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Abstract

The individuals of a certain population play a coordination game with
each of their partners in the social network. Over time, actions and links
co-evolve with agents adjusting their actions and creating new links when
they find it (myopically) optimal. The key feature of the model is that, as
it indeed happens in many real-world environments, links become “obso-
lete” and consequently vanish at a certain rate. Our objective is to under-
stand whether and how, under such link volatility, a densely networked
society may still arise and persist.

The main contribution of the paper is two-fold. First, we fully charac-
terize the limit behavior of the system at different time horizons (i.e. at
the so-called long and ultralong runs). This characterization shows that
the interplay between action choice and link creation may feed on each
other to generate sharp transitions, dense networks, and high coordination.
Second, we find that interesting path dependence and hysteresis arises in
the long run (although not in the ultralong run). This has the interesing
policy implication that even small and temporary interventions may have
large effects that are quite persistent. .
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1 Introduction

High volatility, understood as rapid change in the environment, is an essential
feature of modern economic systems. This applies, in particular, to the underly-
ing social networks that channel the interaction among economic agents. Their
links are generally subject to fast “obsolescence” and turnover, leading to a state
of flux that impinges on any social phenomenon that is truly network-based.!

The starting point of this paper, therefore, is the notion that socio-economic
networks can hardly be conceived (i.e. modelled) as either static or in equilib-
rium. Rather, they must be regarded as entities in continuous change, often hav-
ing large stochastic forces impinge on them. The issue then arises as to whether,
and how, under these circumstances, a widely networked system may arise and
remain in place, thus providing the overall structure required for socioeconomic
activity. And it is important to stress that the relevance of this question does
not lie only in the fact that much economic activity is performed through direct
inter-agent contacts. An additional important feature of networks is that they
underlie the unfolding of global phenomena — such as information diffusion or
overall coordination/synchronization — that are often a largely unintended by-
product of agent interaction. Social networks are, in other words, the channel
of link-mediated “externalities” that play an important role in economic perfor-
mance.”> The question, therefore, of whether agent interaction can be sustained
at relatively high levels in the presence of sustained volatility appears interesting
and nontrivial in quite a number of different respects.

Our model is abstract and purposefully simple in order to highlight the basic
forces at work and the main methodological features of our approach. It couples
the network dynamics — by which nodes adjust their links — to the behavioral
dynamics — by which nodes modify their actions. In a nutshell, their combined
operation can be described as follows: agents find it worthwhile to form (costly)
links only with those displaying the same actions, while they also change these
actions to coordinate as best as they can with their current partners. Under the
aforementioned conditions, the problem posed by volatility is quite transparent.
On the one hand, it leads to a decay of the “social fabric” that is crucially needed
to preserve a high level of coordination. And, if such coordination deteriorates,
new links cannot be established at a fast enough rate to compensate for that
decay. This brings in the risk of a self-reinforcing collapse of the social network
and, conversely, requires the onset of a virtuous circle if a dense social network

1By way of illustration, the Section 2 discusses evidence on two paradigmatic instances:
inter-firm alliances and scientific collaborations, for which links have indeed been found to
display relatively short lifetimes.

2Many of the network phenomena that will be listed in Section 2 (e.g. job-market contacts
or interfirm cooperation) generally involve behavioral/networking decisions whose external
effects on others are not fully taken into account by decision makers. This also happens when
the social network acts as “social collateral,” a phenomenon that has been recently studied
(theoretically and empirically) by Karlan, Mobius, Rosenblat, and Szeidl (2008). In their
empirical leading application, they show that the network of friendship and family relation-
ship in two low-income Peruvian communities provides important (but, presumably, largely
unintended) support for the interpersonal credit arrangements that represent an important
underpinning of the economic life of those communities.



is to rise from scratch.

We obtain a complete characterization of how the dynamics of the system
evolves in different time scales. This in turn leads to a number of predictions and
interesting insights. First, we find that the mutual feedback between the “suc-
cess to connect” and the “success to coordinate” leads to a positive (negative)
change in both connectivity and coordination as volatility falls (rises) through-
out. This effect, intuitive as it is, traces a continuous relationship except at
certain specific thresholds for volatility. At these thresholds — one for an upward
transition and another for a downward one — there is a drastic (de)escalation
of the aforementioned feedbacks. This then brings about a sharp discontinuous
change, up or down, in the density of the social network. Such abrupt transitions
mark a clear separation between a networked society — in which a significant
fraction of the individuals are connected by a spanning, though volatile, net-
work — and a largely disconnected one where individuals are fragmented in many
small components.

We also find that the nature of the aforementioned transitions may be af-
fected by the time horizon considered by the analysis.? In a shorter time scale
— what we call the long run — initial conditions essentially anchor the dynam-
ics. This implies, in particular, that multiple stable situations are possible.
Specifically, we conclude that, within a certain parameter range, either of the
two aforementioned situations are stable: a densely networked or a sparsely
connected society. But if one adopts the perspective that has been labelled
the ultralong run (cf. Binmore, Samuelson and Vaughan (1995)), the situation
drastically changes. For, in this time scale, initial conditions do not matter at
all and a unique prediction obtains for essentially all levels of volatility. As we
shall discuss, the effect of the time horizon on the predictions of the model has
important implications for policy assessment. In the long run (which indeed
can be arbitrarily long if the population is large enough), small and temporary
policies can have substantial and persistent effects. Instead, in the ultralong
run, the outcome can be affected significantly only if the policy intervention is
permanent.

The rest of the paper is organized as follows. First, in Section 2 we discuss
some empirical evidence on the relevance of volatility in socio-economic net-
works, and discuss as well how our paper relates and contributes to different
strands of the literature. Then, Section 3 presents the basic theoretical frame-
work. It describes in detail both the subprocesses of link formation and action
adjustment, and also explains the different time scales to be considered in the
analysis. Next, in Section 4, we prove the ergodicity of the process, character-
ize its invariant distribution, and highlight the most prominent features of the
unique configurations that, for large populations, absorb most of the weight in

3 As we shall explain in detail, from a mathematical viewpoint, the contrast between the
two horizons is rooted in the fact that, in our model, the limit of large population sizes does
not commute with the limit of infinite times. But, in fact, a remarkable technical insight that
will be gathered from our analysis is that such contrast between different time scales can be
equivalently obtained from a careful study the critical points of the invariant distribution of
the process (in particular, a comparison of its local and global maxima).



the ultralong run. In Section 5, we turn to studying the long run, i.e. the shorter
time scale where multiplicity is possible and initial conditions may play a deci-
sive role. The main body of the paper concludes in Section 6 with a summary of
our approach and a review of its main conclusions. For the sake of readability,
the formal proofs of the results are gathered in an Appendix.

2 Empirical evidence and related literature

There is already a quite large body of theoretical and empirical research in
economics and other social sciences that underscores the role played by social
networks in a wide number of different contexts. By way of illustration, a very
partial sample of this literature include the following phenomena: job search
(Granovetter (1974), Calvé-Armengol and Jackson (2004)); informal insurance
(Murgai et al. (2002), Fafchamps and Lund (2003)); trade arrangements (Kir-
man et al. (2000), Kranton and Minehart (2001)); the operation of firms and
other organizations (Krackhardt and Hanson (1993), van Alstyne (1997)); in-
dustrial districts (Saxenian (1994), Castilla et al. (2000)); scientific collabora-
tion (Newman (2001), Grossman (2002)), and inter-firm alliances (Hagedoorn
(2002), Kogut et al. (2007)).

Anecdotal evidence suggests that, in many of these contexts, links are far
from permanent and hence network volatility is an important force at work.
To provide, however, a precise and quantitative assessment of the phenomenon,
let us focus on the last two contexts listed above: scientific collaboration and
inter-firm alliances. Starting by the latter, one can interpret the concept of inter-
firm alliance quite widely as encompassing a number of different possibilities,
e.g. research partnerships, cooperative market agreements, joint ventures, etc..
There has been much empirical research in each of these respects, which is well
summarized, for example, by the aforementioned paper of Hagedoorn (2002) for
research partnerships or by Kogut et al. (2007) for joint ventures. (Both of these
papers cover a similar period starting around 1960, when inter-firm alliances of
different kinds started to be an important and fast-growing phenomenon in many
industries). But, to focus on the specific issue of link volatility in such inter-firm
networks, two further papers worth highlighting are Harrigan (1988) and Park
and Russo (1996). As we explain next, both provide empirical evidence that
can be used to suggest some quantitative proxy for it.

Specifically, Harrigan (1988) studies 895 alliances (including both those
equity-based and not) from 1924 to 1985 in a wide range of different economic
sectors (see Table 1 in her paper). She concludes that the average life-span of
the alliance is relatively short, 3.5 years, with a standard deviation of 5.8 years
and 85% lasting less than 10 years. On the other hand, Park and Russo (1996)
consider the narrower notion of (equity-based) joint venture, and focus on 204
such alliances among firms in the electronic industry for the period 1979-1988.
Accounting for both outright failures and other routes to termination, they ob-
tain (see Table 1 in their paper) a half-life of less than five years —i.e. less than
half of them remain active beyond that period. On the other hand, among those



joint ventures that last less than 10 years (2/3 of the total), the average lifetime
turns out to be 3.9 years.

Turning now to networks of scientific collaboration, these has been exten-
sively studied for disciplines such as physics, biomedical research, computer
science, or mathematics (see e.g. the aforementioned papers by Newman (2001)
and Grossman (2002)). Recently, the analysis has been extended by Goyal, van
der Leij, and Moraga-Gonzélez (2006) to the field of economics. Based on the
data set used in the latter paper, Marco van der Leij (private communication)
has provided us with the following approximate way of assessing “link volatility”
among economists who collaborated in writing papers during the period 1970-
2000. Let us first operationalize the duration of a link between two researchers
as the time elapsed between their last and first joint publication. Identify, on
the other hand, the length of the academic life of a researcher (which obviously
bounds the length of any collaboration) with the time elapsed between his/her
first and last published papers. Then, a natural proxy for overall volatility re-
sults from comparing the averages of those two variables: actual duration of
links and their maximum possible duration. Restricting consideration to econo-
mists with a relatively long academic career (at least 15 years), the average link
duration among the almost 6000 remaining economists turns out to be 3.5 years.
This is to be compared with an average maximum duration of 23 years, indeed
suggesting relatively high levels of volatility in the pattern of collaboration tak-
ing place among economists during that period.

Now we address the relationship of the present paper to the theoretical
network literature. First we briefly refer to the part of this literature that has
studied network formation alone, then to that part which has focused on the
study of games in networks, and finally we discuss some of the more recent
papers that have integrated both network formation and play.

The formal study of network formation problems in economics was initiated
by the seminal papers of Jackson and Wolinsky (1996) and Bala and Goyal
(2000). Since then, there has been a fast-growing literature that, to put it very
schematically, has been addressing the problem from a static (strategic) view-
point or/and a dynamic (learning) perspective.* Mostly developed outside of
economics, there is also a recent and influential literature on network formation
that adopts an essentially algorithmic viewpoint and emphasizes the complexity
and topological properties of the resulting networks. The so-called small-world
networks introduced by Watts and Strogatz (1999) or the scale-free networks
studied by Barabdsi and Albert (1999) inaugurated this line of research.’

