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Abstract

We propose a simple yet powerful method to construct strictly stationary Markovian

models with given but arbitrary invariant distributions. The idea is based on a Poisson-

type transform modulating the dependence structure in the model. An appealing feature

of our approach is the possibility to control the underlying transition probabilities and,

therefore, incorporate them within standard estimation methods. Given the resulting

representation of the transition density, a Gibbs sampler algorithm based on the slice

method is proposed and implemented. In the discrete-time case, special attention is placed

to the class of generalized inverse Gaussian distributions. In the continuous case, we first

provide a brief treatment of the class of gamma distributions, and then extend it to cover

other invariant distributions, such as the generalized extreme value class. The proposed

approach and estimation algorithm are illustrated with real financial datasets.

Keywords: Bayesian inference; Generalized Extreme Value distribution; Generalized In-

verse Gaussian distribution; Gibbs sampler; Markov process; Slice method; Stationary

model.

1 Introduction

Stationarity and other stability properties represent a crucial component in the theory and

application of stochastic processes. Indeed, in several modeling contexts, the assumption

that some distributional features remain invariant over time is often needed to implement

estimation and prediction procedures, or simply to be able to analytically determine quan-

tities of interest. For example, within the classical theory of time series (Brockwell and
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Davis; 1987), one looks for causality and invertibility conditions required by some esti-

mation techniques; in mathematical finance many volatility and short–term interest rate

models, leading to closed–form expressions of derivative pricing formulas are stationary

(Linetsky; 2007); several of the tractable stochastic models in theoretical population ge-

netics are stationary (Ewens; 2004) or have certain stability features; etc. If at the outset

one starts with a model that allows for non-stationarity, often data transformations or

parametric restrictions are needed in order to attain stability properties or even station-

arity itself. However, these operations or restrictions are not always easy to attain or to

handle in practice.

An alternative approach, undertaken in this paper, is to consider directly stationary

models that accommodate empirical observations or a given phenomenon under study.

With this premise, a natural starting point is to focus on Markov processes, and to look

for transition mechanisms that retain a particular distribution of interest invariant over

time. In fact, some of the drawbacks typically accounting for the use of non-stationary

models can be outmatched by increasing the flexibility of the invariant distribution.

Defining Markov models with prescribed invariant distributions poses a tradeoff be-

tween marginal and conditional properties, as one can have several models with different

dependence structure while retaining the same stationary distribution. This issue can be

handled, to some extent, with a particular context in mind, e.g. fulfilling certain continuity

or dependency requirements. Indeed, this is the approach followed by some of the construc-

tions available in the literature. Most of these constructions rely on a thinning argument,

i.e. decomposing the random variable at time t as a thinned version of the immediate past

plus an innovation term. For instance, in Barndorff-Nielsen and Shephard (2001), the

property of self-decomposability is used to attain such thinning and to characterize a class

of continuous-time stationary models termed Ornstein-Uhlenbeck type processes. A vast

literature on models with discrete invariant distributions is reviewed in McKenzie (2003),

where binomial and other kind of thinning operators are employed to define discrete-valued

time series models with geometric, binomial, negative binomial and Poisson marginals. An

approach which enriches such thinning operators is due to Joe (1996) and Jørgensen and

Song (1996), where discrete-time Markov processes with invariant distributions in the

convolution-closed infinitely divisible class are presented. One-dimensional stationary dif-

fusion processes of the mean reverting type, with prescribed marginal distributions, are

explored in Bibby et al. (2005) by specifying a particular form of the diffusion coefficient

modulating the process.

The above constructions are very appealing in statistical applications but, in most

cases, no general expression or representation for the transition probabilities is available,

particularly in the continuous-time setting. In fact, often one starts from a stochastic

equation describing the dynamics of a phenomena in time and, thus, look for analytic
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expressions for the corresponding transition probabilities, which are not always immediate.

However, full control of the transition probabilities driving a Markov process is always a

desirable feature as estimation, simulation and prediction procedures become accessible.

Within a similar setup Pitt et al. (2002) exploit the reversibility property character-

izing Gibbs sampler Markov chains to build strictly stationary AR(1)-type models with

any choice of marginal distribution. Their approach is very general and requires to make

choices of dependence to accommodate the specific modeling needs. This not always

results in manageable expressions for the underlying transition probability. Some excep-

tions, meeting particular dependency or distributional requirements, can be found in Mena

(2001), Mena and Walker (2005, 2007a,b, 2009), and Contreras-Cristán et al. (2009).

Here we aim at constructing stationary Markov models with tractable transition proba-

bilities and prescribed arbitrary invariant distributions supported on R+. This is achieved

by exploiting a symmetry induced by a Poisson-type transform, which allows to attain the

desired invariant distribution and is coupled with a high degree of analytical tractability.

Moreover, the proposed models can be extended, by means of simple transformations, to

processes with invariant distributions supported on R or other state-spaces, while preserv-

ing the appealing transition probability tractability.

