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Practitioners using quantitative factor models have struggled 
since the 2008 financial crisis, and many traditional factors have 
ceased to be profitable. As a result, some market participants 

are looking beyond the traditional quantitative approaches to stock 
selection. As popular quantitative factors have become less reliable, 
many practitioners are developing models that can dynamically “learn” 
from past data. Dynamic models and ad hoc factor-timing approaches, 
however, face some valid criticisms (see, e.g., Asness 2016). Investors 
have used econometric techniques, such as regression, for many years, 
but few have found success with dynamic models based purely on 
these techniques. The causes may be that financial data are inherently 
noisy, that factors can be multicollinear, and that relationships between 
factors and returns can be variable, nonlinear, and/or contextual. These 
features make it difficult for a linear regression model to estimate any 
dynamic relationships between potential predictors and expected 
returns.

We believe machine learning algorithms (MLAs) may provide a better 
approach than linear models. These techniques have been available for 
a long time. Indeed, Frank Rosenblatt invented the perceptron, a neural 
network that could classify images, in 1957. Over the ensuing decades, 
a series of developments enabled advances in practical machine learn-
ing and its utility:

 •  Computing power has increased roughly according to Moore’s Law 
since the 1970s.

 •  Data availability has increased exponentially, and storage costs have 
decreased significantly.

 •  Novel techniques from disciplines such as computer science and 
statistics, in conjunction with increased computing power and data 
availability, have led to powerful new algorithms.

Machine learning algorithms have proven to be more effective than 
traditional statistical techniques in many areas outside finance. A few 
examples are voice recognition (e.g., as used by Siri and Alexa), image 
recognition (e.g., as in self-driving cars), and recommendation engines 
(e.g., as used by Amazon). Deep learning algorithms now exceed human 
accuracy for many image classification tasks. An MLA called Deep Blue 
first beat the reigning human chess champion, Garry Kasparov, in 1997. 

Machine learning is an increasingly 
important and controversial topic 
in quantitative finance. A lively 
debate persists as to whether 
machine learning techniques can 
be practical investment tools. 
Although machine learning algo-
rithms can uncover subtle, contex-
tual, and nonlinear relationships, 
overfitting poses a major challenge 
when one is trying to extract 
signals from noisy historical data. 
We describe some of the basic 
concepts of machine learning and 
provide a simple example of how 
investors can use machine learning 
techniques to forecast the cross-
section of stock returns while 
limiting the risk of overfitting.
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It used “brute force” computational speed to evalu-
ate thousands of possible moves and countermoves. 
More recently, a deep learning neural network called 
AlphaZero used pattern recognition techniques to 
become the world chess champion. Unlike Deep Blue, 
which was programmed to assess the value of various 
positions, AlphaZero was given no domain knowledge 
yet was able to teach itself to become a chess master 
in only four hours by playing against itself.

What Is Machine Learning?
Machine learning is an umbrella term for methods and 
algorithms that allow machines to uncover patterns 
without explicit programming instructions. In the 
case of stock selection, modelers supply a variety of 
factors that might help in forecasting future returns 
and use MLAs to learn which factors matter and how 
they are related to future returns. Machine learning 
offers a natural way to combine many weak sources 
of information into a composite investment signal that 
is stronger than any of its sources.

In recent years, computer scientists and statisticians 
have developed and refined several machine learn-
ing algorithms—such as gradient boosted regression 
trees, artificial neural networks, random forests, and 
support vector machines (see Appendix A for defini-
tions). Most of these algorithms have two important 
properties:

1. They can uncover complex patterns and hidden 
relationships, including nonlinear and contextual 
relationships that are often difficult or impossible 
to detect with linear algorithms.

2. They are often more effective than linear regres-
sions in the presence of multicollinearity.

Although research on the application of machine 
learning techniques in finance is relatively active, 
many articles in the field focus on the application of 
a specific algorithm. Wang and Luo (2012) provided 
a detailed overview of using the AdaBoost algorithm 
to forecast equity returns. Batres-Estrada (2015) and 
Takeuchi and Lee (2013) explored the use of deep 
learning to forecast financial time series. Moritz and 
Zimmerman (2016) used tree-based models to predict 
portfolio returns. Wang and Luo (2014) demonstrated 
that forecast combinations from different training 
windows can be effective. Heaton, Polson, and Witte 
(2017) discussed the application of deep learning 
models to smart indexing. Alberg and Lipton (2017) 
proposed forecasting company fundamentals (e.g., 
earnings or sales) rather than returns—because the 

signal-to-noise ratio is higher when forecasting 
fundamentals—which allowed them to use complex 
machine learning models.

Several articles have studied the benefits of non-
linear models for timing factor returns. Miller, Ooi, 
Li, and Giamouridis (2013) and Miller, Li, Zhou, and 
Giamouridis (2015) found that classification trees can 
be more effective than linear regressions when pre-
dicting factor returns. They also presented evidence 
that combining linear and nonlinear models can be 
even more effective. Furthermore, they demonstrated 
that cross-sectional models that incorporate these 
factor forecasts can outperform static factor models. 
We reached similar conclusions in this study, but we 
followed a different approach. Instead of explicitly 
forecasting returns of univariate long–short factor 
portfolios, we used cross-sectional factor scores (char-
acteristics) to predict the cross-section of returns.