A second branch of the network literature has been concerned with un-
derstanding how local interaction (as modelled by some underlying network)
affects play in games. Much of this research has focused on either Prisoner’s
Dilemma games (Eshel, Shaked and Samuelson (1998)) or coordination games
(Blume (1993), Ellison (1993), Young (1998)). While in the first case the issue

4See Jackson (2005) for an extensive survey.

SNewman (2003) and Vega-Redondo (2007) provide partial surveys of this literature. On
the other hand, for an interesting paper that combines ideas from the study of complex
networks with purposeful and local networking behavior, see Jackson and Rogers (2007).



is whether local interaction may facilitate cooperation, in the second setup the
question is how it affects equilibrium selection — specifically, the possible conflict
between efficiency and risk dominance.

Finally, we refer to some recent papers that integrate both network forma-
tion and behavioral adjustment into a common coevolutionary setup. When
local interaction is assumed to take place through a coordination game — e.g.
in the papers by Jackson and Watts (2002), Ely (2003), or Goyal and Vega-
Redondo (2005) — the setup considered bears close similarities to our present
framework. The main point of contrast lies in the role played by noise in each
case. The aforementioned papers follow the received evolutionary literature in
conceiving noise as “infinitesimal” — i.e. a small stochastic perturbation of the
core dynamics. Instead, in our setup, volatility is taken to operate at a pace
commensurable with other components of the process, and this affects the analy-
sis very significantly. For, as we have explained, it plays a key role in the strong
behavior/network interplay — e.g. the reciprocal feedback between the “success
to connect” and the “success to coordinate” — that characterizes the dynamics
of the model.

3 Theoretical framework

3.1 Description of the model

Let there be a certain population of agents, P = {1,2,..., N}, who inter-
act bilaterally over time as specified by the evolving social network. Time
is modelled continuously, with ¢ € [0,00). At any ¢, the state of the system
w(t) = (a(t), G(t)) consists of two items: a strategy profile and a network.

The profile a(t) = (i(t))iep € AP specifies the action a;(t) € A chosen by
each agent ¢ in her interaction with everyone of her neighbors in the network G(t)
. This interaction is carried out through a certain symmetric coordination game
for which the set A = {a1,az,...,aq} is the strategy space and the payoffs are
given by the function ¥(a;,a,,) specifying the payoff flow earned by a player
who chooses a; when the partner chooses a,,. More compactly, payoffs can
be represented by a (square) matrix W = (wlm)Z"L:1 in which each wy, =
¥(ay, am). The game is assumed to be one of coordination, so that wy > wyy
for all [ # m.

The second component of the state prevailing at any given time ¢ is the net-
work, which is described by a symmetric adjacency matrix G(t) = (gi;(t))i jer €
{0,1}¥*. An undirected link between i and j exists at ¢ if g;;(£) = gji(t) = 1,
while this link does not exist if ¢;;(¢) = g¢;:(t) = 0. (For simplicity, we make
9:i(t) = 0 for all 7.) Each player ¢ is taken to play the coordination game with
each of her neighbors j € N;(t) = {k € P : g;x(t) = 1}. Such accumulated in-
teraction yields her total gross payoffs. Her net payoffs, on the other hand, are
obtained by simply subtracting the cost of links from the gross payoffs.

Formally, given the network G(t) and action profile c(¢) prevailing at any ¢,



the total gross payoff m;(w(t)) is given by:

miw(t) = mi(@(®),G() = D dlai(t), a;(1)),

JEN(t)

i.e. the sum of all bilateral payoffs obtained by i when she chooses the same
action a,(t) against the actions a;(t) chosen by each of her neighbors. Denoting
by ¢ > 0 the cost flow of maintaining each link per unit of time, the net payoffs
7;(w(t)) are simply given by:

i(w(t)) = mi(w(t)) — c|Ni(D)]

where |N;(¢)| stands for the cardinality of the set A;(¢), i.e. the number of
neighbors of ¢ at .

Over time, agents adjust both their links and their behavior. Mathemati-
cally, the induced dynamics is described by a continuous time Markov process
with states w(t) € Q. It is completely determined, therefore, by the rates
p(w — w') governing all possible transitions w — «’. These transitions pertain
to adjustments that involve (a) link revision, (b) action revision, (c) volatility.
We now describe each of these in turn.

(a) Link revision: At a certain positive rate 7, each agent i receives a link
revision opportunity. When such an opportunity arrives at some ¢, another
agent j is randomly chosen in the population (all with the same probability).
The main idea we want to capture is that the link 7 is formed (when nonexisting)
or kept (when already existing) if, and only if, it induces a positive change in
the net flow of payoffs; or, equivalently, if the gross payoff entailed is larger than
the linking cost ¢. To make things simple, we shall posit, in particular, that the
gross payoff earned by each of the two agents ¢ and j exceeds the linking cost
if, and only if, both agents are coordinated in the same action, i.e.

min{t(ai(t), a; (1)), ¥(a;(t), ai(t))} > ¢ & ai(t) = a;(t).

This condition would be satisfied if, for example, the linking cost c is rel-
atively small and the game is of so-called pure coordination, i.e. both players
obtain a given positive payoff if they coordinate on the same strategy (or action)
while obtain a zero payoff otherwise. Or, more generally, it would apply (if ¢ is
small) to any coordination game where in case of miscoordination, at least one
agent obtains a non-positive payoff.

Thus, to sum up, when player ¢ receives an opportunity to revise her linking
status with some player j, we posit that the link between them will be formed
(i.e. created or kept) if, and only if, both agents are currently displaying the
same action. Conceptually, this formulation is based on the standard assump-
tion of evolutionary models that agents are guided by myopic considerations —
or, as sometimes indicated, that they have static expectations. Mathematically,
it implies that, for all pairs of states w = (e, G) and w’ = (&, G’), the rate of
change from the former to the latter is given by

plw— o) =5 (1)



if, for some particular pair ij, we have o; = o5 and g;; = 0 in state w, while in
state w’ we have g, = 1 if kl = ij and g},; = gr otherwise.

(b) Action revision: At a certain positive rate v, each agent ¢ receives an action
revision opportunity. When such an opportunity arrives at some ¢, we assume
that she simply best-responds to the current situation. That is, agent ¢ chooses
an action a} € A such that®

wi((a7, (b)), G() = Til(ai, (@ (t)) i), G(1))

for all a; € A. Let B((«;(t));i), G(t)) denote the set of actions that satisfy the
above inequality. If this set is not a singleton, we shall just assume, for simplicity,
that all the actions in that set are chosen with equal probability. Again, such a
best-response adjustment rule is typical in evolutionary game theory, and can
be motivated by the assumption that agents hold static expectations and/or
behave myopically.

Mathematically, it implies that, for all pairs of states w = (e, G) and w' =
(e, G’), the rate of change from the former to the latter is given by

1B((ctj)j), G|’

if G = G’ and there is some particular agent ¢ such that 7;((as, () i), G) >
7i((ai, (@) j2i), G) and of; = a; for all j # i. It is worth noting the implications
of our formulation for the following two particular cases. First, if a state w has
all agents being perfectly coordinated on the same action as all their respective
neighbors, then no action adjustment can take place. Thus, in this case, any
change must concern the network alone. Second, if in state w a particular agent
i is isolated (i.e. has no links), then a transition to another w’ where this agent
displays some different action occurs at the rate v(1 — 1/q).

(2)

plo = ') =

(c) Volatility: Existing links decay at a rate A, which for simplicity is taken to
be constant and exogenous. This component of the process is to be conceived as
capturing unmodelled environmental change that destroys the value or feasibility
of existing links. It is different from the endogenous process of link removal
explained in (a) above. It is akin to the exogenous noise (sometimes called
mutation) that is often considered by evolutionary game theory. But in contrast
with most of the received evolutionary literature, a key difference is that such
noise is taken to be of a significant magnitude and interacts with the rest of
the components of the process in a comparable time scale. The importance of
allowing for such significant noise in modelling modern economic systems was
already stressed and motivated in Sections 1 and 2.

Mathematically, such a formalization of volatility implies that, for all pairs
of states w = (o, G) and W' = (e, G’), the rate of change from the former to
the latter is given by

plw—w') = A, (3)

6Note that, since only an action change is considered at this juncture, whether the agent
uses gross or net payoffs to evaluate its performance is inessential.



if, for some particular pair ij, we have g;; = 1 in state w, while in state w’ we
have g;; = 0 if kl = ij and g¢}; = gx; otherwise.

The three kind of transitions whose rates are given by (1), (2), and (3)
exhaust all possibilities. Every other conceivable transition, in other words,
occurs at a zero rate given the rules that govern the three different components
of the process: link revision, action revision, and volatility.

The speeds (or rates) at which these subprocesses operate is modulated by
the three parameters of the model: 7, A, and v, respectively. The rate v that
governs action revision will be found to play a very subsidiary role in the analysis
— e.g. it does not enter the characterization of the invariant distribution of the
process, which is independent of v. Concerning the other two parameters, on
the other hand, it is clear that only the ratio n/A matters. This allows us to
normalize A = 1 (by, say, a suitable choice of time units) and thus focus on 7 as
the single key parameter of the model. With this normalization, if n (= n/A) is
small, the process is to be conceived as dominated by volatility (i.e. a relatively
high A). In this case, therefore, the typical time between the arrivals of link-
creation opportunities is long compared to the lifetime of links. Conversely,
high values of ) correspond to a context with low volatility, so the links that are
created endure long enough to have a significant effect on the ensuing evolution
of the process.

3.2 Analysis of the model: two time scales

Our analysis of the model will focus on the asymptotic behavior of the induced
dynamics for large populations, i.e. we shall study the model in the limit ¢t — oo
and N — oo. As we already advanced in Section 1, the order in which these
limits is taken has a particular significance for the dynamics of the model, for
it produces a sharp distinction between two different regimes that we call the
“long run” and the “ultralong run.”” Before analyzing these two cases in the
next sections, it is worth elaborating further on the differences between them
and how the contrast arises.

The ultralong run represents the time scale where, given any arbitrarily large
but finite population, one is ready to let the dynamics proceed for arbitrarily
long times. Formally, it corresponds to the limit operation being taken first in
time and then (since the population is assumed large) in population size. Be-
cause of the ergodicity of the process (cf. Proposition 1 below), the model deliv-
ers in this case the unique (probabilistic and frequentist)® prediction embodied
by the invariant distribution. We shall find that, for large populations, the in-
variant distribution concentrates its mass around the configurations where the

7 As mentioned, an analogous dichotomy has been proposed by Binmore, Samuelson, and
Vaughan (1995) in their analysis of evolutionary models.

8The so-called Ergodic Theorem asserts that if ;1 denotes the invariant distribution of the
process {w(t)} then, for every state @, limi— oo Pr(w(t) = &) = u(d). On the other hand, a
frequentist consequence of this theorem is that if d4 () stands for the indicator function which
is 1 if w(t) = @ and 0 otherwise, then lims o %fot(i;, (s) ds = pu(&) almost surely.



invariant distribution achieves a global maximum. Such configurations, there-
fore, can be regarded as the ultralong-run prediction of the model.