In the discrete-time case, attention is focused on the class of Generalized Inverse Gaus-

sian (GIG) distributions. The GIG class is very flexible, and allows to obtain various

explicit results. In the continuous-time setup, we use the gamma distribution as basic

building block and obtain, via suitable transformations, a richer class of diffusion processes

with known transition density. This includes, for instance, diffusions with generalized ex-

treme value (GEV) invariant distributions which, to the best of our knowledge, have not

been derived before. In order to perform Bayesian estimation for such processes, we derive

a Gibbs sampling algorithm, based on some slice sampler techniques. The algorithm is

implemented in a simulation study, and in the analysis of three financial datasets.

In the next sections we proceed as follows. We devote Section 2 to the discrete–time

case, we describe the general construction based on the Poisson style transform, some of

its general properties, and study the GIG case in detail. In Section 3, we extend the model

to the continuous-time setup by introducing a time-homogeneous dependence structure.

With a suitable transformation of the gamma invariant distribution case, we obtain a wider

class of diffusion models with known transition probability. We derive a Gibbs sampling

algorithm for the estimation over Section 4, and illustrate it in synthetic and real data

in Section 5. Finally, Section 6 contains some concluding remarks and future research

directions.

3



2 Poisson-driven Markov process

2.1 The construction in discrete time

We first provide a definition of the transformed density we will be using to drive the

dependence in our construction.

Definition 1. Let f be an absolutely continuous probability density function supported

on R+. For any φ > 0 and y ∈ N ∪ {0} we define the Poisson weighted density as

f̂(x; y, φ) :=
xye−xφf(x)

ξ(y, φ)
, (1)

where

ξ(y, φ) :=

∫
R+

zye−zφf(z)dz.

Note that (1) is well defined as ξ(y, φ) can be seen as a moment of an exponentially

tilted positive random variable, which always exists for φ > 0. Moreover, when φ ↓ 0,

the Poisson weighted density reduces to the size-biased density of f and, when y = 0, it

reduces to the Esscher transform of f . The density (1) can also be seen as the posterior

density of a Poisson distribution with parameter φx, denoted as Po(φx), with prior f on

x. This latter aspect, combined with the general idea of weighted distributions introduced

by Rao (1965), explains the name we have attributed to (1).

Moments and the Laplace transform of random variables with distribution (1) are

readily available. Indeed, if X has density (1), then

E[Xr] =
ξ(y + r, φ)

ξ(y, φ)
and LX(λ) =

ξ(y, φ+ λ)

ξ(y, φ)
, (2)

where LX(λ) := E[e−λX ].

Based on the above Poisson weighted density, we can construct a stationary Markov

process (Xn)n∈Z+ with invariant distribution having density f . To this end, define the

following time–homogeneous one–step ahead Markovian density

p(xn−1, xn) :=
∞∑
y=0

f̂(xn; y, φ)Po(y;xn−1φ)

= exp{−φ(xn + xn−1)}f(xn)
∞∑
y=0

(xnxn−1φ)
y

y!ξ(y, φ)
, (3)

which clearly satisfies the detailed balance condition

p(xn−1, xn)f(xn−1) = p(xn, xn−1)f(xn)

for all xn−1, xn ∈ R+, leading to a time-reversible Markov process. It is immediate to

verify that f is invariant under transition (3), meaning∫
R+

p(xn−1, xn)f(xn−1)dxn−1 = f(xn).
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Therefore, the process driven by (3) is strictly stationary.

Definition 2. The stationary Markov process, driven by transition density (3) and with

stationary density f , is termed f -stationary Poisson-driven Markov process.

As far as conditional moments Exn−1 [X
r
n] := E[Xr

n | Xn−1 = xn−1] of an f -stationary

Poisson-driven Markov process are concerned, the combination of (2) and (3) leads to

Exn−1 [X
r
n] =

∞∑
y=0

[
ξ(y + r, φ)

ξ(y, φ)

]
Po(y;xn−1φ).

Consequently, provided that f admits second moment, the autocorrelation can be ex-

pressed as

Corr(Xn, Xn−1) =
1

σ2f

⎡
⎣ ∞∑
y=0

(
ξ(y + 1, φ)2

ξ(y, φ)

)
φy

y!
− μ2f

⎤
⎦,

where μf and σ2f denote the mean and variance of the stationary density. For example if

f is chosen to be the density of a Ga(a, b) distribution, then the above correlation reduces

to

Corr(Xn, Xn−1) =
φ

b+ φ
.

Once the form of f is chosen, the dependence in the model is driven by the parameter φ.

See, for example, Figure 1. In particular, when φ goes to infinity the correlation tends to

one. In the following section we focus on a general and flexible class of densities on R+.

2.2 GIG-stationary Poisson-driven Markov process

Part of the dependence in the model is induced by the choice of marginal density, f ,

which in turn can be selected by the nature of the phenomenon or data under study. The

other part is due to the dependence parameter φ. In this section we focus on densities f

belonging to the family of generalized inverse Gaussian (GIG) distributions, with density

GIG(x;α, δ, γ) =
1

A(α, δ, γ)
xα−1 exp

{
−1

2
(δ2x−1 + γ2x)

}
I{x>0},

where A(α, δ, γ) := (δ/γ)α 2Kα(δγ) and Kν denotes the modified Bessel function of the

third type with index ν. The parameter domain is α ∈ R, (δ, γ) ∈ Θα with

Θα =

⎧⎪⎪⎨
⎪⎪⎩

δ ≥ 0, γ > 0 if α > 0,

δ > 0, γ > 0, if α = 0,

δ > 0, γ ≥ 0, if α < 0.

