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Abstract

We study the problem of product design and pricing by a monopolist who has no infor-

mation about the distribution of consumers’ horizontal tastes and maximizes her profit under

the worst-case scenario. We show that her optimal strategy takes a strikingly simple form of

dividing the taste space into a finite number of equal-length intervals and serving consumers

on a randomly chosen interval. We obtain this result by studying the dual problem of finding a

distribution of consumers’ tastes that minimizes the seller’s profit. Our analysis extends to the

case where the seller can design several varieties of the product.
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1 Introduction

Anticipating the launch of the Game Boy handheld console in 1989, Nintendo faced a crucial de-
cision: whether to bundle it with Super Mario Land, appealing mainly to children, or Tetris, which
had the potential to attract a more mature audience. The decision was particularly challenging be-
cause the market for handheld consoles was fairly nascent, so information about consumers’ tastes
was scarce. Eventually, Nintendo chose the latter option for most markets (excluding Japan) and
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Figure 1: The seller’s robustly optimal strategy when n∗ = 3 (left) or n∗ = 4.

experienced a resounding success. Companies developing new products commonly face such a
design problem with little information about consumers’ preferences. Opting for the wrong design
can result in the product having a narrow appeal, a predicament that is not easily rectified even by
a meticulous choice of the pricing strategy.

Motivated by the above, we study the problem of a monopolist who decides on the design of
a new product and its price while lacking information about consumers’ preferences. We use the
Hotelling model to capture consumers’ heterogeneous preferences as well as the seller’s product
design (choice).1 Consumers are located along the interval [−1, 1], with their location denoting
their favorite design. The willingness to pay for their favorite product is normalized to 1. The
products further away from consumers’ favored designs are valued less. That is, consumers incur
disutility from a mismatch between the design of the product and their preferred version. The
disutility is an increasing and convex function of the distance between the two. Meanwhile, the
seller chooses a location on the interval (the design) and the price to charge for the product.

To ascertain the limits of how the seller’s lack of information affects the product design, pricing,
and profit, we adopt the assumption that the seller has no information about the distribution of
consumers’ tastes. She considers any distribution over the interval [−1, 1] plausible and evaluates
her strategy according to the worst-case scenario: for each strategy prescribing (a distribution over)
location-price pairs, she computes the lowest profit across all distributions. The seller’s goal is to
maximize such lowest profit. We refer to the resulting max-min profit as the profit guarantee. The
model lends itself to the standard interpretation of the seller facing adversarial nature that wishes
to minimize her profit.

Our main result shows that the seller’s robustly optimal strategy takes a strikingly simple form:
the seller divides the interval [−1, 1] into a finite number of subintervals of equal width and targets
(all) consumers on a randomly selected subinterval; visualized in Figure 1. The seller serves a
subinterval by locating at its center and offering a price that makes the consumers at the edges of the
subinterval indifferent between buying and not buying. A crucial property of the robustly optimal
strategy is that the seller obtains the same payoff—profit guarantee—for almost all distributions,

1Hotelling (1929) proposes this product design interpretation of his model, using sweetness of cider as an example.
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and never less than that.2 The robust strategy fully insures the seller against the lack of information
about the distribution of tastes.

To derive the robust solution, we begin by tackling the dual problem, where nature moves first
and selects a distribution of tastes with the intention of minimizing the seller’s profit. The seller
observes the distribution and chooses the design/price combination to maximize the profit. We
term the resulting min-max profit as the lowest profit. The dual problem serves two purposes. It
provides an upper bound for the seller’s profit guarantee.3 In addition, it is of economic interest in
and of itself, as it establishes the lowest profit the seller can be held to in the Bayesian setting.4 The
solution to the problem reveals crucial features of distributions yielding low profits to the seller.

When the seller knows the distribution of tastes, she can guarantee to sell to at least mass 1/n
of consumers by splitting the interval into n subintervals of equal width and selling on the one
that has the most customers. The seller’s profit is therefore at least 1/n times the price required
to cover the subinterval. Taking the supremum over n yields a more precise lower bound on the
profit. Our main characterization result for the dual problem is that this bound is tight, that is, there
exists a distribution of tastes under which the seller’s maximized profit coincides with the bound.
The seller-worst distribution we construct has a particularly simple structure: its density is a step
function with only two values. The distribution and the seller’s strategy of randomly covering one
of the intervals constitute a saddle point, establishing strong duality in our environment.

A by-product of our analysis is the finding that the uniform distribution, which is commonly
adopted in applications, is close to seller-worst.5 Specifically, we show that the robustness problem
corresponds to an integer version of the problem the seller solves when facing the uniform distri-
bution. In the case when the disutility from the mismatch between the actual and preferred design
of the product is linear, the seller’s profit under the uniform distribution is never more than 12.5%

above the minimal profit (the seller’s profit guarantee).
The seller’s robust strategy calls for the seller to cover the whole market, at least in probability.

This is achieved by randomizing over a finite number of designs while keeping the price constant.
A natural question to ask is, how the seller’s strategy and the resulting profit would be affected by
the possibility to design more than one variety of the product. Let n∗ be the optimal number of
subintervals when the seller is selling a single product. We show that the seller who can produce m

2The seller’s strategy covers almost every location with probability 1/n∗, where n∗ is the number of subintervals,
with the same price. The exceptions are the locations at the edges of the subintervals, which would be served twice as
likely. Nature is, thus, indifferent between all the distributions that do not assign probability mass to those points and
strictly prefers them to distributions that do.

3This is the standard max-min inequality; see, e.g., Osborne and Rubinstein (1994).
4The corresponding upper bound on profit is 1, which is achieved whenever the distribution of tastes is degenerate.

See Kim and Kos (2023) for a characterization of the maximal consumer surplus in monopoly with product design.
5In Section 6, we show that in the circular city environment, the uniform distribution is always seller-worst.
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varieties of the product optimally divides the market into max{m,n∗} equal intervals and serves
m randomly selected ones.6 This preserves the seller’s insurance against her lack of information,
while simultaneously enabling her to reach a wider consumer base. The seller-worst distribution
for the single-product case remains seller-worst as long as m ≤ n∗, while if m > n∗, the uniform
distribution minimizes the seller’s profit.

