begin with the case in which only monetary lotteries are involved
(: = 1). Consider a strictly increasing and continuous utility function E : R → R such
that E (0) = 0, and two probability distortion functions F+,F− : [0, 1] → [0, 1], that are
strictly increasing, continuous, and take value 0 at 0 and 1 at 1. For each lottery ? over R
with compact support, denote by �? its corresponding CDF. Define

CPTE,F+,F− (?) =
∫
[0,∞)

E (G) 3F+
(
�? (G)

)
+

∫
(−∞,0]

E (G) 3F−
(
�? (G)

)
.

⁸For (8), take E and E ′ such that E (G1, G2) = 5 (G1 + G2) and E ′(G1, G2) = 6(G1 + G2) for some normalized,
strictly increasing, continuous, divergent, and odd 5 and 6 which are not ranked in terms of risk aversion. For
the first part of (88), use the setW of Example 1; for the second part, use the same example as in the end of
Section 3.3.
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This is similar to Expected Utility with utility E , except that probabilities are distorted (in
their cumulative distribution). A widely used special case assumes E (−G) = −_E (G) for
G > 0, where _ denotes the coefficient of loss aversion and regulates the asymmetry in the
treatment of gains and losses, with _ > 1 capturing loss aversion.

We consider two ways to extend CPT to bundles: probability distortions and reference-
dependence can be applied to each dimension separately, or the agent can first compute the
utility of each bundle, and then compare it to a ‘global’ reference point with utility zero.

The first approach, widespread in the applied literature and studied by Bleichrodt et al.
(2009), considers for each 8 ∈ {1, . . . , :} a strictly increasing and continuous utility D8 :
R→ R with D8 (0) = 0. For each lottery ? over R: , let ?8 be the marginal distribution over
dimension 8. Preferences admit an Additive CPT representation if they are represented by

+ (?) =
:∑
8=1

CPTD8 ,F+,F− (?8) .

The second approach was proposed by Tversky and Kahneman (1981, p. 456) and for-
mally derived by Wakker and Tversky (1993). The agent has a strictly increasing and con-
tinuous utility over bundles D : R: → R, with D (0) = 0. For each lottery ?, denote by ?D
the distribution it induces over utility levels.⁹ Preferences admit a u-CPT representation if

+ (?) = CPTE,F+,F− (?D) .

Before stating our result, we need an extra property. A finite Cautious Utility representation
is essential if for each Ẽ ∈ W there exists ? ∈ Δ such that

min
E∈W

2 (?, E) < min
E∈W\{Ẽ}

2 (?, E) .

This guarantees that no utility is redundant and that the set includes only the genuinely
relevant elements. In all our examples above, it can be shown that the set is essential.

Proposition 4. If < admits a Symmetric Cautious Utility representation as well as either an
Additive CPT or a u-CPT representation, then < admits an Expected Utility representation.
Moreover, if the representation is also finite and essential, then < is loss neutral for risk and
exhibits no endowment effect.

⁹That is, for all Borel subsets � of R and for all ? ∈ Δ, ?D (�) = ? ({G ∈ R: : D (G) ∈ �}).
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Proposition 4 extends a similar result in Cerreia-Vioglio et al. (2015) that shows how
Cautious Expected Utility and Rank Dependent Expected Utility are fully distinct.1⁰

4 Cautious Utility and Empirical Evidence

We now relate Cautious Utility to empirical evidence. We focus on contrasting our model
with loss-aversion-based explanations as the most prominent alternative, even though some
of the patterns we discuss are compatible with other models (e.g., Bordalo et al. 2012). Our
aim is not to run a competition between models but to demonstrate the merit of considering
uncertainty about trade-offs and caution as a potential source of reference effects. We ar-
gue how this approach may help us capture empirical regularities that are not just smartly
designed tests but either contradict the core aspects of alternative models or constitute pat-
terns of substantive importance. As the evidence on our phenomena of interest is immense,
we focus on differentiating aspects and refer to DellaVigna (2009) and O’Donoghue and
Sprenger (2018) for recent surveys.

The Endowment Effect and Loss Aversion for Risk. If the endowment effect is due to
overweighting of losses, then it must be correlated with loss aversion for risk. This is because
the latter is the most direct manifestation, and a direct test, of any asymmetric weighting of
gains and losses, as originally noted by Kahneman and Tversky (1979) when loss aversion
was introduced. (See Chapman et al. 2023a for an analysis of why this is the case also when
goods are lottery tickets, under classical Prospect Theory or variants like Köszegi and Rabin
2006, 2007 or third generation prospect theory, Schmidt et al. 2008.) For the same reason,
we should not observe an endowment effect without loss aversion for risk.

These predictions do not find empirical support. While Gächter et al. (2022) and Dean
and Ortoleva (2019) find a (mild) positive correlation on specific samples, Chapman et al.
(2023a) test it in four large representative samples, considering different measures of loss
aversion for risk and of the endowment effect for the same good and adopting several tech-
niques to reduce measurement error. They do not find a positive relationship between the
endowment effect and loss aversion for risk in any of their tests. This directly contradicts
loss-aversion-based explanations.

1⁰To see why essentiality matters, suppose : = 1 andW = {E, E ′}, where E is strictly increasing, concave,
and such that E (0) = 0 and E ′ is such that E (G) = −E ′(−G) for all G ∈ R.W is odd, but since E ′ is convex, it
is never used. Preferences are thus Expected Utility with utility E , which, by concavity, is loss averse for risk.
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Moreover, while the empirical evidence of the endowment effect is very robust, the same
cannot be said of loss aversion for risk. Even though many papers document it (Camerer,
1995; Starmer, 2000), several studies show it is fragile (Ert and Erev, 2008, 2013), while
others find only a minority of loss averse individuals, especially in representative samples:
see Chapman et al. (2023b) and many references therein. Moreover, Oprea (2022) shows
how an important fraction of what we call loss aversion for risk may be due to complexity
rather than genuine features of the utility.

Instead, we have seen that Cautious Utility does not entail a relationship between loss
aversion for risk and the endowment effect; each may exist without the other, or they may
coexist and be unrelated.11

The Endowment Effect across Goods. Under Cautious Utility, the endowment effect is
due to uncertainty about trade-offs. If this is the case, we would expect the extent of the
disparity betweenWTA andWTP to vary with the types of objects: larger when there is more
uncertainty about values, as in goods or services rarely traded, like life-insurance contracts;
smaller for goods whose value is less in doubt, like frequently traded goods. Corollary 2
and the corresponding examples in Section 3.2 show how this is a prediction of our model.

This prediction finds strong empirical support. Decades of research studied the endow-
ment effect for several types of goods and shows that the effect is strongest with less common
goods, is reduced for ordinary market goods that individuals regularly trade, and disappears
for objects of known value, like monetary tokens.12

By contrast, loss-aversion-based explanations are compatible with different intensities
of the endowment effect across goods but do not predict such a pattern. To explain it in that
model, one needs to assume that the disutility of losing is stronger for unfamiliar goods and
decreases for familiar ones. As such, Cautious Utility can help organize critical evidence of
the Endowment Effect: where it is more common and where it is more intense.

11It is also easy to construct examples of Cautious Utility in which loss aversion for risk over money is inde-
pendent of the endowment effect for monetary lottery tickets (in the sense that we can identify a parametric
family and a distribution of parameters in the population such that the endowment effect is distributed inde-
pendently of the distribution of loss aversion); see Chapman et al. (2023a, Appendix D).

12In their widely-cited metastudy of the empirical literature, Horowitz and McConnell (2002, p. 427) de-
scribe the heterogeneity of ratios between WTAs and WTPs across forty-five studies and note: “With regard to
patterns in the observed ratios, we find that, on average, the less the good is like an ‘ordinary market good,’
the higher the ratio. The ratio is highest for public and non-market goods, next highest for ordinary private
goods, and lowest for experiments involving forms of money. A generalization of this pattern holds even when
we account for differences in survey design: ordinary goods have lower ratios than non-ordinary ones. This
pattern is the major result we discover.”

23



The Endowment Effect and Information. If the endowment effect is due to uncertainty
about trade-offs, it should also be affected by information about values, like market value.
For example, individuals who consider a range of values and are told that the market value
lies in the middle of the range may well incorporate this knowledge and shrink the range of
values—naturally, the information reduces the uncertainty about trade-offs.

This finds substantial support. Weaver and Frederick (2012) show that the endowment
effect is severely reduced when subjects are given information on market values pointing
to an intermediate price between typical WTAs and WTPs; it is instead higher when the
information suggests either a high price, above typical WTAs, or a very low one, below
typical WTPs.13 Shogren et al. (1994) and List (2004a) find that the endowment effect is
reduced by showing continuous trading in a public auction or by providing trading expe-
rience; List (2003, 2004b) shows how experienced traders exhibit much less endowment
effect for goods they frequently trade.

Loss-aversion-based explanations are, in principle, compatible with these patterns but
require that the ‘pain of losing’ varies substantially and non-monotonically with information—
it disappears when subjects observe trading or are informed of intermediate prices, it in-
creases if told very high or very low prices. This seems less plausible.

Violations of Expected Utility. We briefly review how Cautious Utility relates to the ev-
idence of Non-Expected Utility and refer to Cerreia-Vioglio et al. (2015) for in-depth dis-
cussion. Cautious Utility is compatible with Allais-type behavior when one option is risk-
free, with less frequent violations when no option is risk-free, and with mixed fanning—
indifference curves becoming flatter towards better prizes (Camerer, 1995). It also allows
for the strength of the certainty effect to vary with stake sizes (Conlisk, 1989; Camerer,
1989; Burke et al., 1996; Fan, 2002; Huck and Müller, 2012), which is incompatible with
CPT. Kahneman and Tversky (1979) document the opposite of the certainty effect for losses,
which is incompatible with Cautious Utility, but this has received much less attention.1⁴

13While formalizing a complete dynamic model is outside the scope of this paper, let us illustrate how this
patterns can be easily generated. Consider an individual with utilities G1 +UG2 and G1 + VG2, with 0 < U < V,
giving us WTA2 (1) = V and WTP2 (1) = U . Suppose they observe some people evaluate mugs as equal
$8 > 0, but they are unsure how much to trust them and consider a range of trust parameters [_1, _2] with
0 < _1 ≤ _2 < 1. They then “update” their set of utilities, which becomes {G1 + (_8 + (1− _)0)G2 : 0 ∈ {U, V}
and _ ∈ [_1, _2]}. If 8 ∈ [U, V], after information WTA2 (1) = _18 + (1− _1)V and WTP2 (1) = _18 + (1− _1)U ,
so the endowment effect shrinks. If 8 ∉ [U, V], the endowment effect can grow if 8 is sufficiently distant from
U or V and there is a large enough range of _s.