The values δ = 0 and γ = 0 are interpreted as limiting cases. Some well known

distributions are particular cases of the GIG family, e.g. gamma (α > 0, δ = 0, γ > 0),
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inverse gamma (α > 0, δ > 0, γ = 0), and inverse Gaussian (α = −1
2 , γ > 0, δ > 0).

Indeed, the class of GIG distributions appears frequently in various fields of applications.

See Eberlein and Hammerstein (2004) for an account on GIG distributions. Recently they

gained popularity also within Bayesian contexts as key ingredients to build some general

distributions on the simplex. See, e.g., Favaro et al. (2011, 2012).

Developing further the construction of Section 2.1 for f being a GIG density, we obtain

ξ(y, φ) =
A(α+ y, δ,

√
γ2 + 2φ)

A(α, δ, γ)
.

It is then straightforward to see that the Poisson weighted distribution generated by a

GIG density f is also GIG, i.e.

f̂(x; y, φ) = GIG(x;α+ y, δ,
√
γ2 + 2φ),

which means that the GIG family is closed under Poisson weighted transformations, an

appealing feature for simulation and estimation purposes. Given this, the corresponding

transition density (3) is then of the form

p(xn−1, xn) =
∞∑
y=0

GIG(xn;α+ y, δ,
√
γ2 + 2φ)Po(y;xn−1φ)

= xα−1
n exp

{
−φ(xn + xn−1)− 1

2

[
δ2

xn
+ γ2xn

]} ∞∑
y=0

(xn−1xn φ)
y

y! A(α+ y, δ,
√
γ2 + 2φ)

.

Some particular cases offering further simplifications are at hand:

• IG–stationary Poisson-driven Markov process. For α = −1
2 , we obtain the inverse Gaus-

sian distribution, i.e. IG(δ, γ) = GIG(−1/2, δ, γ), leading to

ξ(y, φ) =
A(y − 1

2 , δ,
√
γ2 + 2φ)

A(−1
2 , δ, γ)

=

√
2

π
eδγ δy+

1
2

(√
γ2 + 2φ

) 1
2
−y
Ky− 1

2

(
δ
√

2φ+ γ2
)
,

and transition density

p(xn−1, xn) = exp

{
−φ(xn−1 + xn)− 1

2

[
δ2x−1

n + γ2xn
]}

x
− 3

2
n

(
δ√

γ2 + 2φ

) 1
2

∞∑
y=0

(
φ xn−1 xn

√
γ2 + 2φ δ−1

)y

y! 2Ky− 1
2
(δ
√
γ2 + 2φ)

.

• Ga-stationary Poisson-driven Markov process. For δ = 0, the gamma distribution is

recovered, i.e. Ga(α, β) = GIG(α, 0, γ) where β = γ2/2 resulting in

ξ(y, φ) =
βα

Γ(α)

Γ(α+ y)

(β + φ)y+α
,
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with corresponding transition density

p(xn−1, xn) =
exp {−[φ(xn + xn−1) + βxn]}

(φ+ β)−(α+1)/2 φ(α−1)/2

(√
xn
xn−1

)α−1

Iα−1

(
2
√
xn−1xnφ(φ+ β)

)
,

where Iν(x) denotes the modified Bessel function of the first kind.

• IGa-stationary Poisson-driven Markov process. For γ = 0, a GIG random variable reduces

to the inverse gamma distribution, i.e. GIG(−α, δ, 0) = IGa(a, b) with a = −α, b = δ2

2 . This

leads to

ξ(y, φ) = 2
b
a+y
2 φ

a−y
2

Γ(a)
Ky−a(2

√
b φ),

and

p(xn−1, xn) = x−a−1
n exp

{
−φ(xn + xn−1)− b

xn

}(
b

φ

)a
2

∞∑
y=0

(
φ xn−1 xn

√
φ
b

)y

y!2Ky−a(2
√
b φ)

.

The particular case of a = 1/2 corresponds to the positive 1
2–stable distribution.

3 Extension to continuous time

3.1 The general case

A natural question that arises from the definition of f -stationary Poisson-driven Markov

process is whether it can be extended to a continuous-time processes. The crucial point

for deriving such an extension is to verify the resulting transition density (3) also satisfies

the Chapman-Kolmogorov equation (see Karlin and Taylor; 1981), assuring the Markov

property remains valid. This, clearly requires assuming additional conditions, e.g. to

specify the behavior at any infinitesimal time. A typical way to achieve this is to consider

the discrete-time process as embedded into a continuous-time process, and then perform

a suitable time transformation to obtain a representation of the continuous process in the

limit. Alternatively, one could let the underlying time-homogeneous effect enters through

one of the dependency parameters in (3), in a way that the Chapman-Kolmogorov equation

still remains valid. Here we follow the latter approach and consider time homogeneous

transition densities

pt(x0, xt) = exp {−φt(x0 + xt)} f(xt)
∞∑
y=0

(xtx0φt)
y

y!ξ(y, φt)
, (4)

with t �→ φt a continuous function to be chosen such that the Chapman-Kolmogorov

equation is satisfied. In terms of Laplace transforms, we need to find the functional form

of φt, such that

LXt+s|X0
(λ) = EX0 [LXt+s|Xs

(λ)], (5)
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where the Laplace transform of the corresponding transition distribution is given by

LXt|X0
(λ) =

∞∑
y=0

Po(y;x0φt)
ξ(y, φt + λ)

ξ(y, φt)
.

