Monetary Policy Regimes and the Term Structure of Interest Rates

Ruslan Bikbov, Mikhail Chernov

Overview

- Introduction
- Model
- Results
- Conclusion

æ

イロト イヨト イヨト イヨト

Literature and Contribution

Existing Literature

- Monetary policies matter for the real economy (Woodford, 2003) and improved over time, such improvement has been modeled by assuming a break point (Clarida et al., 2000) or modeled explicitly regime changes (Sims and Zha, 2006).
- Two strands of macro literature:
 - Understanding the role of time-varying volatility of exogenous shocks in relation to time-varying monetary policy in generating fluctuations in business cycle. (Cogley and Sargent (2005), Primiceri (2005) etc.)
 - Using information in the yield curve to inform about potential misspecification in macro models not necessarily concerned with changing monetary policy. (Rudebusch (2002), Gurkaynak et al (2005))

Contribution

- Pointing out monetary policy regimes may not be estimated precisely if one uses information from the short interest rate only.
- Bridging two strands of the macro literature by using a term structure model to bring evidence from the yield curve.

Model

Forward-Looking Regime-Switching Model

$$g_{t} = m_{g} + (1 - \mu_{g})g_{t-1} + \mu_{g}E_{t}g_{t+1} - \phi(r_{t} - E_{t}\pi_{t+1}) + \sigma_{g}(s_{t}^{e})\epsilon_{t}^{g}$$

$$\pi_{t} = m_{\pi} + (1 - \mu_{\pi})\pi_{t-1} + \mu_{\pi}E_{t}\pi_{t+1} - \delta g_{t} + \sigma_{\pi}(s_{t}^{e})\epsilon_{t}^{\pi}$$

$$r_{t} = m_{r}(s_{t}^{m}) + (1 - \rho(s_{t}^{m}))[\alpha(s_{t}^{m})E_{t}\pi_{t+1} + \beta(E_{t}\pi_{t+1})g_{t}] + \rho(s_{t}^{m})r_{t-1}$$

$$+ \sigma_{r}(s_{t}^{d})\epsilon_{t}^{r}$$

- Model based on New IS-LM model, and represents an empirical specification of economy dynamics.
- Private sector parameters are not regime independent.
- Regimes are assumed to be independent (8 regimes in total), and shocks are mutually uncorrelated.

A (10) < A (10) < A (10)</p>

Rational Expectation Solution

$$x_t = \mu(S_t) + \Phi(S_t)x_{t-1} + \sum(S_t)\epsilon_t$$

- Private sector and the Fed have the same information when forming expectations about future values of state variables.
- Fed and private sector both know the current realization of regimes.

• • = • •

Market Prices of Risk

- **SDF**: $log M_{r,t+1} = -r_t \frac{1}{2}\Lambda'_{t,t+1}\Lambda_{t,t+1} \Lambda'_{t,t+1}\epsilon_{t+1}$
- Market Price of Risk: $\Lambda_{t,t+1} = \sum' (S_{t+1}) \Pi(x_t)$
- **Preference (Duffie 2002)**: $\Pi(x_t) = \Pi_0 + \Pi_x x_t$
- SDF follows "no-arbitrage restrictions".
- Investor requires greater compensations for holding bonds in a more volatile economic environment.
- Agents are risk averse, but "preference" does not depend on regimes.

Model

Bond Valuation

$$M_{t,t+n} = \prod_{i=1}^{n} M_{t+i-1,t+i}$$
$$B_t^n(x_t, S_t) = E[M_{t,t+n}|x_t, S_t]$$

▲ ■ ▶ ■ つへの March 4, 2020 7/22

メロト メポト メヨト メヨト

Results

- Three categories of regimes:
 - Discretionary and Commitment;
 - Active and Passive;
 - High Volatility and Low Volatility.
- 2 types of model:
 - SRM (Short-Rate Model): inflation, detrended output, 3 month-yield.
 - TSM (Term-Structure Model): SRM + yields and macro-variables.