1⁴Ruggeri et al. (2020) conducts a large-scale replication of the experiments in Kahneman and Tversky
(1979) and finds that, while most effects replicate, this is not the case for the evidence of the opposite of the

24



While Cautious Utility allows for risk aversion for gains and risk seeking for losses, it is not
compatible with the ‘4-fold’ pattern, which includes risk seeking for gains of small proba-
bility and risk aversion for losses of small probability, instead easily captured by CPT with
S-shaped probability weighting.1⁵ Finally, as we will see in Section 6, Cautious Utility is
compatible with the documented preferences for randomization (Agranov and Ortoleva,
2017, 2022, forthcoming), but not with a strict preference for randomization with degen-
erate monetary amounts, which are also documented.

5 Axiomatic Foundation

We now provide the behavioral foundation of Cautious Utility. Endow R: with the usual
Euclidean topology and Δ with a version of the weak topology.1⁶ Consider a binary relation
< on Δ, on which we impose the following axioms.

Axiom 1 (Weak Order). The relation < is complete and transitive.

Axiom 2 (Continuity). For each @ ∈ Δ the sets {? ∈ Δ : ? < @} and {? ∈ Δ : @ < ?} are
closed.

Axiom 3 (Monotonicity). For each G,~ ∈ R:

G > ~ =⇒ _XG + (1 − _) A < _X~ + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ

and _XG + (1 − _) A � _X~ + (1 − _) A for some _ ∈ (0, 1] and for some A ∈ Δ.¹⁷

Axiom 4 (Monetary equivalent). For each G,~ ∈ R: there exists< ∈ R+ such that

_X~+<41 + (1 − _) A < _XG + (1 − _) A < _X~−<41 + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

The first three postulates are standard. Monetary equivalent stipulates that for any two
bundles G,~ ∈ R: , there is a monetary amount< large enough that receiving that amount
on top of~ is better than G and losing that amount is worse than G , and this remains true even

certainty effect for losses: the majority of subjects exhibit a behavior compatible with Expected Utility in this
range (a pattern compatible with Cautious Utility and with CPT with no probability weighting for losses).

1⁵Recent papers argue that risk seeking for gains with small probabilities may be due to misunderstandings
or complexity, not to a feature of risk preferences (Hertwig et al., 2004; Abdellaoui et al., 2011; Oprea, 2022).

1⁶A generalized sequence {?U }U ∈� in Δ converges to ? if and only if E?U (E) → E? (E) for all E ∈ �
(
R:

)
.

1⁷G > ~ means that G8 ≥ ~8 for all 8, where at least one of the inequalities is strict.
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if we mix with some other lottery A . This guarantees that monetary certainty equivalents,
WTAs, and WTPs are well-defined.

The next axiom is our key assumption. It extends the Negative Certainty Independence
(NCI) axiom of Dillenberger (2010) and Cerreia-Vioglio et al. (2015) to multi-dimensional
bundles and generalizes the definition of certainty effect of Kahneman and Tversky (1979).

Axiom 5 (Multi-Dimensional Negative Certainty Independence (M-NCI)). For each ? ∈ Δ

and for each< ∈ R

? < X<41 =⇒ _? + (1 − _) A < _X<41 + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

Like the original NCI, this property states that if a sure amount of money< is not pre-
ferred to a lottery ?, then this ranking does not change if we mix both with another lottery.
M-NCI is a weakening of standard Independence that captures the certainty effect. Intu-
itively, mixing< with a lottery eliminates its certainty appeal. Therefore, if< is worse than
? when certain, it will remain so after the mixture.

For ease of comparison, it is also helpful to consider the inverse postulate that rules out
the certainty effect while allowing for the opposite.

Axiom 6 (Multi-Dimensional Positive Certainty Independence (M-PCI)). For each ? ∈ Δ

and for each< ∈ R

X<41 < ? =⇒ _X<41 + (1 − _) A < _? + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

Our characterization theorem below focuses on canonical representations. To define
them, we first introduce the following subrelation <′:

? <′ @
def⇐⇒ _? + (1 − _) A < _@ + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

Intuitively, <′ captures the rankings of which the agent is sure: ? <′ @ when not only ? < @,
but also any mixture featuring ? is better than the corresponding mixture with @. It is easy
to verify that <′ is the largest subrelation of < that satisfies the Independence axiom of
Expected Utility, and that it is incomplete (yet still transitive) whenever preferences are
not Expected Utility. We say that a Cautious Utility representationW (see Definition 1) is
canonical if it also represents <′, in the sense that

? <′ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W .
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Theorem 1. A binary relation < on Δ satisfies Axioms 1-5 if and only if it admits a canonical
Cautious Utility representation. Moreover, a canonical representation is unique up to the closed
convex cone hull.¹⁸

This theorem shows that Cautious Utility can be derived from an axiom that postulates
the certainty effect, M-NCI, together with basic properties. It is routine to show that In-
cautious Utility is characterized by the same axioms with M-NCI replaced by M-PCI. This
result extends the main representation theorem of Cerreia-Vioglio et al. (2015) to a setup of
lotteries over multi-commodity bundles and to an unbounded domain, necessary to define
monetary certainty equivalents.

In the main text, we discussed Cautious Utility representations which are not necessarily
canonical. WhenW is finite, as in most applications, preferences represented in this way
satisfy all the above axioms (Axioms 1-5; see Remark 3 in the Appendix). Without additional
structure, Monotonicity is guaranteed only in a weaker form, that is,

G ≥ ~ =⇒ _XG + (1 − _) A < _X~ + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

Foundation of Symmetry. We now give a simple foundation to our symmetry assumption.
For each ? ∈ Δ, denote by f (?) ∈ Δ the lottery that, compared to ?, swaps gains with losses,
that is, f (?) (�) = ? (−�) for all Borel subsets � of R: .

A natural form of symmetry posits that if ? is better than @, then f (@) is better than
f (?) (the two must be swapped as we are inverting gains and losses). But this would be
too strong, as it rules out strict loss aversion for risk: since X0 = f (X0) and 1

2X048 +
1
2X−048 =

f
( 1

2X048 +
1
2X−048

)
, we would get X0 ∼ 1

2X048 +
1
2X−048 . A weaker version posits that if not

only ? < @, but also each mixture of ? is better than the corresponding mixture of @, that is
? <′ @, then we obtain f (@) < f (?). This is exactly the form of symmetry corresponding
to the Symmetric Cautious (or Incautious) Utility model.1⁹

Axiom 7 (Weak Symmetry). For each ?, @ ∈ Δ, ? <′ @ =⇒ f (@) < f (?).

Proposition 5. A binary relation < on Δ satisfies Axioms 1-5 and 7 if and only if it admits a
canonical Symmetric Cautious Utility representation.

1⁸More formally, ifW1,W2 ⊆ �
(
R:

)
are two canonical representations, then cone (W1) = cone (W2)

where cone (W8 ) denotes the smallest convex cone containingW8 and cone denotes its closure in �
(
R:

)
with respect to the topology of uniform convergence over compacta.

1⁹The further restriction that all utilities in a canonical Symmetric Cautious Utility representation are odd
is characterized by adding a global form of loss neutrality, that is, 1

2XG +
1
2X−G ∼ X0 for all G ∈ R: . (The proof

follows by the same arguments of point 2 of Proposition 3.)
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Certainty Effect and Reference Effects. We conclude our discussion on the foundations
by highlighting a key implication of our results.

Corollary 4. If < satisfies Axioms 1-4 and 7, then:

1. If < satisfies M-NCI, then it exhibits the endowment effect and it is loss averse for risk;

2. If < satisfies M-PCI, then it exhibits the opposite of the endowment effect and it is gain
seeking for risk.

This corollary follows immediately from Propositions 2, 3, and 5. It states that under
Weak Symmetry and basic axioms, ruling out the opposite of the certainty effect over bun-
dles, as encoded by M-NCI, formally implies loss aversion for risk and the endowment effect.
The opposite postulate—M-PCI, which allows for the opposite of the certainty effect over
bundles—gives the opposite of the endowment effect and loss aversion. This result shows
a formal connection between violations of Expected Utility and reference effects, which, to
our knowledge, is new.

6 Additional Properties and General Discussion

Stochastic Reference Points. What if the reference point is stochastic? For example, it
may be the current portfolio of financial assets or a distribution of payoffs the individual
expects to receive. We defined changes relative to a fixed reference point by ‘subtracting’ it,
and we can do the same when the reference point is a lottery. We proceed in steps. Given a
reference lottery A that pays G8 with probability A (G8), the (degenerate) final allocation ~ is
evaluated as the lottery that pays ~−G8 with probability A (G8): for example, if : = 1 and the
reference point is A = 1

2$10+ 1
2$0, the final allocation $7 is evaluated by Cautious Utility as

the lottery 1
2 (−$3) + 1

2$7. Intuitively, it is as if the agent were ‘issuing’ the reference lottery
and paying its prizes in every contingency. Denote the subtraction of a lottery A ∈ Δ from
~ ∈ R: as ~ − A ; A − ~ is defined similarly.