Literature Review. Our paper lies at the intersection of the literatures on product design and
robust pricing. The former literature dates back to Hotelling (1929) and is too large for us to sur-
vey meaningfully here. In broad strokes, product design has been studied in environments with
multiple firms and both vertical and horizontal differentiation (e.g., Moorthy, 1988; Kuksov, 2004;
Lauga and Ofek, 2011), optimal dynamic (re)positioning (e.g., Sweeting, 2013; Villas-Boas, 2018),
and portfolio design (e.g., Villas-Boas, 2004; Orhun, 2009; Ke et al., 2022). The novelty of our
work lies in studying the seller’s product design problem when she has little information about con-
sumers’ tastes. Jovanovic (1981) and Meagher and Zauner (2004) incorporate uncertainty about
the distribution of consumers’ tastes into the Hotelling framework. They consider an environment
where consumers are uniformly distributed over an interval of a fixed length, but the sellers do not
know where the midpoint of the interval is. In our model, the support is fixed, but the seller is
ignorant of the distribution.

Robust pricing (mechanism design) has been extensively studied in the environment without
product design. Bergemann and Schlag (2011) study a standard monopoly model where the seller
only knows the neighborhood the distribution of consumers’ values belongs to. Carrasco et al.
(2018) explore a model where the seller knows some moments of the distribution of consumers’
values. Carroll (2017) studies robustness in a multi-dimensional setting, while Auster (2018) and
Du (2018) characterize robust mechanisms in the common value settings. See Carroll (2019) for
a comprehensive survey of the literature. We benefit from basic and common insights in that
literature but, to our knowledge, our analysis of the sellers’ robustly optimal strategy and worst
distributions is novel.

The remainder of this paper is organized as follows. Section 2 introduces our formal model.
Section 3 studies the dual problem, explicitly constructing a seller-worst distribution and charac-
terizing the seller’s lowest profit. Section 4 analyzes the primal problem, presenting the seller’s
robustly optimal strategy and identifying the seller’s profit guarantee. Sections 5 and 6 consider the
optimal product line design problem and the circular city model, respectively. Section 7 concludes.

6If m ≥ n∗, the seller covers the whole market with varieties.

4



2 The Model

A seller is facing a unit mass of consumers with heterogeneous tastes, modelled as in Hotelling
(1929). Specifically, consumers are distributed over [−1, 1] according to some distribution F .
The seller designs her product as well as chooses its price p. We model product design as the
seller’s choice of location ℓ in [−1, 1]: Given ℓ, the willingness to pay of a consumer with taste
x ∈ [0, 1] is 1− c(|x− ℓ|), where c : R+ → R+ is a differentiable, strictly increasing, and weakly
convex function with c(0) = 0.7 The (normalized) value of the product that perfectly matches a
consumer’s taste is 1, and c(|x− ℓ|) represents disutility from preference misalignment between a
consumer’s taste x and the seller’s product ℓ. We use σ to denote the seller’s mixed strategy over
(ℓ, p) ∈ [−1, 1]× [0, 1] and Σ to denote the set of all mixed strategies.

Given (ℓ, p), a consumer at x purchases the product if and only if 1 − c(|x − ℓ|) ≥ p. Let
∆(p) := c−1(1 − p) denote the reach at price p—the largest distance from the seller at which the
consumer is willing to purchase the product. ∆(·) is continuous and strictly decreasing in p, so the
seller can be interpreted as choosing reach ∆ (around ℓ) instead of p. If the underlying distribution
of tastes is F and the seller chooses (ℓ, p), the quantity demanded is

D(ℓ, p;F ) := F (ℓ+∆(p))− F−(ℓ−∆(p)),

where F−(x) := limx′↑x F (x), and the seller’s profit is given by π(ℓ, p;F ) := pD(ℓ, p;F ).
The seller has no information about the distribution F other than that its support lies in [−1, 1].

The seller, therefore, entertains any distribution F over [−1, 1] as plausible and evaluates each
strategy according to its worst-case scenario regarding F .8 To be precise, let F denote the set of
all distributions over [−1, 1]. The seller’s payoff from a strategy σ ∈ Σ is given by

inf
F∈F

π(σ;F ) = inf
F∈F

Eσ[π(ℓ, p;F )].

Her problem is to find a σ that maximizes infF∈F π(σ;F ):

π∗ := sup
σ∈Σ

inf
F∈F

π(σ;F ) = sup
σ∈Σ

inf
F∈F

Eσ[π(ℓ, p;F )]. (1)

Following the literature on robust pricing and mechanism design (e.g., Carrasco et al., 2018; Berge-

7Convexity of c is the standard assumption on the disutility from a mismatch; see Thisse and Vives (1988).
8The assumption that the seller knows the disutility function c(·) but not the distribution of tastes is in line with

the common assumption in the robust pricing literature, namely, that the seller knows buyers’ risk preferences (usually
risk-neutral) but not their willingness to pay (e.g., Bergemann and Schlag, 2011; Du, 2018).
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mann et al., 2019; Hinnosaar and Kawai, 2020), we refer to π∗ as the seller’s profit guarantee.
The dual problem. To identify π∗, we begin by studying the dual problem:

π∗ := inf
F∈F

sup
σ∈Σ

π(σ;F ) = inf
F∈F

sup
σ∈Σ

Eσ[π(ℓ, p;F )]. (2)

In the dual problem nature chooses a distribution of tastes so as to minimize the seller’s profit,
the seller observes the distribution and designs and prices the product. Besides being a stepping
stone in solving the robustness problem, the dual problem is of economic interest on its own: It
establishes the lowest profit the seller can be held to in a Bayesian setting. For this reason, we refer
to the solution to (2) as a seller-worst distribution and π∗ as the seller’s lowest profit.9

Discussion. The feature that starkly distinguishes our model from the standard monopoly
model is the lack of natural rankings over locations. In the standard monopoly model, malevo-
lent nature can assign all the probability mass to the lowest valuation, in which case a pessimistic
seller with no information is powerless and obtains the minimal payoff. The seller can secure a
payoff above the lowest valuation only if she is endowed with some information about the distribu-
tion. Bergemann and Schlag (2011), for example, consider a seller who knows the neighborhood
the distribution belongs to, while Carrasco et al. (2018) bestow the seller with knowledge of some
moments of the distribution. In our model where the seller’s location is endogenous, no particular
location corresponds to the lowest valuation. This limits the extent to which nature can reduce the
seller’s profit.

3 Seller-Worst Distributions and Payoffs

This section analyzes the dual problem (2) and determines π∗. To understand the working of our
model, as well as facilitate the subsequent analysis, we first examine two benchmarks.