In contrast, in order to identify the shorter time scale we call the long run
the aforementioned limit operations must be taken in the reverse order. That
is, for any arbitrarily large but finite time horizon, the population is assumed
to be so large (virtually infinite) that the finite-population noise that is crucial
for the convergence to the ergodic distribution of the original process is ruled
out by construction. Mathematically, it turns out that such a long-run time
scale can be suitably studied through the so-called mean-field dynamics, i.e. a
deterministic dynamical system where the original stochastic process is replaced
by the expected law of motion of the relevant aggregate variables. Over this
time-scale, therefore, the outcome selected by the dynamics depends on the
initial conditions of the process, in contrast with the ultralong run prediction
which is independent of initial conditions.

Mathematically, we shall find out that the different (robust) predictions of
the mean-field dynamics (i.e. its asymptotically rest points) happen to coincide
with the local maxima of the invariant distribution of the (finite-population)
stochastic process. This, in turn, leads to a sharp integration of the long and
ultralong run analyses in a common setup. For, in brief, the different time scales
of the process then simply arise from the dichotomy between local and global
maxima of the unique invariant distribution of the original stochastic process.

And conceptually, the contrast between the two time scales underscores the
point that, even asymptotically, there are different horizons in which the pre-
dictions of the model can be assessed. If the population is very large, the long
run is the most appropriate and thus initial conditions may matter crucially.
Instead, if enough noise persists in the system because the population is not
too large, the analysis should focus on the ultralong run and largely ignore the
influence of initial conditions. In the latter case, no significant effect can be
expected from a parameter change if it is not permanent. Instead, in the former
case, an even temporary change in a parameter (possibly due, say, to a brief
policy intervention) can have persistent effects by “freeing” the system from the
weight of a bad history. An elaboration on this idea will be undertaken at the
end of Section 5, once the formal analysis of the model has been completed.

4 The ultralong run

The first point to note is that the Markov process {w(t)} with law of motion
given by (a)-(c) is ergodic. This is the content of the following result, which
also indicates that any state with links connecting agents choosing different
actions is transient and thus is assigned a vanishing asymptotic probability by
the invariant distribution.

Proposition 1 Let Q = {w = (a,G) € Q:Vi,j € P, [ = 1 = o = oy}
be the set of all states where links exist only between agents exhibiting the same

action. The process {w(t)} has a unique invariant distribution p with p(2) = 1.

10



Proof: See the Appendix.

The above result is a simple consequence of the fact that all links decay at
a constant rate. Thus, the empty network can be reached from any state, and
from an empty network only states in € can be reached through subsequent
link adjustment. This in turn implies that, independently of initial conditions,
a single recurrent class in Q) must eventually absorb all paths of the stochastic
process with probability one. Thus, as anticipated above, all configurations
where an agent is in a situation different from those two explicitly covered in our
specification of action revision dynamics are transient. That is, asymptotically,
each agent will either be isolated or linked to agents all adopting his/her same
action.

Next, in Subsection 4.1, we characterize the invariant distribution for finite
population size N and then in Subsection 4.2 obtain some induced measures on
interesting aggregates. Finally, in Subsection 4.3, we study the situation when
the population size N grows large.

4.1 The invariant distribution

To characterize the invariant distribution established by Proposition 1, it is
enough to identify one probability distribution on €2 that verifies the stationarity
conditions embodying invariance. For, by ergodicity, there can be only one such
probability distribution. So let p(w — w') denote the rate at which a transition
from states w to w’ occurs at any point in time. Then it is clear that any
probability distribution p that satisfies the following so-called “detailed balance
condition” (see Gardiner (2004)):

pw)plw = w) = pw)plw —w')  (Yw,w' €Q)

is stationary (or invariant) under the contemplated process. Building upon this
condition, we can then show that the (unique) probability distribution that
remains invariant is that specified in the following result.

Proposition 2 The invariant probability measure p is given by

9ij . N
p(w) = { g’gzo Hi,jeP,i<j (%‘1) ifw=(a,G) € (4)

otherwise

-1
where f1,_q = [Zweﬁ [Lic; 2n/(N - 1))9”} is a normalizing constant (inter-

pretable as the aggregate probability of all states associated to an empty network).

Proof: See the Appendix.

11



4.2 Class size and degree distributions

Having characterized through the invariant distribution g the limit behavior
of the process, we are now interested in “extracting” from it some of the key
properties it imposes on the corresponding social structure. We shall start by
deriving the distribution induced over the number of agents displaying each of
the ¢ possible actions. This distribution — which we call the class size distribu-
tion — gives us a measure of the extent to which the population settles or not in
some dominant behavior (or social norm). As we shall explain, it also induces
uniquely key properties of the prevailing social network.

Denote by N = (Ny, ..., Ng) a generic population profile specifying the num-
ber N, of agents displaying each action a,, with >>?_, N, = N. Correspond-
ingly, let Q(N)={w = (a,G) € Q: |[{ieN:a;=a,}| = Ny 7 = 1,...,¢}
represent the set of states where there are exactly N, agents displaying each
action a,. Then, the class size distribution ( is defined by

¢(N) = u(QN)).

That is, for each profile N, the value ((IN) is simply obtained by adding the
probability associated to all possible states that are consistent with such a vector
N. By relying on the factorized form of p in (4), we arrive at the specific
expression for ¢ that is stated in the following result.

Proposition 3 For each N = (N1, ..., N,), >.I_, N, = N, the probability ((N)
induced by the invariant distribution p is given by

277 %Nr(Nr_l)
(1+525) )

where p,_q is the normalization constant in (4).

N L
C(N) = N’g:O szl N.,' 71;[1

Proof: See the Appendix.

Likewise, as a corollary to the previous results, it is possible to rely on the
form of the invariant distribution (4) to derive exhaustive information on the
statistics of the social network.

Corollary 4 Let P = (Py,..., P,) be any given partition of agents in action
classes, with P, ={i € N : o; = a,}, r =1,...,q.

(i) For any non-transient state w = (o, G) consistent with P, the social net-
work G is composed of q disjoint subnetworks G, for each sub-population
P.,r=1,...,q.

(ii) For each r = 1,...,q, the probabilistic ensemble of subnetworks G, con-
sistent with P that are induced by the invariant distribution (4) defines

12



an Erdés-Rényi random network ensemble’ G(N,, p,) with N, = |P.| and
pr=2n/(N — 1+ 2n).

The proof, detailed in the Appendix, relies on Proposition 1 (which implies
that no link between agents displaying different behavior is possible in the ul-
tralong run) and on the factorized form of the invariant distribution established
by Proposition 2 (which implies statistical independence among different links
involving agents 4, j € P, in the same partition).

The previous results represent a key starting point of our analysis. For it
turns out that the induced measure ¢ over class sizes that is characterized in
Proposition 3 underlies most of the asymptotic properties of interest of our
process. For example, by relying on Corollary 4, it determines the properties
of the underlying social network, such as the degree distribution. To see this,
recall that the degree of an agent ¢ is defined as the number k; = |{j : g;; = 1}|
of agents she is connected to, and the degree distribution simply specifies the
probabilities that any given agent is connected to some k other agents, with
k =0,1,2,..,N — 1. Then, given any profile of class sizes, N = (Ny,..., N,),
Part (ii) of the above Corollary indicates that the conditional probabilities for
each degree k in each action class r = 1,2,...,q takes the following binomial
form:

) ) v o & 2 Np.—1—k
Pru{kz—k:|az—ar}—< E )<N1+277) (1_N1+277)
(6

This implies, therefore, that the conditional probability distributions over de-
grees prevailing within every action class indeed depend solely on the distribu-
tion ¢ over class-size profiles N.

4.3 Large populations

In this subsection, the focus is on the regularities displayed by the ultralong run
behavior of the process when the population is very large, i.e. in the limit N —
00. As explained above, we want to focus on the induced size distribution of the
different action classes, since this determines the underlying social structure.
Here, however, rather than considering for each action a, the total number N,
of agents who display it (which would grow to infinity), we turn our attention to
their frequency n, = N,./N € [0,1]. Thus, as a counterpart of Proposition 3, our
primary objective will be to characterize the main properties of the invariant
distribution over profiles n = (n1,...,nq).

Before turning to the formal analysis of the problem, it may be useful to
anticipate informally its essential features. The key conclusions are established
by Proposition 6, which characterizes the local mazima of the invariant distrib-
ution for large N. To understand why such a characterization is important, we

9We recall that the Erdos-Rényi random-network ensemble G(N, p) assigns to each network
g of N nodes a probability equal to pK(g)(l — p)N*K(g)7 where K(g) is the total number of
links on g.
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must refer to Lemma 5. This auxiliary result indicates that, for large N, the
invariant distribution associates essentially all the probability mass to its global
maxima. This suggests that, in order to assess what configuration dominates in
the ultralong run, it is enough to compare the value of the invariant distribution
1 at its different local maxima.

More specifically, Proposition 6 shows that when 7, the rate of link creation,
is very low or very high the situation is clear-cut: In these cases, p displays
unique global maxima representing configurations where, respectively, either all
actions are equally represented (and the network connectivity is low) or there
is one action that becomes dominant (and overall connectivity is high). In an
intermediate range of values of 7, however, those two type of configurations
correspond to distinct local maxima, so a comparison between them is in order.
In this respect, we shall see that there is a certain threshold n* such that when
n < n* the global maximum is achieved in configurations of the first kind, while
if n > n* those of the second type obtain. This, therefore, implies a sharp
transition between the two regimes, as 1 crosses the threshold.

As the preceding discussion explains, our first step in the analysis involves
showing that, for large NV, the maxima of the invariant distribution absorb most
of the probability mass. This follows directly from the fact that the distribution
(5) is arbitrarily well approximated by an expression of the form

C(N) o e N (7)

for some function f : A" — R of n = (n1,na,...,n,), where we recall that
n, = N,./N is the fraction of agents adopting action a, and A1 is the (¢ — 1)-
dimensional simplex. The crucial implication of the above expression is that it
allows a sharp decoupling of the effect of population size N and that channeled
through class frequencies n. This is indeed what allows us to conduct an effective
analysis of the limit scenario where N is taken to grow arbitrarily large. The
following result states the indicated conclusion more precisely, and also provides
a specific form for the function f.

Lemma 5 Given any n, and any sequence of N such that N/N — n as N —
00, the limit invariant probability measure satisfies

- Jim < logC(N) = f(n)

q
Jo+ Z [nr logn, — 77”3] (8)

r=1

for some constant foy.

Proof: The proof — an iterated application of Stirling’s formula — can be found
in the Appendix.

Lemma 5 implies that, for large N, the configurations around which the
invariant distribution concentrates its mass must be minima of the function
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f. Motivated by this observation, we now address the following minimization
problem:

min f(n1, nz, .., ng) (9)
q
st Y mp=1. (10)
r=1

As a first step in finding the solution to such a constrained optimization problem,
let us focus on the following necessary First-Order Conditions (FOC):

n, e~ 2mmr — 65—1 (7« =1, _,.7q) (11)

where 5 is a Lagrange multiplier enforcing the normalization constraint (10). In
combination with suitable second-order conditions (see below), those conditions
characterize all local minima of f — which, of course, may fail to be global
minima. Local minima, however, are of interest for two reasons. First, of
course, they are the sole candidates to minimize f globally. Second, as outlined
in Subsection 3.2, they will be seen to be of interest in themselves, since they turn
out to be the relevant predictions in a time scale shorter than that associated
to ergodicity.