Therefore, provided φt satisfies (5), one can use (4) to define a continuous-time Markov

process.

3.2 Continuous Ga-stationary Poisson-driven Markov process

Let us focus on a particular case of the GIG-stationary Poisson-driven Markov process,

namely the case of the gamma invariant distribution. The appealing feature of this case is

the availability of the explicit functional form for φt that assures the Chapman-Kolmogorov

equation is satisfied. Moreover, as it will be shown in Section 3.3, it represents a gateway

for the construction of other continuous models.

Indeed, as seen in Section 2.2, for the specific case of the Ga-stationary Markov process

we have

ξGa(y, φ) =
ba

Γ(a)

Γ(a+ y)

(b+ φ)y+a
and f̂Ga(x; y, φ) = Ga(x; y + a, b+ φ)

which, within a continuous-time framework, leads to a transition density of the form

pGat (x0, xt)=
exp {−[φt(xt + x0) + bxt]}
(φt + b)−(a+1)/2 φ

(a−1)/2
t

√
xt
x0

a−1

Ia−1

(
2
√
xtx0φt(φt + b)

)
. (6)

It can be shown (Mena and Walker; 2009) that for such a transition density the Chapman-

Kolmogorov equation is satisfied if and only if

φt =
b

ec t − 1
, c > 0. (7)

Given the continuous time and space nature of this process, there are two options for

this Markov process (Xt)t≥0, either it corresponds to the law of a diffusion process, or

it corresponds to the law of a continuous-time jump process. This would give us a full

stochastic characterization of the model and its path continuity properties. In particular,

it is well-known (Karlin and Taylor; 1981) that if

lim
h↓0

1

h
E[|ΔhXt|p | Xt = xt] = 0 for p > 2, and ΔhXt := Xt+h −Xt, (8)

then (Xt)t≥0 cannot have jump discontinuities and, thus, results in a diffusion process

characterized by its infinitesimal conditional mean and variance coefficients

μ(x, t) = lim
h↓0

1

h
Ex[ΔhXt] and σ2(x, t) = lim

h↓0
1

h
Ex[(ΔhXt)

2]. (9)
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Hence, by verifying condition (8), it follows that (Xt)t≥0 is indeed a diffusion process and,

by computing the limits (9), (Xt)t≥0 can be seen as the solution of

dXt = c
(a
b
−Xt

)
dt+

√
2 c

b
Xt dWt, (10)

where (Wt)t≥0 denotes a standard Brownian motion. Note that (10), in turn, represents

a reparametrization of the mean reverting Cox-Ingersoll-Ross (CIR) model (Cox et al.;

1985), commonly used to model nominal interest rates.

Although, expression (6) for the transition density is well known in the literature,

representation (3) turns out to be an attractive alternative. This latter expression is

particularly useful from the perspective of simulation and estimation of a CIR model,

since it only involves gamma and Poisson distributions which are straightforward to handle

computationally. Moreover, by using this model we are able to build up other models by

a simple transformation as will be shown in the next section.

3.3 Models derived from a Ga-Stationary Poisson driven Markov process

Given the previous construction, with a simple transformation we can obtain other classes

of continuous-time Markov processes. In particular, let us assume that we want to con-

struct an f -stationary Poisson-driven Markov process, where f is the density correspond-

ing to a random variable X = h(Z) with Z ∼ Ga(a, b), and h is a R-valued function with

known and differentiable inverse. Notice that this implies that the model can be extended

to cover marginals f with support R.

Letting g(x) := h−1(x) and J (x) := |g′(x)|, we have that f(x) = Ga (g(x); a, b)J (x),

and the corresponding transition probability is given by

pt(x0, xt) =
∞∑
y=0

f̂(xt; y, φt)Po(y; g(x0)φt). (11)

Also, it is easily verified that

ξ(y, φ, g) = ξGa(y, φ) and f̂(x; y, φ) = f̂Ga(g(x); y, φ)J (x), (12)

and the transition (11) can then be simplified as

pt(x0, xt) = e−φt(g(x0)+g(xt))f(xt)
∞∑
y=0

[g(xt) g(x0)φt]
y

y!ξ(y, φt, g)

= pGat (g(x0), g(xt))J (xt),

leading to a large class of tractable continuous f -stationary Poisson-driven Markov pro-

cesses (Xt)t≥0.
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If the transformation h is also twice differentiable, then by applying Itô’s lemma to

(10), the associated transformed diffusion can be seen as solution to

dXt = c

[
h′ (g(Xt))

a− b g(Xt)

b
+ h′′ (g(Xt))

g(Xt)

b

]
dt+ h′ (g(Xt))

√
2 c

b
g(Xt) dWt.