To extend to stochastic final allocations, we need to consider the correlation with the
reference lottery. Consider a final allocation @ and a reference lottery A , suppose both are
simple lotteries, and denote by %@,A (G,~) the joint probability that @ returns G and A returns
~. Then, define @ − A ∈ Δ simply as

∑
G,~ %@,A (G,~)XG−~ .2⁰ For example, suppose the final

2⁰In general, define the map ) : R: × R: → R: by ) (G,~) = G − ~ for all G,~ ∈ R: . Given @, A ∈ Δ with
joint probability %@,A , denote @ − A ∈ Δ by (@ − A ) (�) = %@,A () −1 (�)) for all Borel sets � of R: .
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allocation is 1
2XG +

1
2X~ and the reference lottery is 1

2XI +
1
2XF . If the two lotteries are inde-

pendent, the stochastic final allocation will be evaluated as 1
4XG−I +

1
4XG−F +

1
4X~−I +

1
4X~−F ;

and if the two lotteries are perfectly correlated, so that @ returns G if and only if A returns I,
it will be evaluated as 1

2XG−I +
1
2X~−F . Importantly, the value of the final allocation ? when

the reference point is ? itself is 0: this is relevant, for example, for calculating the WTA of
lottery tickets, as it implies that keeping the lottery corresponds to 0.21

Endowment Effect for Lottery Tickets. Our results extend to the endowment effect for
lotteries, widely documented empirically. Similarly to the deterministic case, we define
WTA and WTP for a lottery ? as

WTP (?) = max {; ∈ R : ? − ;41 < 0} and WTA (?) = min {; ∈ R : ;41 − ? < 0 }.

Like above, it can be shown that WTP (?) and WTA (?) are well-defined and that

? −WTP (?) 41 ∼ 0 and WTA (?) 41 − ? ∼ 0.

Given a strictly increasing and continuous utility E , let WTAE (?) denote the WTA for ? of
an Expected Utility maximizer with utility E; define WTPE (?) analogously. It is routine to
check that they are well-defined under Cautious or Incautious Utility. Our results on WTA
andWTP readily extend to this case of lotteries. (The proof follows from arguments identical
to those used for Propositions 1 and 2, and is therefore omitted.)

Proposition 6. If < admits a Cautious Utility representationW and ? ∈ Δ, then

1. WTA (?) = sup
E∈W

WTAE (?) and WTP (?) = inf
E∈W

WTPE (?);

2. IfW is odd, then WTA (?) ≥ WTP (?).

Choice. Since Kahneman et al. (1990), some experiments measure not onlyWTA andWTP
but also “Choice”: the amount of money that makes the agent indifferent with receiving one
unit of the object, that is, $I such that (I, 0) ∼ (0, 1). In the data, Choice typically falls
between WTA and WTP, though often very close to WTP. This is easy to obtain in Cautious

21In accounting for the correlation between the reference lottery and the final allocation, our approach
departs from the formulation of Köszegi and Rabin (2006, 2007) and adopts an approach closer to Schmidt
et al. (2008). This is evident when the final allocation is the reference lottery itself, evaluated as 0 in our
model, while in Köszegi and Rabin (2006, 2007) it is treated as a non-degenerate lottery.
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Utility. With the utilities in Example 1, Choice coincides with WTP; with those in Example
2, it is strictly between the WTA and WTP (except for< = 1).

Exchange Asymmetries and Status Quo Bias. It is widely documented that individuals
are status quo biased and often reject exchanges favoring to keep their current endowment
(status quo) even when no money is involved (e.g., Knetsch, 1989). For example, an indi-
vidual may be given a mug and asked to exchange it for a chocolate bar, or given a chocolate
bar and asked to exchange it for a mug, and reject both. Under Cautious Utility, this hap-
pens whenever the individual considers a utility for which the mug is better, and another
for which the chocolate bar is better. As a simple example, if mugs and chocolate bars are
dimensions 2 and 3, extend Example 1 and supposeW = {E1, E2} with E1(G1, G2, G3) =
G1 + 2G2 + G3 and E2(G1, G2, G3) = G1 + G2 + 2G3. Then, + (0,−1, 1) = min{−2 + 1,−1 + 2} =
−1 < 0 = + (0, 0, 0) and + (0, 1,−1) = min{2 − 1,−2 + 1} = −1 < 0 = + (0, 0, 0).22

Randomization. Preferences under Cautious Utility are convex in probabilities, allowing
for strict preference for randomizationwhile ruling out the opposite (see also Cerreia-Vioglio
et al. 2019). To illustrate, consider the same example above of an individual unsure about
the trade-offs between mugs and chocolate bars. The individual is indifferent between one
mug and one chocolate bar, since+ (0, 1, 0) = min{2, 1} = 1 and+ (0, 0, 1) = min{1, 2} = 1,
but strictly prefers a 50/50 lottery ? between the two, since+ (?) = min{0.5 ·2+0.5 ·1, 0.5 ·
1 + 0.5 · 2} = 1.5. Unsure which is best, our individual prefers to ‘hedge.’

Relation to Loss Aversion in Riskless Choice. Tversky and Kahneman (1991) introduce
a behavioral definition of loss aversion for preferences over bundles without risk. Assum-
ing only two dimensions (: = 2), an individual exhibits loss aversion for bundles if, for all
G,~, A, B ∈ R: such that G1 ≥ A1 > B1 = ~1, ~2 > G2, A2 = B2, if G − B < ~ − B then
G − A � ~ − A ; and the same holds if the subscripts 1 and 2 are interchanged. Intuitively,
G is best in dimension 1, ~ is best in dimension 2, while A is better than B in dimension 1
and they coincide in dimension 2. Then, if G is at least as good as ~ when B is the reference
point (G − B < ~ − B), it must be strictly better when A is the reference point (G − A � ~ − A).

Cautious Utility allows for loss aversion for bundles but does not require it to hold (in
its original strict form) everywhere. Consider our Example 1 and G = (5,−1

2 ), ~ = (3, 1),

22This example also shows that, even when each utility function E is linear and we restrict ourselves to the
positive orthant (so no reference effects are considered), Cautious Utility can differ from the standard model
(with perfect substitutes). Both utilities are relevant for computing + .
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A = (5,−1), and B = (3,−1): we have G − B � ~ − B and G − A � ~ − A , in line with
the definition. However, if G′ = (1, 4), ~′ = (0, 5), A ′ = (1, 0), and B′ = (0, 0), we have
G′−B′ ∼ ~′−B′ but also G′−A ′ ∼ ~′−A ′, giving us loss neutrality in this instance. (This is not
exclusive to Cautious Utility: the same holds with several linear forms of Prospect Theory.)

7 Conclusion

We introduce a new way of modeling the endowment effect: uncertainty about trade-offs
and caution. This approach also captures loss aversion for risk and the certainty effect, pro-
viding a unified way to study three phenomena that are at the core of behavioral economics.

Conceptually, the caution criterion can be viewed as a heuristic adopted when agents
are unsure of what to do. As such, caution can be understood as a form of ‘uncertainty
aversion’ even to choices with no objective risk—like choosing the price to pay for a given
object—where individuals may feel subjective uncertainty. Applied to resolve uncertainty
about trade-offs, how to aggregate gains and losses, or risk aversion over money, caution
yields the endowment effect, loss aversion for risk, and the certainty effect, respectively.

Our approach is both conceptually and behaviorally different from leading alternatives,
and this difference is not only theoretical but also has practical consequences. The empirical
evidence points to behaviors compatible with one model and not the other; but this, by
itself, is of limited interest, since most models are imperfect and smartly designed tests
can document violations. More importantly, recent tests find evidence against the core
aspect of the loss-aversion-based explanations—as the endowment effect appears unrelated
to loss aversion for risk, the most direct test of asymmetry of gains and losses. As this
evidence negates the fundamental premise of these models, it further points to the need for
alternatives, of which Cautious Utility is one compatible with the evidence.

Moreover, decades of research have identified important empirical regularities of the
endowment effect: a stronger disparity for rarely traded goods, a lighter one when objects
are routinely traded; and a strong effect of information about values. A satisfactory model
should be able to capture and rationalize such regularities. While leading alternatives are
typically silent about these patterns, the approach underlying Cautious Utility—uncertainty
about trade-offs—can instead help organize this evidence.

Cautious Utility is novel and has not yet been subject to equally rigorous testing. More-
over, several avenues are left to be explored, such as a fully dynamic model of how trade-offs
are updated with information. Our goal here has been to present a model that can be simple

31



and parsimonious and that, for its unified explanation and empirical fit, may capture some
aspect of three phenomena at the core of behavioral economics.

Appendix: Proof of the Main Results

In this appendix, we prove all results except Proposition 4 and a few ancillary facts needed
for Theorem 1. All missing results appear in the Online Appendix. We begin with a remark
on the necessity of the axioms even for noncanonical representations.

Remark 3. Consider a Cautious Utility representationW for < (not necessarily canonical).
By definition, we have thatW is a set of strictly increasing and continuous utility functions
E : R: → R such that for each G,~ ∈ R: there exists< ∈ R+ such that

E (~ +<41) ≥ E (G) ≥ E (~ −<41) ∀E ∈ W, (2)

E (0) = 0 for all E ∈ W, and + : Δ→ R, defined by

+ (?) = inf
E∈W

2 (?, E) ∀? ∈ Δ,

is a continuous utility function for <. It is then immediate to observe that < satisfies Weak
Order and Continuity. As for the other axioms, define the binary relation

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W .

Clearly, <∗ is a preorder that satisfies Independence. Facts 1–4 below follow from immediate
computations and the definition of <∗. Fact 5 follows by the second part of Proposition 9 in the
Online Appendix and the discussion thereafter, providedW is odd:

1. For each ?, @ ∈ Δ
? <∗ @ =⇒ ? < @.

2. For each ? ∈ Δ and for each< ∈ R

? < X<41 =⇒ ? <∗ X<41 .

3. For each G,~ ∈ R:

G > ~ =⇒ XG �∗ X~ .
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4. For each G,~ ∈ R: there exists< ∈ R+

X~+<41 <
∗ XG <

∗ X~−<41 and X~+<41 < XG < X~−<41 .