The properties of the function h(z) = ze appearing in (11) readily imply
a stark conclusion: there are only two possible values for each n, — which we
shall denote by ny and n_ (ny > ﬁ > n_) — that can be part of a solution
to the above optimization problem. (This follows from the fact that h(z) has a
unique local maximum at # = 5-, and lim, ., h(x) = h(0) = 0.) Consequently,
the set of actions can be divided into two categories alone. On the one hand,
there are the relatively dominant ones, whose common frequency is n,.. And on
the other hand, we have the actions that are in relative minority, whose common
frequency is n_. It becomes possible, therefore, to classify every solution of the
first order conditions (11) by the number L. of components with n, = n_, the

—2nx

number of components with frequency n_ being L_ = ¢ — L.
Furthermore, (11) implies that n,e=2"+ = n_e~2""-, This, in combina-
tion with the normalization condition Lyn, + (¢ — Ly)n_ = 1, allows one to

determine suitable values of ny (and n_) for all L} and n. With a little algebra,
we find that n is implicitly defined by the solution(s) of the following equation:

qn —17—1

ne = Ly +(g— Ly)e 7= (12)

whereas n_ = (1 — Lyny)/(¢ — Ly) is again given by normalization.
Summarizing, the set of possible solutions of the FOC can be parametrized
by the number L, of dominant components with n, = n, where n. is a solution
of (12). Local minima are the solutions in this set that also satisfy the relevant
second-order conditions of the minimization problem. Then, by evaluating the
function f at those local minima, one can further select those that are global
minima. The following proposition provides a detailed analysis of the situation,
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including a full characterization of the local and global minima associated to
the different values of ¢ and 7.

Proposition 6 Given g > 2 (the number of actions), there exist two thresholds,
n <10, for the link-formation rate n such that the structure of local and global
minima of f can be characterized as follows:

(i) The uniform configuration n = (1/q,...,1/q) is a local minimum (thus
Ly =0)if, and only if, n < 7.

(i) For each action a, (r=1,...,q) there exist a unique local minimum with
action a, being the single dominant action if and only if n > 0. The
corresponding configuration n = (nq,ng, ...,ng) has

P Vr! £
where ny is the (single) solution of (12) with Ly = 1 for which ny in-
creases with 1.

(iii) No other configurations are local minima — in particular, none exists with
more than one dominant action (i.e. with Ly > 2).

(iv) There is a value n* given by

«_q—1 e w
n =q7210g(q—1), n<n" < (13)

such that for n < n* the uniform local minimum specified in (i) is the
unique global minimum, while for n > n* the local minima with one dom-
inant action specified in (i) are the sole global minima.

(v) For q=2, 7 =n" =0 =1 whereas ) < n* < i =q/2 forq> 2.
Proof: See the Appendix.

The combination of Parts (i)-(iii) of Proposition 6 establishes the existence
of three different ranges for the parameter n in which qualitatively different
situations are possible.

1. First, in the high (relative)!? volatility region n € (0,%), the function f
attains its unique local minimum at the symmetric configuration where
all ¢ actions display the same frequency. This configuration thus defines
the global maximum of the invariant distribution and thus represents the
unique prediction of the model in the infinite-time limit.

10Note that, since the volatility rate A has been normalized to one, the value 1/ can be
regarded as the relative volatility rate.
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2. A polar situation arises for low volatility, i.e. n € (7, 00). In this case, the
local minima of f are given by all of the g configurations where one of
the actions becomes dominant. Each of these configurations also defines a
global maximum of the invariant distribution of the process, and thus all
of them represent alternative ultralong-run outcomes, although with fully
equivalent implications.'!

3. Finally, a significantly different state of affairs obtains for the intermediate
parameter range where n € (7,7). In this case, configurations of the two
polar kinds described above are a priori possible, since both of them
embody local minima of the function f.

Figure 1 illustrates the above set of conclusions by depicting the minima of
f as a function of n, for Ly = 0 and L = 1. These two types of configuration
reflect a different way of striking the balance between link creation and link
destruction for a given action class, depending on its size. When the class
size is relatively small/large, the rate at which link creation absorbs formerly
isolate nodes (and fixes their action) is similarly small/large. But this inflow is
matched by a correspondingly small/large rate at which nodes become isolates
and then may change actions. These heuristic considerations indeed suggest that
configurations such as those above where class size is either uniform (L4 = 0)
or there is a dichotomy between large and small classes (L, = 1) may be stable
— even both of them simultaneously — for suitable values of the parameters.

Figure 1 also illustrates the second-order requirements that allow us to dis-
tinguish the minima of f (whose corresponding value is depicted by solid lines)
from its saddle points (given by dashed lines, which are also shown for Ly = 2).
An intuitive understanding of why solutions with L, > 1 are not (local) min-
ima of f can be gained with the following argument. Imagine a situation with
s = Ly > 1 actions being dominant (e.g. n, = ny for r < s). Now suppose
that, by a random fluctuation, one of the dominant classes, say the one for
a1, acquires slightly more population mass then the others (n; > ny). Then
this class will recruit slightly more members from the pool of isolated agents,
in comparison with other components with dominant actions. (Just recall that
the probability for successful link formation by way of random matching for an
agent choosing action a, is proportional to the current density n,.) For the
same reason, the density of links in class 1 will be slightly higher, making it
less likely that agents in this component become isolated. The combined effect
is then that the initial fluctuation will grow larger as time proceeds, eventually
leading to a configuration with Ly = 1, i.e. a configuration where class 1 is
uniquely dominant.

1Since these g alternative configurations are all isomorphic (only the identity of the dom-
inant action is changed), we can naturally think of them as essentially capturing a unique
prediction. Indeed, in principle, one can conceive of a time scale even beyond the ultralong
run in which no single action stands out from the rest, and the system undergoes transitions
across those isomorphic configurations. Such inordinately large time-scales are beyond our
present interest.
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Figure 1: Solid lines trace the value of f at its local minima (cases Ly = 0,1),
as a function of 7, for ¢ = 10. The intersection of these curves identify the
point n* given by (13) which separates the regions with two different kind of
ultralong-run predictions. Dashed curves correspond to saddle points for the
cases with L, =0,1,2.
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Let us now turn to Parts (iv)-(v) of Proposition 6, which concern the charac-
terization of the global minima of the function f. Outside of the interval [#, 7],
the issue is simply settled by the characterization of the local minima, since
these are unique (up to action relabelling). Instead, within that interval, one
needs to evaluate the value of f for each local minima, which gives rise to the
finding described in part (iv) of the result. It states that there is a threshold
value n* such that for n < n*, the invariant distribution is dominated by the
symmetric configuration, whereas for n > n* the asymmetric outcome (with
L, = 1) prevails. Since, as we have explained, such global minima define the
ultralong-run prediction of the model, we conclude that whether the symmetric
or asymmetric configurations are selected in the ultralong run solely depends on
whether 7 lies below or above the threshold n* given in (13). In fact, as one can
check by direct substitution of 7 = n* in (12), the fractional size of the dominant
class in the asymmetric solution (L4 = 1) takes the value ny =1 — 1/q. This
implies that as n comes to exceeding n* the population frequencies experience
a sharp upward discontinuity.

At this point, it is worth emphasizing that the solutions with Ly = 0 and
L; = 1 not only differ in the (a)symmetry of their action frequencies but, as
importantly, in the characteristics of the corresponding networks. The solution
with Ly = 0 induces a sparsely connected network, which is in turn fragmented
into many components of insignificant size. Instead, the solution with L, =1
yields a much more connected network, where a giant component exists that
encompasses a significant (i.e. nonvanishing) fraction of all nodes. These con-
clusions follow from a combination of the following observations:

(i) within each class r, the corresponding subnetwork is an Erdos-Rényi random

graph (recall (6)) whose binomial degree distribution converges, for large N, to
k

a Poisson distribution given by Pr{k; = ko, = a,} = %e_zmr and average

degree 2nn,.;

(i) the values for n_ and n4 satisfy 2npn_ <1 < 2nny;

(#17) a giant component exists almost surely in Erdos-Rényi random graphs if,
and only if — cf. Erdss and Rényi (1960) or Newman et al. (2001) — the average
degree is larger than one, i.e. 2nn, > 1.

The above considerations entail that the sharp discontinuity exhibited by
the utralong-run profile n at n* is mirrored by a substantial change in the
connectivity of the social network. That is, for n < n* the underlying social
network displays relatively low connectivity and is highly fragmented, while
for n > n* the social network enjoys a significantly higher connectivity and
includes a giant component. This in turn shows that, in our model, the ability
to coordinate and the ability to connect are two sides of the same coin.

To gain a stark manifestation of the former point, Figure 2 depicts the
behavior of the average network degree z prevailing in the ultralong run, i.e.
the corresponding expected number of neighbors of a given agent. This is the
population average of the average degrees z, = 2nn, for the different action
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classes, as given by

z= Zmz,« =2n[Lyn% + (g— Ly)n2]. (14)

We observe that z displays a sharp upward discontinuity when 7 turns higher
than n* and the system then shifts from a symmetric to an asymmetric configu-
ration. Below n*, the size distribution is uniform across classes and the common
average degree is relatively low: z = 2n/q < 1, since n < /(= ¢/2). Instead,
when 1 > n*, the induced average degree z experiences an upward shift that
builds upon the rise of an action class r that becomes relatively large. Its larger
size n4 can then support an average degree z, = 2nn4 > 1, which in turn spans
a giant component, as explained above. Finally, a further understanding of the
situation is provided by Figure 3, which describes how the threshold n* varies
with g, this value being bracketed by the two thresholds — 7 and 7 (also func-
tions of q) — that define the boundaries of the parameter region where multiple
solutions coexist.

[Insert Figures 2 and 3 about here]

Despite the sharp prediction afforded by the model in the infinite-time limit
(i.e. the ultralong run), Proposition 6 indicates that, within the range n € (1,7),
the global minima of the function f coexist with another local minima that,
locally, should also tend to strongly “attract” the configurations in its vicinity
when N is very large. Heuristically, as the population grows, the expected time
T needed for the system to escape a neighborhood of a local minimum of f, say
ny, ., must grow exponentially in V. For, in essence, the most likely transitions
away from nj  must go through a certain saddle point ng,qqie and thus!?

e_N[f(nIOC)]

N[f(nsaqare)—f(moe)] — =%~ 7"
Toe o l B e_N[f(nsaddle)]

(15)
i.e. T is of the same order as the ratio of probabilities assigned to ng,qqie and ny,¢
by the invariant distribution. Therefore, even though the process will ultimately
converge to a global minimum of f in the ultralong run, it may remain confined
close to a local minimum for an arbitrarily long time for large N. So, within
this time horizon, which we refer to as the long run, initial conditions may well
matter.

As it turns out, the intuitive description of the situation just outlined is
essentially correct and can be made precise in a number of different ways. In
the next section, we choose to do so through the route afforded by the so-called
mean-field analysis of the stochastic process.