3.1 Benchmarks

The first benchmark characterizes the seller’s optimal strategy when she is facing the uniform
distribution of tastes. The second benchmark explores the worst distribution for the seller when
the design of the product is fixed.

Uniform distribution. Consider the case where consumers are uniformly distributed over [−1, 1]

with constant density 1/2; F = U [−1, 1]. Under the distribution, ℓ = 0 is an optimal location for

9More precisely, F is a seller-worst distribution if there exists a σ̂ such that π(σ̂, F ) = π∗.
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the seller. Hence,

π(0, p;F ) = pD(0, p;F ) = p(F (∆(p))− F (−∆(p))) = p∆(p),

for all p, and the seller’s problem can be rewritten in terms of ∆ as

πU := max
∆∈[0,1]

p(∆)∆ = max
∆∈[0,1]

∆(1− c(∆)),

leading to the following result.

Lemma 1 If F is uniform over [−1, 1], then it is optimal for the seller to choose ℓ = 0 and

p = 1− c(∆U), where

∆U := argmax
∆∈[0,1]

∆(1− c(∆)).

Closed form solutions can be obtained for specific cost functions c. For instance, suppose
c(y) = ty for some t > 0. Then, ∆(1 − c(∆)) = ∆(1 − t∆) is maximized at ∆ = 1/(2t),
implying that the seller optimally covers the whole market if 2t ≥ 1 and only [−1/(2t), 1/(2t)]

otherwise. Therefore, the seller’s optimal strategy and profit are given by

∆U = min

{
1

2t
, 1

}
and π(U [−1, 1]) =

{
1
4t

if t > 1
2

1− t if t ≤ 1
2
.

Seller-worst distributions given ℓ = 0. Consider the case where the product design is exoge-
nously fixed at ℓ = 0.10 The further away consumers are from the seller, the lower is their willing-
ness to pay for the given design. Therefore, any distribution that puts all probability mass on −1

or 1 minimizes the seller’s profit. The seller serves those customers if the price necessary to cover
them, 1− c(1), is non-negative; the resulting profit is max{1− c(1), 0}.

Due to a high concentration of consumers at −1 and 1, the above binary distributions might not
minimize the seller’s profit if she can change the design of the product. Given a binary distribution
on −1 and 1, the seller’s optimal strategy would be to either locate at the centre and serve all
consumers (i.e., (ℓ, p) = (0, 1 − c(1))) or to locate at −1 or 1, and extract full surplus from
consumers at that location (i.e., (ℓ, p) = (−1, 1) or (ℓ, p) = (1, 1)). In the latter case, the seller
is worst off if consumers are equally divided between −1 and 1. Therefore, among the binary

10The subsequent analysis can be modified in a straightforward fashion for the case where ℓ ̸= 0. It requires heavy
investment into notation and exposition, but does not produce any qualitatively different results.
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distributions with support {−1, 1}, the seller-worst distribution (when she can design the product)
is the symmetric one, and the resulting profit is

π0 := max

{
1

2
, 1− c(1)

}
.

The seller optimally locates in the middle and covers the whole market if c(1) < 1/2 and chooses
one of the corners otherwise.

Notice that π0 may be strictly larger than the seller’s profit under U [−1, 1]. Specifically, if
c(y) = ty and t > 1

2
then

π(U [−1, 1]) =
1

4t
< π0 =

1

2
.

Thus, a seller-worst distribution given ℓ = 0 is not necessarily a seller-worst distribution once the
seller can choose a design.

The above suggests that a seller-worst distribution should position consumers as far away from
the seller as possible while inducing her to choose the given design. An intuitive way to limit
demand irrespective of the design the seller chooses is to spread consumers evenly across [−1, 1],
thereby guaranteeing that there are never too many consumers nearby. Indeed, the uniform distri-
bution will play a prominent part in our analysis.

3.2 A Profit Lower Bound

We start by deriving a lower bound on π∗. A simple lower bound is achieved by the strategy where
the seller positions at the center and offers a price that covers the whole market. This strategy
yields the profit 1 − c(1) irrespective of the distribution of tastes. The seller is guaranteed to sell
to all consumers but at the cost of selling at a low price.11 The fact that the seller can observe
the distribution allows her to refine the strategy and target consumers in either [−1, 0] or [0, 1],
depending on which of the two intervals is more populous. This is achieved by positioning at
either −1/2 or 1/2 and charging the price 1− c(1/2). One of the two intervals must have at least
half of the consumers, thus the seller is guaranteed a profit of at least 1/2(1− c(1/2)).

The above strategies can be extended to an arbitrary integer n: Partition the interval [−1, 1]

into n subintervals of equal width and serve only those consumers on the most densely-populated
subinterval (by positioning at its center and charging p = 1− c(1/n)). Since total consumer mass
is 1, some subiniterval must be inhabited by at least 1/n of consumers. Therefore, the strategy

11Indeed, 1−c(1) could be negative. If the consumers’ disutility from the object is too large, the far away consumers
may need to be subsidized to consume the product.
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ensures profit of at least 1/n(1 − c(1/n)). This lower bound holds for any n ∈ N and regardless

of F , leading to the following result.

Lemma 2 The seller’s lowest profit π∗ must be at least π, where

π := sup
∆∈{1, 12 , 13 ...}

∆(1− c(∆)).

Restricting attention to an integer number of intervals—equivalently, requiring 1/∆ to be an
integer—might seem arbitrary. A natural method to extend the technique would be to fix an arbi-
trary reach ∆ ≤ 1 and serve the interval [ℓ−∆, ℓ+∆] with the most customers. One could think
that some such interval contains at least ∆ consumers. Yet, this is not the case unless 1/∆ is an
integer: Consider the binary distribution that assigns equal probability to −1 and 1. In this case, an
interval can include at most mass 1/2 of consumers, unless it encompasses the whole space [−1, 1].
This implies that for ∆ ∈ (1/2, 1), there does not exist any ℓ such that F (ℓ+∆)−F−(ℓ−∆) ≥ ∆.

If ∆ can take any value in [0, 1], then the resulting profit corresponds to πU , that is,

πU = max
∆∈[0,1]

∆(1− c(∆)) . (3)

Together with concavity of ∆(1−c(∆)), the relationship between π and πU leads to the subsequent
result.

Lemma 3 The following statements hold:

(a) If ∆U = 1/n for some n ∈ N then π = π∗ = πU .

(b) Let n̂ = ⌈1/∆U⌉.12 Then,

π = max

{
1

n̂− 1

(
1− c

(
1

n̂− 1

))
,
1

n̂

(
1− c

(
1

n̂

))}
.