5. For each ?, @ ∈ Δ
? <∗ @ =⇒ f (@) <∗ f (?) .

By point 1 and since <′ is the largest subrelation of < that satisfies Independence, we
have that <∗ is a subrelation of <′, that is, ? <∗ @ =⇒ ? <′ @. In light of this
and given the definition of <′, point 2 (resp. point 4) implies that < satisfies M-NCI
(resp. Monetary equivalent). Point 3 implies a weaker form of the Monotonicity axiom
with strict inequalities replaced by weak ones.²³ If the setW is also finite (as in all our
examples), then Monotonicity holds as stated: with strict inequalities. Finally, points 1
and 5 imply that < satisfies a weaker form of symmetry, that is ? <∗ @ =⇒ f (@) <
f (?), wheneverW is odd. This form of symmetry is sufficient to obtain our results on
the endowment effect and loss aversion for risk.

Proof of Proposition 1. Consider a Cautious Utility representationW for < (not necessarily
canonical). For each 8 ∈ {2, ..., :} recall that WTA8 : R+ → R+ and WTP8 : R+ → R+ are
the functions defined by

WTA8 (<) = min
{
; ∈ R+ : X−<48+;41 < X0

}
∀< ∈ R+ (3)

and
WTP8 (<) = max

{
; ∈ R+ : X<48−;41 < X0

}
∀< ∈ R+. (4)

By points 1, 3, and 4 of Remark 3 and since < is represented by a continuous utility, these
functions are well-defined and X−<48+WTA8 (<)41 ∼ X0 as well as X<48−WTP8 (<)41 ∼ X0 for all
< ∈ R+ and for all 8 ∈ {2, ..., :}. Given E ∈ W, recall that we define WTAE8 and WTPE8
according to definitions (3) and (4) for the corresponding Expected Utility preference with
Bernoulli utility E . By (2) and since each E ∈ W is strictly increasing and continuous, it
is immediate to see that WTAE8 (<) and WTPE8 (<) are the unique solutions of the equations
E (−<48 + ;41) = 0 and E (<48 − ;41) = 0. By (2) and since E is strictly increasing and
continuous, this implies that both WTAE8 and WTPE8 are continuous functions. Fix< ∈ R+

and 8 ∈ {2, ..., :}. By point 2 of Remark 3 and the definition of <∗, and since each Ê in

23That is, given G,~ ∈ R: , G ≥ ~ implies _XG + (1 − _) A < _X~ + (1 − _) A for all _ ∈ (0, 1] and for all A ∈ Δ.
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W satisfies Ê (0) = 0, we have that X−<48+WTA8 (<)41 <
∗ X0 and X<48−WTP8 (<)41 <

∗ X0, that
is, Ê (−<48 +WTA8 (<) 41) ≥ 0 and Ê (<48 −WTP8 (<) 41) ≥ 0 for all Ê ∈ W. By the
definitions of WTAE8 and WTPE8 and since each Ê inW is strictly increasing, this implies that
WTA8 (<) ≥ WTAÊ8 (<) and WTPÊ8 (<) ≥ WTP8 (<) for all Ê ∈ W, yielding that

WTA8 (<) ≥ sup
Ê∈W

WTAÊ8 (<) and inf
Ê∈W

WTPÊ8 (<) ≥ WTP8 (<) . (5)

Vice-versa, by the definitions of WTAE8 and WTPE8 and since each E inW is strictly increasing,
we have that E

(
−<48 + supÊ∈WWTAÊ8 (<) 41

)
≥ 0 and E

(
<48 − infÊ∈WWTPÊ8 (<) 41

)
≥ 0

for all E ∈ W.
By the definition of <∗ and point 1 of Remark 3, we obtain that X−<48+supÊ∈W WTAÊ

8
(<)41
<∗

X0 and X<48−inf Ê∈W WTPÊ
8
(<)41

<∗ X0, and, in particular, X−<48+supÊ∈W WTAÊ
8
(<)41

< X0 and
X<48−inf Ê∈W WTPÊ

8
(<)41
< X0. By the definitions of WTA8 and WTP8 , this implies that

WTA8 (<) ≤ sup
Ê∈W

WTAÊ8 (<) and inf
Ê∈W

WTPÊ8 (<) ≤ WTP8 (<) .

Since< and 8 were arbitrarily chosen, we can conclude that

WTA8 (<) = sup
Ê∈W

WTAÊ8 (<) and WTP8 (<) = inf
Ê∈W

WTPÊ8 (<) ∀< ∈ R+,∀8 ∈ {2, ..., :} ,

proving the statement. �

Proof of Proposition 2. We begin with a part which is common to both models. Consider
8 ∈ {2, . . . , :}, < ∈ R+, and E : R: → R strictly increasing, continuous, and such that
E (0) = 0. Recall that Ē : R: → R is defined by Ē (G) = −E (−G) for all G ∈ R: . In
particular, Ē is strictly increasing, continuous, and such that Ē (0) = 0. Then,

E
(
−<48 +WTAE8 (<) 41

)
= 0 ⇐⇒ Ē

(
<48 −WTAE8 (<) 41

)
= 0 ⇐⇒ WTAE8 (<) = WTPĒ8 (<) .

(6)
We can now prove points 1 and 2. For point 1, we first prove the statement for the Cautious
Utility model and then we move to the Incautious one.

1. Cautious Utility. Consider 8 ∈ {2, . . . , :} and< ∈ R+. Let E′, E′′ ∈ W. Without loss
of generality, we can assume that WTAE

′
8 (<) ≥ WTAE

′′
8 (<). By Proposition 1 and (6), and
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since Ē′′ ∈ W, we have that

WTA8 (<) = sup
E∈W

WTAE8 (<) ≥ WTAE
′
8 (<) ≥ WTAE

′′
8 (<) =

= WTPĒ
′′
8 (<) ≥ inf

E∈W
WTPE8 (<) = WTP8 (<) .

Since< ∈ R+ and 8 ∈ {2, ..., :} were arbitrarily chosen, the statement follows.

Incautious Utility. We first discuss how Proposition 1 changes for Incautious Utility. If <
admits an Incautious Utility representation, then for each< ∈ R+ and for each 8 ∈ {2, ..., :}

WTA8 (<) ≤ inf
E∈W

WTAE8 (<) and WTP8 (<) ≥ sup
E∈W

WTPE8 (<) .

In order to derive these inequalities, we only need to observe that, for Incautious Utility,
point 2 of Remark 3 becomes: for each ? ∈ Δ and for each< ∈ R, X<41 < ? =⇒ X<41 <

∗

?. The inequalities above then follow by a specular argument, to the one in the proof of
Proposition 1, up to (5). We can now prove the statement. Consider 8 ∈ {2, . . . , :} and
< ∈ R+. Let E′, E′′ ∈ W. Without loss of generality, we can assume that WTAE

′
8 (<) ≥

WTAE
′′
8 (<). By the inequalities above and (6) and since Ē′ ∈ W, we have that

WTA8 (<) ≤ inf
E∈W

WTAE8 (<) ≤ WTAE
′′
8 (<) ≤ WTAE

′
8 (<) =

= WTPĒ
′
8 (<) ≤ sup

E∈W
WTPE8 (<) ≤ WTP8 (<) .

Since< ∈ R+ and 8 ∈ {2, ..., :} were arbitrarily chosen, the statement follows.

2. Fix 8 ∈ {2, ..., :} and< > 0. Given E ∈ W, recall again that Ē : R: → R is defined
by Ē (G) = −E (−G) for all G ∈ R: . SinceW is odd, Ē ∈ W. Moreover, it is immediate to
check that ¯̄E = E for all E ∈ W. By (6), we have that for each E ∈ W

WTAE8 (<) = WTPĒ8 (<) . (7)

Since Ē ∈ W and ¯̄E = E for all E ∈ W, we can conclude that for each E ∈ W

WTAĒ8 (<) = WTP¯̄E
8 (<) = WTPE8 (<) . (8)

(i) implies (ii). By Proposition 1 and sinceWTA8 (<) > WTP8 (<), we have that supE∈WWTAE8 (<) =
WTA8 (<) > WTP8 (<) = infE∈WWTPE8 (<) . By (8), this implies that there exist E, E′ ∈ W
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such that WTAE
′
8 (<) > WTPE8 (<) = WTAĒ8 (<). Since Ē ∈ W, this proves the implication.

(ii) implies (iii). By assumption, there exist E, E′ ∈ W such that WTAE8 (<) ≠ WTAE
′
8 (<).

By (7), we have that WTPĒ8 (<) = WTAE8 (<) ≠ WTAE
′
8 (<) = WTPĒ

′
8 (<). Since Ē, Ē′ ∈ W,

this proves the implication.

(iii) implies (i). By assumption, there exist E, E′ ∈ W such that WTPE8 (<) ≠ WTPE
′
8 (<).

Without loss of generality, we can assume that WTPE8 (<) > WTPE
′
8 (<). By Proposition 1

and (8) and since Ē ∈ W, we have that WTA8 (<) = supE∈WWTAE8 (<) ≥ WTAĒ8 (<) =
WTPE8 (<) > WTPE

′
8 (<) ≥ infE∈WWTPE8 (<) = WTP8 (<), proving the implication. �

Proof of Corollary 1. Fix 8 ∈ {2, ..., :}. Consider E, E′ ∈ W which are continuously differ-
entiable and such that MRSE8 (G) ≠ MRSE

′
8 (G) for all G ∈ R: with G1 ≠ 0 and G8 ≠ 0. By

definition of WTAE8 and WTAE
′
8 and since E and E′ are strictly increasing, WTAE8 (<) > 0

and WTAE
′
8 (<) > 0 for all < > 0. In particular, given < > 0, we have that if G =

−<48 + WTAE8 (<) 41, then G1 ≠ 0 and G8 ≠ 0. Since MRSE8 and MRSE
′
8 are well-defined

for all G ∈ R: with G1 ≠ 0 and G8 ≠ 0 and E and E′ are strictly increasing, we have that
the partial derivative with respect to the first component is strictly positive for both E and
E′ for all G ∈ R: with G1 ≠ 0 and G8 ≠ 0. By the Implicit Function Theorem and the
definition of WTAE8 and since E is strictly increasing, we have that WTAE8 is continuously
differentiable on (0,∞) and the derivative at < > 0 is MRSE8

