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Abstract

We study social distancing in an epidemiological model. Distancing reduces the

individual’s probability of getting infected but comes at a cost. Equilibrium dis-

tancing flattens the curve and decreases the final size of the epidemic. We examine

the effects of distancing on the outset, the peak, and the final size of the epidemic.

First, the prevalence increases beyond the initial value only if the transmission rate

is in the intermediate region. Second, the peak of the epidemic is non-monotonic in

the transmission rate. A reduction in the transmission rate can increase the peak.

However, a decrease in the cost of distancing always flattens the curve. Third, both

a reduction in the transmission rate as well as a reduction in the cost of distancing

decrease the final size of the epidemic. Our results suggest that public policies that

decrease the transmission rate can lead to unintended negative consequences in the

short run but not in the long run. Therefore, it is important to distinguish between

interventions that affect the transmission rate and interventions that affect contact

rates.
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1 Introduction

When faced with the possibility of contracting a hazardous disease, people undertake

protective measures. They reduce social interactions due to the risk of meeting an infected

person. Such behavior is not novel. During the plague pandemics, citizens would flee

affected areas and wear costumes to protect themselves from the infection; long-beaked

masks worn by physicians in the 17th century achieved particular notoriety. Public

authorities eventually began to coordinate the response to epidemics. Famously, Venice

required that the passengers on ships from affected areas confine themselves for forty

days; thus, the term “quarantine” was minted.1 Such behavior calls for the explicit

incorporation of human behavior in epidemiological models. Yet, the standard SIR model

of epidemics, introduced by Ross and Hudson (1917) and Kermack and McKendrick

(1927), assumes that individuals engage in as many interactions at the height of the

epidemic as they do when the disease is barely present.

We study a tractable model of epidemics that incorporates social distancing and show

that explicitly modeling human behavior has important consequences on the predicted

trajectory of an infectious disease.2 Susceptible individuals non-cooperatively decide to

which extent to reduce interactions at each point in time. Such distancing is costly but

reduces the probability of getting infected. The cost of getting infected is fixed; building

on the work of Chen (2012). We show that an equilibrium exists and that it is unique. If

the disease spreads, the epidemic has a single peak: it propagates through the population

until it reaches the peak prevalence, then it recedes and eventually dies out. Susceptible

individuals distance throughout the epidemic, though the intensity of their distancing

varies with the amount of actively infected individuals. Distancing affects three crucial

and commonly discussed features: the conditions for an epidemic to start, its peak, and

its final size.

First, we define a basic reproduction number taking distancing into account—the

behavioral basic reproduction number. It consists of the classical, epidemiological basic

reproduction number, R0, multiplied by a behavioral term; a similar concept was intro-

duced in Fenichel et al. (2011).3 We show that the disease propagates itself if and only

if the behavioral basic reproduction number is larger than one. The novelty is that the

1After the Italian word quaranta for forty; see Snowden (2019).
2Ours is not the first model of behavior during an epidemic. An account of the related literature

follows below.
3One can derive an analogous behavioral effective reproduction number. That the basic reproduction

number without distancing may be misleading when trying to understand epidemic dynamics has been
recognized before. For example, Caley et al. (2008) find that the observed attack rate of the 1918-
1919 influenza pandemic was substantially lower than the one expected based on the basic reproduction
number and attribute this discrepancy to social distancing.

1



behavioral basic reproduction number is concave in the transmission rate and that the

disease spreads only for intermediate values of the transmission rate. If the transmission

rate is too high, individuals distance with such fervor that the prevalence never rises

above the initial seed of infection. This finding stands in stark contrast with the pre-

dictions offered by the SIR model without distancing where the infection spreads if the

transmission rate is high enough; see for example Brauer and Castillo-Chavez (2012).

Second, we derive results about the peak prevalence of the disease. The peak preva-

lence is crucial to understand whether a disease might cause the health system to reach

its capacity. For example, the 1918 influenza pandemic hit an unprepared health system

which soon became overwhelmed; see Jester et al. (2018) and Schoch-Spana (2001). In

March 2020—less than a month after the coronavirus erupted in Italy—, the healthcare

system in Northern Italy was under such severe pressure that some pneumonia patients

could not be treated.4 In order to avoid the active number of infected individuals ex-

ceeding the health care system’s capacity, the goal became to flatten the curve.We show

that an increase in the cost of distancing unequivocally leads to a reduction in distancing

and, therefore, to a higher peak prevalence of the disease. However, peak prevalence is

non-monotonic in the transmission rate. If the transmission rate is high enough for the

disease to spread but not too high, an increase in the transmission rate leads to an in-

crease in the peak prevalence. In contrast, when the transmission rate is sufficiently high,

an increase in the transmission rate decreases the peak prevalence and causes flattening

of the curve.

The above comparative statics lend themselves to two interpretations:

i) A change in the transmission rate could be interpreted as a comparison of equilib-

rium trajectory for two different diseases. In this context, our results imply that a

disease with a higher transmission rate can lead to a lower peak prevalence.

ii) A change in either the transmission rate or the cost of distancing could be inter-

preted as a public health policy.5 Our results suggest that a policy that decreases

the transmission rate could lead to a higher peak prevalence.6 In addition, the fact

that peak prevalence is monotonic in the cost of distancing and non-monotonic in

the transmission rate has important implications on how interventions should be

modeled.

4See https://www.nytimes.com/2020/03/12/world/europe/12italy-coronavirus-health-care.html.
5Our comparative statics, strictly speaking, correspond to public policies that are implemented at the

beginning and held until the end. The analysis can easily accommodate a policy that is enacted later as
long as it persists indefinitely. Nevertheless, the underlying driving forces of our results—that a change
in the transmission rate has two opposing effects and a change in the cost of distancing has only one
effect—hold for any public policy that affects one of those variables.

6The idea that a policy which is meant to protect can lead to more risky behavior, known as risk
compensation, was first documented by Peltzman (1975).
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A large body of work that studies non-pharmaceutical interventions models these

either as reductions in the transmission rate (see, for example, Kruse and Strack, 2020;

Rachel, 2020a) or as directly imposing restrictions on the activity level of (a fraction of)

individuals (see, for example, Acemoglu et al., 2021; Alvarez et al., 2021; Farboodi et al.,

2021)—which are equivalent approaches in the SIR dynamics without behavior. Our

results suggest that modeling individual distancing choices explicitly requires a careful

choice of modeling interventions because their qualitative implications differ through the

behavioral channel. On the one hand, those interventions affecting the rate at which the

disease propagates conditional on meetings, e.g., mandatory mask mandates, should be

modeled as a decrease in the transmission rate.7 On the other hand, those interventions

that directly affect the incentives to distance, e.g., restaurant, bar or museum closures,

should be modeled as a decrease in the cost of distancing; e.g., Fenichel et al. (2011)

model a public policy intervention as a change in the payoff structure of contacts.

Third, we find that the possibly detrimental short-run effects of a decrease in the

transmission rate disappear in the long run. Despite the non-monotonicity of the peak

prevalence in the transmission rate, the total number of infected individuals throughout

the epidemic is monotonically increasing in both the cost of distancing and the transmis-

sion rate. Our model predicts a smaller final size of the epidemic (i.e., less total infections)

than the standard SIR model due to distancing. Indeed, the model converges to the SIR

model without distancing when the cost of distancing grows and so does the final size of

the epidemic.