Here, the key aspect to remark, which represents a highly attractive feature in terms

of practical implementation, is that we still have representation (11) for the transition

density with the same φt function as in (7). Furthermore, this derivation allows us to

avoid the challenging task of having to solve the Chapman-Kolmogorov equation directly

for each case. For details on the above derivations see Appendix A.1 (cf. Supporting

information).

To make things more concrete let us consider the case of generalized extreme value

distributions (GEV). A GEV distribution is characterized by three parameters representing

location μ ∈ R, scale σ > 0 and shape ν ∈ R. In symbols, X ∼ GEV(μ, σ, ν). Its support

depends on the value of ν, if ν = 0 the support coincides with R, whereas if ν > 0 or ν < 0

it coincides, respectively, with (μ − σ/ν,∞) and (−∞, μ − σ/ν). These three cases are

often referred to as type I, II and III GEV distributions, a terminology which will also be

adopted here. The cumulative distribution function associated to a GEV random variable

is of the form

F (x;μ, σ, ν) = exp

{
−
(
1 + ν

x− μ

σ

)−1/ν
}
,

where the case ν = 0 is to be understood in the limiting sense. As far as its relation

with other well–known distributions is concerned, a type I GEV coincides with a Gumbel

distribution when ν = 0, whereas from a type II GEV one immediately obtains a Fréchet

distribution by setting ν = 1/α > 0, μ = 0 and applying the change of variable y = σ+x/α.

From the type III GEV, one obtains a Weibull distribution by setting ν = −1/α < 0, μ = 0

and applying the change of variable y = σ − x/α.

Identifying a suitable choice of the function h, we can derive a stationary Poisson–

driven Markov process displaying any of the above distributions (and others) as its sta-

tionary distribution. As an example, in Appendix A.2 (cf. Supporting information) we

present two tables. The first one shows the transform function h, and the resulting condi-

tional distributions for the inverse gamma, the Pareto, the GEV, the Gumbel, the Fréchet,

and the Weibull distributions. The second table contains the corresponding stochastic dif-

ferential equations (SDEs) for each case.

Remark 1. The parametric family of GEV distributions represents a major tool in mod-

eling and measuring events with low probability of appearance. In particular, this family

is widely used in Economics, Finance, Insurance and Risk Management, among other dis-

ciplines. See, for example, Klüppelberg (2002), Embrechts et al. (1997) and Coles (2001).
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In many studies involving GEV distributions, the assumption of time-independent obser-

vations is made, which, however, is often not satisfied due to the persistence of extreme

conditions over consecutive observations. An approach to overcome this issue, under sta-

tionarity assumption, is the one proposed by Coles (2001), changes across time in maxima

are modeled via GEV distributions with parameters specified in terms of polynomials on

time. In a similar direction, Huerta and Sansó (2007) propose, instead of polynomi-

als, to use dynamic linear models. A related, but different, idea is the one proposed by

Nakajima et al. (2012), where innovations of the underlying latent process follow a type

I GEV distribution and induce an observation response again characterized by a type I

GEV distribution. Although some of these approaches are similar in spirit to the one set

forth here, it is important to remark that none of them undertakes the modeling from a

continuous-time perspective. Indeed, to the best of our knowledge, the diffusion models

derived from the GEV-Stationary Poisson driven process construction (Appendix A.2 in

Supporting information) are unique in this sense. Namely, as diffusion models with GEV-

invariant distributions and known transition density. Noteworthy examples, concerning

series derived from the S&P 500 and the Tokyo Stock Exchange Price Index, are analyzed

in Section 5.2 by resorting to such models.

4 Bayesian Estimation

The availability of a tractable expression for the transition density is highly desirable in

the analysis and estimation of Markov processes. In this section we focus on estimation

in the continuous-time case, since the discrete-time case can be easily recovered from it.

First note that, if the choice of f leads to a manageable analytic expression in (3), the

likelihood for a set of observations x = (x1, . . . , xN ) with xn := xtn is given by

Lx(θ) = f(x1;θ)

N∏
n=2

p(xn−1, xn;θ),

where θ denotes, generically, the set of parameters in the marginal f and the ones inherent

to the dependency function φt. Alternatively, if the choice of f does not allow to perform

the summation in (3) analytically, one could still make use of such a representation for

the transition density and obtain an augmented version of the likelihood (Dempster et al.;

1997) via

Laug
x,y (θ) =f(x1;θ)

N∏
n=2

f̂(xn; yn, φτn ,θ)Po (yn;φτnxn−1,θ)

= exp

{
−

N∑
n=2

φτn(xn + xn−1)

}[
N∏

n=1

f(xn;θ)

] [
N∏

n=2

(xnxn−1φτn)
yn

yn!ξ(yn, φτn ;θ)

]
,
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where y = (y2, . . . , yN ) is a vector of latent variables and φτn is the homogeneous time

effect with τn = tn − tn−1. The discrete-time case can be easily recovered when tn = n

and τn = 1 for every n = 2, . . . , N .