Gu, Kelly, and Xiu (2018) examined the efficacy of 
machine learning techniques in the context of asset 
pricing. The authors forecasted individual stock 
returns with a large set of company characteristics 
and macro variables. Because they used total returns 
rather than excess returns as the dependent variable, 
they jointly forecasted the cross-section of expected 
returns and the equity premium. They examined 
how various machine learning methods perform and 
found that nonlinear estimators result in significantly 
improved accuracy when compared with ordinary 
least-squares (OLS) regressions. They attributed 
the improvement to the ability of machine learning 
models to uncover nonlinear patterns and to their 
robustness to multicollinear predictors. Although 
our conclusions are similar, we focused solely on 
the cross-section of excess returns independent of 
the equity risk premium. Accordingly, we used only 
individual equity characteristics and excluded macro 
variables. We believe this approach reduces noise 
and the risk of overfitting. In agreement with Gu et al. 
(2018), we found that many machine learning algo-
rithms can outperform linear regression, but rather 
than concentrating on the performance of individual 
algorithms, we highlight the benefits of combining 
forecasts generated from different algorithms and 
training windows. We found that forecast combina-
tions outperform constituents in the United States 
and in other regions. 

The Perils of Overfitting
Overfitting occurs when a model picks up noise 
instead of signals. Overfitted models have good 
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in-sample performance but little predictability when 
applied to unseen data. Although machine learn-
ing techniques can uncover subtle patterns in past 
data, overfitting presents a major challenge. When 
one is training an algorithm, finding patterns in the 
data that also generalize out of sample is impor-
tant. Relationships between factors and returns are 
frequently noisy, and many potential factors exist, 
which increases the dimensionality of the problem. In 
contrast, many machine learning applications in other 
fields, such as image recognition, have high signal-to-
noise ratios. For example, some image classification 
tasks (such as classifying dogs versus cats) have error 
rates below 1%. 

Because of the low signal-to-noise ratios in forecast-
ing stock returns, avoiding overfitting is particularly 
important. Figure 1 shows in-sample and out-of-sam-
ple error rates for a gradient boosted regression tree 
classifier with the use of simulated noisy data. The in-
sample error is always lower than the out-of-sample 
error. As the number of boosting iterations increases, 
the errors always decline in sample, and they become 
negligible after around 400 boosting iterations. In 
sharp contrast, the error rate in the holdout sample 
first decreases but then increases after approximately 
50 boosting iterations. This point is where the algo-
rithm begins to overfit the data.

The simulated example has a relatively high signal-
to-noise ratio when compared with forecasting 
stock returns. With lower signal-to-noise ratios, 

out-of-sample results diverge much faster from in-
sample results.

Nevertheless, this example illustrates the per-
ils of evaluating predictive performance on the 
basis of the training set: Overfitting can make the 
results look much better than they are likely to 
be in any real-world application. Next, we discuss 
two approaches that can help mitigate the perils 
of overfitting: forecast combinations and feature 
engineering.

Forecast Combinations. Many successful 
machine learning algorithms are ensemble algorithms 
that rely on bagging (e.g., random forests) or boosting 
(e.g., AdaBoost).1 These algorithms generate many 
forecasts from weak learners and then combine the 
forecasts to form a strong learner. Dropout (see 
Appendix A and Srivastava and Hinton 2014), a tool 
related to these ensemble algorithms that is used to 
prevent overfitting in neural networks, also harnesses 
concepts of model averaging. We believe we can 
achieve even greater diversity by combining forecasts 
from different classes of algorithms and by training 
them on different subsets of the data. If many differ-
ent algorithms trained on many different training sets 
all find similar patterns and reach similar conclusions, 
we can be more confident that the forecast is robust 
and not the result of overfitting.

The efficacy of forecast combinations has been 
widely documented in the statistical literature. 

Figure 1. In-Sample/
Out-of-Sample Error 
vs. Degree of Fit: 
Gradient Boosted 
Tree Classifier
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Clemen (1989) summarized the empirical evidence on 
forecast combinations as early as 1989:

The results have been virtually unanimous: 
combining multiple forecasts leads to increased 
forecast accuracy. . . . [I]n many cases one can 
make dramatic performance improvements by 
simply averaging the forecasts. 

Makridakis and Hibon (2000), in an analysis of a 
competition to forecast 3,003 time series, showed 
that forecast combinations usually outperform even 
the best constituent forecasts. Timmermann (2006) 
provided a framework for determining when forecast 
combinations are likely to be effective—namely, when 
different forecasters use different data and/or tech-
niques and the forecast biases are relatively uncorre-
lated. In these circumstances, forecast combinations 
can provide both more information and less noise.

Of course, traditional multifactor models already con-
tain multiple forecasts because each factor implies a 
distinct forecast. The approach recommended here, 
however, takes this concept much further by includ-
ing many different forecasting techniques and training 
sets as well as numerous factors.

We might increase forecast diversity along the follow-
ing several dimensions.

Combining forecasts from different classes of 
algorithms. Many machine learning algorithms—
especially ensemble algorithms (e.g., random for-
ests)—already use forecast combinations to yield 
better results than single algorithms can produce. 
By also combining forecasts from different classes 
of algorithms, we should be able to detect different 
types of relationships between features and labels.

Combining forecasts based on different train-
ing windows. Forecasts from different estimation 
windows can pick up different market conditions 
and often have low correlations. Windows can be 
defined on a temporal, seasonal, or conditional basis. 
Combining forecasts from different training windows 
also reduces forecast variance, potentially increasing 
risk-adjusted returns.

Combining forecasts that use different factor 
libraries. By dividing a large factor library into sev-
eral subsets, algorithms can explore a greater variety 
of patterns, potentially leading to new insights.

Combining forecasts for different horizons.  
Different factors are important over different forecast 

horizons. For example, fundamental factors are usually 
more important over long horizons, whereas technical 
factors tend to be more predictive for short horizons.

Feature Engineering. Feature engineering uses 
domain knowledge to structure a problem so that 
it is amenable to machine learning solutions. Such 
engineering requires considerable expertise and can 
be difficult and time-consuming, but it is essential 
for developing robust forecasts. Feature engineer-
ing determines which problems we ultimately ask 
the algorithms to solve and which algorithms we 
use to solve them. It is one of the most effective 
ways to overcome overfitting because it allows us to 
increase the signal-to-noise ratio before training the 
algorithms.