(
−<48 +WTAE8 (<) 41

)
. For

ease of notation, define 5E , 5E ′ : (0,∞) → R by 5E (<) = MRSE8
(
−<48 +WTAE8 (<) 41

)
and

5E ′ (<) = MRSE
′
8

(
−<48 +WTAE8 (<) 41

)
for all< > 0. Since E and E′ are continuously dif-

ferentiable and MRSE8 (G) ≠ MRSE
′
8 (G) for all G ∈ R: with G1 ≠ 0 and G8 ≠ 0, we can

conclude that 5E and 5E ′ are continuous on (0,∞) and such that 5E (<) ≠ 5E ′ (<) for all
< > 0. By the Intermediate Value Theorem, this implies that either 5E (<) < 5E ′ (<) for all
< > 0 or 5E (<) > 5E ′ (<) for all< > 0. Consider the function ℎ : [0,∞) → R defined by
ℎ (<) = E′

(
−<48 +WTAE8 (<) 41

)
for all< ≥ 0. Since E′ and< ↦→ WTAE8 (<) are contin-

uous and WTAE8 (0) = 0, note that ℎ is continuous and ℎ (0) = 0. Since E′ is continuously
differentiable and so is WTAE8 (<) on (0,∞), we have that ℎ is continuously differentiable
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on (0,∞) and

ℎ′ (<) = mE′

mG1

(
−<48 +WTAE8 (<) 41

)
5E (<) −

mE′

mG8

(
−<48 +WTAE8 (<) 41

)
=
mE′

mG1

(
−<48 +WTAE8 (<) 41

) (
5E (<) −

mE ′

mG8

(
−<48 +WTAE8 (<) 41

)
mE ′
mG1

(
−<48 +WTAE

8
(<) 41

) )
=
mE′

mG1

(
−<48 +WTAE8 (<) 41

)
(5E (<) − 5E ′ (<)) ∀< > 0.

Since mE ′

mG1

(
−<48 +WTAE8 (<) 41

)
> 0 for all< > 0, we can conclude that eitherℎ′ (<) < 0 or

ℎ′ (<) > 0 for all< > 0. In the first (resp. second) case, sinceℎ′ is continuous on (0,∞), we
have that ℎ (<) −ℎ (</2=) =

∫ <

</2= ℎ
′ (C) 3C < 0 (resp. > 0) for all< > 0 and for all = ∈ N.

Since ℎ is continuous, ℎ (0) = 0, and the sequence is {ℎ (<) − ℎ (</2=)}=∈N is decreasing
(resp. increasing), we have that E′

(
−<48 +WTAE8 (<) 41

)
= ℎ (<) = lim= [ℎ (<) − ℎ (</2=)] <

0 (resp. > 0) for all< > 0. In the first (resp. second) case, by definition of WTAE
′
8 (<) and

since E′ is strictly increasing, we have that WTAE8 (<) < WTAE
′
8 (<) (resp. >) for all< > 0.

By point 2 of Proposition 2 and since E, E′ ∈ W, this implies the statement. �

Proof of Corollary 2. Consider ; ∈ {2, ..., :} and<′′ ∈ R++. By (6) and sinceW is odd,
we have that

{
WTAE

;
(<′′) : E ∈ W

}
=

{
WTPĒ

;
(<′′) : E ∈ W

}
=

{
WTPE

;
(<′′) : E ∈ W

}
.

By Proposition 1 and sinceW is finite, this implies that

WTA; (<′′) = max
E∈W

WTAE
;
(<′′) = max co

({
WTAE

;
(<′′) : E ∈ W

})
and

WTP; (<′′) = min
E∈W

WTPE
;
(<′′) = min co

({
WTPE

;
(<′′) : E ∈ W

})
= min co

({
WTAE

;
(<′′) : E ∈ W

})
.

We can conclude that if co
({

WTAE8 (<) : E ∈ W
})
⊃ co

({
WTAE9 (<′) : E ∈ W

})
, then

WTA8 (<) ≥ WTA 9 (<′) and WTP8 (<) ≤ WTP 9 (<′) (9)

and one of the two inequalities is strict, since the inclusion is proper. SinceW is finite and
each E ∈ W is strictly increasing, then WTP8 (<) = WTPE8 (<) > 0 for some E ∈ W. By
(9) and since WTP8 (<) > 0, we have that WTP 9 (<′) > 0, proving the statement. �
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Proof of Proposition 3. We first prove point 1, in particular, the statement for the Cautious
Utility model, then we move to the Incautious one, and finally we prove point 2.

1. Cautious Utility. Consider 8 ∈ {1, . . . , :} and 0 ∈ R++. By contradiction, assume
that 1

2X048 +
1
2X−048 � X0. By point 2 of Remark 3, we have that 1

2X048 +
1
2X−048 <

∗ X0. By point
5 of Remark 3, X0 = f (X0) <∗ f

( 1
2X048 +

1
2X−048

)
= 1

2X048 +
1
2X−048 . By point 1 of Remark 3,

we can conclude that X0 <
1
2X048 +

1
2X−048 , a contradiction.

Incautious Utility. We begin by recalling that for Incautious Utility points 1 as well as
3–5 of Remark 3 hold while point 2 becomes: for each ? ∈ Δ and for each< ∈ R

X<41 < ? =⇒ X<41 <
∗ ?. (10)

Consider 8 ∈ {1, . . . , :} and 0 ∈ R++. By contradiction, assume that X0 � 1
2X048 +

1
2X−048 . By

(10), X0 <
∗ 1

2X048 +
1
2X−048 . By point 5 of Remark 3, 1

2X048 +
1
2X−048 = f

( 1
2X048 +

1
2X−048

)
<∗

f (X0) = X0. By point 1 of Remark 3, 1
2X048 +

1
2X−048 < X0, a contradiction. �

2. Set ? = 1
2X048 +

1
2X−048 . Since < admits a Symmetric Cautious Utility representation

and, in particular,W is odd, we have that

X0 � ? ⇐⇒ 0 > inf
E∈W

2 (?, E) ⇐⇒ ∃E ∈ W 0 > 2 (?, E)

⇐⇒ ∃E ∈ W 0 = E (0) > 1
2
E (048) +

1
2
E (−048)

⇐⇒ ∃E ∈ W − E (−048) > E (048) ,
⇐⇒ ∃E ∈ W − E (−048) ≠ E (048)

proving the statement. �

Proof of Theorem 1. “Only if.” We proceed by steps.

Step 1. There exists a continuous utility function D : Δ→ R for < such that D
(
X<41

)
=<

for all< ∈ R.

Proof of the Step. Let ? ∈ Δ. Since ? has compact support, there exists = ∈ N such
that [−=4, =4] contains the support of ?. By Lemma 1 and since < satisfies Weak Order
and Monetary equivalent, we have that there exist<′,<′′ ∈ R+ such that X<′41 <

′ X=4 <′

X−<′41 and X<′′41 <
′ X−=4 <′ X−<′′41 . By Lemma 1 in the Online Appendix and since <

satisfies Weak Order and Monotonicity, if we set< = max {<′,<′′}, we obtain that X<41 <
′

X=4, X−=4 <′ X−<41 . By Proposition 10 in the Online Appendix and since < satisfies Weak
Order, Continuity, Monotonicity, and Monetary equivalent and each element ofWmax (<′)
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is increasing, we have that X<41 <
′ X=4 <′ ? <′ X−=4 <′ X−<41 . Since <′ is a subrelation

of <, we can conclude that X<41 < ? < X−<41 . Consider the sets * =
{
< ∈ R : X<41 < ?

}
and ! =

{
< ∈ R : ? < X<41

}
. It follows that * and ! are nonempty. Since < satisfies Weak

Order, we have that* ∪! = R. By Aliprantis and Border (2006, Lemma 2.52 and Theorem
2.55), the map G ↦→ XG is a (continuous) embedding. Since < satisfies Continuity, this
implies that both* and ! are closed. SinceR is connected and* ∪! = R, we can conclude
that * ∩ ! is nonempty and, in particular, ? ∼ X<41 for all< ∈ * ∩ !. By Lemma 1 in the
Online Appendix and since < satisfies Weak Order, Monotonicity, and M-NCI, we have that
< ≥ <′ if and only if X<41 <

′ X<′41 if and only if X<41 < X<′41 . This implies that * ∩ ! is
a singleton. We denote by <? ∈ R the unique element such that ? ∼ X<?41 . Since ? was
arbitrarily chosen, we define D : Δ → R by D (?) = <? for all ? ∈ Δ. By construction, we
have that D

(
X<41

)
=< for all< ∈ R. Moreover, since < satisfies Weak Order, we have that

? < @ ⇐⇒ X<?41 < X<@41 ⇐⇒ <? ≥ <@ ⇐⇒ D (?) ≥ D (@) ,

proving that D is a utility function for <. Finally, since < satisfies Continuity, this implies
that {? ∈ Δ : D (?) ≥ C} =

{
? ∈ Δ : D (?) ≥ D

(
XC41

)}
=

{
? ∈ Δ : ? < XC41

}
is closed for all

C ∈ R, proving that D is upper semicontinuous. A specular argument yields lower semicon-
tinuity, proving that D is continuous. �

Step 2. <′ is represented byWmax (<′) which has full image, in particular,

? <′ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ Wmax (<′) ⇐⇒ 2 (?, E) ≥ 2 (@, E) ∀E ∈ Wmax (<′) .
(11)

Proof of the Step. By Proposition 10 in the Online Appendix, the first part of (11) follows.
SinceWmax (<′) has full image and each element ofWmax (<′) is strictly increasing and
continuous, 2 (?, E) is well-defined for all ? ∈ Δ and for all E ∈ Wmax (<′), and also the
second part of (11) follows. �

Step 3. For each ? ∈ Δ we have that infE∈Wmax (<′) 2 (?, E) ∈ R.

Proof of the Step. Fix ? ∈ Δ. By the same arguments of the first part of Step 1, there
exists< ∈ R+ such that EX<41 (E) ≥ E? (E) ≥ EX−<41 for all E ∈ Wmax (<′). It follows that
< ≥ infE∈Wmax (<′) 2 (?, E) ≥ −<.