With these findings, we highlight an important trade-off between short-run mitigation,

i.e., flattening the curve to avoid an overburdened health system, and long-run size of

epidemics when considering the transmission rate. This trade-off arises due to the varying

degree to which behavior matters during an epidemic. At the peak, the infection risks

are high and individuals’ distancing decisions have a strong impact on the dynamics

of the epidemic. When an epidemic fades out, however, behavior is of less importance

as individual risks are low and the standard SIR mechanics dominate the behavioral

effects. However, the trade-off disappears once policies are considered that directly affect

distancing incentives of individuals and both short-run mitigation and long-run size of

the epidemic are obtained with similar policies, i.e., lowering the cost of distancing.

In the final section, we present an environment in which the cost of infection is endo-

7Note that this result does not necessarily imply that mandating mask-wearing in public spaces will
worsen an epidemic; it may flatten the curve as well. However, we want to highlight the possibility of
this perverse effect arising. While Yan et al. (2021) document evidence that mask mandates lead to
risk compensation behavior, they also argue that it is unclear whether such risk compensation behavior
would lead to a net increase or decrease in transmission. Chernozhukov et al. (2021) show that mask
mandates have reduced the number of COVID-19 cases and deaths in the US.
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genized. We derive the cost of infection and show numerically that the non-monotonicity

of peak prevalence in the transmission rate extends to that environment.

Related Literature. Capasso and Serio (1978) introduced non-linear contact rates

into the standard SIR model as a reduced form of modeling behavior. For a more recent

overview of literature on non-linear contact rates, see Funk et al. (2010) and Verelst et al.

(2016). A strong point for explicitly modeling behavior was made by Ferguson (2007).

Reluga (2010) and Fenichel et al. (2011) introduced preventive behavior into SIR

models explicitly and provided numerical analyses of equilibrium trajectories.8 Fenichel

(2013) studied the differences in incentives for distancing between a decentralized economy

and an economy governed by a social planner. Chen (2012) introduced an SIR model with

a constant cost of infection and derived conditions on the contact functions that deliver

uniqueness of the Nash equilibrium in each period for a given prevalence of the disease;

yet, he did not establish whether that leads to uniqueness of equilibrium trajectories.

These papers do not provide analytical results about the equilibrium trajectories under

social distancing.

Analytical results about equilibrium trajectories of the SIR model with distancing

are few. Closest to ours is work by Dasaratha (2020), McAdams (2020), McAdams

et al. (2021), Rachel (2020a) and Toxvaerd (2020). The last two analyze a model of

behavior with a linear cost of distancing and an endogenous time-varying cost of getting

infected. They derive the necessary conditions for an equilibrium and offer two different

paths that satisfy the necessary conditions, but stop short from proving that these are

indeed equilibria.9 Characterization of equilibria in their model, therefore, remains an

open question. It remains unresolved whether an equilibrium in their model is unique and

thus comparative statics are non-ambiguous.10 Dasaratha (2020) analyzes a model with a

constant cost of infection (like ours), but where the infected individuals do not necessarily

know whether they are infected. The complexity of his model requires that he mostly

focuses on local results rather than on the entire path.11 McAdams (2020) and McAdams

et al. (2021) propose a model in which an individual’s benefit of social activities depends

on the actions of other individuals and shows that complementarities in distancing choices

8Behavior has also been studied in other (non-SIR) models of diseases such as HIV/AIDS. An account
of that literature is beyond the scope of our paper.

9They never establish the existence of a co-state variable that supports the equilibrium behavior (in
particular, they never verify that the agents are not distancing when the equilibrium prescribes that they
should not) and satisfies the transversality condition.

10Toxvaerd (2020) claims uniqueness, but his argument treats the problem as a single person decision
problem rather than a non-cooperative game.

11Engle et al. (2021) study a behavioral SIR model with a constant cost of infection but with a different
meeting rate. They empirically analyze the incidence data for the 2009 Swine Flu and the COVID-19
pandemic.
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may lead to multiplicity of equilibria. Gans (2022) explores the implications of directly

imposing on a model of behavior that the effective reproduction number satisfies Rt = 1.

Budish (2020) studies the optimal interventions (e.g., mask mandates and closure of

large indoor gatherings) subject to Rt ≤ 1 as a constraint in a static model. Avery

(2021) studies the interaction between social distancing and vaccination. An excellent

account of the rapidly growing literature is provided by McAdams (2021).

A wide pool of papers studies how policy interventions affect distancing and, through

that, the spread of a disease. Farboodi et al. (2021) and Rachel (2020b) build on the work

discussed above to study lockdown effectiveness and the possibility of a second wave oc-

curring. Toxvaerd and Rowthorn (2020) compare individuals’ and a planner’s decisions to

apply treatments and vaccinations as pharmaceutical interventions during an epidemic.

Giannitsarou et al. (2021) provide numerical projections for the COVID-19 pandemic

under waning immunity, based on a model with endogenous distancing. Acemoglu et al.

(2021) and Brotherhood et al. (2020) study the importance of age composition in the

COVID-19 pandemic.With the exception of Rachel (2020b), these papers focus on nu-

merical solutions of rather involved models without establishing either the existence or the

uniqueness of equilibria. While one can argue that the numerical algorithms are bound

to lead to an equilibrium, or something close to it, the lack of uniqueness of equilibria

reduces the credibility of welfare comparisons of various policies in those models.

2 The Model

We study behavior in an otherwise standard SIR model. A continuum of individuals,

indexed by i and normalized to unity, are infinitely lived with time indexed by t ∈ [0,∞).

Each individual can be in one of three states: susceptible, infected (and infectious),

or recovered. Susceptible individuals might get infected, in which case they transition

into the infected state. Infected individuals can recover but cannot become susceptible

again.12 Recovered individuals acquire permanent immunity. This model is suitable

for viral diseases which are transmitted directly from human to human.13 We denote

the share of the population that is susceptible at time t by S(t), infected by I(t) and

recovered by R(t).

At each moment in time, susceptible individual i chooses how much activity to engage

12We abstract from the issues of testing for infection as studied in Deb et al. (2022) and Ely et al.
(2021).

13Avery et al. (2020) provide an excellent assessment of the SIR model from the economics point of
view.
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in, denoted by εi(t) ∈ [0, 1]. The individuals enjoy the activity, but it exposes them to

the danger of infection; hence, termed exposure. The converse, di(t) := 1 − εi(t), is

the measure of distancing. While susceptible, an individual incurs a flow payoff, πS.

Distancing is uncomfortable and comes at a cost c
2
(di(t))

2. The cost of getting infected is

η > 0. Later in the paper, we explore the model where the cost of infection is determined

endogenously and might vary over time.

Individuals meet through a pairwise-matching technology where each individual has

an equal chance of meeting any other individual—regardless of which state they are in.

The only matches with an infection risk are the ones between a susceptible and an infected

individual. The rate at which a susceptible individual who chooses exposure level εi(t)

meets an infected individual and gets infected at time t is βεi(t)I(t), where β > 0 is the

transmission rate.14 Finally, infected individuals recover at rate γ > 0.

At each point in time t, a susceptible individual i solves the problem

max
εi(t)∈[0,1]

πS − c

2
(1− εi(t))

2 − βI(t)εi(t)η. (1)

Let ε(t) := 1
S(t)

∫
i
εi(t)di be the average exposure of susceptible individuals at time t.

Analogously, define d(t) := 1− ε(t) as the average distancing at time t. Then, the model

is governed by the following dynamics

Ṡ(t) = −βε(t)I(t)S(t), (2)

İ(t) = βε(t)S(t)I(t)− γI(t), (3)

Ṙ(t) = γI(t), (4)

with the assumption that there is a seed of infected, I(0) = I0 ∈ (0, 1), and susceptible

individuals, S(0) = S0 = 1− I0. Since S, I and R are the only three states S(t) + I(t) +

R(t) = 1 at each instance of time.