Feature engineering is where domain knowledge 
flows into the process. In the context of stock selec-
tion, it can decide such questions as the following: 
What are we trying to forecast? Which algorithms are 
likely to be most effective? Which training windows 
are likely to be most informative? How should we 
standardize factors and returns? And which factors 
are likely to provide valuable information?

In the material that follows, we briefly discuss some 
of these issues. The goal is to provide an overview 
rather than a comprehensive discussion. The possible 
variations among these decisions are as far ranging 
as the imaginations and expertise of financial model-
ers. Ultimately, however, the quality of the decisions 
determines the success of the effort.

What are we forecasting? To limit the risk of over-
fitting, often the best approach is to forecast discrete 
variables with machine learning algorithms.2 Rather 
than predicting returns, as we would with linear 
regression, MLAs usually predict categories—that 
is, outperformers versus underperformers—which 
tend to be less noisy than returns. Users may want to 
select an additional category, such as market perfor-
mance, or even more categories to reflect various lev-
els of performance, but each new category increases 
the risk of overfitting and may provide little additional 
accuracy for data that are as noisy as stock returns.

After the selection of categories, a second decision 
involves how to define these categories. If we are 
interested in the cross-section of returns, we would 
define categories by dividing stocks into outperform-
ers and underperformers for each date in the training 
set. We might also define these categories within 
sectors or industries to reduce noise. Standardizing 
the factors (i.e., characteristics) in a similar fashion 
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is frequently advisable. Most investors want to 
outperform net of risk, so a natural approach is to 
define performance categories for risk-adjusted 
excess returns. These categories might include simple 
volatility-adjusted returns or alphas from an appropri-
ate risk model, such as the capital asset pricing model, 
the Carhart (1997) four-factor model, the Fama and 
French (2017) five-factor model, or the MSCI-Barra 
model described in Morozov, Wang, and Borda 
(2012). Using risk-adjusted returns can improve the 
signal-to-noise ratio and thereby enhance forecasts 
across both time and market sectors.

A third decision involves the forecast horizon. 
Selecting a forecast horizon implies optimizing for 
that horizon. Short forecast horizons are suited to 
low-capacity, high-turnover strategies; long hori-
zons are more suited to high-capacity, low-turnover 
strategies. Short horizons offer more training periods, 
which are helpful when trying to uncover subtle 
patterns in noisy data. The forecast horizon should 
also reflect the frequency of the underlying predictive 
data (or factors). For most stock selection applica-
tions, an appropriate forecast horizon runs from daily 
to quarterly.

Which algorithms should we use?  Wikipedia lists 
more than 100 machine learning methods, and the list 
is growing all the time.3 Machine learning is a rapidly 
evolving field, and discussing the pros and cons of 
so many algorithms is well beyond the scope of this 
article. In general, however, we want our final fore-
cast to incorporate a variety of algorithms that use a 
variety of techniques. Knowing the exact relationship 
between returns and features is impossible ex ante. 
Combining forecasts from different classes of algo-
rithms provides insurance against misspecification. 
This aspect is particularly important when dealing 
with financial data, in which the signal-to-noise ratio 
is low and relationships are difficult to verify empiri-
cally with a high degree of certainty.

Ensemble methods have shown promise as applied 
to financial data and in many other fields. The goal is 
to combine weak learners, either by equal-weighting 
forecasts (bagging) or by accuracy-weighting fore-
casts (boosting), to produce a strong learner. The 
strong learner tends to do better than any of its 
constituent weak learners. Both boosting and bag-
ging can address the bias versus variance trade-off 
encountered by all supervised learning problems. 
Bias is caused when the estimation method does not 
effectively capture fundamental relationships in the 
data (underfitting). Variance is an error arising from 

small changes in the training set, which means the 
estimator does not learn relationships that generalize 
out of sample (overfitting).

Bootstrap aggregation (bagging) independently fits 
estimators such as decision trees (weak learners) 
onto random subsets of the training set. Each of the 
weak learners is overfitted, but errors resulting from 
overfitting tend to be reduced when weak learners 
are combined to create a strong learner. Boosting 
sequentially fits estimators on the training set and 
gives more weight to misclassified observations in 
successive boosting rounds (see Schapire 1990). The 
strong learner is an accuracy-weighted average of the 
weak learners. By giving more weight to more suc-
cessful learners, boosting can address bias. If we allow 
the boosting algorithm to overweight successful weak 
learners too aggressively, however, this benefit will 
be more than offset by increasing variance. Because 
of this trade-off, boosting algorithms tend to require 
more careful parameter tuning than bagging algorithms 
and conservative learning rates tend to be preferable 
for stock selection out of sample. Most boosting algo-
rithms also take longer to train than bagging algorithms 
because they often must be run sequentially whereas 
bagging algorithms can be run in parallel.

Boosting and bagging ensembles can harness diverse 
base algorithms as their weak learners. Different algo-
rithms capture different features of the data. Some 
algorithms are relatively simple and linear; others are 
extremely complex and can potentially uncover highly 
nonlinear relationships. Furthermore, although we 
often want to capture complexity, the more complex 
algorithms typically require a higher signal-to-noise 
ratio than simple algorithms and/or more training data 
to learn effectively. The aim of using multiple algo-
rithms and approaches is to capture relationships that 
are both simple and complex while minimizing the risk 
of overfitting. 