Given such a likelihood, the idea now consists in deriving an MCMC algorithm for

Bayesian inference which incorporates it. In order to build a general estimation algorithm

that does not rely on the availability of an analytical expression for (3), we propose a Gibbs

sampler using some slice-technique ideas as those implemented in Kalli et al. (2011); Yau

et al. (1965); Mena et al. (2011), Papaspiliopoulos and Roberts (2008). We can construct

a Gibbs sampler algorithm based on an augmented representation of transition density

(4), given by

pt(x0, xt, u, y) =
1

ψy
I(u < ψy) exp{−φt(xt + x0)} f(xt;θ) (xt x0 φt)

y

y! ξ(y, φt;θ)
,

where y �→ ψy is a positive decreasing invertible function, termed truncation function, e.g.

ψy = e−ηy, for η > 0. More specifically, with the latent variable u uniformly distributed

given y, the augmented likelihood for a set of observations x = (x1, . . . , xN ) at times

(t1, . . . , tN ) can be simplified to

Lx,u,y(θ) = exp

{
−

N∑
n=2

φτn(xn + xn−1)

}[
N∏

n=1

f(xn;θ)

]

×
[

N∏
n=2

(xnxn−1φτn)
yn

yn! ξ(yn, φτn ;θ)ψyn

I(un < ψyn)

]
,

leading to a log-likelihood

lx,u,y(θ) = −
N∑

n=2

φτn(xn + xn−1) +
N∑

n=1

log(f(xn;θ)) +
N∑

n=2

[log(I(un < ψyn))− log(ψyn)]

+
N∑

n=2

{yn log(xnxn−1φτn)− log(yn! ξ(yn, φτn ;θ))} ,

for n = 2, . . . , N , where τn := tn − tn−1, u = (u2, . . . , uN ) and y = (y2, . . . , yN ).

Note that in the above expressions φ could also depend on θ. This expression is quite

appealing in terms of the derivation of the full conditionals within the Gibbs sampler. In

particular, if π denotes the prior distribution on θ, the corresponding full log-posterior

distribution can be considerably simplified by separating the parameters in the stationary

distribution, θ(st), and the parameters referring to the transition probability, but not to the

stationary distribution, θ(tr). For example, in the case of the models in Section 3.3, derived

from the Ga(a, b)-Stationary Poisson driven processes, we have that θ = (θ(st),θ(tr)) with

θ(st) = (a, b) and θ(tr) = c. For the discrete-time case, we would have θ(tr) = φ.

12



The full log-posterior distribution for θ = (θ(st),θ(tr)), under the assumption of inde-

pendent prior distributions for each block of parameters, reduces to

log π(θ(st) | · · · ) ∝ log π(θ(st)) +
N∑

n=1

log(f(xn;θ
(st)))−

N∑
n=2

log(ξ(yn, φτn ;θ)),

and

log π(θ(tr) | · · · ) ∝ log π(θ(tr))+
N∑

n=2

yn log(φτn)−
N∑

n=2

φτn(xn+xn−1)−
N∑

n=2

log(ξ(yn, φτn ;θ)).

Therefore, simulating from the full posteriors can be easily achieved, for instance, via the

adaptive rejection Metropolis sampling (ARMS) algorithm. The full conditional distribu-

tions for the latent variables can be obtained componentwise via

π(un | · · · ) = U(un|0, ψ(yn)), (13)

π(yn | · · · ) ∝ [xn xn−1 φτn ]
yn

yn! ξ(yn, φτn ;θ)ψyn

I(un < ψyn),

for n = 2, . . . , N . Here U(x|a, b) denotes a uniform distribution with parameters a and

b. Note that the above distribution has support yn = 0, . . . , �ψ∗(un)
, where ψ∗ denotes

the inverse of ψ. This is precisely the advantage of using the slice mechanism, namely

that we only need to sample from a finite support instead of a distribution supported on

N. Therefore, a relatively simple Gibbs sampling algorithm can be implemented with the

above full conditional distributions. In Appendix B.1 (cf. Supporting information) details

for their derivation are provided.

Remark 2. It is well-known that transition densities corresponding to stationary diffusion

processes can be represented via spectral decompositions of the type

pt(x0, xt) = f(xt)
∞∑
n=0

e−λntϕn(x0)ϕn(xt),

with {λn}∞n=0, 0 < λ0 < λ1 < · · · eigenvalues and {ϕn(x)}∞n=0 the corresponding eigen-

functions (Karlin and Taylor; 1981). However, the arguments in the above summation

might be negative, thus making its efficient evaluation a challenging numerical problem,

e.g. truncation of the summation becomes meaningless. In contrast, in our models the

arguments in the summation of the corresponding transition density representation (4)

are always positive. Therefore, deterministic or random truncations, such as the one im-

plicitly performed when using the slice method in the proposed Gibbs sampler, are more

reasonable and numerically efficient.

13



5 Illustrations

Over Section 5 we test the model and the estimation procedure. In Section 5.1, we do it by

simulating Poisson-driven Markov processes with GIG and GEV stationary distributions in

discrete and continuous time, respectively. In Section 5.2, we test the model and estimation

over some financial datasets. First, we model the FTSE 100 equity index by means of a

discrete-time GIG-stationary Poisson driven Markov process. Afterwards, we perform a

continuous-time extreme value analysis by applying the model with GEV marginal density

to the minimum daily stock returns of the S&P 500 and the Tokyo Stock Price Index. All

the following results are based on 10000 iterations of the Gibbs sampler, with a burn–in

of 1000 sweeps, and with a simulation every 50 kept.