Definition 1. An equilibrium is a tuple of functions (S, I, R, (εi)i) with the following two

properties: (i) (S, I, R) follow (2), (3) and (4) with the initial condition (S(0), I(0), R(0)) =

(S0, I0, 0), where ε is the average exposure; and (ii) each εi solves (1), that is, εi is a best-

response to (S, I, R). An equilibrium is symmetric if ε = εi for all i.

The first-order condition to the individual’s problem yields the individual’s optimal

14We implicitly assume that infected individuals choose full exposure. Though strong, the assumption
is not as stark as it might at first seem. It is straightforward to accommodate exposure of infected with
some parameter e, as long as it is fixed over time. Then, the same model as ours can be obtained by
defining β̃ = eβ.
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distancing choice

di(t) := 1− εi(t) = min

(
ηβ

c
I(t), 1

)
. (5)

When ηβ
c
I(t) exceeds unity, individuals fully distance. Distancing at time t depends

only on the infected population at time t—up to constants β, c and η.15 In equilibrium,

εi = ε for all i, that is, every equilibrium is symmetric. By equation (5), exposure in a

symmetric equilibrium is

ε(t) = max

(
1− ηβ

c
I(t), 0

)
.

Plugging (5) into the SIR dynamics yields a system of differential equations with an initial

condition. All the proofs are collected in Appendix A.

Proposition 1. An equilibrium exists, is unique and symmetric.

The above result establishes uniqueness of the equilibrium in our model. In a similar

model, Chen (2012) established uniqueness of a Nash equilibrium in each period for

every state of the model. However, he did not study whether that leads to uniqueness of

equilibrium trajectories.

3 Analysis

We establish several qualitative properties of the equilibrium and the resulting epidemic

dynamics. First, observe that if ε(t̃) > 0 for some t̃, then ε(t) > 0 for all t > t̃. This

follows from the observation that as long as ε(t) ∈ (0, γ/β), İ(t) < 0 and thus ε̇(t) > 0.

ε(t) can, therefore, be 0 only at the beginning. To avoid this tedious contingency, we will

often assume ε(0) > 0, or equivalently, I0 < c/(βη). Next, we establish that the number

of active cases peaks at most once.

Proposition 2. If t̂ is such that İ(t̂) = 0, then Ï(t̂) < 0.

Proposition 2 implies that if I has a critical point, this critical point has to be a local

maximum. If I does not have a critical point, it decreases throughout. Together with

the continuous differentiability of I, this implies that I can have at most one peak. The

15A body of literature studies an extended SIR model where distancing behavior instead depends on
deaths; see Weitz et al. (2020), Atkeson (2021) and Atkeson et al. (2021).
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infection either immediately dies out or becomes an epidemic with a single peak.16

In the standard SIR model, the infection propagates itself (İ(0) > 0) only if the basic

reproduction number, R0 := β
γ
S0, is larger than 1; see Heesterbeek and Dietz (1996).17

However, the observed and measurable variable is how many secondary infections have

been caused, given an individual’s behavior. To capture this, we define the behavioral

basic reproduction number as:

Rb
0 :=

β

γ
S0ε(0). (6)

Notice that Rb
0 = ε(0)R0; the concept of a basic reproduction number that depends on

the individuals’ behavior was introduced in Fenichel et al. (2011). Equation (3) at t = 0

can now be rewritten as İ(0) = I0
γ
(Rb

0 − 1). Therefore, the infection spreads, İ(0) > 0, if

and only if Rb
0 > 1, paralleling a similar result in the model without distancing. However,

while in the standard SIR model R0 is increasing in β, the behavioral basic reproduction

number Rb
0 is non-monotonic and, in particular, concave. This finding has important

implications on which types of an infection will spread.

Proposition 3. Fix I0 ∈ (0, 1). Then, İ(0) > 0 if and only if Rb
0 > 1. Moreover:

(i) if I0 < 1

1+ 4ηγ
c

, there exist β and β, with γ
1−I0

< β < β < c
ηI0

, such that İ(0) > 0 if

and only if β ∈ (β, β).

(ii) If I0 ≥ 1

1+ 4ηγ
c

, then İ(t) ≤ 0 for all t.

In the standard SIR model, β must be high enough (β > γ
S0
) for the infection to

spread. In the model with distancing, instead, the transmission rate has to be large

enough to also overcome the initial distancing:

β >
γ

(1− d(0))S0

>
γ

S0

.18

Our model predicts that a higher transmission rate is needed for the prevalence to increase

from the start than in the standard SIR model. What differentiates the model with

distancing even more starkly is that the prevalence starts to decrease immediately if the

transmission rate is too high. If the disease is highly contagious, individuals are much

more cautious, up to the point where their resolute distancing alone is sufficient to stop

16Eventually, the disease inevitably dies out; I∞ := lim
t→∞

I(t) = 0. To see this, note that the fraction

R(t) of recovered individuals is increasing and bounded above. Hence, lim
t→∞

R(t) exists. Together with

equation (4), this implies that I∞ = 0.
17Depending on the source R0 is defined either as β/γ or βS0/γ. We use the latter definition as it

allows for an easier presentation of results.
18It should be noted that d(0) depends on β as well.
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Figure 1: The Onset of an Epidemic. Left: Our SIR model; Right: Standard SIR model.
The solid line in each panel depicts the combination of (β, I0) with İ(0) = 0.

the disease in its tracks from the onset.19 Due to preventive behavior, the prevalence

increases beyond the initial seed of infection only if its transmission rate is large enough,

but not too large, as illustrated in the left panel of Figure 1.20

Proposition 3 derives conditions on the transmission rate for the prevalence to take

off. The same question can be analyzed along other dimensions. For example, the

CDC has adopted a categorization for influenza viruses along the severity-transmissibility

dimensions (see Reed et al., 2013). In our model, this can be interpreted as categorizing

the combination of the cost of infection, η, and the transmission rate, β.

Recall that in the SIR model without behavior—which is nested in our model as

the case η = 0—the epidemic takes off whenever βS0 > γ. As the cost of infection, η,

increases, individuals’ distancing incentives start to matter for the onset of an epidemic.

In particular, for a fixed β, the higher the cost of infection, the more individuals engage

in distancing. If the cost of infection becomes very large, it prevents the prevalence from

rising altogether: İ(0) < 0. There is a cutoff cost of infection such that the prevalence

will never increase when η > c
4γ

S0

I0
as getting infected is so costly for individuals that

their distancing behavior compensates for any transmission rate β. By implication, the

prevalence increases from the beginning only if the (β, η)-combination is intermediate. For

a given β, the infection cost must not be too high; while for a given η, the transmission

rate must neither be too high nor too low. The existence of an upper and a lower bound

for β follows the same intuition as the one applying for Proposition 3.

19An informal discussion of the role of disease-intrinsic parameters and its effect on the outbreak of
an epidemic can be found in Christakis (2020).

20We use parameters for COVID-19 in our simulations. A summary and justification of the parameters
chosen can be found in Appendix B. We also describe our numerical algorithm there.
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3.1 Solution Paths

A solution path in the (S, I)-space is a graph showing how the number of infected in-

dividuals changes with the number of susceptible individuals. To find the solution path

(S, I) := (S(t), I(t))t≥0 in the phase space, one derives the quotient differential equation

dI

dS
= −1 +

γ

β

1

S

1

max
(
1− βη

c
I, 0
) (7)

by dividing equation (3) by equation (2) and using (5) for ε.

Proposition 4. Suppose d(0) < 1.21 The solution path (S, I) is implicitly determined

by

S =

exp

(
−β2η
2γc

(
S + I − c

βη

)2)
exp

(
−β2η

2γc

(
1− c

βη

)2
)

1

S0
+ 2β

√
η

2γc

∫ β
√

η
2γc

(
1− c

βη

)
β
√

η
2γc

(
S+I− c

βη

) e−v2dv

. (8)

Figure 2: Solutions Paths for Different Transmission Rates.