120Qur informal reasoning here is based on the fact that the induced process on the variable
n generates almost continuous paths, for large populations. For a formal discussion of these
matters, see Section 5 below.
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Figure 2: The average degree z prevailing in the ultralong run, as an increasing
function of the rate 7, for ¢ = 10. The point of discontinuity arises at the value
n = n* specified in (13).
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Figure 3: The value of n* as a function of ¢ (given by the dashed curve), which
lies between the corresponding values of 7 (lower solid curve) and 7) = ¢/2 (upper
solid curve) specified in Proposition 6.
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5 The long run: a mean-field approach

As explained, we want to identify the long run behavior of the process as that
which obtains (with high probability) for large but finite times. Formally, such
long-run behavior may be accessed by taking first the limit of infinite population
size (N — o0) and then focusing on the large-time behavior (¢t — o). This al-
lows one to trace the dynamics of population frequencies through a deterministic
continuum-time dynamics: the Mean-Field Dynamics (MFD). In mathematical
terms, the MFD is simply given by a system of ordinary differential equations
that reflects expected motion. And, in essence, the assumption that justifies this
approach (conceived as an approximation) is the assumption that the popula-
tion is so large that, within any finite time horizon T under consideration, any
finite-system randomness can be largely ignored.

5.1 Mean-field dynamics

The mean-field dynamics is defined on an augmented description of the popula-
tion frequencies considered in Section 4, under the maintained assumption that
the process has already abandoned transient states. Thus, relying for simplicity
on analogous notation, the states of the system consist of the current vector
of population frequencies n = [(n,x);2o]?_, specifying the frequency n,.; of
agents in the population that choose each possible action 7 and have every pos-
sible degree k. The set of all such vectors — also called population states here —
will be denoted by ®. Then, the mean-field dynamics (MFD) is defined as the
continuous-time ODE on ® whose induced paths satisfy, for each r and k, the

equation
E[An, x| n(t) = n]

= F, ;(n) (16)

where E[An, ;| n(t) = n] represents the conditional expected change in each
Ny, during the infinitesimal time interval (¢,t+ At). The form of this dynamics
is provided by the following result.

Proposition 7 The vector field F(n) = [Fyx(n)],x of the mean-field dynamics
is, up to order O(1/N), given by:

Fror(n) = 2nnenep—1 —2nene g + (K + Dnp g1 — kne (B> 0) (17)
q
From) = =2qmmeo+ne1+0 Y [neo =1l (18)
s=1
where

n, = Zn,,k. (19)
k

Proof: See the Appendix.

It may be useful, at this point, to provide a concise overview of the derivation
of each F ) carried out in detail in the Appendix. First, consider expression
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(17), which applies to all positive degrees k. In it, the terms proportional to
71 reflect the effect of the link creation subprocess on the population density,
whereas all the other terms (“proportional” to A = 1) embody the link decay
subprocess. Either subprocess can increase or decrease each n,.j, which is why
each of them is responsible for two terms with opposite sign. In contrast, nodes
with degree & = 0 (i.e. isolates) must be dealt with separately in expression (18)
both because some of the terms considered before do not apply in this case (i.e.
there are no nodes with degree k = —1), and also because there is an additional
exchange subprocess that governs the bidirectional flows across different action
classes r < s. This subprocess occurs at the rate v at which an (isolated) node
receives an action revision opportunity.

It is intuitive that the MFD should represent a good (probabilistic) approx-
imation of the behavior of the stochastic process for large V. Indeed, this can
be rigorously confirmed by an adaptation of existing results from the modern
literature on so-called stochastic approximation theory — see, specifically, the
work by Benaim and Weibull (2003a), which focuses on stochastic evolutionary
dynamics.!> The essential feature shared by our framework and theirs is that,
whenever an adjustment event takes place, it can only involve (with full proba-
bility) a bounded change in the characteristics of a finite number of nodes. This
allows one to reproduce all the basic steps in their analysis,'* and claim that
the MFD (16) approximates the original stochastic process in the following two
ways:

1. Let {x(t) € ®};>0 be the stochastic process induced by the model on
the set of population states. Let {n(¢,x¢)}+>0 be a solution of the ODE
(16) with initial conditions n(0,xy) = xq. Then, for any time horizon T,
and any given ,0 > 0, there exists some lower bound N on population
size such that if N > N, then Pr[maxo<;<7 |[x(t) — n(t,x(0))|| > ¢] < 4,
where ||-|| stands for the sup norm.

13Refer, in particular, to Section 6 of Benaim and Weibull (2003a), in which they study
stochastic processes where, as in the present case, the arrival of adjustment opportunities is
governed by independent Poisson clocks. It must be mentioned, however, that the framework
originally studied by Benaim and Weibull presumed that the approximating vector field (i.e.
the corresponding transition probabilities) can be defined independently of population size.
But in many applications (the present one being an example), this is not the case. This issue
has been addressed in a later paper by these same authors (Benaim and Weibull (20035)),
where they generalize their previous analysis in this direction.

M There are, however, two differences. The first is a minor and inconsequential adaptation
in the precise statement of their Lemma 2. In our case, the value of I" becomes I" = (2+ || F||),
which simply reflects that a link adjustment can affect four (rather than just two) dimensions
of the state. A second difference concerns the fact that Benaim and Weibull (2003a,b) presume
that the vector field is finite-dimensional. In our case, this would require bounding the support
of the degree distribution by some k, arbitrarily large but finite. This could be done, for
example, by considering a variant of the model where no agent can support more than k
links, so that if a linking opportunity arrives to an agent with that many links it cannot be
materialized. In practice, however, it is easy to see that our model (in particular, as it pertains
the stationarity and stability of its equilibria) would be continuous in such a parameter k at
infinity. For simplicity, therefore, we choose to maintain our assumption throughout that
k = oo, thus dispensing with a parameter of minor interest.
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2. Let n* be an asymptotically stable state of the ODE (16). There ex-
ists some U, an open (Borel) subset of ® that includes n*, such that for
any time horizon T, and any given ¢ > 0, there is some lower bound N
on population size such that, if N > N, the random variable T(U) =
inf{t > 0:x(0) € U, x(t) ¢ U} giving the first exit time from U satisfies
Prir(U)>T]>1—e.

The preceding statements specify two related forms in which it can be for-
mally argued that the mean-field dynamics is a good approximation of the sto-
chastic process in the long run. Verbally, the first one asserts that the population
path induced by the stochastic process and that resulting from the Mean-Field
Dynamics (MFD) are arbitrarily close, for an arbitrarily long period of time and
with an arbitrarily high probability, provided the population is large enough.
The second statement, on the other hand, focuses on asymptotically stable states
of the MFD and claims that any one of them is a robust long-run prediction in
the following sense: whenever the process starts close to it, the ensuing path is
very likely to remain also close for a very long period of time if the population
is large. Both conclusions, 1 and 2, allow us to view the MFD as a suitable
description of the process in the limit N — oo. This in turn is a reflection of the
fact that, when the population is sufficiently large, the “ergodicity-inducing”
noise displayed by the finite-population process can be largely ignored for large
but finite times (i.e. in the long run) .

In view of the preceding discussion, our objective here will be to characterize
the dynamic paths of (16). A first preliminary observation pertaining to its
stationary points is contained in the following result.

Proposition 8 Density profiles of the form

k
2nn,
Nyl = n'r‘( T’IZ”) 6_27]7“7 (20)
where n = (n,...,nq) are solutions of the first order conditions for the mini-

mization of f(n) in (8), are stationary points of the MFD, i.e. F,(n) =0 for
allr=1,...,q and k > 0.

The proof proceeds by straightforward substitution, using (11). This propo-
sition implies that the ultralong run configuration derived in the previous section
is a stationary point of the dynamics. It does not, however, specify whether the
dynamical paths converge to it or not. Indeed, in principle, any extreme or sad-
dle point of the function f is a possible candidate for the asymptotic behavior
of the MFD.

We will now turn to the issue of characterizing the dynamical paths of the
MEFED. To simplify matters, we choose to focus on the case where the drift among
different actions undertaken by isolated agents proceeds at a much slower pace
than the change of the network, so that both dynamics can be effectively de-
coupled. At a heuristic level, this can be motivated by the observation that
such action changes are essentially payoff-irrelevant in the short run and thus
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(myopic) agents have a weak incentive to implement them. Formally, it will be
captured by making v \ 0 — that is, by assuming v is infinitesimally small but
positive. As we shall explain below, numerical simulations show that this sim-
plifying assumption does not affect the predictions of the model in any essential
way.

Mathematically, the analysis of such a limit scenario may be carried out by
introducing a slow time variable

T=ut (21)

that tracks the evolution of the class sizes n,.. Then, by taking the limit v — 0,
we formalize the idea that the dynamics of link adjustment within each class
r operates infinitely faster than the dynamics of its corresponding size. To see
this, note (by directly taking the sum of (16) over & > 0) that the evolution of
each aggregate frequency n,. is given by

dn, d
dt =V Z [ns,O - nr,O] ) (22)
s=1

which is proportional to v and thus becomes very slow as v — 0. In other words,
the class size n,(t) = 7i.(7) is in effect a function of the slow time variable. In
contrast, the dynamics of each constituent n,  in (17)-(18) has terms which do
not vanish as v — 0. We also note that if one neglects terms proportional to
v in (17)-(18), populations evolve in an independent fashion within each action
classr=1,...,q.

The previous discussion indicates that, when v is infinitesimally small, the
(fast) network dynamics for given class sizes and the (slow) dynamics of class
sizes can be studied separately. This is what we respectively do in the next two
subsections.

5.2 The network dynamics

In this section, we posit that class sizes evolve slowly as specified by some given
functions n,(t), and then find a solution of the ODE (16) under the following
conditions:

nept=0) = 0l VE>0 (23)
D nek(t) = ngt). (24)
k>0

To carry out the analysis, it is convenient to describe the degree distribution
prevailing within each class r through its Poisson representation given by

e’} k
nT,k(t):/ dx%e*fﬂ(x,t), VE>0, (r=1,...,9) (25)
0 .

26



where f, is a generalized function'® defined over the positive reals, for all ¢ > 0.
The transformation from f,(x,t) to n, (t) leading to this representation is in-
vertible.' What makes it particularly useful is that a system of infinitely many
coupled ODE’s can then be turned into a single partial differential equation, as
indicated in the following result.

Proposition 9 Let ¢,.(x) be such that ngo,z = [ %Te’quT(x) for all k > 0.

: 0
Let f.(x,t), with t > 0, be a solution of the partial differential equation (PDE)
0 0
afr = oz [(z — 2nn,) f:] (28)

with initial condition f.(x,0) = ¢,.(x) and such that

/0 Cdufo (o) = no(t), V. (29)

Then n, ,(t) given by (25) is a solution of the system of ODE (16) with initial
conditions given by (23).

Proof: See the Appendix.

The PDE (28) is solved with the method of characteristics. We look, that
is, for a function &,.(¢) such that along the characteristic trajectories (z,t) =

15 Generalized functions are discussed in detail in Kolmogorov and Fomin (1999, Ch. TV). In
brief, the function fr(z,t) does not have the standard meaning of mapping a real value = to a
real value f,(x,t). Rather, it defines a linear transformation through the integral in (25) that
associates a number n,. x(t) to functions of the form z*e~%/kl. Hence, the action of fr(=,t) is
given by its behavior inside an integral. By way of illustration, consider the distribution with
ny, = 1if k= h and n, j = 0 otherwise. This case corresponds to the (generalized) function

fr(z,t) = (fl)hez(gc—hhé(z), where d(z) is the Dirac’s delta function.