Proof. Part (a) holds because if ∆U = 1/n then π ≤ π∗ ≤ πU = π. Part (b) is because, by the
definition of n̂ and concavity of ∆(1− c(∆)), 1/n(1− c(1/n)) is strictly increasing if n < n̂− 1

and decreasing if n > n̂.

Linear Disutility. Suppose c(y) = ty for some t > 0. Then, ∆U = min {1/(2t), 1}. For any
t, n̂ in Lemma 3.(b) is the smallest integer such that n̂ ≥ 2t. Let tn be the value of t such that the

12Where ⌈x⌉ is the smallest integer greater or equal to x.
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seller is indifferent between ∆ = 1/(n− 1) and ∆ = 1/n:

tn =
n(n− 1)

2n− 1
∈
(
n− 1

2
,
n

2

)
.

As a consequence, if t ∈ [tn, tn+1] then

π =
1

n

(
1− c

(
1

n

))
.

3.3 Achieving the Profit Lower Bound

The main result of this section is that π in Lemma 2 is the tight lower bound for the seller’s profit.

Theorem 1 There exists a distribution F such that π(F ) = π. Therefore,

π∗ = π = sup
∆∈{1, 12 , 13 ...}

∆(1− c(∆)). (4)

We explicitly construct a distribution F that delivers Theorem 1.13 Suppose π = 1
n

(
1− c

(
1
n

))
,

13The construction implies that there may be multiple seller-worst distributions. The distribution we present below
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for some n ∈ N. A necessary condition for F is that it assigns probability mass 1/n to all[
−1,−1 + 2

n

]
,...,

[
1− 2

n
, 1
]
:

F

(
−1 +

2k

n

)
− F

(
−1 +

2(k − 1)

n

)
=

1

n
, (5)

for every k = 1, ..., n. If this condition did not hold, the seller would obtain strictly more than π

from the most densely-populated subinterval.
Another property that the distribution needs to satisfy is that for each subinterval, positioning at

its center and charging the price 1−c(1/n) must be locally optimal for the seller; global optimality
is addressed later. Consider the lowest subinterval

[
−1,−1 + 2

n

]
. For the seller to obtain (no more

than) π, 1/n should be the reach maximizing (1− c(∆))F (−1 + 2∆).14 Let f denote the density
function of F . Evaluating the first-order condition at ∆ = 1/n and invoking (5), yields

f

(
−1 +

2

n

)
=

1

2n

c′(1/n)

1− c(1/n)
.

Applying the same argument to all other subintervals results in:

f

(
−1 +

2

n

)
= ... = f

(
1− 2

n

)
=

1

2n

c′(1/n)

1− c(1/n)
. (6)

The following distribution combines Lemma 3.(b) with the two necessary conditions, (5) and
(6), in a simple manner.

Definition 1 Let n̂ be the value defined in Lemma 3 and fn := 1
2n

c′(1/n)
1−c(1/n)

for each n ∈ N. We

define F∗ to be a piecewise linear distribution function with density

f∗(x) =

{
fn̂−1 if x ∈

[
−1 + 2(k−1)

n̂−1
− κ k−1

n̂−1
,−1 + 2(k−1)

n̂−1
+ κn−k

n̂−1

)
fn̂ otherwise,

where κ := 1−2fn̂
n̂(fn̂−1−fn̂)

.15

Figure 3 shows a representative structure of the density f∗. It alternates between density levels
fn̂−1 (high) and fn̂ (low). By construction, f coincides with fn̂ around −1 + 2

n̂
, ..., 1 − 2

n̂
and

has a particularly simple structure.
14Here, the seller is maximizing over price/location pairs with ℓ = −1 + ∆ and p = 1− c(∆).
15The value κ is such that n̂κfn̂−1 + (2 − n̂κ)fn̂ = 1. In other words, κ is defined to be the common width of

high-density regions that makes total probability equal to 1. For any convex c(·), fn is strictly decreasing in n, and
κ ∈ [0, 1/(2n̂)].
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2
1
2

Figure 3: The density of distribution F∗ defined in Definition 1. The cost function used for this
figure is c(y) = 12

7
y. In this case, n̂ = 4, and π∗ =

1
3

(
1− c

(
1
3

))
= 1

4

(
1− c

(
1
4

))
.

with fn̂−1 around −1+ 2
n̂−1

, ..., 1− 2
n̂−1

, thus ensuring that f∗ satisfies the necessary condition (6),
whether the optimal n is n̂−1 or n̂. In addition, the lengths of the subintervals are chosen so that F
assigns probability 1/n̂ to all intervals

[
−1,−1 + 2

n̂

]
, ...,

[
1− 2

n̂
, 1
]

and 1/(n̂− 1) to all intervals[
−1,−1 + 2

n̂−1

]
, ...,

[
1− 2

n̂−1
, 1
]
; the properties guarantee condition (5), whether the optimal n is

n̂− 1 or n̂. Note that κ is the width of each high-density interval.
It remains to show that the seller has no other profitable deviations, that is, given F∗, the

seller’s maximized profit coincides with π. By construction, the seller can achieve π by serving, for
example,

[
−1,−1 + 2

n̂

]
or

[
−1,−1 + 2

n̂−1

]
. To show that the seller’s profit cannot exceed π∗, first

consider the profit maximization problem max∆ π̂(∆) := (1−c(∆))F∗(−1+2∆) where the seller
maximizes profit over (ℓ, p) = (−1 +∆, 1− c(∆)) (i.e., by choosing the interval [−1,−1 + 2∆]).
By definition of F ∗:

π̂′
(
1

n̂

)
= π̂′

(
1

n̂− 1

)
= 0.

In the proof of Theorem 1, we show that 1
n̂

and 1
n̂−1

are the only local maximizers of π̂(∆), which
suggests that π∗ = max∆ π̂(∆). Given this, it suffices to show that the seller cannot increase the
profit by moving her location ℓ. Indeed, we show that for any ∆, the payoff from locating at −1+∆

is at least as large as that from locating anywhere else: π(−1 + ∆,∆) ≥ π(ℓ,∆), for every ∆ and
ℓ.16 The last inequality holds because, by its construction, f∗ is periodic and has the higher density
fn̂−1 over [−1,−1 + κ], and thus if ℓ increases from −1 + ∆ then F∗(ℓ + ∆) − F∗(ℓ − ∆) may
become smaller, but cannot exceed, F∗(−1 + 2∆); see the proof in the appendix for the details of
the argument.