Figure 2 depicts the solution paths in the phase space for different transmission rates.

21The assumption is made for ease of exposition directly on d(0); Formula (5) provides the correspond-
ing assumptions on primitives. If d(0) = 1, then individuals engage in full distancing up to some point,
after which an equation analogous to (8) determines the dynamics of the epidemic.
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Notice that the solution paths are not monotonically ordered.

We show that the solution path (S, I) moves upwards as the cost of infection η de-

creases. The SIR model without distancing can be recovered as the special case of our

model with no cost of infection (η = 0).22 Hence, for any level of the susceptible pop-

ulation, the corresponding number of active infections is lower in the SIR model with

distancing. In particular, the peak prevalence in our model is below that of the standard

model. This comparison is depicted in Figure 3.

Figure 3: Solution Paths for the SIR Models With and Without Behavior. The solid curve
depicts the solution path for our SIR model with behavior. The dashed curve depicts the
solution path of the SIR model without behavior.

Proposition 5. Assume that d(0) < 1. Then, if η decreases, the solution path (S, I)

moves upwards (lies above the original solution path). In particular, the solution path

(Ŝ, Î) of the standard SIR model, which is associated with η = 0, lies above the original

solution path.

Increasing the cost of infection, η, raises the incentives to distance and pushes the

solution path down, that is, it decreases the infected population at any level of susceptibles

22We denote by (Ŝ, Î, R̂) the proportion of susceptible, infected, and recovered individuals in the
standard SIR model. The dynamics of the standard SIR model is obtained by replacing (S, I,R, ε) with
(Ŝ, Î, R̂, 1) in equations (2), (3) and (4). The solution path (Ŝ, Î) of the standard SIR model is captured

by dÎ
dŜ

= −1 + γ
β

1
Ŝ
.
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in the phase space. Since the SIR model without distancing is the special case with η = 0,

its solution path is above the path for any η > 0.

3.2 Peak Prevalence

The peak prevalence of an epidemic has profound consequences on the overall provision of

health care services. A large number of infected individuals may lead to an overwhelming

demand for personal protective equipment, such as face masks, and for medical devices,

such as ICU beds and ventilators. The shortage of medical resources, in turn, may cause

a suboptimal treatment and health care coverage; see, for example, Schoch-Spana (2001)

for the 1918 influenza pandemic, Ferguson et al. (2020) for the COVID-19 pandemic,

and Reed et al. (2013) for influenza epidemics. The high demands of the epidemic on

the health system also divert medical resources from other important activities. What

is more, healthcare workers themselves are at high risk of infection.23 The peak preva-

lence is, therefore, of paramount interest for epidemic preparedness and optimal policy

responses.

When the epidemic takes off (İ(0) > 0), Proposition 2 implies that the prevalence is

maximized when İ(t) = 0, that is, when

ε(t)S(t) = γ/β.

Denote by I∗ := maxt I(t) the peak prevalence. In the standard SIR model with R0 > 1,

the peak prevalence Î∗ := maxt Î(t) is given by Î∗ = 1− γ
β
+ γ

β
log
(

γ
βS0

)
; see, for example,

Hethcote (2008) or Brauer and Castillo-Chavez (2012). The peak prevalence is attained

when the population Ŝ(t) of susceptibles reaches the threshold of herd immunity γ
β
. When

the peak prevalence I∗ of our model is attained, the population S(t) of susceptibles is

larger than γ
β
. Since the solution path (S, I) is below the path (Ŝ, Î), our model predicts

a smaller peak prevalence than the SIR model without behavior, I∗ < Î∗.

We study how the peak prevalence changes with the parameters β and c. To focus

on the case in which the infection can take place, we assume I0 <
1

1+ 4ηγ
c

; see Proposition

3. When this assumption fails, the prevalence decreases from the start irrespective of the

transmission rate: I∗ = I0.

Proposition 6. The following holds:

23Elston et al. (2017) survey the health impact of the 2014-15 Ebola outbreak in West Africa. For
Sierra Leone, they report a 20 % decrease in measles coverage, an overall 20-23 % decrease in deliveries
and Caesarian sections. 10.7 % of the healthcare workforce were infected and 6.9 % died from Ebola
virus disease.
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Figure 4: Peak Prevalence as Function of Transmission Rate for the SIR Models with
and without Behavior. The left panel depicts the peak prevalence of the SIR model with
behavior. The right panel depicts the peak prevalence of the SIR model without behavior.

(i) Fix γ, c and η and let I0 < 1

1+ 4ηγ
c

. Then, there exist β1 < β2 such that I∗ is

increasing in β for β ∈ (β, β1) and decreasing in β for β ∈ (β2, β).

(ii) The peak prevalence I∗ is non-decreasing in c. It is strictly increasing in c whenever

İ(0) > 0.

In the SIR model without behavior, the peak prevalence Î∗ is monotonically increasing

in the transmission rate β, as illustrated in the right panel of Figure 4. In contrast, in our

model, a higher transmission rate leads to, ceteris paribus, more distancing. This effect

can be so strong that a higher transmission rate reduces the peak prevalence and flattens

the infection curve. Indeed, peak prevalence is non-monotonic in β; see the simulation in

the left panel of Figure 4. When the transmission rate is low, the peak of the infection

increases in β. In contrast, when the transmission rate is high, the peak prevalence

decreases in β.24 A measure imposed to fight the epidemic through a reduction in β could,

therefore, have a daunting short-run effect; for example, if the potential resulting increase

in prevalence leads to stress of the health care system.25 We want to emphasize that this

24Avery (2021) constructs an upper bound on the prevalence (that is never attained) and shows that it
is non-monotonic in the transmission rate. Since the bound is not tight, its implications on the behavior
of peak prevalence are unclear.

25This indirect effect of a measure reducing individual risk on taking fewer precautions is reminiscent
of risk compensation introduced by Peltzman (1975); for a survey see Hedlund (2000). The importance of
risk compensation has been recognized to play an important role in the economic epidemiology literature
at least since Philipson and Posner (1993). Kremer (1996) and Geoffard and Philipson (1996) showed in
an SI model that a policy intended to decrease HIV prevalence can lead to exactly the opposite due to
the riskier behavior of individuals. Greenwood et al. (2019) construct a search model and quantify such
behavior. It should be pointed out that these findings were developed in models very different from the
SIR model under consideration here and that those of the above-mentioned papers by no means imply
our results.
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effect arises only for a subset of potential parameters. In particular, Chernozhukov et al.

(2021) show that the introduction of mask mandates—a β-reducing policy—reduced the

number of active cases in 2020 during the COVID-19 pandemic in the US. At the same

time, Knotek II et al. (2020) and Yan et al. (2021) report evidence that some individuals

view mask-wearing as a substitute for physical distancing. For a more comprehensive

discussion of mask-wearing, see Howard et al. (2021).

In contrast, an increase in the cost of distancing always increases the peak prevalence.

A higher cost of distancing leads to less distancing, all else equal. The disparity in

effects of changes in c and β on peak prevalence can be seen by studying how the slope

of the solution path at a fixed point in the phase space varies with changes in the two

parameters. Differentiating the slope with respect to the cost of distancing parameter

yields

∂

∂c

(
dI

dS

)
= − γ

βε2S

∂ε

∂c
< 0,

where the inequality follows from the observation that, for a fixed I, the exposure increases

if the cost of distancing increases. Importantly, the only effect an increase in the cost

has on the solution path is through the change in distancing. By implication, the slope

of a solution path with a higher cost is smaller than the slope of a solution path with a

smaller cost of distancing at any point of intersection. The fact that they start from the

same point, (S0, I0), then implies that everywhere else the solution path corresponding

to a higher cost must be above the one with the lower cost.