Step 4. For each ? ∈ Δ we have that D (?) ≤ infE∈Wmax (<′) 2 (?, E).
Proof of the Step. Fix ? ∈ Δ. By Step 3, <̄ = infE∈Wmax (<′) 2 (?, E) is a real number.

Pick < ∈ R such that < > <̄. This implies that there exists E ∈ Wmax (<′) such that
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2 (?, E) < < = 2
(
X<41, E

)
. By Step 2, it follows that ? %′ X<41 . By Lemma 1 in the Online

Appendix and Step 1 and since < satisfies Weak Order and M-NCI, we have that X<41 � ?,
yielding that< = D

(
X<41

)
> D (?). Since< was arbitrarily chosen to be just strictly greater

than <̄, we have that D (?) ≤ <̄, proving the statement. �

Step 5. For each ? ∈ Δ we have that D (?) ≥ infE∈Wmax (<′) 2 (?, E).
Proof of the Step. Fix ? ∈ Δ. By Step 3, <̄ = infE∈Wmax (<′) 2 (?, E) is a real number. We

have that 2 (?, E) ≥ <̄ = 2
(
X<̄41, E

)
for all E ∈ Wmax (<′). By Steps 1 and 2 and since

<′ is a subrelation of <, this implies that ? <′ X<̄41 and, in particular, ? < X<̄41 , that is,
D (?) ≥ D

(
X<̄41

)
= <̄, proving the statement. �

By imposingW =Wmax (<′), the implication follows from Steps 1, 2, 4, and 5.

“If.” It is routine (cf. Remark 3). �

As for uniqueness, it follows from the same arguments contained in Evren (2008, Theo-
rem 5), keeping in mind that we further normalized each utility E to be such that E (0) = 0.

Proof of Proposition 5. “Only if.” By the proof of Theorem 1 and since < satisfies Axioms
1-5, we have thatWmax (<′) is a canonical Cautious Utility representation, in particular,
Wmax (<′) represents <′ and <. By definition of <′ and since < satisfies Weak Symmetry,
<′ satisfies Independence, and f is affine and such that f (f (A )) = A for all A ∈ Δ, this
implies that

? <′ @ =⇒ _? + (1 − _) f (A ) <′ _@ + (1 − _) f (A ) ∀_ ∈ (0, 1] ,∀A ∈ Δ
=⇒ f (_@ + (1 − _) f (A )) < f (_? + (1 − _) f (A )) ∀_ ∈ (0, 1] ,∀A ∈ Δ
=⇒ _f (@) + (1 − _) f (f (A )) < _f (?) + (1 − _) f (f (A )) ∀_ ∈ (0, 1] ,∀A ∈ Δ
=⇒ _f (@) + (1 − _) A < _f (?) + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ
=⇒ f (@) <′ f (?) .

By Lemma 1 in the Online Appendix and since < satisfies Weak Order, Monotonicity, and
Monetary equivalent, we have that <′ satisfies (12) and (13). By Proposition 9 in the Online
Appendix, we can conclude thatWmax (<′) is odd, proving thatWmax (<′) is a canonical
Symmetric Cautious Utility representation.

“If.” By Theorem 1, Axioms 1-5 follow. SinceW is a canonical Symmetric Cautious
Utility representation,W represents <′. By the second part of Proposition 9 in the Online
Appendix and the discussion thereafter, we can conclude that ? <′ @ if and only if f (@) <′

f (?) for all ?, @ ∈ Δ.
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Since <′ is a subrelation of <, this implies that ? <′ @ =⇒ f (@) <′ f (?) =⇒ f (@) <
f (?) for all ?, @ ∈ Δ, proving that < satisfies Weak Symmetry. �

The two proofs above provide a foundation for the Cautious Utility model and its sym-
metric version. In the next remark, we discuss the foundation of the Incautious one.

Remark 4. Recall that an Incautious Utility representation features the same exact objects of
a Cautious one except that the inf is replaced by sup. It is then important to observe that the
Multi-Expected Utility representation of <′ in the Online Appendix and the symmetry property
of its representation (Propositions 8–10) have been derived without ever using theM-NCI axiom.
The same is true for Steps 1–3 in the proof of Theorem 1 where Step 3 could have been written
with sup in place of inf using the same arguments.²⁴ Thus, substituting M-NCI with M-PCI
allows for replacing in Steps 4 and 5 the inf with sup. Finally, Proposition 5 is a result just in
terms of <′ without ever relying on M-NCI.
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Online Appendix

This appendix includes all the missing proofs and the ancillary facts used in the main body
of the paper. We begin with a section on facts instrumental for Theorem 1 and Proposition
5.

Foundation

Recall the definition of <′ in Section 5, that is,

? <′ @
def⇐⇒ _? + (1 − _) A < _@ + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

The goal of this section is to provide a Multi-Expected Utility representation for <′.

Lemma 1. Let < be a binary relation on Δ that satisfies Weak Order. The following statements
are true:

1. The relation < satisfies M-NCI if and only if for each ? ∈ Δ and for each< ∈ R

? < X<41 =⇒ ? <′ X<41 . (Equivalently ? %′ X<41 =⇒ X<41 � ?.)

2. If < satisfies Monotonicity, then for each G,~ ∈ R:

G > ~ =⇒ XG �′ X~ . (12)

3. If < satisfies Monetary equivalent, then for each G,~ ∈ R: there exists< ∈ R+ such that

X~+<41 <
′ XG <

′ X~−<41 . (13)

Proof. All three points follow from the definition of <′ and M-NCI, Monotonicity, and Mon-
etary equivalent, respectively. �

Aumann Utilities and Multi-Expected Utility Representations

In this section, in our formal results, we consider a binary relation <∗ over Δ such that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W (14)

1



whereW ⊆ �
(
R:

)
. Recall that a function E ∈ �

(
R:

)
is an Aumann utility if and only if

? �∗ @ =⇒ E? (E) > E@ (E) and ? ∼∗ @ =⇒ E? (E) = E@ (E) .

We denote by 4 the vector whose components are all 1s. We endow�
(
R:

)
with the distance

3 : �
(
R:

)
×�

(
R:

)
→ [0,∞) defined by

3 (5 , 6) =
∞∑
==1

(
1
2

)=
min

{
max

G∈[−=4,=4]
|5 (G) − 6 (G) | , 1

}
∀5 , 6 ∈ �

(
R:

)
.

It is routine to show that
(
�

(
R:

)
, 3

)
is separable.2⁵ Moreover, if {5<}<∈N ⊆ �

(
R:

)
is such

that 5<
3→ 5 , then {5<}<∈N converges uniformly to 5 on each compact subset of R: .

Proposition 7. If <∗ is as in (14) and such that

G > ~ =⇒ XG �∗ X~, (15)

then <∗ admits a strictly increasing Aumann utility.

Proof. By (14), observe that G > ~ implies E (G) ≥ E (~) for all E ∈ W. This implies that
each E ∈ W is increasing. By Aliprantis and Border (2006, Corollary 3.5), there exists a
countable 3-dense subset � ofW. Clearly, we have that

? <∗ @ =⇒ E? (E) ≥ E@ (E) ∀E ∈ �. (16)

Vice-versa, consider ?, @ ∈ Δ such that E? (E) ≥ E@ (E) for all E ∈ �. Since ? and @ have
compact support, there exists =̄ ∈ N such that [−=̄4, =̄4] contains both supports. Consider
E ∈ W. Since � is 3-dense inW, there exists a sequence {E; };∈N ⊆ � such that E;

3→ E . It
follows that E; converges uniformly on [−=̄4, =̄4]. This implies that

E? (E) =
∫
[−=̄4,=̄4]

Ed? = lim
;

∫
[−=̄4,=̄4]

E;d? = lim
;
E? (E; )

≥ lim
;
E@ (E; ) = lim

;

∫
[−=̄4,=̄4]

E;d@ =

∫
[−=̄4,=̄4]

Ed@ = E@ (E) .

2⁵A proof is available upon request.
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By (14) and (16) and since E was arbitrarily chosen, we can conclude that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ �. (17)

Since� is countable, we can list its elements: � = {E<}<∈N. Set1; = ;+max {|E; (−;4) | , |E; (;4) |}
for all ; ∈ N and 0< = Π<

;=11; ≥ 1< for all< ∈ N. Finally, define E : R: → R by

E (G) =
∞∑
<=1

E< (G)
0<

∀G ∈ R: . (18)

We first prove that E is a well-defined continuous function. Fix G ∈ R: . It follows that there
exists <̄ ∈ N such that G ∈ [−<4,<4] for all< ≥ <̄. Since each E< is increasing, we have
that |E< (G) | ≤ max {|E< (−<4) | , |E< (<4) |} ≤ 1< ≤ 0< for all< ≥ <̄. Since 0< ≥ <! for
all< ∈ N, it follows that

|E< (G) |
0<

=
|E< (G) |
1<0<−1

≤ 1
0<−1

≤ 1
(< − 1)! ∀< ≥ <̄ + 1.

This implies that the right-hand side of (18) converges. Since G was arbitrarily chosen, E is
well-defined. Next, consider = ∈ N. From the same argument above, we have that

|E< (G) |
0<

≤ 1
(< − 1)! ∀G ∈ [−=4, =4] ,∀< ≥ = + 1.

By Weierstrass’"-test and since {E</0<}<∈N is a sequence of continuous functions, we can
conclude that E =

∑∞
<=1

E<
0<

converges uniformly on [−=4, =4], yielding that E is continuous
on [−=4, =4]. Since = was arbitrarily chosen, it follows that E is continuous.

Finally, assume that ? �∗ @ (resp. ? ∼∗ @). By (17), we have that E? (E<) ≥ E@ (E<) for
all< ∈ N and E? (E<̂) > E@ (E<̂) for some <̂ ∈ N (resp. E? (E<) = E@ (E<) for all< ∈ N).
In particular, we have that E? (E</0<) ≥ E@ (E</0<) for all < ∈ N and E? (E<̂/0<̂) >

E@ (E<̂/0<̂) for some <̂ ∈ N (resp. E? (E</0<) = E@ (E</0<) for all< ∈ N). Since
∑∞
<=1

E<
0<

converges uniformly on compacta and the supports of ? and @ are compact, we can conclude
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that

E? (E) − E@ (E) = E?