A D F A B F A B F A B

Estimation of State Dynamics

Private s	sector							
	$m_g \times 10^3$	m _n	μ_s	μ_{π}	$\phi \times 10^4$	δ		
TSM	1.79 (-1.08, 4.02)	0.00 (-0.01, 0.01)	0.54 (0.53, 0.58)	0.48 (0.42, 0.51)	8.61 (1.07, 19.00)	0.01 (0.00, 0.03)		
SRM	0.00 (-0.01, 0.01)	0.00 (-0.01, 0.01)	0.53 (0.51, 0.57)	0.50 (0.50, 0.51)	0.00 (0.00, 0.00)	0.01 (0.00, 0.01)		
Monetar	my policy $m_r(1) \times 10^2$	$m_r(2) \times 10^2$	ρ(1)	ρ(2)	α(1)	a(2)	β(1)	β(2)
TSM	-0.19 (-0.34, 0.08)	0.80 (0.13, 4.20)	0.97 (0.95, 0.99)	0.81 (0.09, 0.87)	3.53 (1.44, 6.90)	0.36 (0.01, 1.10)	2.18 (0.60, 4,60)	1.27 (0.04, 1.80)
SRM	-0.10 (-1.15, 0.80)	1.52 (0.95, 1.80)	0.97 (0.90, 0.99)	0.55 (0.47, 0.57)	5.61 (1.50, 38.00)	0.32 (0.14, 0.42)	6.52 (2.86, 32.00)	0.83 (0.44, 1.11)
Volatilit	ies	1000	- 5 - 5					
	$\sigma_g(1)$	$\sigma_g(2)$	$\sigma_{\pi}(1)$	$\sigma_{\pi}(2)$	$\sigma_r(1)$	$\sigma_r(2)$		
TSM	1.06 (0.87, 1.28)	0.66 (0.55, 0.75)	0.56 (0.46, 0.67)	0.23 (0.19, 0.26)	2.84 (2.40, 3.29)	1.41 (1.17, 1.61)	2	
SRM	1.17 (1.00, 1.30)	0.49 (0.32, 0.60)	0.52 (0.31, 0.62)	0.23 (0.09, 0.29)	2.19 (1.50, 2.79)	0.40 (0.25, 0.47)		
					-			

- Volatility of exogenous monetary policy is higher in state 1, than 2. (discretionary vs. commitment)
- Strong reaction to one-quarter inflation in active regime, while reducing long-term target of inflation of inflation in passive regime.
- Fed also reacts more aggressively to real output in the active regime.

Estimation of State Dynamics

Private :	sector							
	$m_g \times 10^3$	m _n	μ_s	μ_{π}	$\phi \times 10^4$	δ		
TSM	1.79 (-1.08, 4.02)	0.00 (-0.01, 0.01)	0.54 (0.53, 0.58)	0.48 (0.42, 0.51)	8.61 (1.07, 19.00)	0.01 (0.00, 0.03)		
SRM	0.00 (-0.01, 0.01)	0.00 (-0.01, 0.01)	0.53 (0.51, 0.57)	0.50 (0.50, 0.51)	0.00 (0.00, 0.00)	0.01 (0.00, 0.01)		
Moneta	my policy $m_r(1) \times 10^2$	$m_{\rm e}(2) \times 10^2$	p(1)	ρ(2)	a(1)	a(2)	β(1)	β(2)
				4.1.0				
TSM	-0.19 (-0.34, 0.08)	0.80 (0.13, 4.20)	0.97 (0.95, 0.99)	0.81 (0.09, 0.87)	3.53 (1.44, 6.90)	0.36 (0.01, 1.10)	2.18 (0.60, 4.60)	1.27 (0.04, 1.80)
SRM	-0.10 (-1.15, 0.80)	1.52 (0.95, 1.80)	0.97 (0.90, 0.99)	0.55 (0.47, 0.57)	5.61 (1.50, 38.00)	0.32 (0.14, 0.42)	6.52 (2.86, 32.00)	0.83 (0.44, 1.11)
Volatilit	ies							
	$\sigma_g(1)$	$\sigma_g(2)$	$\sigma_{\pi}(1)$	$\sigma_{\pi}(2)$	$\sigma_t(1)$	$\sigma_r(2)$		
TSM	1.06 (0.87, 1.28)	0.66 (0.55, 0.75)	0.56 (0.46, 0.67)	0.23 (0.19, 0.26)	2.84 (2.40, 3.29)	1.41 (1.17, 1.61)		
SRM	1.17 (1.00, 1.30)	0.49 (0.32, 0.60)	0.52 (0.31, 0.62)	0.23 (0.09, 0.29)	2.19 (1.50, 2.79)	0.40 (0.25, 0.47)	_	

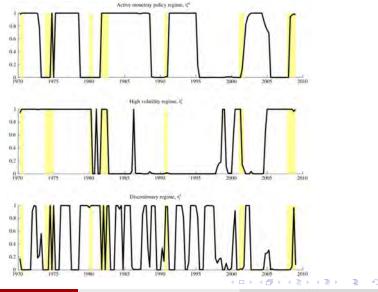
- Volatility of exogenous monetary policy is higher in state 1, than 2. (discretionary vs. commitment)
- Strong reaction to one-quarter inflation in active regime, while reducing long-term target of inflation of inflation in passive regime.
- Fed also reacts more aggressively to real output in the active regime.