The change in the transmission rate, though, has a more nuanced effect. Differenti-

ating the slope of the solution path at a fixed point yields

∂

∂β

(
dI

dS

)
= − γ

β2εS
− γ

βε2S

∂ε

∂β
.

An increase in β has two effects. Holding everything else fixed, it results in more secondary

infections from each infected individual, thereby increasing the speed of the spread of the

disease. Such a direct effect is absent from changes in the cost of distancing. The second,

indirect, effect is due to the distancing response to the change in the transmission rate.

A more infectious disease results in more distancing and thus dampens the evolution of

the epidemic. The two effects run in opposite directions. Depending on which of the two

dominates, an increase in β can lead to either a smaller or a larger slope of the solution

path.

Public Policies. A change in β can be interpreted in two ways. First, models with
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two different βs can be thought of as comparing the trajectories of two different diseases.

Our result implies that a disease with a higher transmission rate might, indeed, lead to

a lower peak prevalence due to the effect of distancing on the epidemic path.

Second, the above finding has an important implication on how various preventive

policies should be studied in models with an epidemiological component. Such models

commonly adopt one of two apparatuses: behavior is either modeled implicitly by changes

in β in the standard SIR model (see, for example, Capasso and Serio, 1978; Brauer, 2019;

Kruse and Strack, 2020) or by directly imposing behavioral changes (see, for example,

Acemoglu et al., 2021; Alvarez et al., 2021; Farboodi et al., 2021; Rachel, 2020a). Our

results highlight the importance of differentiating between policies that change the trans-

mission rate and policies that change the cost of distancing.26 For example, if a govern-

ment imposes temporary restaurant closures to slow the spread of the disease, this gives

individuals fewer reasons to go out and should be modeled as a decrease in the cost of

distancing, and not as a decrease in the transmission rate directly. Holidays or vacation

periods can be seen as increases in the cost of distancing. Closest to this, (Fenichel et al.,

2011) model a public policy intervention as a change in the payoff accruing from contacts.

Moreover, our analysis highlights an additional consideration that is rarely taken into

account. The effect of a particular measure to decrease the cost of distancing depends

on the current epidemic state. If there are few actively infected individuals, the same

measure has a much lower effect on the individuals’ distancing decision than when there

are many actively infected individuals. This implies that if one models policy as directly

affecting the level of exposure, the cost of doing so should also depend on the epidemic’s

state.

3.3 Final Size of the Epidemic

We have established the effect of changes in the transmission rate and the cost of distanc-

ing on the peak prevalence. Turning to the long-run effects of behavior, an important

characteristic of a disease is S∞ := lim
t→∞

S(t), the number of remaining susceptible indi-

viduals once the epidemic is over. The converse, 1−S∞, is referred to as the final size of

the epidemic.

26Strictly speaking, our comparative statics correspond to a public policy that is implemented from
the outset of the epidemic to the end. However, our model can accommodate a policy that takes effect
later during the epidemic if it remains in effect indefinitely. In particular, a policy introduced at time
t̂ can be analyzed by re-parametrizing our model with the new initial conditions (It̂, St̂, Rt̂). The basic
idea extends even to public policies that are enacted for a limited amount of time: a change in β has
two opposing effects while a change in c has one effect.
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A lesson from the SIR model without distancing is that once S falls below the threshold

γ/β, the prevalence decreases. Indeed, it decreases faster than the number of susceptible

individuals, Ŝ∞ := lim
t→∞

Ŝ(t) ∈ (0, γ/β). Therefore, at the end of the epidemic, a strictly

positive fraction (but smaller than γ/β) of the population remains susceptible. The fol-

lowing proposition establishes properties of the final size of an epidemic when individuals

can undertake preventive behavior.

Proposition 7. The final size of the epidemic, S∞, satisfies Ŝ∞ ≤ S∞ < γ
β

and is

decreasing in β, for β ∈ [0, c
ηI0

], and decreasing in c.

The model with distancing predicts a smaller size of the epidemic than without.

More importantly, as long as İ(0) > 0, the size of the epidemic is monotone in β and c.27

A higher β leads to a larger amount of individuals that contract the disease during the

epidemic, as does an increase in the cost of distancing. This result is somewhat surprising

in light of the result that the peak prevalence is non-monotonic in the transmission rate.

Together, the two results establish the existence of a region of transmission rates where

an increase in the transmission rate leads to a decrease in the peak prevalence but an

increase in the final size of the epidemic.

While Proposition 3 established that the prevalence decreases throughout if β is too

large (larger than β̄), Proposition 7 establishes that the size of the epidemic nevertheless

increases in the transmission rate—even at such large β. In such a case, the disease is

spreading very slowly through the population. From a practical viewpoint, if the spread

of infection is sluggish, a vaccine or at least a treatment is likely to be developed that

would significantly decrease, if not eliminate, the cost and discomfort brought upon by

the infection.

Propositions 6 and 7 can be interpreted through two different prisms. First, through

the prism of public policies: while policies that affect β might have perverse effects in the

short run—e.g., a decrease in the transmission rate, β, may lead to an increase in peak

prevalence—, in the long run, they will unequivocally decrease the number of infected

individuals. Therefore, one needs to be circumspect if the medical capabilities are at or

close to the capacity in the short run.

The second prism corresponds to a comparison of various diseases. Our results imply

that a more transmissible disease always infects a larger number of individuals. However,

it may result in a smaller peak prevalence than a less transmissible disease.

27Note that β < c
ηI0

.
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4 Endogenous Cost of Infection

In this section, we present a model with an endogenous cost of infection, develop the

formula for the cost, show how the model with fixed cost can be used to bound the model

with endogenous cost, and provide numerical support for the non-monotonicity of peak

prevalence in the transmission rate in the model with an endogenous cost of infection.

As before, the individuals at each point in time decide to which extent to distance,

which determines how likely they are to get infected. An individual’s flow payoff from

being in state θ ∈ {S, I, R} is πθ. We assume πS ≥ πR ≥ πI .
28 The endogeneity of

the cost of infection results from differences in the flow payoff across the states and the

individuals taking future infection risks into account. The individual discounts the future

at rate ρ > 0.

A susceptible individual i with exposure εi(t) enjoys the instantaneous payoff πS −
c
2
(1−εi(t))

2. Let 1−pi(t) be the probability of being susceptible at time t and, thus, pi(t)

the probability that an individual has become infected in the past. Then, ṗi(t) represents

the rate at which susceptible individuals become infected

ṗi(t) = εi(t)βI(t)(1− pi(t)), (9)

with pi(0) = 0; since we model the behavior of susceptible individuals, the probability that

they are infected at the outset is zero. Once an individual gets infected, her progression

to recovery is independent of her behavior. Her continuation payoff from the moment she

became infected, VI , is:

VI =
1

ρ+ γ

(
πI +

γ

ρ
πR

)
. (10)

See Remark 1 in Appendix A for the derivation.

A susceptible individual who faces average exposure ε from her peers solves the prob-

28Models with endogenous cost of infection have been presented in Reluga (2010); Fenichel et al. (2011);
Fenichel (2013); McAdams (2020); Rachel (2020a); Toxvaerd (2020), among others. Yet, analytical
characterizations of equilibria are rather elusive.
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lem

max
εi(·)∈[0,1]

∫ ∞

0

e−ρt
{
(1− pi(t))[πS − c

2
(1− εi(t))

2] + pi(t)ρVI

}
dt (11)

s.t.