In general, modelers should focus on algorithms that 
have demonstrated prior success with noisy data 
and that have well-known benefits and pitfalls. As a 
practical matter, a good idea is to use algorithms that 
are available in software libraries and that have been 
tested in a variety of applications. An off-the-shelf 
algorithm is not likely to be appropriate, however, 
without further parameter tuning. Because the signal-
to-noise ratio tends to be low for stock selection, 
algorithms often need to be parameterized in a way 
that severely limits the algorithm’s potential to overfit. 
As with all investment strategies, practitioners should 
avoid optimizing models in sample.4 
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Which training windows should we use? As a 
general rule, we want to train machine learning 
algorithms on data that are likely to be representative 
of the expected future environment. For example, we 
may want to use training sets that are close in time 
to the expected environment, exhibit similar macro-
economic conditions (e.g., valuation levels, liquidity 
conditions, or growth dynamics), or occur at the same 
time of the year (to capture seasonality). Conversely, 
if we are uncertain about the expected future 
environment, we will want to train the algorithms on 
the largest, longest, and broadest dataset possible to 
capture a variety of environments. Such an approach 
will require longer runtimes, however, and may fail to 
capture period-specific patterns.

Another consideration is cross-sectional varia-
tion in patterns. For example, if we think different 
regions or sectors will exhibit different relation-
ships between factors and returns, we will want to 
train the algorithms separately on data from these 
different regions or sectors. Conversely, the risk of 
overfitting grows when we make the training sets 
too granular. For example, it probably makes sense 
to have separate training sets for US stocks and 
Japanese stocks but not for US tech stocks and 
Japanese auto stocks.

Which factors should we include? Domain knowl-
edge is critical both for selecting factors and for 
structuring them to increase the signal-to-noise 
ratio. To minimize runtimes and to limit overfitting, 
practitioners should feed algorithms only data that 
are likely to be related to future stocks returns. Such 
data would include factors related to future economic 
success (fundamental factors) and factors related to 
future supply and demand (technical factors). Because 
MLAs are usually quite good at handling collinear 
data, we can certainly include many similar factors 
if we are uncertain as to which ones are most rel-
evant, although piling on too many similar factors will 
increase runtime.

Domain knowledge also helps when structuring data 
to maximize the signal-to-noise ratio. For example, if 
the goal is to select stocks, not to pick industries or 
sectors, we should adjust the data accordingly. For 
many factors, forcing them to be sector or indus-
try neutral reduces variance without significantly 
decreasing average factor returns (see Asness, Porter, 
and Stevens 2000). Hence, neutralizing factors at the 
industry level can increase the signal-to-noise ratio, 
making it easier for algorithms to learn relationships 
between factors and expected returns.5 

An Example
In this section, we describe an approach to stock 
selection that uses some of the techniques discussed 
previously in a cross-sectional setting. Our goal is to 
demonstrate the general power of machine learning 
for stock selection, not to argue for the effectiveness 
of any specific decision related to feature engineering. 
Practitioners have plenty of room to apply their own 
expertise and potentially achieve even better results 
than those reported here.

Data. Table 1 provides summary statistics for 
our sample. It includes small-, medium-, and large-
capitalization stocks, with an average of 5,907 
stocks per month, in 22 developed markets. Our 
factor library consisted of 194 factors (i.e., company 
characteristics) that were assembled by IHS Markit 
from diverse sources. We included 21 deep value 
factors, 18 relative value factors, 10 factors focused 
on earnings quality, 26 factors capturing earnings 
momentum, 26 factors focused on historical growth, 
35 liquidity factors, 29 management quality and prof-
itability factors, and 29 technical price-based factors. 
Excess returns are defined as returns above the risk-
free rate and come from Barra. Our sample period 
is 1994 through 2016, with walk-forward forecasts 
beginning in 2004 (to allow a 10-year training period). 
The forecast horizon and data frequency are both 
monthly. Combining forecasts with various horizons 
may be beneficial, but we focused on a monthly 
horizon to provide an adequate training set and to be 
consistent with typical factor research. We allowed 
two days between model estimation and trading to 
account for runtime and parameter tuning.

Feature engineering. Figure 2 outlines the general 
workflow executed each month in a walk-forward 
framework. We started by defining three training sets:

1. The recent training set included all data from the 
prior 12 months.

2. The seasonal training set included all data from 
the same calendar month over the prior 10 years.

3. The hedge training set included data from the 
bottom half of performance over the prior 
10 years based on the first two training sets.

A single month could appear in more than one 
training set. For instance, the same month last year 
appears in both the recent and seasonal training sets.

We developed these training sets and trained 
our algorithms independently for four separate 
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regions: the United States, Japan, Europe, and Asia ex 
Japan. All factors are percentiles ranked within region 
and industry buckets for each date. We created 
risk-adjusted excess returns by dividing each stock’s 
excess return by its past 100-day volatility. We clas-
sified stocks as winners or losers by splitting them in 
half within region/industry buckets based on their 
risk-adjusted returns.

In the next step, we trained four different algorithms 
on each of the regional training sets—a bagging 
estimator that used AdaBoost, a gradient boosted 
classification and regression tree (GBRT) algorithm, a 
neural network, and a bagging estimator that used a 
support vector machine.

A bagging estimator that used AdaBoost as the 
base learner. AdaBoost uses decision stumps, or 
trees with a maximum depth of 1, as the base estima-
tors. We ran the algorithm for a total of 50 boosting 
iterations and with a learning rate of 1. We then 
used a bagging estimator that combined 20 random 
AdaBoost forecasts. The algorithm was implemented 
with the scikit-learn library. 