Uniform vs Seller-Worst Distributions. The only difference between maximization when the

16The same inequality holds if π(−1 + ∆,∆) is replaced with any π(−1 + (2k − 1)∆,∆), for k ∈ {1, ..., n∗}.
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seller is facing the uniform distribution, (3), and when the seller is facing a worst distribution, (4), is
that the first is an integer version of the second. Lemma 3 established that the uniform distribution
is a seller-worst distribution whenever ∆U = 1/n for some n ∈ N.17 The following result suggests
that the uniform distribution generally gives low profits to the seller when the disutility function is
linear.

Proposition 1 Suppose c(y) = ty for some t > 0. Then πU/π∗ ≤ 9/8.

Proof. See the appendix.

When costs are linear, the seller’s profit under the uniform distribution is at most 12.5% above
her lowest profit. In fact, if t > 1 then the ratio reduces to 25/24 ≈ 1.0417, so the maximum
difference becomes around 4%. The standard practice of assuming the uniform distribution in the
Hotelling environment imposes fairly low profits on the monopolist.18

4 Robust Pricing and Design

This section returns to the primal problem (1) and determines the seller’s profit guarantee π∗ as
well as the corresponding optimal strategy σ∗.

Observing the malevolent nature’s choice of distribution of tastes before making the strategic
choice can not make the seller worse off than having to choose the strategy knowing that nature
will respond maliciously. This is but a restatement of the max-min inequality (see, e.g., Osborne
and Rubinstein, 1994):

sup
σ∈Σ

inf
F∈F

π(σ;F ) ≤ inf
F∈F

sup
σ∈Σ

π(σ;F ).

The seller’s lowest profit characterized in Section 3, therefore, provides an upper bound for the
seller’s profit guarantee (i.e., π∗ ≥ π∗).

The following result establishes the converse inequality (thus strong duality) and, moreover,
pinpoints the seller’s robustly optimal strategy.

17While it may seem that generically the uniform distribution is not a worst distribution, this is not quite the case,
due to the boundary solution ∆u = 1. The latter can obtain for a non-trivial set of cost functions.

18The conclusion is even stronger in the circular city model where the uniform distribution is always a seller-worst
distribution; see Section 6.
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Theorem 2 The following holds:

π∗ = π∗ = π.

In addition, let n∗ be a value such that π∗ = 1/n∗(1− c(1/n∗)). The seller’s optimal strategy is to

set p = 1−c(1/n∗) and uniformly randomizes her location ℓ over
{
−1 + 1

n∗ ,−1 + 3
n∗ , ..., 1− 1

n∗

}
.

Proof. As argued above, the inequality π∗ ≤ π∗ holds invariably. Therefore, it suffices to show
that the indicated strategy, denoted by σ∗, yields at least π∗ regardless of F ∈ F . This implies that
π∗ ≥ π∗ and so π∗ = π∗.

The seller’s expected profit under σ∗ and F ∈ F is

π(σ∗;F ) =
n∗∑
k=1

1

n∗

(
F

(
−1 +

2k

n∗

)
− F−

(
−1 +

2(k − 1)

n∗

))(
1− c

(
1

n∗

))

=
1

n∗

(
1− c

(
1

n∗

)) n∗∑
k=1

(
F

(
−1 +

2k

n∗

)
− F−

(
−1 +

2(k − 1)

n∗

))
≥ 1

n∗

(
1− c

(
1

n∗

))
= π∗,

where the inequality holds with equality whenever F has no atom on {−1 + 2/n∗, ..., 1 − 2/n∗}.
Since this holds for any F ∈ F , we arrive at the desired inequality π∗ ≥ π∗.

The seller divides [−1, 1] into n∗ subintervals of equal length and serves a randomly selected
subinterval. A crucial property of this strategy is to render nature indifferent over all degener-
ate distributions (with exceptions of those on the borderline points, {−1 + 2/n∗, ..., 1 − 2/n∗})
and thus almost all distributions.19 To see why this property is essential, notice that given seller’s
strategy, nature’s best response is to choose a degenerate (Dirac) distribution that assigns all the
mass to the location that keeps the seller to the lowest profit. A strategy that equates the profit
across degenerate distributions insures the seller against nature’s malevolence and makes it incon-
sequential whether the seller first observes nature’s choice or not. Meanwhile, the distribution
F∗ given in Definition 1 (and used to prove Theorem 1) renders the seller’s choice of design in{
−1 + 1

n∗ ,−1 + 3
n∗ , ..., 1− 1

n∗

}
and the price 1− c(1/n∗) optimal. The strategy and the distribu-

tion, therefore, form a saddle point.
Two other properties of the seller’s optimal strategy are worth noting. First, it divides the

relevant space [−1, 1] into n∗ disjoint intervals. Each location therefore belongs to only one “sub-

19Mass points on the borderline points benefit the seller.
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market” and is served only when the submarket is chosen (with probability 1/n∗). If an interval
were to belong to multiple submarkets, nature would simply avoid assigning consumers to that
interval. This, in turn, would eradicate the seller’s incentive to create such an overlap. Second,
all submarkets have the same size (length), or equivalently, all the consumers are offered the same
price.

Full market coverage. Under severe uncertainty about the distribution of tastes, the “safest”
strategy the seller can take is to locate at the center ℓ = 0 and charge a sufficiently low price
1−c(1) that can be accepted by all consumers. Theorem 2 shows that such a full coverage strategy
can be indeed optimal, but not always. The following result provides a necessary and sufficient
condition for its optimality.

Corollary 1 Choosing the design ℓ = 0 and price 1 − c(1) is optimal for the seller if and only if

c(1) ≤ 1/2 + 1/2c(1/2).

Proof. The result follows from Theorem 2 and concavity of ∆(1 − c(∆)). The former shows
that equally dividing [−1, 1] into n∗ subintervals for some n∗ ∈ N is optimal, while the latter
ensures that 1/n(1 − c(1/n)) is decreasing in n ≥ n∗. n∗ = 1 is thus equivalent to requiring that
1− c(1) ≥ 1/2(1− c(1/2)).

To understand this result better, consider the case where c(y) = tyβ for some t > 0 and β ≥ 1.
Corollary 1 implies that the full coverage strategy is optimal if and only if

t ≤ t(β) :=
1

2− 1/2β
.