( ∞∑
<=1

E<

0<

)
− E@

( ∞∑
<=1

E<

0<

)
= lim

;

;∑
<=1

E?

(
E<

0<

)
− lim

;

;∑
<=1

E@

(
E<

0<

)
= lim

;

[
;∑

<=1

(
E?

(
E<

0<

)
− E@

(
E<

0<

))]
.

This implies that if ? �∗ @ (resp. ? ∼∗ @), then E? (E) > E@ (E) (resp. E? (E) = E@ (E)),
proving that E is an Aumann utility. In particular, by (15), E is strictly increasing. �

Consider a binary relation <∗ on Δ. DefineWmax (<∗) as the set of all strictly increasing
functions E ∈ �

(
R:

)
such that E (0) = 0 and ? <∗ @ implies E? (E) ≥ E@ (E). We say that a

setW in �
(
R:

)
has full image if and only if

∀G,~ ∈ R: , ∃< ∈ R+ s.t. E (~ +<41) ≥ E (G) ≥ E (~ −<41) ∀E ∈ W .

Proposition 8. Let <∗ be a binary relation on Δ represented as in (14). If <∗ satisfies (12)
and (13), thenWmax (<∗) is a nonempty convex set with full image that satisfies (14).

Proof. Consider E1, E2 ∈ Wmax (<∗) and _ ∈ (0, 1). Since both functions are strictly in-
creasing and continuous and such that E1 (0) = 0 = E2 (0), it follows that _E1 + (1 − _) E2 is
strictly increasing, continuous, and takes value 0 in 0. Since E1, E2 ∈ Wmax (<∗), if ? <∗ @,
then E? (E1) ≥ E@ (E1) and E? (E2) ≥ E@ (E2). This implies that

E? (_E1 + (1 − _) E2) = _E? (E1) + (1 − _) E? (E2)
≥ _E@ (E1) + (1 − _) E@ (E2) = E@ (_E1 + (1 − _) E2) ,

proving that _E1 + (1 − _) E2 ∈ Wmax (<∗) and, in particular, Wmax (<∗) is convex. By
Proposition 7, there exists a strictly increasing Ê ∈ �

(
R:

)
such that

? �∗ @ =⇒ E? (Ê) > E@ (Ê) and ? ∼∗ @ =⇒ E? (Ê) = E@ (Ê) .

Without loss of generality, we can assume that Ê (0) = 0 (given Ê , set E = Ê − Ê (0)) and,
in particular, we have that Ê ∈ Wmax (<∗), proving thatWmax (<∗) is nonempty. Since
<∗ satisfies (13), it follows thatWmax (<∗) has full image. Since <∗ satisfies (12), E is
increasing for all E ∈ W. This implies that for each E ∈ W and for each = ∈ N the function
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E= =
(
1 − 1

=

)
E + 1

=
Ê −

[ (
1 − 1

=

)
E (0) + 1

=
Ê (0)

]
∈ Wmax (<∗). By definition, if ? <∗ @, then

E? (E) ≥ E@ (E) for all E ∈ Wmax (<∗). Vice-versa, we have that

E? (E) ≥ E@ (E) ∀E ∈ Wmax (<∗)

=⇒ E?

((
1 − 1

=

)
E + 1

=
Ê

)
≥ E@

((
1 − 1

=

)
E + 1

=
Ê

)
∀E ∈ W,∀= ∈ N

=⇒ E? (E) ≥ E@ (E) ∀E ∈ W =⇒ ? <∗ @,

proving that (14) holds withWmax (<∗) in place ofW. �

We conclude by discussing Multi-Expected Utility representations which feature odd
sets. To do this, we make two simple observations. First, recall the map f : Δ→ Δ, which
swaps gains with losses, defined by

f (?) (�) = ? (−�) for all Borel subsets � of R: and for all ? ∈ Δ.

It is immediate to see that f is affine and f (f (?)) = ? for all ? ∈ Δ. Second, by the Change
of Variable Theorem (see, e.g., Aliprantis and Border 2006, Theorem 13.46), we have that

Ef (A ) (E) =
∫
R:
Edf (A ) = −

∫
R:
ĒdA = −EA (Ē) ∀A ∈ Δ,∀E ∈ �

(
R:

)
(19)

where Ē : R: → R is defined by Ē (G) = −E (−G) for all G ∈ R: and for all E ∈ �
(
R:

)
.

Proposition 9. Let <∗ be a binary relation on Δ represented as in (14) which satisfies (12)
and (13). The following statements are equivalent:

(i) For each ?, @ ∈ Δ
? <∗ @ ⇐⇒ f (@) <∗ f (?) .

(ii) For each ?, @ ∈ Δ
? <∗ @ =⇒ f (@) <∗ f (?) .

(iii) Wmax (<∗) is odd.

Moreover, ifW in (14) is odd, then (i) and (ii) hold.

For the last part of the statement, that is proving that ifW is odd, then (i) and (ii) hold,
we can dispense with the assumption that <∗ satisfies (12) and (13). The proof will clarify.
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Proof. By Proposition 8, we have that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ Wmax (<∗) .

In other words, for the first part of the statement, we can replaceW in (14)withWmax (<∗).
(i) implies (ii). It is obvious.

(ii) implies (iii). Fix E ∈ Wmax (<∗). By definition of Ē and since each E inWmax (<∗) is
strictly increasing, continuous, and such that E (0) = 0, we have that Ē is strictly increasing,
continuous, and such that Ē (0) = 0. By assumption and (19), we have that

? <∗ @ =⇒ f (@) <∗ f (?) =⇒ Ef (@) (E) ≥ Ef (?) (E) =⇒ −E@ (Ē) ≥ −E? (Ē) =⇒ E? (Ē) ≥ E@ (Ē) .

By definition ofWmax (<∗), we can conclude that Ē ∈ Wmax (<∗), proving thatWmax (<∗)
is odd.

(iii) implies (i). By (19) and sinceW is odd and represents <∗, we have that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W ⇐⇒ E? (Ē) ≥ E@ (Ē) ∀E ∈ W
⇐⇒ Ef (@) (E) ≥ Ef (?) (E) ∀E ∈ W ⇐⇒ f (@) <∗ f (?) ,

proving the implication (sinceWmax (<∗) represents <∗) and also the second part of the
statement. �

Representing <′

We can finally provide a Multi-Expected Utility representation for <′.

Proposition 10. If < satisfiesWeak Order, Continuity, Monotonicity, andMonetary equivalent,
then

? <′ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ Wmax (<′) .

Moreover,Wmax (<′) is a nonempty convex set with full image.

Proof. By the same techniques of Cerreia-Vioglio (2009, Proposition 22) (see also Cerreia-
Vioglio et al. 2017, Lemma 1 and Footnote 10), <′ is a preorder that satisfies Sequential
Continuity and Independence.2⁶ By Evren (2008, Theorem 2), there exists a set W ⊆

2⁶That is, for each two generalized sequences {?U }U ∈� and {@U }U ∈� in Δ

?U <
′ @U ∀U ∈ �, ?U → ?, and @U → @ =⇒ ? <′ @.
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�
(
R:

)
such that ? <′ @ if and only if E? (E) ≥ E@ (E) for all E ∈ W. By Lemma 1 and

since < is a Weak Order which satisfies Monotonicity and Monetary equivalent, we have
that <′ satisfies (12) and (13). By Proposition 8 and considering <′ in place of <∗,W can
be chosen to beWmax (<′), proving the statement. �

Missing Proofs

In this section, we prove Proposition 4. We begin by showing that if < admits a finite
essential Cautious Utility representation, then it is canonical. This fact will be key in proving
the aforementioned proposition.

Lemma 2. If < admits a finite essential Cautious Utility representation, then it is canonical.

Proof. Define <∗ to be such that ? <∗ @ if and only if E? (E) ≥ E@ (E) for all E ∈ W where
W is a finite essential Cautious Utility representation of <. SinceW is finite, we have
that the smallest convex cone containingW, denoted by cone (W), is closed with respect
to the f

(
�

(
R:

)
,Δ

)
-topology and so is the set cone (W) +

{
\1R:

}
\∈R. By definition of

Wmax (<∗), it follows that cone (W) \ {0} ⊆ Wmax (<∗). By Proposition 8, Remark 3, and
(Evren, 2008, Theorem 5) and sinceW is a Cautious Utility representation, we have that
(where the closure is in the f

(
�

(
R:

)
,Δ

)
-topology)

cone (W) +
{
\1R:

}
\∈R = cl

(
cone (Wmax (<∗)) +

{
\1R:

}
\∈R

)
⊇ cl

(
Wmax (<∗) +

{
\1R:

}
\∈R

)
⊇ Wmax (<∗) +

{
\1R:

}
\∈R ,

yielding that cone (W) \ {0} ⊇ Wmax (<∗) and, in particular, cone (W) \ {0} =Wmax (<∗).
Since the functional E ↦→ 2 (?, E) is quasiconcave over cone (W) \ {0} for all ? ∈ Δ, it is
immediate to see that

+ (?) = min
E∈W

2 (?, E) = min
E∈cone(W)\{0}

2 (?, E) ∀? ∈ Δ.

By Remark 3 and sinceW = {E8}=8=1 is a finite Cautious Utility representation, we have
that < satisfies Axioms 1- 5. By Theorem 1 and its proof,Wmax (<′) is a canonical Cautious
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Utility representation for <. In particular, we have that

+ (?) = min
E∈W

2 (?, E) = min
E∈cone(W)\{0}

2 (?, E) = inf
E∈Wmax (<′)

2 (?, E) ∀? ∈ Δ.