A gradient boosted regression tree algorithm. We 
used an XGBoost classifier for the GBRT composite 
forecasts. The learning rate was 0.05, and we used 
300 boosting iterations. We also set the maximum 
depth of the trees to 3 to limit overfitting. In general, 
we found that low learning rates lead to good results 

Table 1. Summary Statistics, 2004–2016 

Jurisdiction
Average  

No. of Stocks

Average 
Company Size 

($ billions)
Average Weight in 

Global Portfolio

Australia 206 4.6 3.5%

Austria 28 3.6 0.5

Belgium 41 7.1 0.7

Germany 110 11.5 1.9

Denmark 40 4.7 0.7

Spain 65 9.9 1.1

Finland 39 4.8 0.7

France 114 14.7 1.9

Great Britain 356 8.0 6.0

Greece 41 2.2 0.7

Hong Kong SAR 287 4.7 4.9

Ireland 16 5.7 0.3

Italy 75 8.1 1.3

Japan 1,052 3.6 17.8

Netherlands 39 8.8 0.7

New Zealand 26 1.7 0.4

Norway 62 3.7 1.0

Portugal 16 4.7 0.3

Singapore 101 3.1 1.7

Sweden 87 5.1 1.5

Switzerland 56 17.1 0.9

United States 3,050 5.7 51.6

Notes: The average number of stocks represents the average number of securities in the sample each 
month. US data start in 1988; all other data start in 1994.

https://www.cfainstitute.org
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as long as they are compensated for by a large num-
ber of boosting iterations. A large number of boosting 
iterations does, however, increase runtime.

A neural network. We implemented a multilayer 
perceptron with the TensorFlow library. We used four 
layers, including a bottleneck layer, to limit overfit-
ting. Furthermore, we applied a dropout of 20% after 
the first layer. We used “tanh” activation functions 
because we found their prediction accuracy with our 
training set to be consistently better than the gener-
ally preferred “ReLU” activation functions.

A bagging estimator using a support vector 
machine as the base learner. We used a radial basis 
function (RBF) kernel, and we combined forecasts 
from 20 support vector machine (SVM) models 
using the scikit-learn bagging estimator. Calculation 
of predicted class probability is computationally 
expensive for SVMs, so instead, we used the decision 
function output, which tends to be proportional to 
probabilities.

AdaBoost and SVMs are relatively slow and hard 
to parallelize. Using these MLAs as base learners in 
bagging (as opposed to boosting) estimators results 
in significantly shorter runtimes because they can 
run on multiple CPUs. For each class of algorithm, we 
used the same parameters across training windows. 
Parameters were chosen in the period prior to 2004.

For each of the 12 models (3 training windows × 4 
MLAs), we got a probability of outperformance for 
each stock and month (these are continuous vari-
ables). In the final step, we percentile-ranked the 
12 predicted class probabilities within each region/
industry bucket for each date and averaged them to 
derive the composite machine learning signals.6

We also analyzed two benchmark models. The first 
used predictions from an OLS model trained on a 
12-month rolling window with the same factors as the 
other machine learning models and returns that were 
z-scored by date, region, and industry. In the second, 
we recursively determined the 10 factors with the 
highest Sharpe ratios up to each point in time in each 
region by simulating decile spreads for each factor; 
for each stock, we then averaged the scores of the 
top 10 factors. In unreported results, we found that 
equal-weighting all candidate factors performed 
significantly worse, so we decided to use the more 
challenging benchmark.

Results. We divided stocks into deciles based on 
the composite signals. We then calculated decile 
spreads by taking the difference in return between 
the top and bottom deciles (i.e., a long–short portfo-
lio). For one variant, we equal-weighted the stocks 
in each decile; for the other variant, we scaled our 
positions by each stock’s historical 100-day standard 
deviation.

Figure 2. Example 
Learning Workflow
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Notes: For each month, three training samples were created from historical data: recent, 
seasonal, and hedge. Next, we applied feature engineering that included standardizing features 
within region and industry. We also categorized stocks as winners or losers in region/indus-
try buckets. Next, we trained our MLAs on the historical data. When new feature data were 
received, we applied the same feature-engineering steps that were applied to the training set 
and generated forecasts with each of our previously trained algorithms. 
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Figure 3 shows the benefit of combining forecasts 
in the US zone and the rest of the world (ROW)7 
based on cumulative decile spread returns. In both 
geographical areas, the heavy line shows the com-
posite decile spread and the thinner lines show decile 
spreads grouped by algorithm or by training window. 
In these graphs, we show the risk-weighted variant, 
but results for the equal-weighted variant are qualita-
tively similar. Results are strong for all algorithms and 
training sets, but results for the composite forecasts 

are even stronger. The benefits of diversifying across 
training windows is particularly evident.

In Figure 3, we used decile spreads to measure the 
performance of various forecasting approaches. 
Because of their nonlinear nature, machine learning 
algorithms do not have interpretable coefficients, but 
we can frequently tease out which features con-
tribute most to the forecasts. Figure 4 shows aver-
age feature importance (for the 10 most important 

Figure 3. Cumulative 
Performance of 
Machine Learning 
Forecasts by Algorithm 
and Training Window 
(Risk Weighted), 
2004–2016

3.0

2.5

2.0

1.5

1.0

0.5

0
04 07 10 1306 09 12 15 161405 08 11

AdaBoost Composite

Tree Boos�ng Composite

Neural Network Composite

SVM Composite

Composite

A. US Algorithms

2.5

2.0

1.5

1.0

0.5

0
04 07 10 1306 09 12 15 161405 08 11

AdaBoost Composite

Tree Boos�ng Composite

Neural Network Composite

SVM Composite

Composite

B. ROW Algorithms

(continued)
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features) in a gradient boosted classification tree for 
the US zone, which was assessed by examining how 
often a feature appeared in a tree and at what level.8 
Because trees are conditional, this metric does not 
indicate the sign of the relationship. Although it has 
many limitations, this type of analysis can still provide 
important insights and also help practitioners decide 
whether an algorithm seems reasonable.

