
Euroleague Shiny
App

Andrea Maver



Summary
Introduction

What is Shiny? Learning
Shiny with NBA data

Euroleague Shiny app

Creating a more
complex application



About me
Andrea Maver
Currently studying Data Science master
degree at Milano Biccoca Univeristy 

Internship as assistant video and data
analyst for Bocconi's basketball team 

Mail
a.maver@campus.unimib.it



What is Shiny
We'll follow a great tutorial by Julia
Wrobel, which expliains Shiny basics and
the steps to build a simple application.

You can find the link to the online tutorial
in the course lecture page, or search the
following link.

http://juliawrobel.com/tutorials/shiny_tutorial_nba.html

http://juliawrobel.com/tutorials/shiny_tutorial_nba.html


Quick recap
User interface
Input options to create the filters
Define the elements the users can interact with
Output the plots in the main panel

Server
Filter the datatabase based on the user's inputs
Create the plots
Consider putting long functions into a Helper file



After learning some of the basics, we'll see how to create a more complex
application, following the classic steps of a data science project, like obtaining
the data, manipulating it to our needs and creating the final product

Euroleague app - Overview

To check the application follow the link
https://andreamaver.shinyapps.io/EuroleagueApp/

https://andreamaver.shinyapps.io/EuroleagueApp/


Obtaining
the data

Pre-made dataset
Sometimes organizations will provide you with some clean data.
Otherwise, look online if someones has already created a dataset
like the one you need. Websites like Kaggle have a huge amount
of datasets available to download about basically any subject.

API (Application Programming Interface)
Set of functions that allow you to interact with the databases that a
company might make available to download.
You can be sure about the origin and the quality of data, but there
might be some limitations on the quantity of data to be
downloaded and might require a (paid) subscription.

Scraping
Obtain non structured data through the source code of web
pages (HTML).
It's the most time consuming way because a lot of cleaning is
required to make the data structured and usable.



Euroleague
APIs

Searching for a way to interact with the Euroleague APIs, I
found some pages full of JSON files that contained the
information I needed, but no official documentation.

Example API page: https://live.euroleague.net/api/points?
gamecode=1&seasoncode=E2021

In the 'eurolig' R package there are some functions to
interact with those pages, but some changes needed to be
made, beacuse the old URLs aren't working anymore.
Github: https://github.com/solmos/eurolig

After obtaining the data we can start manipulating it, so
filter out unwanted columns and creating new ones

https://live.euroleague.net/api/points?gamecode=1&seasoncode=E2021
https://github.com/solmos/eurolig


Manipulating
data

To create some useful filters, we need to design
new columns using the ones we have available.
Most of them require simple groupings or if-else
conditions.

Made or missed shot
Distance from the basket
Court side (left or right)
Home or away
Win or loss
Game round (regular season, playoffs or final four)

Also, a new custom dataset is created to plot the
network assist in a more efficient way.



Building
the UI

Two tab panels, one for players and one for teams.

A sidebar containing all the filters available to modify your
visualizations. The insertion of those filters was made
possible by the manipulation of the dataframe in the
previous step.

The most important part: the main panel, containing four
different tabs, one for each type of plot.
In this section UI and server interact and we output the
plot functions with a spinner loader for calculations.

The same code is repeated for the Teams page, but beware
that all the elements you use must be distinct from one
another.



Building
the server

The file contains all the output functions for the different
visualizations.
Each one of them is composed by a filtering of the dataset
based on the UI inputs and the actual plotting function.

Some of them are simple ggplot or plotly functions
integrated with the lines that form the court, other were
taken from the book 'Basketball data science with
applications in R' by Zuccolotto and Manisera and modified
to fit Euroleague data instead of NBA's.

The same visualizations with minor tweaks are present in
the Teams tab.



Helper file
To make the server code slimmer, some functions were
instantiated in the helpers file.

A black theme for the heatmaps and the plot of the court
lines.
Binning functions to group the data and create the
dumbbell plots.
The adapted functions from the book.



Some useful
links Find inspiration:

https://github.com/toddwschneider/ballr (also some great code here!)
https://buckets.peterbeshai.com/app/#/playerView/201935_2015?colors=six
https://seriecgoldshiny.shinyapps.io/Final/
https://baslare.net/elChart.html

Implementation and some code:
http://juliawrobel.com/tutorials/shiny_tutorial_nba.html
https://github.com/solmos/eurolig
https://github.com/sndmrc/BasketballAnalyzeR
https://bodai.unibs.it/bdsports/wp-
content/uploads/sites/2/2020/04/Basketball-Data-Science-code-April-2020.pdf
https://github.com/rstudio/cheatsheets/blob/main/data-visualization-2.1.pdf
https://shinyapps.dreamrs.fr/shinyWidgets/

https://github.com/toddwschneider/ballr
https://buckets.peterbeshai.com/app/#/playerView/201935_2015?colors=six
https://seriecgoldshiny.shinyapps.io/Final/
https://baslare.net/elChart.html
http://juliawrobel.com/tutorials/shiny_tutorial_nba.html
https://github.com/solmos/eurolig
https://github.com/sndmrc/BasketballAnalyzeR
https://bodai.unibs.it/bdsports/wp-content/uploads/sites/2/2020/04/Basketball-Data-Science-code-April-2020.pdf
https://github.com/rstudio/cheatsheets/blob/main/data-visualization-2.1.pdf
https://shinyapps.dreamrs.fr/shinyWidgets/


If you have any questions, please feel free to ask

Thank you for your kind
attention