It is intuitive that the strategy is optimal when t is sufficiently small; the seller’s profit from the
strategy, 1 − t, approximates 0 if t tends to 1 and 1—the maximal possible value—if t tends to 0.
The cutoff t(β) is decreasing in β. This is because as β rises, c becomes more convex, in which
case the opportunity cost of using the strategy, 1/2(1− c(1/2)), rises.

5 Optimal Product Line Design

Thus far, we have studied the canonical environment where the seller designs and produces one
product. Unless the condition in Corollary 1 holds, this setup requires the seller to employ uniform
randomization across multiple locations to ensure comprehensive coverage of the entire space
[−1, 1], while avoiding excessive price reductions. An alternative response of the seller could be
to diversify and produce multiple products, thereby directly broadening her market reach. In this
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section, we demonstrate how the above-developed techniques can be used to study the robustness
problem of a seller who can design and sell several varieties of a product.20

Setup. Let m ∈ N denote the number of varieties of the product the seller can produce; our
main model is the special case where m = 1. For each product variety i = 1, ...,m, the seller
chooses its design ℓi ∈ [−1, 1] and price pi ∈ R+; the seller’s pure strategy is (ℓ1, p1; ...; ℓm, pm) ∈
([−1, 1]× R+)

m. We use σm to represent the seller’s mixed strategy and Σm the set of all mixed
strategies. The seller’s profit guarantee is

π∗
m := sup

σm∈Σm

inf
F

π(σm;F ),

where π(σm;F ) is the seller’s expected profit from the strategy σm when consumers’ tastes are
distributed according to the distribution F .

Dual problem. We first consider the dual inf-sup problem in which the seller moves after
having observed nature’s choice F ∈ F . For any F ∈ F , the seller can divide [−1, 1] into n(≥ m)

equal-length regions and serve the best m of them. Therefore, her lowest profit, π∗m, cannot be
smaller than

πm := max
n≥m

m

n

(
1− c

(
1

n

))
. (7)

Suppose m ≤ n∗ and consider the distribution F∗ in Definition 1. Due to Theorem 1, the
seller’s profit from a single product cannot exceed 1/n∗(1 − c(1/n∗)). The seller’s overall profit,
therefore, cannot exceed m times the single-product profit: π(F∗) ≤ m/n∗(1−c(1/n∗)). Together
with π∗ ≤ π(F∗), this implies

πm ≤ π∗m ≤ π(F∗) ≤
m

n∗

(
1− c

(
1

n∗

))
≤ πm.

Next, suppose m > n∗ and consider the uniform distribution over [−1, 1]. The seller ob-
tains πm = 1 − c(1/m) if she equally divides [−1, 1] into m regions and serves all consumers
with the price 1 − c(1/m). The following Lemma 4 argues that the seller cannot obtain strictly
more than πm, so it is the seller’s maximized profit under the uniform distribution. Consequently,

20Product line design has been studied in the context of oligopoly. Schmalensee (1978) introduces the idea that
firms can use brand proliferation as a deterrent to entry. See Dasci and Laporte (2005) and Janssen et al. (2005) for
more recent studies on competition among multi-product firms in spatial models. For a monopoly model incorporating
product line design, but no strategic pricing, see Ke et al. (2022).
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π(U [−1, 1]) = πm, and thus

πm ≤ π∗m ≤ π(U [−1, 1]) = πm.

Lemma 4 If the seller can produce m varieties of a product for some m > n∗ and consumers’

tastes are uniformly distributed over [−1, 1] then the seller’s optimal strategy is to set pi = 1 −
c(1/m) and ℓi = −1 + (2i− 1)/m for all i = 1, ...,m.

Proof. See the appendix.

This result holds because ∆(1 − c(∆)) is concave and strictly increasing while ∆ ≤ 1/m ≤
1/(n∗ + 1); the former (concavity) implies that all submarkets must have the same size (reach),
while the latter suggests that it is more profitable for the seller to serve the whole market (by setting
∆ = 1/m in each submarket) than to lose some consumers in order to charge a higher price (by
setting ∆ < 1/m).

Primal problem. The above analysis of the dual problem enables us to apply a saddle-point
characterization to the primal problem, just as in Section 4. Since the inequality supσm∈Σm

infF π(σm;F ) ≤
infF supσm∈Σm

π(σm;F ) always holds, we have

π∗
m ≤ π∗m = πm.

If m ≤ n∗, the seller can divide [−1, 1] into n∗ subintervals of equal length and choose m of them
to serve at random (uniformly). This strategy guarantees the payoff of at least πm regardless of the
distribution of tastes.21 It follows that π∗

m ≥ πm, which together with the above inequality yields
the strong duality: π∗

m = π∗m = πm. If m > n∗, the same logic holds except that the seller divides
the interval into m subintervals of equal length and serves all of them; one with each variety of the
product.

Theorem 3 If the seller can produce m different varieties of the product, then her profit guarantee

is

π∗
m = π∗m =

m
n∗

(
1− c

(
1
n∗

))
, if m ≤ n∗

1− c
(

1
m

)
, if m > n∗.

Let n† := max{m,n∗}. The seller’s optimal strategy is to divide [−1, 1] into n† subintervals of

equal length and serve m randomly selected subinterrvals.
21This is a generalization of the argument in the proof of Theorem 2.
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Figure 4: The red curve shows the seller’s profit guarantee π∗
m as a function of m for the case when

c(y) = 2y (in which case n∗ = 4). The blue curve depicts an example of the convex cost function
α(m).

When m = 1, the seller divides the market into n∗ subintervals of equal length and serves a
randomly chosen one. As m increases but remains below n∗, the seller continues to partition the
market into the same number of submarkets but serves a greater number of them. The fact that
all the submarkets are of the same size and served at the same price implies that the marginal
benefit of adding a variety is constant at 1/n∗(1−c(1/n∗)). Once the seller fully covers the market
(m = n∗), increasing m enables the seller to extract more surplus by creating more varieties and
charging a higher price for each of them. The resulting profit is 1 − c(1/m), which is concave in
m. Producing more varieties raises the seller’s profit, but its marginal returns are decreasing. As
depicted in Figure 4, π∗

m is linear in m below n∗ and concave above n∗.
Optimal number of varieties. Theorem 3 presents the seller’s optimal strategy when she pro-

duces m varieties of the product. The optimal number of varieties can easily be determined if
one is given a convex cost function of producing varieties, α(·). The optimal number of varieties
maximizies the seller’s profit π∗(m)− α(m) over m ∈ N.