We report rank ICs (information coefficients) and 
t-statistics for all models and the composite in 
Table 2. The IC measures the Spearman rank cor-
relation between stock rankings and future returns 
across the full range of forecasts, not just the extreme 
deciles. As Table 2 shows, the composite outper-
formed all constituent algorithm/training window 
combinations, which illustrates the benefit of forecast 

Figure 3. Cumulative 
Performance of 
Machine Learning 
Forecasts by Algorithm 
and Training Window 
(Risk Weighted), 
2004–2016 
(continued)
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subsets of forecasts. Stocks in each decile were weighted by the inverse of their 100-day 
volatility. The algorithm subsets used all training windows for the given algorithm; the training 
window subsets used all algorithms for the given training window. The composite forecast used 
all training windows and algorithms.
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combinations. These results are consistent with those 
presented in Figure 3; that is, the ML composite 
provided better results than any individual algorithm/
training window combination. It also handily out-
performed the OLS benchmark and a benchmark 
that equal-weighted the 10 factors with the highest 
Sharpe ratios.

Table 3 provides correlations between certain MLA 
portfolios and the Fama and French (1992) market 
risk factor (MKT). Interestingly, the equal-weighted 
US decile spreads have high average negative cor-
relations with the market, implying that the portfolio 
is often long low-beta names and short high-beta 
names. As we will discuss later, however, these cor-
relations and exposures vary considerably over time. 
When we use risk weighting, we get much smaller 
average correlations with the market factor. Because 
our forecasts tend to short high-volatility securities, 
the risk-weighted position sizing leads to a portfolio 
that is slightly net long in dollar terms, thus counter-
acting much of the negative average correlation with 
the market.

Table 4 shows how the average monthly performance 
of various decile spreads is related to the original 
three Fama–French factors—MKT, SMB (small minus 
big), and HML (high book-to-market ratio minus 
low book-to-market ratio)—and the Carhart (1997) 
momentum factor (MOM). In Panel A, results are 
gross of transaction costs; in Panel B, results are net 
of transaction costs. In Panel A, the excess returns 
and alphas tend to be larger for the risk-weighted 
portfolios, both in the US zone and in the ROW. This 
outcome is not surprising because we trained the 
MLAs to forecast returns scaled by their standard 
deviations. The equal-weighted decile spreads show 
highly significant returns and alphas, but their nega-
tive market exposure reduces their raw returns. This 
aspect is also reflected in the relatively high R2 for 
the US zone equal-weighted portfolio, indicating that 
much of this portfolio’s variance is explained by the 
four risk factors, most notably the market factor. 

Table 4 also includes results for a benchmark strategy 
that employed the same features but used linear 
regression to forecast stock returns. Results for this 

Figure 4. Feature 
Importance for a US 
Zone Gradient Boosted 
Classification Tree
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OLS benchmark strategy are positive, but average 
returns and alphas are considerably larger for the 
machine learning approaches. The gap increases for 
the t-statistics, which suggests that the MLA strate-
gies are more attractive on a risk-adjusted basis. We 
also examined a strategy that found the 10 factors 
with the highest Sharpe ratios up to each point in 
time and then equal-weighted the factors. Results 
for this naive strategy tend to be better than results 

for the OLS benchmark, but the machine learning 
composites are significantly better both in the US 
zone and in the ROW. 

Although we would not recommend interpreting 
these results as describing a fully fledged trading 
strategy, we explored whether the conclusions would 
be significantly affected by the inclusion of trading 
costs. Results net of transaction costs are shown in 

Table 2.  Information Coefficients for Models, Composite, and Benchmarks

Model

US Zone ROW

Rank IC t-Statistic Rank IC t-Statistic

ML composite 6.48% 15.87 6.43% 16.37

12-Month period

AdaBoost 3.19 9.07 3.54 10.98

SVM 4.61 8.00 5.08 10.35

Tree boosting 4.66 9.59 4.79 11.12

Neural network 3.99 12.94 3.17 11.97

Seasonal

AdaBoost 3.17 11.53 3.25 11.75

SVM 5.01 9.65 4.79 10.56

Tree boosting 5.00 12.04 4.53 11.89

Neural network 5.20 15.39 4.41 11.92

Hedge

AdaBoost 3.92 14.06 3.53 13.52

SVM 4.94 13.21 5.23 14.36

Tree boosting 5.00 14.14 4.78 16.16

Neural network 4.58 14.24 4.47 14.61

Top 10 factors benchmark 2.81 6.33 4.49 9.44

OLS benchmark 3.36 5.78 2.71 4.72

Table 3. Correlations between Machine Learning Portfolios and the Market Factor

Portfolio
US Equal 
Weighted

US Risk 
Weighted

ROW Equal 
Weighted

ROW Risk 
Weighted MKT 

US equal weighted 1.00 0.81 0.32 0.29 –0.57

US risk weighted 1.00 0.28 0.30 –0.20

ROW equal weighted 1.00 0.96 –0.16

ROW risk weighted 1.00 –0.05

MKT 1.00

Note: MKT refers to the Fama–French (1992) market risk factor.
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Panel B of Table 4. We found that alphas remained 
highly significant.

Interestingly, the machine learning portfolios gener-
ally loaded negatively on the value (HML) and small 
size (SMB) factors, but only the US zone equal-
weighted loading on SMB is significant. This outcome 
indicates that the positive results are not driven by 
common risk factors. Loadings on momentum (MOM) 
are positive for the US zone and negative for the 
ROW, but again, only the US zone equal-weighted 
result is significant. These outcomes confirm that 
portfolio construction can have a significant impact 
on portfolio risk.

Because alphas tend to be no less significant than 
excess returns, the four-factor model probably does 
not explain the returns to the machine learning strat-
egy. Rather, the MLA composite probably extracts 
information from other factors or exploits time-
varying relationships between factors and returns 
that are not captured by a linear risk model.

Equity market-neutral funds had relatively low returns 
during the sample period (1994–2016). For example, 
the Hedge Fund Research equity market-neutral index 
returned only 0.24% a month from 2004 through 
2016. During the same period, all the machine learn-
ing decile spreads returned more than 1% a month 
after estimated transaction costs.