5.1 Simulated Data

As mentioned above, in order to evaluate the performance of our approach, we test the

model with two specific forms of stationary distributions, a GIG and a GEV. These choices

are done given their relevance in areas such as Economics and Finance. See, e.g., Nakajima

et al. (2012). The GIG case consists in two series of 1,500 simulated observations from a

discrete-time model with GIG(α, δ, γ) invariant distribution, where (α, δ, γ) = (1, 2, 3). In

the first series φ = 1, while in the second one φ = 80. The two series paths appear in

Figure 1. We notice that, as the dependence parameter φ gets larger, cluster structures

appear in the data.

We perform the estimation method on the two data sets. In doing so, we assign

independent unitary exponential priors to δ, γ, and φ, an independent standard normal

prior for α, and then derive the full conditional distributions among with some other

relevant quantities in Appendix B.2 (cf. Supporting information). Additionally, we set

the truncation function ψy equal to e−η y with η = 0.4, this choice allows to have a known

inverse ψ∗ and, therefore, to immediately identify the support of the latent variable y.

To measure the accuracy of the stationary distribution approximation we will use

the Kullback-Leibler divergence (KL-divergence) (see Kullback and Leibler; 1951). Such

a divergence provides a global measure of the fit, avoiding a problem that often arises

when inferring in the GIG family due to the fact that several parametrizations may lead

to similar distributions. The KL-divergence between the real invariant distribution and

the estimated one is 0.0011 for the first data series, and 0.0019 for the second one (see

Figure 2). For the φ parameter, the posterior distribution mode is given by 1.299 in

the first series, and 66.236 in the second one. Hence, there is clear evidence of the good

performance of the proposed model.

An immediate procedure for obtaining a set of m trajectories in new times is available

by, first, simulating m parameter values from the posterior distributions, and, second,

14



Figure 1: Simulation of GIG(1, 2, 3)-stationary Poisson-driven Markov processes. The top

panel displays 1500 simulated data with φ = 1. The bottom repeats the simulation for

φ = 80.

for each one of the m values, simulating a realization of the process starting on the last

observation and parameterized by such a value. As an example, we computed highest

posterior density intervals of probability 0.9 for both series. This appears in Figure 3.

The GEV illustration is in continuous time. We consider two simulated data sets

with 1000 observations, the first one with a type I GEV (or Gumbel) distribution with

density f1(x) = Gum(x;μ, σ), and the second one with a type II GEV distribution with

density f2(x) = GEV(x;μ, σ, ν). These cases are obtained via transformations of unitary

exponential r.v. and, therefore, the dependency function only involves the parameter c,

i.e., φt = 1/(ec t − 1).

We set the parameters θ(st) = (μ, σ) = (1, 4) for type I GEV, θ(st) = (μ, σ, ν) =

(1, 0.8, 0.7) for type II GEV, and θ(tr) = c = 1 in both cases. We assign independent

unitary exponential priors to σ and ν, and an independent standard normal to μ. The

details on the derivation of the relevant posterior distributions appear in the Appendix B.3

(cf. Supporting information).

The KL-divergence between the real invariant distribution and the estimated one is

0.00003 in the I GEV case, and 0.00037 in the II GEV case (see Figure 4). For the

c parameter, the posterior distribution mode is given by 1.044 in the I GEV case, and

0.998 in the II GEV case. Therefore, the evidence suggests the estimation method works

15



0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

E
st

im
at

ed
 d

en
si

ty

Figure 2: Estimated densities for GIG(1, 2, 3)-stationary Poisson-driven Markov processes

with φ = 1 (black-dashed line) and φ = 80 (grey-dotted line). GIG(1, 2, 3) marginal density

is also displayed (black-solid line).
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Figure 3: First 1500 observations simulated from a GIG(1, 2, 3)-stationary Poisson-driven

Markov processes for φ = 1 (top panel), and φ = 80 (bottom panel). The posterior pre-

dictive mode for 500 observations is also shown (in black) together with its 0.9 probability

prediction intervals (shaded-grey). These predictions were computed with 1000 simulated

paths.
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correctly for type I and II GEV distributions, and we can proceed by applying it to real

data.

5.2 Real Data

The models discussed in Sections 2.2 and 3.3 could be an appealing alternative for the

econometric analysis of financial series. Indeed, various common stylised features typically

observed in these type of data, such as heavy tail distributions and volatility clustering

(Cont; 2001), can be well captured with the appropriate choice of stationary density f and

through the non-linear dependence driven by φ. Here we illustrate how they can capture

different features by means of three datasets.

The first dataset consists of 937 daily estimations of the realized volatility of the FTSE

100 equity index, from October 31, 2003 to May 31, 2007. The estimations are those

provided in Heber et al. (2009). The open price, with its corresponding log-returns and

realized volatility are displayed in Figure 5. Given the positive support, cluster pattern,

and heavy tail behavior of the realized volatility, it seems plausible to adopt the discrete-

time model with GIG stationary distribution described in Section 2.2.