Estimation of State Dynamics

Private :	sector							
	$m_g \times 10^3$	m _n	μ_s	μ_{π}	$\phi \times 10^4$	δ		
TSM	1.79 (-1.08, 4.02)	0.00 (-0.01, 0.01)	0.54 (0.53, 0.58)	0.48 (0.42, 0.51)	8.61 (1.07, 19.00)	0.01 (0.00, 0.03)		
SRM	0.00 (0.01, 0.01)	0.00 (-0.01, 0.01)	0.53 (0.51, 0.57)	0.50 (0.50, 0.51)	0.00 (0.00, 0.00)	0.01 (0.00, 0.01)	-	
Moneta	my policy $m_r(1) \times 10^2$	$m_r(2) \times 10^2$	ρ(1)	ρ(2)	α(1)	α(2)	β(1)	β(2)
TSM	-0.19 (-0.34, 0.08)	0.80 (0.13, 4.20)	0.97 (0.95, 0.99)	0.81 (0.09, 0.87)	3.53 (1.44, 6.90)	0.36 (0.01, 1.10)	2.18 (0.60, 4,60)	1.27 (0.04, 1.80)
SRM	-0.10 (-1.15, 0.80)	1.52 (0.95, 1.80)	0.97 (0.90, 0.99)	0.55 (0.47, 0.57)	5.61 (1.50, 38.00)	0.32 (0.14, 0.42)	6.52 (2.86, 32.00)	0.83 (0.44, 1.11)
Volatilit	ties	1000	- 27 12 - 27 - 2					
	$\sigma_g(1)$	$\sigma_g(2)$	$\sigma_{\pi}(1)$	$\sigma_{\pi}(2)$	$\sigma_r(1)$	$\sigma_r(2)$		
TSM	1.06 (0.87, 1.28)	0.66 (0.55, 0.75)	0.56 (0.46, 0.67)	0.23 (0.19, 0.26)	2.84 (2.40, 3.29)	1.41 (1.17, 1.61)		
SRM	1.17 (1.00, 1.30)	0.49 (0.32, 0.60)	0.52 (0.31, 0.62)	0.23 (0.09, 0.29)	2.19 (1.50, 2.79)	0.40 (0.25, 0.47)	_	

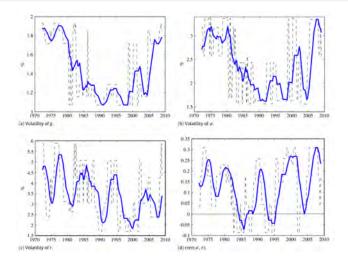
- Volatility of exogenous monetary policy is higher in state 1, than 2. (discretionary vs. commitment)
- Strong reaction to one-quarter inflation in active regime, while reducing long-term target of inflation of inflation in passive regime.
- Fed also reacts more aggressively to real output in the active regime.

Regime Probabilities


TSM			SRM		
Systematic monet	ary policy regime variabl	e s. ^m			
	Active	Passive		Active	Passive
Active	98.21	1.78	Active	69.65	30.35
	(97.19, 99.56)	(0.43, 2.80)		(56.61, 81.99)	(17.75, 43.57
Passive	9.69	90.31	Passive	72.57	26.43
	(4.50, 18.40)	(81.15, 95.52)		(58.70, 91.66)	(6.61, 40.18)
Volatility of exoge	nous shocks regime varia	ible s ^e			
	High vol	Low vol		High vol	Low vol
High vol	94.34	5.66	High vol	98.72	1.28
	(82,15,99,79)	(0.80, 17,96)		(76.67, 99.68)	(0.22, 20.90)
Low vol	4.97	95.03	Low vol	1.66	98.34
	(1.50, 8.83)	(91.03, 98.34)		(1.02, 15.30)	(83.76, 99.12
Volatility of mone	tary policy shock regime	variable s ^d			
10.00	Discretion	Commitment		Discretion	Commitment
Discretion	78.66	21.34	Discretion	90.55	9.45
	(67.76, 83.30)	(14.50, 29.99)		(67.38, 97.25)	(2.60, 31.81)
Commitment	17.74	82.26	Commitment	7.47	92.53
	(12.70, 26.10)	(75.75, 89.30)		(2.70, 21.73)	(78.27, 97.40

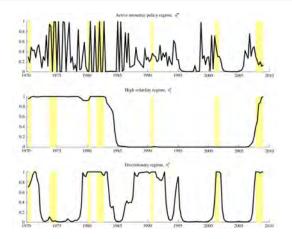
 Monetary regimes are the most persistent (98% continue), monetary shock regime, are the least persistent.