In Table 5, we report Fama and MacBeth (1973) 
multiple regression coefficients for aggregate machine 
learning forecasts based on both raw monthly excess 
returns and monthly excess returns scaled inversely to 
volatility (risk weighted). We controlled for a battery 
of popular quantitative factors and conducted the 
analysis separately for the US zone and the rest of the 
world. All variables were standardized to make coef-
ficients comparable. Table 5 shows that the machine 
learning composite forecasts are significantly related 
to returns across all specifications, even after control-
ling for many popular quantitative factors. Perhaps 
surprisingly, a few of the control variables remain 
modestly significant. This result was a bit unexpected 
because all of these control factors are included in 
our factor library. If the algorithms efficiently use the 
information embedded in these factors, we would 
expect the control factors to offer little incremental 
value. The algorithms consider only point-in-time 
information, however, and identifying successful fac-
tors ex post is much easier than doing so ex ante.

In Table 6, we report returns and four-factor alphas 
for the long and the short sides of the MLA portfo-
lio. Similar to Gu et al. (2018), we found that most 
of the outperformance came from the long side. 
This finding is not surprising because equity mar-
kets performed very well in the period. Alphas are 
significant for both the long and short portfolios in 
both the US zone and the ROW. Looking at the long 
and short legs independently, however, does not tell 
the whole story. The t-statistics of the alphas are 
much larger for the long–short portfolios presented 
in Table 4 than for the individual long and short legs 
presented in Table 6. Because we constrained the 
machine learning algorithms to forecast risk- and 
industry-standardized returns, the decile spreads 
eliminate most industry risk and idiosyncratic 
volatility and increase risk-adjusted returns. This 
outcome illustrates the potential benefits of feature 
engineering.

A potential advantage of machine learning forecasts 
is that algorithms can dynamically learn changing 
relationships between factors and returns. Figure 5 
shows the time series of monthly cross-sectional 
correlations between the US zone machine learning 
composite forecasts and the Fama–French–Carhart 
factors. Clearly, the average correlations in Table 3 
do not tell the whole story; there is significant time 
variation in all of these correlations. For example, 
despite a positive average correlation, we see that the 
machine learning forecasts were negatively correlated 
with momentum in three periods: (1) the beginning 
of the sample, (2) between 2009 and 2011, and (3) 
intermittently between 2013 and 2015. These periods 
of negative correlation tended to coincide with or 
follow periods of significant underperformance for 
momentum. For example, following the momentum 
crash documented in Daniel and Moskowitz (2016), 
exposure to momentum became negative, with a 
cross-sectional correlation of around –0.3 for several 
months in 2010. As noted previously, the average 
correlations with size and beta tended to be nega-
tive, but they varied considerably over time and were 
occasionally positive.

Although determining precisely how much of the 
machine learning strategy’s alpha comes from factor 
timing is difficult, these factor exposures are clearly 
much more variable than the exposures found in 
typical linear factor models.
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Table 5.  Fama–MacBeth Regressions (t-statistics in parentheses)

Forecast/Characteristic

US Zone ROW

Equal 
Weighted

Risk 
Weighted

Equal 
Weighted

Risk 
Weighted

ML composite 1.71 1.77 1.00 1.12
(10.04) (12.05) (9.22) (10.44)

Earnings revision 0.21 0.15 0.33 0.32
(2.17) (1.57) (4.46) (4.25)

Dividend yield 0.11 0.09 0.16 0.19
(0.94) (0.91) (1.38) (1.71)

Return on equity 0.28 0.10 –0.00 –0.04
(1.81) (0.80) (–0.03) (–0.48)

Book-to-price ratio 0.29 0.19 0.44 0.37
(1.47) (1.32) (3.17) (2.78)

Momentum –0.44 –0.32 0.27 0.33
(–1.21) (–1.29) (1.08) (1.45)

Growth in earnings per share 0.12 0.05 –0.02 –0.04
(1.08) (0.64) (–0.35) (–0.65)

1-Month reversal 0.21 0.12 0.16 0.12
(0.87) (0.65) (0.83) (0.67)

Low volatility –0.10 0.16 –0.13 0.05
(–0.30) (0.80) (–0.58) (0.28)

Earnings yield –0.38 –0.17 0.09 0.25
(–1.94) (–1.34) (0.86) (2.52)

Accounting accruals 0.21 0.15 0.29 0.28
(2.24) (1.93) (3.77) (3.39)

Intercept 0.06 0.01 –0.31 –0.35
(0.09) (0.02) (–0.66) (–0.80)

Notes: Monthly returns were regressed on lagged company characteristics and ML forecasts. For the equal-weighted specifica-
tions, the dependent variable is excess returns; for the risk-weighted specifications, the dependent variable is excess returns 
scaled by their 100-day trailing standard deviation.

Table 6.   Long and Short Portfolios (t-statistics in parentheses)

Measure

US Zone ROW

Long Short Long Short

Excess return 1.90 –0.03 1.50 –0.13

(3.54) (–0.05) (4.18) (–0.33)

Fama–French–Carhart four-factor alpha 1.13 –0.96 0.95 –0.69

(4.43) (–3.28) (4.72) (–2.97)
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Conclusion
We have discussed how practitioners can use 
machine learning algorithms for stock selection while 
avoiding the primary problem with these techniques—
namely, overfitting. Low signal-to-noise ratios in 
security selection mean that overfitting is always a 
risk, especially with such techniques as MLAs, which 
impose little structure to the analysis. However, 
because they do not require structure, MLAs can 
uncover complex nonlinear patterns that are hard to 
tease out with traditional statistical techniques such 
as OLS. They also tend to work better than OLS when 
numerous collinear factors must be considered.

We discussed two primary ways to reduce the risk 
of overfitting—feature engineering and forecast 
combinations. Feature engineering can increase the 
signal-to-noise ratio by correctly framing the problem 
and transforming the data to produce cleaner signals. 
Forecast combinations reduce noise by focusing on 

relationships that are robust to different forecasting 
techniques (MLAs) and training windows. A successful 
machine learning application requires considerable 
domain expertise to address these issues. MLAs will 
not replace human experts anytime soon (at least not 
in investing).