ṗi(t) = βεi(t)I(t)(1− pi(t)),

pi(0) = 0,

and the underlying dynamics given by equations (2), (3) and (4) with the initial condition

(S(0), I(0), R(0)) = (1− I0, I0, 0) and I0 ∈ (0, 1). The individual’s payoff can be thought

of as the expected value of being susceptible or infected at each point in time where

the flow payoff of an infected individual is ρVI . An individual’s behavior affects her

probability of infection directly, but none of the population dynamics as she is small.

We study symmetric equilibria (equilibria for short).

Definition 2. A symmetric equilibrium is a tuple of functions (S, I, R, (εi, pi)i) with the

following three properties: (i) (S, I, R) follow (2), (3) and (4) with the initial condition

(S(0), I(0), R(0)) = (S0, I0, 0), where ε is the average exposure; (ii) each εi solves (11),

that is, εi is a best-response to (S, I, R), where the average exposure ε is induced by

(εj)j ̸=i; and (iii) εi = ε for all i.

In equilibrium, each pi is determined by the average exposure ε and I, and thus p = pi

for each i ∈ [0, 1]. For ease of exposition, we denote an equilibrium by (S, I, R, ε, p).

Assumption 1. πS − c
2
> ρVI .

Even if a susceptible individual is fully distancing, her flow payoff of being suceptible is

greater than the flow payoff of being infected. The current-value Hamiltonian of problem

(11) is

Hi = (1− pi(t))[πS − c

2
(1− εi(t))

2] + pi(t)ρVI − ηi(t)βεi(t)I(t)(1− pi(t)),

where ηi(t) is the current-value co-state variable.29 It represents the marginal cost of an

increase in the probability of being infected at time t. The optimality condition with

respect to exposure εi(t) at time t is

∂Hi

∂εi(t)
= (1− pi(t))[c(t)(1− εi(t))− βηi(t)I(t)] = 0.

29Note that we define the co-state as the negative of the usual co-state to interpret it as a cost of
infection rather than as benefit of being susceptible to relate it directly to our constant cost of infection
model.
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It can be verified that pi(t) < 1; see Remark 2 in Appendix A. Thus, the optimality

condition delivers equilibrium distancing

di(t) =
β

c
ηi(t)I(t), (12)

provided that the entire distancing path admits an interior solution, i.e., that di(t) ∈ [0, 1]

for all t. One should keep in mind that the marginal cost of an increased probability of

infection, ηi(t), is positive due to Assumption 1. The extent to which an individual dis-

tances is, ceteris paribus, increasing in the infection rate, β, and the size of the infected

population, I(t), and the co-state, ηi(t) and decreasing in the cost parameter, c. Impor-

tantly, the decisions today influence the probability of getting infected both today and in

the future, which in turn affects the distancing decisions today—a fact that is captured

by the co-state ηi(t). The current-value co-state variable ηi follows the adjoint equation

η̇i(t) = ρηi(t) +
∂Hi

∂pi(t)

= ηi(t) (ρ+ εi(t)βI(t)) +
(
πS − c

2
(1− εi(t))

2 − ρVI

)
. (13)

The transversality condition is lim
t→∞

e−ρtηi(t) = 0. In equilibrium, η = ηi for all i. Using

the adjoint equation and the transversality condition, we solve for η.

Lemma 1. Suppose that the rest of the population is following the strategy ε, and εi is

the individual i’s best response. Then

ηi(t) =

∫ ∞

t

e−ρ(s−t)1− pi(s)

1− pi(t)

(
πS − c

2
(1− εi(s))

2 − ρVI

)
ds. (14)

Let (S, I, R, ε, p) be an equilibrium. Then

η(t) =

∫ ∞

t

e−ρ(s−t)S(s)

S(t)

(
πS − c

2
(1− ε(s))2 − ρVI

)
ds. (15)

We term πS − c
2
(1 − ε(t))2 − ρVI the susceptibility premium at time t. It is the

difference in flow payoffs between being susceptible and being infected. The cost of

getting infected, η(t), is the discounted value of the susceptibility premium over time

weighted by the conditional probability of being susceptible at each time in the future,

s ≥ t, S(s)
S(t)

. Distancing over a period of time reduces the quality of life and, thus, the

susceptibility premium. However, it also decreases the probability that the individual will

get infected and rewards her with the premium for a longer period of time. The functional

form of ηi demonstrates the difficulty of the dynamic problem. Optimal exposure at time

t depends on the exposure of the remaining individuals through the effect it has on the

spread of the infection, as well as on the exposure of individual i at each instance in the

19



future.

Alternatively, one can decompose η in two parts

η(t) = (VS(t)− VI(t))

where

VS(t) =

∫ ∞

t

e−ρ(s−t)

(
S(s)

S(t)

(
πS − c

2
(1− ε(s))2

)
+

(
1− S(s)

S(t)

)
ρVI

)
ds

is the continuation payoff of being susceptible and

VI(t) = VI ,

is the continuation payoff of being infected.

The above discussion implies that analytically characterizing the set of equilibria is

untenable. To verify whether a distancing function ε can be part of an equilibrium, one

needs to posit that the individuals use it, derive S, I, R and η, and then verify that ε

is indeed a best reply given the dynamics. This task is made more challenging by the

fact that even the SIR model without distancing does not have a tractable closed-form

solution and that η is pinned down only in the limit rather than at any point.

However, we can make use of the model with an endogenous cost of infection to

inform our parameter choices in the constant cost of infection model. The following

lemma provides bounds for η, which enable us to connect the two models.

Lemma 2. Let (S, I, R, ε, p) be an equilibrium. Then

πS − ρVI − c
2

ρ+ β
≤ η(t) ≤ πS − ρVI

ρ
, (16)

and

lim
t→∞

η(t) =
πS − ρVI

ρ
. (17)

If η̇(0) < 0, then

η(t) ≥
πS − ρVI − c

2

ρ
. (18)

As time passes, η eventually converges to the upper bound. The bound is attained

when individuals choose full exposure in perpetuity without facing any risk of becoming

infected. This is the scenario in which getting infected would be most costly as there is
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no need to distance and no risk of future infection. The convergence to this bound is

intuitive: as time goes to infinity, the disease dies out and obviates the need for distancing.

The above lemma also provides a lower bound on η. This bound applies even if

η is locally increasing at time 0. When η is decreasing at the onset, which occurs if

I0 is sufficiently small, the lower bound
πS−ρVI− c

2

ρ
is approximately tight. This bound

corresponds to the cost of infection when individuals are fully distancing from now until

eternity.

Figure 5: Peak Prevalence and Solution Path of the Endogenous Cost of Infection Model.
In the left panel, the solid blue curve shows the peak prevalence in the endogenous
cost of infection model as a function of the transmission rate. The dashed and dotted
curves reproduce the constant cost of infection model’s peak prevalence using the derived
bounds on η. In the right panel, the solid blue curve represents the solution path of the
endogenous cost of infection model. The dashed and dotted curves represent the constant
cost of infection model’s solution paths using the derived bounds on η.

Lemma 2 connects the solution paths of the model analyzed here and the model with

a fixed cost of infection. Towards that, let (S, I, R, ε, p) be an equilibrium of the endoge-

nous infection cost model with η being the corresponding co-state given by (15). Let

ηL and ηH be the lower and the upper bound on η as given by Lemma 2. Finally, let

(Sj, Ij, Rj, εj), for j ∈ {L,H}, be the equilibria of the model with the constant cost of

infection corresponding to the lower and upper bounds of η. The following result shows

how the model with a constant cost of infection can be used to bound the model with

the endogenous cost of infection.

Proposition 8. In the phase space, the graph of (SL, IL) is above that of (S, I), which,

in turn, is above that of (SH , IH).