16 A constructive way to achieve the inverse transformation, i.e. to derive f.(x,t) from
1y k(t), is through the expansion of f(x,t) in orthogonal polynomials — see Kolmogorov and
Fomin (1999, Ch. IV). The appropriate polynomials, for functions defined for z € [0, 00), are

m) (=1)*
k)R

Laguerre polynomials Ly (z) = > -, Z,mkxk, with £y, 1 = ( . The expansion reads

fr(z,t) = Z m,r(t) Lm (). (26)
m=0

In order to derive the coefficients ¢, ~(t), multiply (25) by k!4, 1 and sum over k =0,...,n.
Using (26) and the orthonormality of Laguerre polynomials, i.e. fooodxe’sz(z)Ln(x) =
On,m, we find

kY mng r(t) = oodxeszm(z)fr(x,t) = ¢r,m(t). (27)

A combination of the coefficients ¢, m (t) computed in this manner and (26) yields fr(z,t) in
terms of ny .(t), which is the desired inverse transformation. In particular, this procedure
allows one to compute the initial condition fr(z,0) from the initial class profile n, ;(t = 0).
As an illustrative example, for initial conditions of the form n,x(t = 0) = ar(1 — ps)*, (27)
yields the coefficients ¢, m(0) = ap™. Then, by (26) and some algebra, one finds f.(z,0) =
%pefm/(lfp)‘
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(&,(t),t) the evolution of f, is described by the simple ODE :

%fr(&r(t)?t) - fr(&r(t)?t) = %ﬂ - (x - 277”7‘)%f7' — fr=0. (30)
The solution thus obtained can then be used to solve for the degree distribution
in each class r, under the assumption that the speed at which the class sizes
n,-(t) change is much lower than that for network adjustment — i.e., specifically,
we consider the limit v — 0 with 7 = vt finite. The derivations involved in the
whole procedure are described in the Appendix, as part of the proof leading to
the following result.

Proposition 10 Let 7 = vt > 0 be given and let n.(7) = ny(7/v). Then,
in the limit v — 0, the degree distribution induced by (16) converges in each
component to the Poisson distribution with mean 2nfi.(7), i.e.

[277ﬁr(7—)]k e—2nﬁr(‘r) (31)

E%nT,k(t =7/v) =y (1) 1

The previous result indicates that the network topology eventually converges
to that of a Poisson random network if isolated agents change their action very
slowly and thus class sizes also change slowly. This, in essence, is the MFD
counterpart of Corollary 4 obtained in the ultralong run, since the degree dis-
tributions of Erdss-Rényi random graphs converge to a Poisson law for large
N.

5.3 The dynamics of class sizes

Now we turn to studying the evolution of class sizes, still under the simplifying
assumption that their change proceeds at a much slower rate than that at which
the network adjusts. Then, we can rewrite the dynamics of the population sizes
nr(7) = n,(t = 7/v) in the slow time variable as follows:

dn, &
o =2 [ns0 = o] (32)

s=1

and, by virtue of the results of the previous subsection, use n, o = ﬁT(T)e’QﬁT(T)
as an accurate approximation for small v. This will allow us to establish quite
readily that the function f(-) used in Subsection 4.3 to characterize the invariant
distribution of the underlying stochastic process acts as a Lyapunov function for
the MFD. That is, the value of this function decreases monotonically along any
trajectory of the dynamical system. This, in turn, implies that the local minima
of this function define configurations that are locally stable, i.e. all trajectories
that start close enough to any one of them eventually converge to it. Formal
statements of these two conclusions follow.
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Proposition 11 Let 7 = vt and consider any induced path on class sizes
(71(T), ..., Tg(T)) obtained as v — 0. Then, the function f defined in Propo-
sition & satisfies df (71 (7), ..., nq(7))/dT < 0, where it may hold with equality
only if (n1(7),...,1q(7)) is a critical point of f (i.e. satisfies the FOC (11)).

Corollary 12 Under the conditions considered in Proposition 11, the local min-
ima of the function f are asymptotically stable configurations of the MFD.

The above corollary implies that the process can be predicted to spend an
arbitrary long time'” in any small neighborhood of a local minima of the function
f with high probability. In this sense, we can view each of the local minima
of f as an alternative long-run prediction if the process starts close to it. This
provides a formal basis for our former heuristic comparison of local versus global
minima of the function f as a reflection of the dichotomy between the long- and
ultralong-run outcomes.

To illustrate sharply the contrast induced by these two time horizons, it is
again useful to focus on how the alternative possibilities translate into different
levels of overall connectivity. First, let us consider the long-run average degree
predicted by the model, through the asymptotically stable configurations of the
MFD. At any such configuration n we can compute the average degree z as in
(14), relying on the fact that the stable equilibria of the MFD yield aggregate
configurations that have exactly the same structure as the minima of the func-
tion f. Thus, associated to the thresholds 7 and 7 contemplated in Proposition
6, the model predicts three different regions in n where qualitatively very dif-
ferent long-run levels of network connectivity can materialize. The situation is
illustrated in Figure 4, which depicts the situation for ¢ = 10 and can be usefully
compared with Figure 2 . In essence, the difference here is that the upper and
lower sections of the curve in Figure 2 are “stretched” in Figure 4, extending
the curve to the left and right respectively of the former discontinuity at the
threshold n*. This, in turn, opens up the parameter region (7, 7) (= (2.28,5) for
¢ = 10) where long-run multiplicity arises, allowing in turn for two significantly
different levels of network connectivity. The same conclusions, of course, could
have been derived in Subsection 4.3 from the analysis of the local minima of the
function f (or, equivalently, of the local maxima of the invariant distribution).

[Insert Figure 4 about here]

Figure 4 also depicts the outcome of numerical simulations, which were con-
ducted for a population size N = 1000, the indicated value of ¢ = 10, and two
values of v = 1, 10. We find that the asymptotically stable configurations singled

17T As suggested in (15), the expected time spent in the neighborhood of a local minimum
T ~ e°N grows exponentially with population size N, where ¢ = f(Ngaddle) — f(Nioe) > 0 is
given by the difference between the values of the function f at a suitable saddle point and
the local minimum in question. See Benaim and Weibull (2003a) for a detailed and rigorous
study of this issue.
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Figure 4: The solid curve represents the mean connectivity induced by the theo-
retical mean-field model (as given by (14)) against the rate of link formation, for
a value of ¢ = 10. Symbols, on the other hand, stand for observations obtained
by numerical simulation. The simulations were conducted for two different val-
ues 7 — i.e. ¥ = 1 (squares) and 7 = 10 (crosses). They are performed by
implementing a series of gradual changes in 7 (starting from both high and low
values for it), letting the system equilibrate at each stage before proceeding to
record the situation. In the simulations, the low equilibrium becomes unstable
below the theoretically predicted value of 5 because fluctuations have significant
effects close to the transition point due to the finiteness of the population. Such
finiteness also explains the slight downward deviations observed along the upper
branch for high values of 7.
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out by the mean-field theory indeed act as strong local attractors of the simu-
lations. It is interesting to observe that only a moderately large population size
is sufficient to achieve a good predictive performance of the theoretical model.
We also find that the predictions are essentially unaffected by the specific values
of v considered, even though these values differ in an order of magnitude. The
latter is in consonance with the minor role played by this parameter in the core
of our analysis — e.g. in the determination of the invariant distribution of the
underlying stochastic process, which is independent of v (cf. (4)).

In sum, we find that the long-run behavior of the system displays many of
the key features that were already highlighted in our analysis of the ultralong
run. Namely, there is a positive cross-reinforcing effect between (endogenous)
action homogeneity and network connectivity, and both increase — at some point
discontinuously — as the rate of link creation 7 rises. Important differences,
however, transpire when such discontinuous transitions are studied in each of
the two time scales. In the ultralong run, the transitions are reversible around
the single threshold n*. This, as we have seen, is a mere reflection of the fact
that, in the infinite-time limit, the ergodic behavior of the process is independent
of initial conditions.

Instead, within the shorter time scale that we have called the long run, the
situation is qualitatively different. For, within the parameter range limited by
the two thresholds # and 7), the system can settle in either a high- or a low-
connectivity configuration, depending on the initial conditions. This implies, in
particular, that the sizable changes triggered by gradual changes in n around
those thresholds are not reversible in the long run. The system, therefore, can
be said to display hysteresis in such a time scale. And, as advanced, this opens
up a host of interesting policy issues which we can only briefly illustrate here.!®

Think, for example, of the rate n as responding to some policy measures
that, say, enhance the agents’ ability or desire to meet each other.'” Then, any
such measure that maintains the value of ) above 7 (possibly, just slightly so)
during a relatively brief span time will have consequences that persist during
the time horizon we have labelled the long run. This is the case even if the
base (intervention-free) value of n were below n*. In this case, the policy con-
sequences of such a short-run policy will be unraveled in the ultralong run but
may nevertheless bear fruit for what may be (if the population is large) a long
time. And in case the base value of n lies above n*, such a policy can be seen
as an effective way of speeding up the transition to the superior ultralong-run
situation.

18To make our ensuing discussion fully precise, we would need to build on the analysis
undertaken in this paper to obtain a specific assessment of the average time lengths displayed
by the long-run behavior (as a function of population size) as well as a determination of the
average time spans required for the transitions to long-run equilibria to materialize from any
point in their basin of attractions. Due to space limitations, however, we choose to keep the
discussion at an intuitive level.

19Ty fix ideas even further, some of the progams established by the European Union to
finance and stimulate the visits, exchanges, or workshops among European researchers based
in distant locations (geographically or/and culturally) is a good case in point.
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6 Summary and conclusion

In this paper we have studied the evolution of large and networked social systems
whose inter-agent connections are subject to potentially high volatility. We
have argued that such volatility is important in many social contexts, and also
calls for a methodological approach different from that pursued by the recent
evolutionary literature in economics. To highlight the main issues involved, our
model embodies a stylized description of three forces that appear to be at work
in many social networks:

(a) the establishment of links depends on some suitable form of behavioral
affinity or compatibility;

(b) existing links decay over time and this process limits the extent of social
connectivity that can be sustained;

(¢) links among individuals tend to coordinate their actions, while social isola-
tion leads to behavioral drift.

The asymptotic dynamics of the induced ergodic process has been studied
within different time horizons. First, we considered the infinite-time limit (what
is sometimes labelled the ultralong run), where the evolution of the system is
captured by the unique invariant distribution. This distribution was fully char-
acterized, in turn delivering many of the properties of interest of the model,
e.g. the extent of behavioral coordination and the degree of connectivity of the
underlying social network. We found, in particular, that there is a reciprocal
feedback between coordination and connectivity that induces a sharp (discon-
tinuous) transition in both respects at a certain volatility threshold. Thus, in
our model, a society with sparse bilateral interactions does not turn continu-
ously into a densely networked one as volatility falls, but this change occurs
discontinuously.

Our analysis of the invariant distribution also suggested the existence of a
different time frame for the analysis of the process, which we have called the long
run. It refers to long but finite time horizons where, if the population is large
enough, the evolution of the process can be well approximated by a deterministic
(so-called mean-field) dynamics. In this shorter perspective, there is a certain
range for volatility where the initial conditions largely shape the evolution of
the process, thus allowing for multiple possible outcomes tailored to history.
Again in this case we have discontinuous transitions triggered by slight changes
in volatility, but these now display local irreversibility (i.e. hysteresis).