6 Circular City

We explore how our results extend to the circular city model by Salop (1979), where consumers are
distributed on a circle. To make the model directly comparable to our main model, we normalize
the circumference of the circle to 2. Although we find this model less appropriate to address
product-design questions, it provides additional insights into the results obtained for the linear city
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model.22

Recall that in the dual problem of Section 3.3, the seller’s lowest profit π∗ is given by

π∗ = sup
∆∈{1, 12 , 13 ...}

∆(1− c(∆)),

which is necessarily smaller than her profit under the uniform distribution

πU = max
∆∈[0,1]

∆(1− c(∆)) .

The difference between the two profits arises because given any distribution F , the seller can
always secure at least 1/n(1 − c(1/n)) for some n ∈ N but, as illustrated in Section 3.2, she
cannot guarantee ∆(1 − c(∆)) for ∆ that is not of the form 1/n for some n ∈ N. Unlike in the
linear city model, the same is not true in the circular city model.

Lemma 5 Given any probability measure µ over a circle with circumference 2, for any ∆ ≤ 1,

there exists ℓ such that µ ([ℓ−∆, ℓ+∆]) ≥ ∆.

Proof. If µ ([ℓ−∆, ℓ+∆]) < ∆ for all ℓ ∈ [0, 2] then the following contradiction emerges:∫ 2

0

µ ([ℓ−∆, ℓ+∆]) dℓ <

∫ 2

0

∆dℓ

= 2∆,

but also ∫ 2

0

µ ([ℓ−∆, ℓ+∆]) dℓ =

∫ 2

0

[∫ ∆

−∆

dµ(ℓ+ x)

]
dℓ

=

∫ ∆

−∆

[∫ 2

0

dµ(ℓ+ x)dℓ

]
dx

=

∫ ∆

−∆

dx

= 2∆,

22Hotelling (1929) provides an example in which a position on an interval represents a particular level of sweetness
of cider, with one end of the interval representing extremely sweet and the other completely bitter cider. More gen-
erally, the linear city model is the more appropriate model whenever there is a natural order over designs (locations).
Bar-Isaac et al. (2023), however, propose an interesting model of product design where consumers are distributed on
a circle, while firms choose a design inside of the circle.
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where the second equality is through changing the order of integration and the third one holds
because

∫ 2

0
dµ(ℓ+x) is the sum of probability over the circle, which is 1 regardless of the value x.

Lemma 5 implies that the seller’s lowest profit satisfies

π∗ ≥ πU = max
∆∈[0,1]

∆(1− c(∆)) .

But, since π∗ ≤ πU necessarily holds, we have π∗ = πU . Applying a duality argument analogous
to the one in Section 4 yields the following result.

Proposition 2 In the circular city, the uniform distribution is always a seller-worst distribution.

When its circumference is equal to 2, then the seller’s profit guarantee is equal to πU , which she

can achieve by uniformly randomizing her location over the circle and charging p = 1 − c
(
∆U

)
at every location.23

7 Conclusion

We study robust product design and pricing by a monopolist in the Hotelling framework. Specifi-
cally, we consider a seller who has no information about the distribution of consumers’ tastes and
wishes to maximize her worst-case payoff.

We show that the seller’s optimal strategy is to partition the taste space into a finite number
of subintervals of the same length and randomize uniformly over which of these subintervals to
serve. The seller charges the same price, regardless of the subinterval selected. We also construct a
distribution of tastes that, together with the seller’s strategy, forms a saddle point. By implication,
strong duality holds and, therefore, the seller’s profit guarantee (sup-inf) coincides with the lowest
profit a seller who first observes the choice of nature’s distribution can be held to (inf-sup). We
extend our analysis to the case where the seller can produce multiple varieties of the same product.
Producing more varieties enables the seller to insure against nature more effectively by covering
several subintervals simultaneously.

Information about consumers’ tastes plays a pivotal role in product design, allowing sellers to
create products that better resonate with consumers. We consider a fully agnostic seller who has
no information about the distribution of consumers’ tastes. Much is still to be explored regarding

23If ∆U = 1/n∗ for some n∗ ∈ N then the seller can employ a simpler strategy of uniformly randomizing over n∗

(or, any multiple of n∗) equally dispersed locations.
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the broader impact of information on design and pricing, as well as the value of information in this
context.
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Appendix: Omitted Proofs

Proof of Theorem 1. Let F∗ be as in Definition 1. We first show that for any p = 1 − c(∆) and
ℓ ∈ [−1 + ∆, 1−∆],

π(ℓ, p;F∗) ≤ π(−1 + ∆, p;F∗) =: π̂(∆),

which is equivalent to

D(ℓ, p;F∗) = F∗(ℓ+∆)− F∗(ℓ−∆)

≤ D(−1 + ∆, p;F∗)

= F∗(−1 + 2∆).

First, consider the case where f∗(ℓ − ∆) = fn∗−1 (higher density). Let ℓ′ be the left-most
location such that f∗(x) = fn∗−1 for all x ∈ [ℓ′ − ∆, ℓ − ∆]. In this case, the seller can increase
her demand (profit) by moving to the left by ℓ− ℓ′, that is,

D(ℓ′, p;F∗)−D(ℓ, p;F∗) = (ℓ− ℓ′)fn∗−1 − (ℓ− ℓ′)

∫ ℓ+∆

ℓ′+∆

f∗(x)dx

= (ℓ− ℓ′)

∫ ℓ+∆

ℓ′+∆

(fn∗−1 − f∗(x)) dx ≥ 0,

where the inequality holds because f∗ cannot strictly exceed fn∗−1 anywhere. The desired result
then follows from the fact that f∗ is periodic, so D(−1 + ∆, p;F∗) = D(ℓ′, p;F∗).

Next, consider the case where f∗(ℓ + ∆) = fn∗−1. In this case, for the same reason as in the
previous case, the seller can increase her demand by moving to the right (and then to 1 − ∆),
which yields D(1 − ∆, p;F∗) ≥ D(ℓ, p;F∗). Combining this with the symmetry of F∗, we have
D(−1 + ∆, p;F∗) = D(1−∆, p;F∗) ≥ D(ℓ, p;F∗).
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Finally, consider the case where f∗(ℓ − ∆) = f∗(ℓ + ∆) = fn∗ (lower density). Let ℓ′ be the
largest location below ℓ such that f∗(ℓ′ −∆) = fn∗−1 or f∗(ℓ′ +∆) = fn∗−1 (i.e., ℓ∗ is the location
at which one of the edges of [ℓ′ − ∆, ℓ′ + ∆] meets the higher density region). By construction,
D(ℓ′, p;F∗) = D(ℓ, p;F∗). But, now f∗(ℓ

′ − ∆) = fn∗−1 or f∗(ℓ′ + ∆) = fn∗−1, so one of the
above cases applies to ℓ′. This leads to D(−1 + ∆, p;F∗) ≥ D(ℓ′, p;F∗) = D(ℓ, p;F∗).