The data is first cleaned, one outlier is replaced by a missing value, and with it, around

four percent of the data is missing seemingly completely at random. The missing data

are imputed using the predictive mean matching method provided in Van Buuren and

Groothuis-Oudshoorn (2011) R package. After the cleaning, the estimation method is

implemented on the realized volatility multiplied by 300. The posterior estimate for the

stationary density is displayed in Figure 6. The posterior modes of the model parameters

(α, δ, γ, φ) are equal to (−2.837, 0.173, 0.316, 37.247).

To test the our approach, we break the sample into an estimation period (from October

31, 2003 to December 31, 2006), and a subsequent forecasting period (from January 1,

2007 to May 31, 2007). Next, we predict probability intervals for the forecasting period

with 1000 simulated trajectories. The corresponding intervals appear in Figure 7. Indeed,

92 percent of the sample falls within the prediction intervals of probability 0.95. Therefore,

we may conclude the method is working correctly for this data.

We delve deeper into the performance of our construction by analyzing two further

datasets. We consider the minimum daily stock returns occurring during a month of the

S&P 500 and the Tokyo Stock Price Index (TOPIX). The S&P 500 is one of the most

representative market indexes and rests upon the common stock prices of 500 top publicly

traded American companies. TOPIX measures the market value changes of the common

stocks on the Tokyo Stock Exchange. For our analysis the S&P 500 series has a coverage

period of almost 12 years, from January 3, 2000 to July 9, 2012, whereas the TOPIX data

are based on a 22 years period, from January 1, 1990 to July 31, 2012.
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Figure 4: The left panels display 1000 simulated data from type I (top) and type II

(bottom) GEV models. The right panels depict the corresponding histograms together

with the estimated stationary distributions.
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Figure 5: Logarithm of open prices, returns, and realized volatility series for FTSE 100

during the period of October 31, 2003 to May 31, 2007
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Figure 6: Histogram and density estimate for the stationary distribution based on a GIG–

Stationary Poisson driven model for the FTSE 100 data set.
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Figure 7: FTSE 100 realized volatility series from January 1, 2007 to May 31, 2007, along

with highest posterior density intervals of probability 0.95. The intervals are computed

using the estimation period from October 31, 2003 to December 31, 2006, with 1000

simulated trajectories.
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Figure 8: S&P 500 and TOPIX series of log monthly minima from January 3, 2000 to

July 9, 2012, and from January 1, 1990 to July 31, 2012, respectively. The values are

multiplied by -1 to accommodate the GEV stationary distribution.

In both cases we compute daily returns taking log-differences multiplied by 100 and

then compute the monthly minima. Hence, two series consisting of 151 and 271 obser-

vations are obtained for S&P 500 and TOPIX, respectively. The extracted series are

displayed in Figure 8. Here, it is shown that the heavy tails, clearly observable in both

datasets, can be satisfactorily captured by GEV-stationary Poisson-driven Markov pro-

cesses.

The posterior estimates of the stationary densities are displayed in Figure 9. As to

the estimated model parameters, in the type I GEV case the posterior modes of (μ, σ, c)

are given by (0.721,0.384,0.828) for S&P 500, and by (0.808, 0.412,0.725) for the TOPIX

dataset. In the type II case the posterior modes of the model parameters (μ, σ, ν, c) are

(0.618, 0.372, 0.041, 0.399) for the S&P 500 case, and (0.779, 0.385, 0.152, 0.702) for the

TOPIX dataset.
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Figure 9: Histograms of the S&P 500 (upper panel) and TOPIX (lower panel) series

together with the corresponding estimated stationary densities in the type I (solid line)

and type II (dashed line) GEV cases.
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6 Concluding remarks

We introduced a novel class of strictly stationary Markov models with arbitrary but given

invariant distributions supported on R+. Given a choice of invariant density f , the de-

pendence in the model is introduced via a Poisson weighed density, which in turn leads

to a well defined Markov process. Unlike other existing approaches in the literature, the

proposed construction has a useful representation of the underlying transition probability.

Although some other constructions, like those in Joe (1996),Jørgensen and Song (1996)

and Pitt et al. (2002), allow for great generality, these do not always lead to tractable

forms of the transition probability. Indeed, the type of transition mechanism character-

izing f -stationary Poisson-driven Markov processes leads to an effective MCMC-based

estimation procedure. In particular, this latter aspect is very appealing for the estimation

of continuous-time models, where explicit forms of transition probabilities are not always

available.

We also showed how the construction can be extended to build new stationary models,

whose invariant distributions are supported on other spaces, e.g. taking values on R,

without compromising the transition density representation. Particular emphasis was

placed on the general classes of GIG and GEV stationary distributions, which themselves

constitute interesting choices of models for econometric or financial applications. However,

the construction can be applied to any other distribution supported on R+, not only leading

to alternative approaches for parameter-driven or observation-driven stochastic volatility

modelling, but also in other areas where model stability is a requirement.

Given that the specific dependence of f -stationary Poisson-driven Markov processes is

induced by the choice of invariant density f (besides the fixed contribution already imposed

by the Poisson weighed density) one is naturally inclined to choose f as general as possible.

Two future research directions we plan to pursue to achieve a high degree of generality for

f is to adopt phase-type distributions or nonparametric hierarchical mixtures (Lo; 1984).
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