Finally, we numerically solve the endogenous cost of infection model using commonly
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used parameters for COVID-19 following Farboodi et al. (2021) with our objective func-

tion and show how peak prevalence varies with the transmission rate; see Figure 5. The

non-monotonicity of the peak prevalence in β persists in the environment with the en-

dogenous cost of infection.

5 Conclusion

We analyze an epidemiological model with human behavior. We establish that changes

in the cost of distancing have a markedly different effect on the progression of a pandemic

than changes in the transmission rate. This result has important implications on how

public interventions should be modeled. While the existing literature invariably models

public interventions as direct changes in the transmission rates, our paper demonstrates

that interventions affecting distancing incentives directly—e.g., via bar and restaurant

closures—rather than the likelihood of transmission conditional on a meeting—e.g., via

mask mandates—should be more appropriately modeled as changes in the cost of dis-

tancing. Similarly, changes in the transmission rate should be modeled together with

a behavioral response rather than only as a direct change in the transmission rate in a

standard SIR model because the indirect behavioral effects may outweigh the direct effect

on transmission.

Our model is a stylized depiction of reality. Many details require a more thorough

investigation. In future work, we plan to study in more detail how the variations in the

cost of distancing affect the model’s predictions. Two types of changes are of particular

interest. First, distancing becomes more costly over time due to increasing distancing

fatigue. This effect can be captured by having the cost of distancing depend on past

distancing. Second, sudden and significant increases in distancing cost may occur that

alter the course of the epidemic. A salient example is holidays around which families and

friends would gather normally. Distancing in such circumstances is much more difficult

to sustain as the opportunity cost is high.

Prudence and further study of the spread of infectious diseases are of utmost impor-

tance. Not a quarter way into the century, COVID-19 is already the third coronavirus

outbreak—after SARS and MERS—, not to mention other outbreaks of diseases like

Ebola virus and swine flu, to name a few.

22



References

Acemoglu, D., V. Chernozhukov, I. Werning, and M. D. Whinston (2021):

“Optimally Targeted Lockdowns in a Multi-group SIR Model,” American Economic

Review: Insights, 3, 487–502.

Alvarez, F., D. Argente, and F. Lippi (2021): “A Simple Planning Problem for

COVID-19 Lock-down, Testing, and Tracing,” American Economic Review: Insights,

3, 367–82.

Atkeson, A. (2021): “Behavior and the Dynamic of Epidemics,” Brookings Papers on

Economic Activity, 67–88.

Atkeson, A. G., K. Kopecky, and T. Zha (2021): “Behavior and the Transmission

of COVID-19,” AEA Papers and Proceedings, 111, 356–60.

Avery, C. (2021): “A Simple Model of Social Distancing and Vaccination,” Working

paper.

Avery, C., W. Bossert, A. Clark, G. Ellison, and S. F. Ellison (2020): “An

economist’s guide to epidemiology models of infectious disease,” Journal of Economic

Perspectives, 34, 79–104.

Brauer, F. (2019): “The Final Size of a Serious Epidemic,” Bulletin of Mathematical

Biology, 81, 869–877.

Brauer, F. and C. Castillo-Chavez (2012): Mathematical Models in Population

Biology and Epidemiology, Springer, second ed.

Brotherhood, L., P. Kircher, C. Santos, and M. Tertilt (2020): “An Eco-

nomic Model of the Covid-19 Pandemic with Young and Old Agents: Behavior, Testing

and Policies,” Working paper.

Budish, E. (2020): “Maximize Utility subject to R ≤ 1: A Simple Price-Theort Ap-

proach to Covid-19 Lockdown and Reopening Policy,” Working paper.

Caley, P., D. J. Philp, and K. McCracken (2008): “Quantifying Social Distancing

Arising from Pandemic Influenza,” Journal of the Royal Society Interface, 5, 631–639.

Capasso, V. and G. Serio (1978): “A Generalization of the Kermack-McKnedrick

Deterministic Epidemic Model,” Mathematical Biosciences, 42, 43–61.

Chen, F. (2012): “A Mathematical Analysis of Public Avoidance Behavior during Epi-

demics Using Game Theory,” Journal of Theoretical Biology, 302, 18–28.

23



Chernozhukov, V., H. Kasahara, and P. Schrimpf (2021): “Causal Impact of

Masks, Policies, Behavior on Early Covid-19 Pandemic in the US,” Journal of Econo-

metrics, 220, 23–62.

Christakis, N. (2020): “Nicholas Christakis on Fighting Covid-19 by Truly Under-

standing the Virus,” The Economist.

Dasaratha, K. (2020): “Virus Dynamics with Behavioral Responses,” Working paper.

Deb, R., M. Pai, A. Vohra, and R. Vohra (2022): “Testing alone is insufficient,”

Review of Economic Design, 26, 1–21.

Elston, J., C. Cartwright, P. Ndumbi, and J. Wright (2017): “The Health

Impact of the 2014-15 Ebola Outbreak,” Public Health, 143, 60–70.

Ely, J., A. Galeotti, O. Jann, and J. Steiner (2021): “Optimal test allocation,”

Journal of Economic Theory, 193, 105236.

Engle, S., J. Keppo, M. Kudlyak, E. Querciolo, L. Smith, and A. Wilson

(2021): “The Behavioral SIR Model, with Applications to the Swine Flu and COVID-

19 Pandemics,” Working paper.

Farboodi, M., G. Jarosch, and R. Shimer (2021): “Internal and external effects of

social distancing in a pandemic,” Journal of Economic Theory, 196, 105293.

Fenichel, E. P. (2013): “Economic Considerations for Social Distancing and Behavioral

Based Policies during an Epidemic,” Journal of Health Economics, 32, 440–451.

Fenichel, E. P., C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. G.

Parra, G. J. Hickling, G. Holloway, R. Horan, B. Morin, C. Perrings,

M. Springborn, L. Velazquez, and C. Villalobos (2011): “Adaptive Human

Behavior in Epidemiological Models,” Proceedings of the National Academy of Sciences,

108, 6306–6311.

Ferguson, N. (2007): “Capturing Human Behavior,” Nature, 446, 733.

Ferguson, N. M., D. Laydon, G. Nedjati-Gilani, N. Imai, K. Ainslie,

M. Baguelin, S. Bhatia, A. Boonyasiri, Z. Cucunubá, G. Cuomo-
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A Appendix

Proof of Proposition 1. An individual’s problem (1) is concave; therefore, the first-

order condition (5) is also sufficient. This pins down the individual’s optimal distancing

in the SIR dynamics.

Using the exposure obtained from (5) in the SIR dynamics yields

Ṡ(t) = −βS(t)I(t)max

(
1− ηβI(t)

c
, 0

)
, (19)

İ(t) = βS(t)I(t)max

(
1− ηβI(t)

c
, 0

)
− γI(t), (20)

Ṙ(t) = γI(t). (21)

Thus, in any equilibrium (S, I, R) is characterized by the system of differential equa-

tions d
dt
(S, I, R) = F (t, S, I, R), where F is defined by (19), (20), and (21). The ini-

tial condition is (S(0), I(0), R(0)) = (S0, I0, 0). Then, the initial value problem admits
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a unique solution (S, I, R) on [0,∞), as the system satisfies the standard conditions.

Namely, the function F is continuous on the domain D = [0,∞) × [0, 1]3, and F is uni-

formly Lipschitz continuous in (S, I, R): there exists a Lipschitz constant L satisfying

∥F (t, S, I, R) − F (t, S̃, Ĩ , R̃)∥ ≤ L∥(S, I, R) − (S̃, Ĩ , R̃)∥ for each t ∈ [0,∞). See, for ex-

ample, Walter (1998). Now, ε = εi is uniquely determined, and hence the model admits

a unique and symmetric equilibrium.