Having established that it is without loss of generality to maximize π̂(∆) = (1−c(∆))F∗(−1+

2∆) over ∆, we show π̂(∆) has only two local maximizers, ∆1 := 1
n∗ and ∆2 := 1

n∗−1
. Define

∆3 :=
2−κ
n∗−1

, so that

f∗(x) =

{
fn∗−1 if x ∈ [−1,−1 + κ) or x ∈ [−1 + ∆3,−1 + ∆3 + κ)

fn∗ if x ∈ [−1 + κ,−1 + ∆3).

The desired result follows from the following four results.
(i) π̂(∆) is increasing if ∆ < ∆1.

Since c(·) is increasing and convex, c(∆) < c(∆1) and c′(∆) ≤ c′(∆1). Combining this with
the fact that f∗(−1 + 2∆1) = fn∗ ≤ f∗(−1 + 2∆) for any ∆, we get

π̂′(∆) = −c′(∆)F∗(−1 + 2∆) + 2(1− c(∆))f∗(−1 + 2∆)

> −c′(∆1)F∗(−1 + 2∆1) + 2(1− c(∆1))f∗(−1 + 2∆1)

= π̂′(∆1)

= 0.

(ii) π̂(∆) is decreasing if ∆ ∈ (∆1,∆3].
In this case, f∗(−1+2∆) = fn∗ (low density). Combining this with ∆ > ∆1 (so c(∆) > c(∆1)

and c′(∆) ≥ c′(∆1)) leads to

π̂′(∆) = −c′(∆)F∗(−1 + 2∆) + 2(1− c(∆))f∗(−1 + 2∆)

= −c′(∆)F∗(−1 + 2∆) + 2(1− c(∆))fn∗

< −c′(∆1)F∗(−1 + 2∆1) + 2(1− c(∆1))f∗(−1 + 2∆1)

= π̂′(∆1)

= 0.

(iii) π̂(∆) is increasing if ∆ ∈ (∆3,∆2).
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In this case, f∗(−1 + 2∆) = fn∗−1 (high density). Then, similarly to (i),

π̂′(∆) = −c′(∆)F∗(−1 + 2∆) + 2(1− c(∆))f∗(−1 + 2∆)

> −c′(∆2)F∗(−1 + 2∆2) + 2(1− c(∆2))f∗(−1 + 2∆2)

= π̂′(∆2)

= 0.

(iv) π̂(∆) is decreasing if ∆ > ∆2.
Since f∗(−1 + 2∆2) = fn∗−1 (high density), similarly to (ii),

π̂′(∆) = −c′(∆)F∗(−1 + 2∆) + 2(1− c(∆))f∗(−1 + 2∆)

≤ −c′(∆)F∗(−1 + 2∆) + 2(1− c(∆))fn∗−1

< −c′(∆2)F∗(−1 + 2∆2) + 2(1− c(∆2))f∗(−1 + 2∆2)

= π̂′(∆2)

= 0.

Proof of Proposition 1. If t ≤ 1
2
, then the result is immediate, because πU = π∗ = π = 1 − t.

From now on, we restrict attention to t > 1/2 by redefining t1 = 1
2
. Note that for any t > t1, the

seller’s profit under the uniform distribution is given by πU = 1
4t

.
Take any t ∈ (tn, tn+1]. Then,

πU

π∗
=

1
4t

1
n

(
1− t

n

)
=

1

4

1
t
n

(
1− t

n

) .
Define a function ϕ : [tn, tn+1] → R+ as ϕn(t) :=

t
n

(
1− t

n

)
. If n = 1 (i.e., t ∈

[
1
2
, 2
3

]
) then its

maximum is given by ϕn(1/2) = 1/4, while its minimum is given by ϕn(t2) = ϕn(2/3) = 2/9. It
follows that

πU

π∗
∈
[

1

4ϕ1(1/2)
,

1

4ϕ1(2/3)

]
=

[
1,

9

8

]
for t ∈ [t1, t2].

For n > 1, the maximum of ϕn is given by ϕn(n/2) = 1/4, while its minimum is given by
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ϕn(tn) =
n(n−1)
(2n−1)2

. This implies that

πU

π∗
∈
[

1

4ϕn(n/2)
,

1

4ϕn(tn)

]
=

[
1,

(2n− 1)2

4n(n− 1)

]
for t ∈ [tn, tn+1].

Since ϕn(tn) =
n(n−1)
(2n−1)2

= 1
1+1/(n(n−1))

is strictly increasing in n, the global maximum of πU/π∗ is
given by 9/8, which is achieved when t = 2

3
.

Proof of Lemma 4. We show that if m > n∗ and F = U [−1, 1] then the seller can never obtain
strictly more than πm = 1 − c(1/m). Consider any strategy by the seller. For each i = 1, ...,m,
let qi denote the expected mass of consumers variety i is sold to. By definition,

∑
i qi ≤ 1. Now,

notice that, since 1− c(qi) is the highest price the seller can set to serve qi mass of consumers, the
seller’s expected profit from variety i cannot exceed qi(1− c(qi)). If

∑
i qi < 1, there exists i such

that qi < 1/m ≤ 1/(n∗ + 1). Since the seller’s profit is increasing in ∆ on [0, 1/(n∗ + 1)], she
can do strictly better by expanding the partition element and so increasing qi. This implies that the
seller’s profit is maximized when she fully utilizes [−1, 1], that is,

∑
i qi = 1.

Given any partition with reaches ∆1,∆2, ...,∆m,

m∑
i=1

∆i(1− c(∆i)) = m
m∑
i=1

1

m
∆i(1− c(∆i))

≤ m

(
1

m

(
1− c

(
1

m

)))
= 1− c

(
1

m

)
.

where the inequality is due to to Jensen’s inequality and the fact that
∑

i ∆i = 1. Consequently,
π(U [−1, 1]) = m/m(1− c(1/m)) = 1− c(1/m), which is the desired result.
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