Since <′ is the largest subrelation of < that satisfies the Independence axiom and ? <∗ @
implies ? < @, we have that <∗ is a subrelation of <′ andWmax (<′) ⊆ Wmax (<∗) =
cone (W) \ {0}. By contradiction, assume thatWmax (<′) ≠ cone (W) \ {0}. SinceWmax (<′)
is a convex set closed with respect to strictly positive scalar multiplications, this implies
thatW * Wmax (<′). IfW is a singleton, then < is Expected Utility and, in particu-
lar, <′ is complete and coincides with <. This implies thatW = {E1} andWmax (<′) =
{_E1}_>0 = cone (W) \ {0}, a contradiction. Assume W is not a singleton. Consider
Ĕ ∈ W\Wmax (<′). SinceW is essential, there exists ?̄ ∈ Δ such that minE∈W 2 (?̄, E) <
minE∈W\{Ĕ} 2 (?̄, E). SinceW = {E8}=8=1 and = ≥ 2, without loss of generality, we can set
Ĕ = E= ∉Wmax (<′). In particular, we have that

inf
E∈Wmax (<′)

2 (?̄, E) = min
E∈W

2 (?̄, E) = 2 (?̄, E=) < 2 (?̄, E8) ∀8 ∈ {1, ..., = − 1} . (20)

Consider a sequence {Ê<}<∈N ⊆ Wmax (<′) such that 2 (?̄, Ê<) ↓ infE∈Wmax (<′) 2 (?̄, E). By
construction and sinceWmax (<′) ⊆ cone (W) \ {0}, there exists a collection of scalars{
_<,8

}
<∈N,8∈{1,...,=} ⊆ [0,∞) such that Ê< =

∑=
8=1 _<,8E8 for all < ∈ N. Since Ê< is strictly

increasing, we have that for each< ∈ N there exists 8 ∈ {1, ..., =} such that _<,8 > 0. Define
_<,f =

∑=
8=1 _<,8 > 0 for all< ∈ N. For each< ∈ N and for each 8 ∈ {1, ..., =} define also

_̄<,8 = _<,8/_<,f as well as Ẽ< =
∑=
8=1 _̄<,8E8 = Ê</_<,f . Since _<,f > 0 for all < ∈ N, it

is immediate to see that 2 (?̄, Ẽ<) = 2 (?̄, Ê<) for all < ∈ N and, in particular, 2 (?̄, Ẽ<) ↓
infE∈Wmax (<′) 2 (?̄, E). For each< ∈ N denote by _̄< the R= vector whose 8-th component is
_̄<,8 . Since

{
_̄<

}
<∈R is a sequence in the R= simplex, there exists a subsequence

{
_̄<;

}
;∈N

such that _̄<; ,8 → _̄8 ∈ [0, 1] for all 8 ∈ {1, ..., =} and
∑=
8=1 _̄8 = 1. It is immediate to see that

Ẽ<; =
∑=
8=1 _̄<; ,8E8

f (� (R:),Δ)
→ ∑=

8=1 _̄8E8 = Ẽ where Ẽ is continuous, strictly increasing, and
such that Ẽ (0) = 0. Moreover, for each ?, @ ∈ Δwe have that ? <′ @ implies E? (Ẽ) ≥ E@ (Ẽ),
proving that Ẽ ∈ Wmax (<′). Note that _̄= < 1, otherwise, we would have that E= = Ẽ ∈
Wmax (<′), a contradiction. By (20) and since _̄= < 1 and the functional E ↦→ 2 (?, E) is
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explicitly quasiconcave over co (W) for all ? ∈ Δ,2⁷ we have that

2 (?̄, E=) < 2 (?̄, Ẽ) = lim
;
2
(
?̄, Ẽ<;

)
= lim

<
2 (?̄, Ẽ<) = inf

E∈Wmax (<′)
2 (?̄, E) = 2 (?̄, E=) ,

a contradiction. It follows thatWmax (<′) = cone (W) \ {0} and, in particular,W repre-
sents also <′. This implies thatW is canonical. �

Proof of Proposition 4. We first prove the first part of the statement assuming < satisfies u-
CPT, and then we will move to the additive case. Since D (0) = 0 and D is strictly increasing
and continuous, it follows that there exists C̄ > 0 such that [−C̄ , C̄] ⊆ ImD. Let Δ0 ( [0, C̄]) be
the set of finitely supported probabilities over [0, C̄]. Consider ?̃ ∈ Δ0 ( [0, C̄]). By definition,
we have that there exist two unique collections {C8}=8=1 ⊆ [0, C̄] and {_8}=8=1 ⊆ [0, 1] such
that supp? = {C8}=8=1,

∑=
8=1 _8 = 1, and ?̃ =

∑=
8=1 _8XC8 . Without loss of generality, we can

assume that C1 < ... < C=. We define +̃ : Δ0 ( [0, C̄]) → R by

+̃ (?̃) =
=−1∑
9=1

(
F̄+

(
=∑
8= 9

_8

)
− F̄+

(
=∑

8= 9+1
_8

))
E
(
C 9
)
+ F̄+ (_=) E (C=)

for all ?̃ ∈ Δ0 ( [0, C̄]) where F̄+ : [0, 1] → [0, 1] is defined by F̄+ (C) = 1 − F (1 − C)
for all C ∈ [0, 1]. We next show that for each ?̃ ∈ Δ0 ( [0, C̄]) and for each C̃ ∈ [0, C̄], if
+̃ (?̃) = +̃ (XC̃ ), then +̃ (_?̃ + (1 − _) XC̃ ) = +̃ (XC̃ ) for all _ ∈ (0, 1). Consider ?̃ ∈ Δ0 ( [0, C̄])
and C̃ ∈ [0, C̄] such that +̃ (?̃) = +̃ (XC̃ ). Given ?̃ ∈ Δ0 ( [0, C̄]), since {C8}=8=1 ⊆ [0, C̄] ⊆ ImD,
there exists {G8}=8=1 ⊆ R: such that D (G8) = C8 for all 8 ∈ {1, ..., =}. Consider ? =

∑=
8=1 _8XG8 .

It is immediate to see that +̃ (?̃) = + (?). Since < admits a Symmetric Cautious Utility
representation, there exists 2 ∈ R such that ? ∼ X241 . This implies that + (?) = +

(
X241

)
and, in particular, D (241) ∈ [0, C̄]. Moreover, since D and E are strictly increasing, we
have that D (241) = C̃ ∈ [0, C̄] and +

(
X241

)
= +̃ (XC̃ ). By Remark 3 and since < admits a

Symmetric Cautious Utility representation, we have that < satisfies M-NCI. This yields that
_? + (1 − _) X241 ∼ X241 for all _ ∈ (0, 1). This implies that

+̃ (_?̃ + (1 − _) XC̃ ) = +
(
_? + (1 − _) X241

)
= +

(
X241

)
= +̃ (XC̃ ) .

2⁷Formally, see e.g. (Aliprantis and Border, 2006, p. 300), given ? ∈ Δ, for each ℎ ∈ N\ {1}, for each
{E; }ℎ;=1 ⊆ co (W), and for each {_; }ℎ;=1 ⊆ [0, 1] such that

∑ℎ
;=1 _; = 1 and _ℎ < 1

2 (?, E8 ) > 2 (?, Eℎ) ∀8 ∈ {1, ..., ℎ − 1} =⇒ 2

(
?,

ℎ∑
8=1

_8E8

)
> 2 (?, Eℎ) .
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By Bell and Fishburn (2003, Theorem 1) applied to +̃ , it follows that F̄+ is the identity
and so is F+. The same proof, performed with [−C̄ , 0] in place of [0, C̄] and F+ replaced
by F−, yields that F− is the identity. These two facts together allow us to conclude that
? ↦→ + (?) = CPTE,F+,F− (?D) is an Expected Utility functional with utility E ◦ D : R: → R.
We next assume that < admits an Additive CPT representation. As before consider C̄ > 0.
Define Δ0 ( [0, C̄]) and +̃ as before with E replaced byD1. For each ?̃ ∈ Δ0 ( [0, C̄]) define ? in
Δ to be the product measure ?̃ ⊗ X0... ⊗ X0. It is immediate to see that +̃ (?̃) = + (?) for all
?̃ ∈ Δ0 ( [0, C̄]). As before, we can show that for each ?̃ ∈ Δ0 ( [0, C̄]) and for each C̃ ∈ [0, C̄], if
+̃ (?̃) = +̃ (XC̃ ), then +̃ (_?̃ + (1 − _) XC̃ ) = +̃ (XC̃ ) for all _ ∈ (0, 1). Consider ?̃ ∈ Δ0 ( [0, C̄])
and C̃ ∈ [0, C̄] such that +̃ (?̃) = +̃ (XC̃ ). This implies that + (?) = +

(
XC̃41

)
, that is, ? ∼ XC̃41 .

By Remark 3 and since < admits a Symmetric Cautious Utility representation, we have that
< satisfies M-NCI. This yields that _? + (1 − _) XC̃41 ∼ XC̃41 for all _ ∈ (0, 1). This implies
that

+̃ (_?̃ + (1 − _) XC̃ ) = +
(
_? + (1 − _) XC̃41

)
= +

(
XC̃41

)
= +̃ (XC̃ ) .

By Bell and Fishburn (2003, Theorem 1) applied to +̃ , it follows that F̄+ is the identity and
so isF+. The same proof, performed with [−C̄ , 0] in place of [0, C̄] andF+ replaced byF−,
yields thatF− is the identity. This implies that < admits an Expected Utility representation
with utility D : R: → R defined by D (G) = ∑:

8=1D8 (G8) for all G ∈ R: .

As for the second part of the statement, by Lemma 2 and sinceW is a finite essential
Cautious Utility representation, we have thatW is a canonical representation, that is,W =

{E8}=8=1 represents also <
′. Since < is Expected Utility with utility E◦D (where in the additive

case E is the identity and D is additively separable), we have that <′ coincides with <,
yielding that for each 8 ∈ {1, ..., =} there exists _8 > 0 such that E8 = _8 (E ◦ D). This implies
that 2 (?, E8) = 2 (?, E ◦ D) for all ? ∈ Δ and for all 8 ∈ {1, ..., =}. SinceW is essential, this
implies thatW is a singleton. SinceW = {E1} andW is odd, this implies that E1 is odd
and, in particular, < is loss neutral for risk and exhibits no endowment effect. �
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