The main contribution of our model and analysis is two-fold. First, at a
conceptual level, it highlights the role played by volatility in economic contexts
and studies its implications in a social-network setup where there is a strong
interplay between network formation and behavioral adjustment. Second, at
a methodological level, it illustrates the use of mathematical techniques that
allow an exhaustive analysis of the induced dynamics and provide an integrated
analysis of the different time scales inherent to the process.

Despite the abstract nature of our model, we believe that much of what
is learned from it can be applied to the study of high-volatility phenomena in
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a rich variety of socio-economic contexts. This pertains, in particular, to the
interesting range of problems (such as inter-firm alliances or academic collabo-
ration, discussed in Section 2) where some versions of (a)-(c) above appear to be
key mechanisms at work. The model also delivers some insights that are policy
relevant if one is interested in, say, raising the level of network-based activity in
those cases. Specifically, we have highlighted that small and temporary policies
can have quite persistent effects by triggering the self-reinforcing and stabilizing
effects that underlie network formation.

Appendix

Proof of Proposition 1: The argument is decomposed in two claims. First,
we argue that the subset Q = {w = (o, G) € Q:Vi,j € P, [gij = 1 = o = ]}
is included in a single recurrent class. Second, we show that all states w ¢ () are
transient. The combination of these two claims implies that the Markov process
has a unique invariant distribution g with () = 1.

To establish the first claim, it is enough to prove that, for any two states
w,w' € Q, it is possible to find a finite sequence of transitions (jointly occurring
with some positive probability, bounded away from zero) that leads from one to
the other in finite time. To construct it, note that there is positive probability
for an initial sequence of transitions from the original state w to some other state
@ that consists of the empty network (i.e. with no links) and an action profile
where every agents chooses the same action as in w’. Indeed, such a transition
takes place if all links in w vanish in sequence and then all nodes receive (also in
sequence) an action-revision opportunity and switch to the action they choose
in w’. Next, a sequence of transitions from @ to w’ can also occur with positive
probability since w’ € Q. Specifically, starting from the state @, all links present
in w’ can be simply added sequentially through a suitable chain of link-creation
opportunities. By construction, these links will be formed since the agents
involved at each step display the same action. We conclude, therefore, that the
desired transition from w to w’ exists, as desired.

Now we show that all states in Q\Q are transient. On the one hand, a
straightforward variation of the previous argument indicates that, starting at
any given w ¢ Q, the process must enter the set Q) in some finite time with
probability bounded above zero. Thus, to complete the argument, we simply
need to show that from any state ' = ((&})iep, (9i;)ijep) € ), any one-step
transition leads to a state w” € Q with probability one. We need to consider
only six possibilities:

i) The transition involves a link-creation opportunity between some i and j,
the link 47 is not in place (i.e. g;; = 0), and o} # a}. In this case, the link 7j
will not be formed and no change in the state is produced, i.e. w” = w’ € (.

i1) The transition involves a link-creation opportunity between some i and
J the link 4j is not in place (i.e. g;; = 0), and o} = o/;. In this case, the link 7j
is formed and the new state w” € Q.
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i11) The transition involves a link-creation opportunity between some i and
j and the link 4j is in place (i.e. gj; = 1). In this case, the link ij is maintained
and no change in the state is produced, i.e. w’ =w' € Q.

iv) The transition involves an action-revision opportunity for some ¢ and this
node has some links. Since w’ € Q, we know that o/, = o for all j such that

J
gz'-j = 1. Thus, by the conditions required from action revision, we must have

of = o and again no change in the state is produced, i.e. W’ =w' € Q.

v) The transition involves an action-revision opportunity for some ¢ and this
node has no links. Then, independently of whether o = o} or o # o} (both
occurring with positive probability) we have w” € Q) since no new links are
formed.

vi) The transition involves the destruction of an existing link. Given that
all links in w” also exist in w’ and the action profile is the same in both cases
(i.e. o = a”), it follows that w” € Q.

Since all six possibilities lead to some W’ € Q, the desired conclusion fol-
lows. This establishes the second claim and thus completes the proof of the
proposition. W

Proof of Proposition 2: Clearly, a sufficient condition for the stationarity
of the distribution p defined in (4) is given by the following “detailed-balance”
equalities (see Gardiner (2004)):

pw) plw = w') = pW) pl —w) (w0 €Q). (33)

To verify the above equalities, first notice that, for any pair of states w’, w, either
p(w' — w) and p(w — w’) are both zero, or they are both non-zero. Hence we
only need to check (33) for states w,w’ across which a direct transition is possible
with positive probability, i.e. with p(w — w’) > 0. These possible transitions
must fall into two categories: link adjustment alone (with actions remaining
fixed), or action adjustment alone (with links unchanged). We address each of
them in turn.
For the first case (link adjustment), we need to consider any two states,

w = (a,G) and v’ = (&', G’), such that a = o and g;; = gj; for all 4,j € P
except for one pair, k£ and ¢, such that ay = a; and, say, gi = 1 but gj, = 0.
Then, from (4), we have:

pw) _ _2n

p)  N-1
On the other hand, note that the rate p(w’ — w) = 2n/(N — 1) since a link-
creation opportunity arrives to either k or ¢ at the rate 2n and the link k¢ is
actually created if the agent who receives the opportunity (either k or ) meets
the other one — an event with probability 1/(IN—1). On the other hand, the rate
p(w’ — w) = 1, since each existing link vanishes at the rate A = 1. Combining
these considerations, we arrive at the following conclusion:

(w) 2n _ pw —w)

W) N-1 plw—w)
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which obviously implies the detailed-balance condition (33).

For action revision, we need to consider any two states, w = (a,G) and
w = (&/,G"), such that G = G’ and, for some k € P, o; = o for all i # k
whereas ay # «),. The rate of this transition is non-zero only if agent k& has no
links (g = 0 for all ¢ € P/{k}) and, in this case, p(w — ') = p(w’ — w) = v.
Clearly the distribution p defined in (4) satisfies (33) for pairs of states of this
type.

The previous considerations establish that the probability distribution p is
invariant. On the other hand, ergodicity implies that it is the unique such
invariant distribution, which completes the proof. B

Proof of Proposition 3: Given any state w, denote by P(w) = (P (w), ..., Py (w))
the induced partition of agents in action classes, so that P.(w)={i € N : a; =
a.} for each r = 1,2,...,q. A first preliminary observation is that, for every
w € Q, we can simply write:

q 277 Gij
pw) = pg—o || 1T <m> -
r=1 i Ge P (w), i<

Next, we compute, for any given P,

woQm®) = Y aw)

welkP(w)=P

q

2 9ij
= o] > (v5)

i,jEPT(w), i<J gij:()?l

|
|

And, finally, adding over all partitions P that are consistent with each given N,

we obtain:
- 2 1IN, (N.—1)
N-—-1

q
R R
which is readily seen to be equal to (5), as desired. W

{P: |Py|=N; (r=1,..,q)} \r=1

Proof of Corollary 4: A fixed partition P of agents corresponds to a
specific action profile o for agents and thus can be uniquely associated to a

subset of non-transient states consistent with it that is given by Q(P)={w =
(,G)eQ:{ie N:ay=a} =P, r=1,..,q} Inview of Proposition 1,

35



the social network G prevailing at any given state w = (a, G) € Q(P) can be
decomposed into ¢ disjoint subnetworks (Gi,...,G,), with the nodes in each
Gy = (9r,ij)i,jep,. belonging to the respective class P,. This shows item () in
the statement of the result. In order to show (i), write any state w € Q(P) as
w = [()iep,, Gr]I_; and note that such a state can be equivalently identified by
the ¢ disjoint networks G = (G, . .., G,) induced by it. Thus, with slight abuse
of notation, the invariant distribution p can be defined on the set of all such G
and, correspondingly, for any particular G, specify the marginal probability

N(év') =p({G = (G1,....Gq) : G, = Gv})

Then, it is immediate from the form of u specified in (4) that, for any collection
of class-based networks G = (G, ..., G4), we have:

so that the invariant distribution factorizes the partition P and, therefore, the
corresponding distributions induced on each action class are stochastically in-
dependent. More specifically, from (4) we find that, for any given class network

G, (r=1,2,....q), o
wo-7 11 (725) (34)

Ti<jep,
with

z-Y 11 (#5) -1 © () ®

g(r) i<jEP; i<j€Pr 40 01

being a normalization constant. This factorized form over the different possible
links ij between nodes in P, corresponds precisely to the definition of the Erdos-
Rényi random network G(N,.,p,) (see Bollobds 2001), in which a graph of N,
nodes is built by drawing independently each possible link with probability p,
satisfying

Pr 2n

I—p. N-1

orp, =2n/(N—1+2n).1

Proof of Lemma 5: We rely on repeated applications of Stirling’s formula
(k! ~ (k/e)* for large k) to write:

q

log p(QUN)) =~ logpy_og— {NT log(N:/N) — W log (1 - 2_?7)}

r=1

~ logpy_o — N [f(N/N) + O(1/N)]. (36)
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where f is defined in (8). The proof is completed by showing that N ~! log Pg=0 —
fo, for some finite constant fy. This is done by using the normalization identity

N' 2,'7 %Nr(Nr_l)
—log p1g— O_IOg{ZH‘J w1 (1+N1> (37)

where the sum runs on all sets of positive integers N = (Ny, ..., N,) such that
N1+ Na+...+ Ny = N. We easily derive a lower bound —log p1,— > N log g by
setting 7 = 0 and observing that the sum becomes the multinomial expansion
of ¢". For the upper bound, we use N,.(N,. —1) < N(N — 1) in the exponent
of (37) so that —logpu,_o < WMg(l +2n/(N —1)) + Nlogq. Using
log(1 + z) < z we finally arrive at

q

1
logg < N log 1,0 < qn +logg,

which implies that fj is finite, as claimed. B

Proof of Proposition 6: Let n* be a configuration that satisfies the
FOC (11). In order for it to be a minimum of f, we need to check that f
increases along all directions on the simplex AY~! around n* (second-order con-
ditions). For an infinitesimal perturbations n = n* + ¢ € AY7! the vector
e = (e1,...,&q) € R? satisfies Y-7_, &, = 0, and the change in the value of f to
leading order is:

Flm) =~ 22 G (39)

A sufficient condition for n* to be a minimum is that f(n) — f(n*) > 0 for all
possible vectors e which satisfy > 7_, e, =0.

Let us divide our discussion into three different cases: Ly = 0, Ly = 1,
L4 > 1. We address each of them in turn.

In the case Ly = 0, by symmetry, we must have n¥ = n_ = 1/q for all
r = 1,...,q. However, the second term in (38) is positive only for n < ¢/2.
Hence, the symmetric (Ly = 0) solution satisfy the second order conditions
only for n <) = ¢/2, which proves (i) and part of (v).