In the final section, we presented a case study 
based on some of the proposed techniques. We 
demonstrated that, properly applied, MLAs can use 
a wide variety of company characteristics to fore-
cast stock returns without overfitting. With sensible 
feature engineering and forecast combinations, 
MLAs can produce results that dramatically exceed 
those derived from simple linear techniques such as 
OLS. These MLA results are robust to various risk 
adjustments and work well both in the US market 
and in other developed markets. Although accu-
rately assessing which signals are driving the results 
can be difficult, we demonstrated that traditional 
factor exposures vary considerably over time, 

Figure 5. Cross-Sectional Correlations of Fama–French–Carhart Factors with Composite 
US Zone Machine Learning Forecasts
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implying that factor timing contributes to these 
positive results. 

The main contributions of this article are (1) a discus-
sion of feature engineering and some of the issues 
that practitioners face when using machine learning 
models for stock selection and (2) a demonstration 
of the benefits of forecast combinations when using 
these techniques. In particular, we highlighted the 
benefit of combining forecasts from various algo-
rithms and training windows and showed that the 
MLAs can produce results that are superior to simple 
linear models.

Appendix A. Glossary
Activation functions in neural networks determine 
the output of nodes given the inputs. Nonlinear 
activation functions allow neural networks to learn 
nonlinear patterns. Popular activation functions 
include Rectified Linear Units (ReLU), tanh, and sig-
moid. Sigmoid activations are often used in the output 
layer of binary classification problems because they 
can map inputs to probabilities between 0 and 1.

Artificial neural networks and deep learning are 
algorithms loosely modeled on the human brain. 
Neural units are organized in layers and connected 
to each other, making possible the learning of many 
interactive relationships. Artificial neural networks 
can be easy to overfit, however, and finding the cor-
rect architecture for a given problem is often difficult. 
Some recent innovations related to deep learning, 
such as dropout, make it possible to apply deeper 
architectures without overfitting.

Bagging (bootstrap aggregating) algorithms combine 
forecasts generated by base algorithms on ran-
domly sampled learning sets. Random forests are an 
example of the application of bagging to classification 
and regression tree (CART) models. In bagging (in 
contrast to boosting) algorithms, forecasts of the base 
algorithms are equally weighted. Bagging tends to 
increase the stability of algorithms and helps prevent 
overfitting.

Boosting algorithms combine forecasts from many 
base algorithms, such as CARTs. In contrast to random 
forests, boosting gives more weight to more success-
ful models. Boosting algorithms have the potential to 
learn more efficiently from data than random forests 
but require greater care when tuning parameters 
because they are more prone to overfitting. They also 
take longer to run than bagging algorithms because 
they require sequential processing.

Bottleneck layers in a neural network have fewer 
neurons than the layers above and below. Having a 
bottleneck layer encourages the network to reduce 
the dimensionality of features.

Classification and regression tree (CART) models 
form the basis of many machine learning algorithms. 
CARTs are prone to overfitting, however, and are 
rarely competitive on their own. CARTs can detect 
hierarchical (nonlinear) relationships.

Dropout in neural networks is a technique to limit 
overfitting. Similar to bagging, dropout effectively is 
a model-averaging technique. When training a neural 
network, the algorithm drops out elements of layers, 
producing models that often generalize better on 
unseen data.

Gradient boosted trees use decision trees as base 
learners. Subsequent trees are trained on residuals 
from earlier iterations. The learning rate and num-
ber of boosting iterations are key parameters that 
influence how aggressively the model can learn and 
also overfit. The depth of the base learners also is an 
important parameter.

A multilayer perceptron (MLP) is a feed-forward 
neural network consisting of three or more layers. 
MLPs are some of the earliest and best-understood 
neural networks.

The radial basis function (RBF) kernel is a commonly 
used kernel, or similarity function, in support vector 
machines. The RBF kernel is especially well suited to 
problems that are potentially nonlinear.

Random forests combine many CART models (or 
trees) by averaging their forecasts. This approach can 
often diversify away errors resulting from overfitting. 
Therefore, random forests usually have more signal 
and less noise than the individual trees. Random 
forests are quite robust to overfitting and often work 
well out of sample.

Support vector machines (SVMs) are effective clas-
sifiers in high-dimensional spaces and can use either 
linear or nonlinear kernels. While often effective, 
SVMs can run slowly with large datasets.
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Notes 
1. “Bagging” is an abbreviation for “bootstrap aggregating,” or 

averaging forecasts from different training sets. “Boosting” 
is the process of reweighting observations to put more 
weight on misclassifications from prior forecasting rounds.

2. An alternative approach is to use a robust objective func-
tion, such as the pairwise rank correlation between returns 
and forecasts in a regression setting.

3. https://en.wikipedia.org/wiki/Outline_of_machine_learning.

4. We refer interested readers to chapter 7 in López de Prado 
(2018) for an in-depth treatment of cross-validation for 
financial data.

5. Machine learning algorithms are well known for their ability 
to tease signals from big data—for instance, detecting senti-
ment in text or predicting future sales from social media 

posts. Although these applications are certainly promising, 
they are not the focus of this article. Our goal is to show 
how MLAs can be more effective than traditional quan-
titative techniques even when using widely known quant 
signals to forecast security returns.

6. Practitioners could also use a machine learning model to 
aggregate the information of the individual signals.

7. Results for individual regions are available on request.

8. Gu et al. (2018) found that price trend, volatility, and liquid-
ity are by far the most important features. Our analysis 
suggests that these categories are important, but we also 
found that the percentage of shares sold short, the differ-
ence between put and call implied volatilities, and charac-
teristics derived from financial statement information are 
among the 10 most important features.
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