3

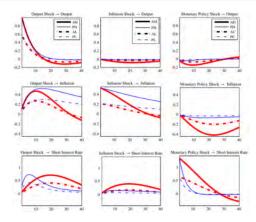

A D N A B N A B N A B N

Regime Probabilities

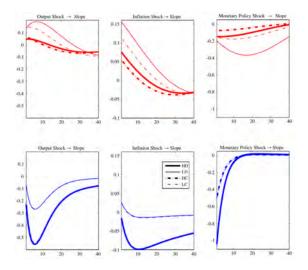
March 4, 2020 13 / 22


Implication of Reduced Form Model

Volatilities are not tied to any specific structural regime.


Despite assumption, inflation and short interest rate are correlated.

Implication of Reduced Form Model


- Monetary regimes in SRM are much less persistent than TSM.
- In active regime, SRM are not as well-defined, probability hovers around 0.5.

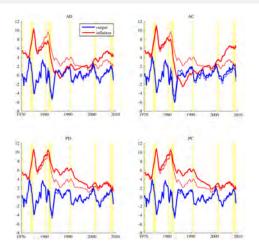
Counterfactual Impulse Response

- In passive regime, commitment and discretion regimes almost identical, in active regime qualitatively similar in monetary policy shock.
- In active regime, rise in interest rate is more prolonged, total effect on output and inflation is stronger.
- In high-volatility regime, Fed always reacts more strongly.

Counterfactual Impulse Response (Slope)

• Active regimes steer economy in a more stable way.

March 4, 2020 17 / 22

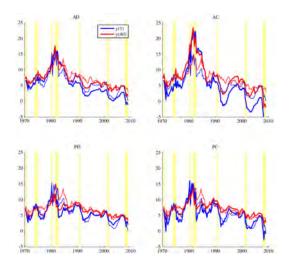

Counterfactual Economies

				Average				Standard deviation			
_				8	π	y(1)	y(40)	8	π	y(1)	y(40
Subsample	(1970-1982	:)		-0.04	6.73	7.74	8.47	2.17	1.78	3.26	2.38
Model	S_l^m	S_{i}^{d}	S_{i}^{e}								
	Α	с	H.	-0.51	6.50	8.45	10.25	2.67	2.01	6.10	4.71
	A	D	н	-0.52	5.91	8.27	9.09	2.50	1.72	3.43	2.66
	Р	С	н	-0.12	7.26	6.83	7.19	2.33	1.93	3,70	1.93
	P	D	н	-0.12	7.17	6.68	6.55	2.32	1.92	2.55	1.41
Subsample 2 (1983-2008)			0.02	2.58	4.95	6.70	1.09	0.80	2.37	2.22	
Model	s ^m	S_1^d	51								
	Α	С	L	0.35	2.36	3.38	6.79	1.04	2.40	4.83	2.98
	A	D	L	0.28	2.73	4.06	6.66	1.00	1.48	2.62	1.64
	P	C	L	0.12	3.79	4.81	7.12	1.01	1.18	2.43	1.33
	P	D	L	0.10	3.88	5.11	6.76	1.02	1.23	1.56	1.06
Full sample	(1970-2008)			0.00	3.97	5.88	7.29	1.54	2.31	2,99	2.41
Model	s ^m	s_r^d									
	A	C		0.14	3.51	4.97	7,48	1.72	3.19	6.17	4,78
	A	D		0.09	3.56	5.37	7.05	1.62	2.34	3.89	3.07
	P	C		0.08	4.97	5.54	7.02	1.52	2.34	3.22	1.99
	P	D		0.08	5.00	5.69	6.57	1.53	2.32	2.23	1.59

• If one regime is fixed throughout the sample, we should observe the same signs of observation in the actual data. Therefore, a large driver of moderation is the change of the private sector shocks.

A D F A B F A B F A B

Counterfactual Economies


• In PC and PD, Almost no difference between realized and real output, counterfactual inflation is higher overall than realized.

March 4, 2020

19/22

• More complicated in AC and AD.

Counterfactual Economies

• AD are not implemented for long for highly volatile yields.

Conclusion

- Long-term rates helps identify monetary policy regimes.
- At least two types of systematic policies are identified.
- Monetary policy is important for the moderation.

Thanks!

March 4, 2020 22 / 22

3

メロト メポト メヨト メヨト