Next, we consider the case with Ly = 1. Let ny = n4 (i.e. the larger class
adopts action aq) and n, = n_ < ny for r > 1. Notice that, in view of the FOC
(11), 2nn_ < 1 < 2nn4. The first of these inequalities (2nn_ < 1) implies that,
for all vectors € with e, = 0 (and ) ., & = 0), f(n* +¢) — f(n*) > 0. The
remaining linearly independent perturbations € have e # 0 and e, = —e1/(¢—1)
for > 1, which are indeed orthogonal to all vectors € = (0,¢2,...,¢,), with
> r>1&r = 0. For these perturbations, the variation of f can be seen to take

37



the form

11— 2nn* 1 2
2 Z Yy 2 = __2hq e2.
24 np ny(l—ny) q—1
—1
qny —1 (dny 2
= o1t - (== . 39
q—1 ( dn > B (39)

The last expression is confirmed by taking the derivative of (12) with respect to
1. This yields:

dny _ o ne(l—ny)
dn g—1

dn+]
gny — 1 +ng——
[ + n dn

which is easily solved for dg—* Then, (39) completes the proof of (ii), since it

shows that a solution with EJF = 1 is a minimum if and only if ny increases
with 7.

In order to prove that solutions of the FOC with Ly > 1 are not minima,
it is sufficient to find a vector € along which f decreases. Thus suppose that
Ly > 1 and let n, = ny for 2 <r < Ly with n, = n_ otherwise. Along the

direction € = (€1, —€1,0,...,0) the variation in f is given by
N 2my —1
) = ) =~ + O(e?)

This is negative because 2nny > 1, which proves (7).
In order to prove (iv) we first observe that

Af = fng) - f(ng) (40)
1=ny] | (gng —1)°

= —logg—nylogny —(1—n 1og{ :|+ 41

+logny = (1-ny) g—1 q(q—1) 4D

where ng = (1/g,...,1/q) is the symmetric solution and n, is one of the ¢

asymmetric ones. The expression for Af defines an increasing function of 7.
Indeed,

dAf  OAf n OAf dny

dn — On ony dn

but, since ny satisfies the FOC, the second term vanishes and the first is pos-
itive since m4 > 1/q. Therefore there is a single value n* for which Af = 0.
Direct substitution shows that the pair of values ny =1 — 1/¢ and n* given in
(13) simultaneously solve the equations Af = 0 and (12) with L = 1. This
completes the proof of (iv). Finally, in order to prove (v), we first argue that
for ¢ = 2 and n = ) = ¢/2, there is no solution of (12) with L = 1 apart from
nty = 1/q. To see this, note that when particularized to ¢ = 2, Ly = 1, and
1 = q/2, condition (12) takes the simple form 2n, — 1 = tanh(2n — 1), which
has the unique solution ny = 1/¢. On the other hand, the existence of a second
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solution ny > 1/q for (12) when ¢ > 2 is guaranteed by the existence of the
asymmetric solution at n* < # = ¢/2, which has been shown explicitly above.
This concludes the proof. W

Proof of Proposition 7: Let N, = n, ;N stand for the total number of
nodes displaying each action r and degree k. First, we consider the evolution
of these variables for £ > 0. In this case, the magnitudes N, ;, change over time
solely due to link creation and link destruction. In any time interval [t, t +At] of
infinitesimal length At, link creation opportunities arrive independently to each
node with probability nAt, while each existing link is destroyed with probability
AAt = At (recall the normalization A = 1). Then, we now argue that expected
change F[AN, ;] over that infinitesimal time interval is given, up to terms of
order O(1/N)At, by the following expression:

E[AN7,k] = N’[? {2n7‘,k—1 Zk/ n'r,k:’ — 2“7‘,k‘ Zk/ nT,k"} At (42)
+ N{(k + 1)71T,k+1 — k’n,«yk} At (k > O).

The first bracketed term of (42) concerns events of link creation. These affect
N,.j; through five possible routes:

(i) Some node counted in N, j_1 is selected for link creation and then
meets another node counted in N, ;_1 as well. This occurs with probability

1At N 1y o1 [(Nepe1 —1)/(N — 1) = Ny [nik,l + O(l/N)] At.

(ii) Some node counted in N, ;_; is selected for link creation and then meets
another node counted in N,y for k&’ such that k # k" # k — 1, or vice versa.
This occurs with probability 2nAt N n, ;1 [(Zkik#k_l Nyw)/(N—=1)| =

2N 1 (g s M) + O(L/N) | At
(ii1) Some node counted in N, is selected for link creation and then meets
another node counted in N,.j, as well. This occurs with probability

nAt N ny g, [(Nys —1)/(N — 1) = Ny [nik +0o(1 /N)} At.
(iv) Some node counted in N, j is selected for link creation and then meets
another node counted in N,y for k&’ such that k # k' # k — 1, or vice versa.

This occurs with probability 2nAt N n, [(Zk;ﬁk,#kfl New)/(N—=1)| =

2N [nnk(zk bkt M) O(l/N)} At

(v) Some node counted in N;.j is selected for link creation and then meets
another node counted in N, ,_1, or vice versa. This occurs with probability
2nAt N ny. g [Ny gp—1/(N —1)] = 2Nn [nygne -1 + O(1/N)] At.

Now let us determine what is the induced change in N, ;, for each of the above
possibilities. For (i), AN, ; = 2 since the link created brings in two new nodes
to the set of those that display action a, and have degree k; for (ii), AN, =1
since only one new node is added to that set; for (iii), AN, , = —2 since the link
created has the two connecting nodes increase their degree to k + 1 and thus
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they abandon the set in question; for (iv), AN, = —1 since the connecting
node that originally had degree k then has degree k + 1 and thus abandons the
set; for (v), AN, = 0 since the entry of one node in the set is exactly cancelled
by the exit of one other node. Bringing together all these considerations, the
first bracketed term of (42) readily obtains.

Let us now address the second bracketed term of (42). In this respect, simply
note that a single link of some node with &’ links is removed with a probability
At k'Nyj = N k'n,p At. Then, the expression for that term simply follows
from the observation that the removal of one link from a node with degree k+ 1
induces AN, =1 (i.e. increases N, j by one), while if it affects a node with
degree k it leads to AN, ;, = —1.

Next, we consider the case where £ = 0 and compute the expected change
in the numbers N, o for each r. Unlike for the case with k > 0, the dynamics is
now affected by action adjustment, thus giving rise to the following expression:

q
E[ANR()] = N7] {72717,,0 Zk’ nnk/} At + NnT,lAt + Nv Zl [7’LS70 — n,«yo] At.
o

(43)
The first two terms in (43) are just as before — reflecting link creation and
link destruction, respectively — except that they now can operate only in one
direction: neither isolate nodes can lose any links, nor link creation can lead a
node to become an isolate node. The third term, on the other hand, embodies
the process unfolding at the rate v that makes isolate nodes move across the set
of possible actions.

Expressions (42)-(43) give the expected change in the absolute numbers of
nodes N, displaying each action r and degree k. The corresponding change
in frequencies n,j obviously satisfies E[AN, ;| = N E[An, ], thus yielding
(17)-(18), as desired. W

Proof of Proposition 9: For each r and k > 0, the representation of
F, ;(n) in terms of f,(z,t) reads:

x x”

00 k k—1
Fox(n) = /0 dafr(z,t)(@ = 2nn:) {H (k—l)!]e_x

° o [aF
- /O df (. 0)(x — 2m,) o [He }

< xk 0
| e g )@ = 20m,)
where, in the last passage, we have integrated by parts using the fact that

fr(z,t)(x — 2nn, 467I vanishes both at x = 0, for all £ > 0, and at x — oo.
Kl
Therefore the ODE n,.;, = F). ;(n) requires that, for all 7 and k > 0,

o] k
0= /0 dx%eiz [atfr — 0y (. —2nn;) fv] . (44)
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If (44) holds for all k& > 0, then it means that the term in square brackets
vanishes, i.e. f, satisfies (28). Thus, to complete the proof, it is enough to note
that, since the transformation to the Poisson representation is invertible, for
any initial conditions specifying the n, ;(0) one can identify a suitable initial
condition ¢, (x) for each f. W

Proof of Proposition 10: First, we determine the characteristic paths
(&,.(t),t) along which the PDE (28) is equivalent to the ODE (30). These char-
acteristic trajectories are obtained from a solution to the equation

LD — oy 1) ~ ,(0), &,(0) =0,
ie. .
€.(t) = zoe " + 277/ dse®"'n,.(s) = e zo + x,.(t). (45)
0

where the last equality defines

X, (t) = 277/0 dsn,.(s)e* " (46)

On the characteristic path starting from the initial condition (xg,t = 0), the
function f, satisfies 4= = f,, ie. f.(£.(t),t) = é.(z0)e’. Inverting (45) we
obtain zg = e[z — x,.(t)] and therefore:

fr(,t) = €', {e'lz — x,(t)]} - (47)

For = > x,.(t), this solution is related to values of the initial condition ¢, (o)
with zg > 0. Instead, for x < x,.(t), the initial condition is associated to
negative values of xg, for which ¢, is not defined. We therefore set the values
of ¢,.(x0) for g < 0 in such a way as to satisfy the condition (29). In order to
do this, integrate (47) over z € [0, 00):

no(t) = /0 Taneo (e} = [ deb(z)  (48)

—etx,.(t)

0
/ dz6,(2) + 1 (0) (49)

—etx,.(t)

where we have changed variable to z = e[z — x,.(t)] and split the integrals for
z > 0 and z < 0. Taking now the derivative with respect to ¢t on both sides, we
get

= g, (—e'x) 3 [, (0] = 20o(—ex, )e'ma 1) (50)
e (0) = S log o).

This implicitly defines the function ¢,.(zg) for negative xg in terms of the func-
tion n,(t). Notice that x,.(¢) is also fully specified in terms of n,(t) and that
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ex,.(t) is an increasing function of ¢ as long as n,. > 0, so the procedure yields
a unique selection.

The solution of the fraction n, j of nodes in class r with degree k can then
be expressed, with the same change of variable as before, as

wal) = [ oyt {ReEEAIEE vt

where x,.(t) is a function of n,.(¢).

Now, we specialize this solution to the case where the evolution of n, takes
place at a speed much lower than that for n, ;. To this end, let the population
in component r be a smooth function of the time variable 7 = vt, i.e. n,(t) =
7ir(7). Then, by (46), for t = 7/v and small v:

X, (t) = 20, (1) — 2nv a;ﬁ,» + O(VQ).

T

Likewise the term x,.+(2—x,)e”" — 2nn,(7) in the limit v — 0 with 7 = vt > 0

k
given, and hence the term in braces of (51) converges uniformly to %Le_m’"r
in the same limit. Since, by (48), the remaining integral on z is exactly 7n,.(7),
the desired conclusion follows. W

Proof of Proposition 11: The derivative of f with respect to 7 is given

by
df _ _ dn,
e 27: [1+logn, — 2nf,] e (52)
= Z [1+log nr,o] Z [71570 — nT,O] (53)
1
= 73 72 [log ns,0 — log nr 0] [ns,0 — nr0] <0 (54)

where we use (32) and also n, o = A.e~ 21 the latter obtained from Proposition
10 by particularizing (31) to k£ = 0. On the other hand, in the last line we split
the sum > [..] = 3> [...] + 3>, [ ], interchange the indices in the
second term, and recombine the resulting expression. Given that logz is an
increasing function, the expression (54) is non-negative, and it is zero only if
nro =ngo forall?,s =1,...,q. This establishes the required property for time
derivative of f in the slow time variable 7 of the MFD. B
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