Proof of Proposition 2. Let t̂ be as in the supposition of the proposition. We first

show ε(t̂) ∈ (0, 1). Since I(t) > 0 for all t, evaluating İ(t) = 0 at t̂ yields βS(t̂)ε(t̂) = γ.

Hence, ε(t̂) ∈ (0, 1).

Next, since İ is differentiable at t̂, it follows that Ï(t̂) exists. We show:

Ï(t̂) = β
(
Ṡ(t̂)I(t̂)ε(t̂) + S(t̂)İ(t̂)ε(t̂) + S(t̂)I(t̂)ε̇(t̂)

)
− γİ(t̂)

= βI(t̂)
(
Ṡ(t̂)ε(t̂) + S(t̂)ε̇(t̂)

)
= βS(t̂)I(t̂)

(
−βI(t̂)ε2(t̂) + ε̇(t̂)

)
= −βS(t̂)I2(t̂)ε2(t̂) < 0.

The second equality follows from İ(t̂) = 0, the third from equation (2), and the fourth

from

ε̇(t̂) = −ηβ

c
İ(t̂) = 0, (22)

which, in turn, follows from optimality condition (5) and ε(t̂) ∈ (0, 1).

Proof of Proposition 3. The first statement follows from the equality İ(0) = I0
γ

(
Rb

0 − 1
)
.

Part (i): From (3) it follows that

İ(0) > 0 if and only if I0

(
β

(
1− βη

c
I0

)
(1− I0)− γ

)
> 0.

Therefore, İ(0) > 0 if and only if β ∈ (β, β) where β and β are solutions to the quadratic

equation

β

(
1− ηI0

c
β

)
(1− I0)− γ = 0. (23)

The discriminant of the quadratic equation is positive if and only if I0 <
1

1+ 4ηγ
c

; the solid

curve in the left panel of Figure 1 corresponds to equation (23). Since ε(0) = 1− ηI0
c
β < 1
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and I0 > 0, the left-hand side of the above equation is negative at β = γ
1−I0

. Thus,

β > γ
1−I0

. If β = c
ηI0

, then ε(0) = 0 and İ(0) < 0. Thus, β < c
ηI0

.

Part (ii): Let I0 ≥ 1

1+ 4ηγ
c

. If ε(0) > 0, then the quadratic equation (23) has at most one

solution. Thus, İ(0) ≤ 0. Proposition 2 then implies that if İ(t) ≤ 0 for some t (take

t = 0) then İ(s) < 0 for all s > t. If ε(0) = 0, then there exists a t such that ε(t) = 0

on t ∈ [0, t) and ε(t) > 0 on t ∈ (t,∞). By implication İ(t) = −γI(t) < 0 for t ∈ [0, t),

while ε(t) > 0 for t ∈ (t,∞) by the same reasoning as in the ε(0) > 0 case. Finally,

İ(t) = −γI(t).

Proof of Proposition 4. By Assumption d(0) < 1, it can be seen that ε(t) ∈ (0, 1) for

all t. Then, we have

dS

d(S + I)
=

β

γ
Sε =

β

γ

(
βη

c
S2 + S − βη

c
(S + I)S

)
,

where the first equality follows from dividing (2) by the sum of (2) and (3), and the

second uses (5) and simple manipulations. The above expression can be rewritten as

d

d(S + I)

(
1

S

)
+

(
β

γ
− β2η

γc
(S + I)

)
1

S
= −β2η

γc
,

which is a linear first-order differential equation with respect to 1
S
and (S + I). For ease

of notation, let y = 1
S
and x = S + I. Then,

dy

dx
+

(
β

γ
− β2η

γc
x

)
y = −β2η

γc
. (24)

Let µ(x) := exp
(∫ (

β
γ
− β2η

γc
x
)
dx
)
be the integrating factor. We have

µ(x) = k · exp

(
−β2η

2γc

(
x− c

βη

)2
)
, (25)

where k is the constant of integration. Then, equation (24) reduces to

d

dx
[µ(x)y] = µ(x)

[
d

dx
y +

(
β

γ
− β2η

γc
x

)
y

]
= −µ(x)

β2η

γc
. (26)

Integrating the outer most sides of Expression (26) and using (25) yield[
exp

(
−β2η

2γc

(
x− c

βη

)2
)
y

]1
S+I

=
−β2η

γc

∫ 1

S+I

exp

(
−β2η

2γc

(
x− c

βη

)2
)
dx. (27)
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The left-hand side of (27) reduces to

exp

(
−β2η

2γc

(
1− c

βη

)2
)

1

S0
− exp

(
−β2η

2γc

(
S + I − c

βη

)2
)

1

S
.

For the right-hand side of (27), let v = β
√

η
2γc

(
x− c

βη

)
. Since dv

dx
= β

√
η

2γc
, the right-

hand side of (27) reduces to

−β

√
2η

γc

∫ β
√

η
2γc(1−

c
βη )

β
√

η
2γc(S+I− c

βη )
e−v2dv.

Hence, we can rewrite equation (27) as

exp

(
−β2η

2γc

(
S + I − c

βη

)2
)

1

S
= exp

(
−β2η

2γc

(
1− c

βη

)2
)

1

S0

+ β

√
2η

γc

∫ β
√

η
2γc(1−

c
βη )

β
√

η
2γc(S+I− c

βη )
e−v2dv,

and finally we obtain (8), as desired.

Proof of Proposition 5. We prove the assertion with respect to η
c
. Denote by (S, I(S))

a point on the solution path. Differentiating the quotient differential equation dI
dS

with

respect to η
c
at a fixed point (S, I(S)) yields

∂

∂ η
c

dI

dS
=

γI

S

1

(1− βI η
c
)2

> 0.

Now, take η
c
and η̃

c̃
with η

c
> η̃

c̃
. Denote by (S̃, Ĩ) the solution path associated with η̃ and

c̃. By the above inequality dI
dS

> dĨ
dS̃

at any point of intersection. It follows that there

exists a δ1 > 0 such that Ĩ(S0 − δ) > I(S0 − δ) for every δ < δ1. Now, it is sufficient

to show that two curves I and Ĩ do not intersect at any other point. Suppose to the

contrary that I and Ĩ did intersect. Let, S := sup{S ∈ (0, S0 − δ1] | Ĩ(S) = I(S)}. Since
the solution curves are continuous they intersect at S and therefore dĨ

dS̃
(S) < dI

dS
(S). But

now we have that dĨ
dS̃

< dI
dS

both at S̄ and S0 and that the two curves do not intersect

anywhere in between, a contradiction.

Proof of Proposition 6. We prove the result with respect to c first, then with respect

to β.

Part (ii): The proof of Proposition 3 has established that

İ(0) > 0 if and only if I0

(
β

(
1− βη

c
I0

)
(1− I0)− γ

)
> 0.

Therefore, İ(0) > 0 if and only if c > c, where c can be recovered from the above
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inequality. The peak prevalence when c ≤ c̄ is I0. If c > c, then the peak prevalence is

strictly greater than I0. We show that the peak prevalence is strictly increasing in c > c.

Differentiating equation (7) with respect to c, while holding S and I fixed, yields30

∂

∂c

(
dI

dS

)
= − γηI

c2S
(
1− βI η

c

)2 < 0.

If two solution paths corresponding to c and c′ > c intersect at some point, the solution

path corresponding to c′ has a smaller slope. A certain point of intersection is the

beginning of the infection (S0, I0). At this point in the graph with S on the horizontal

and I on the vertical axis the solution path corresponding to c′ is steeper; the solution

paths are decreasing at (S0, I0). Just below S0, then, the solution path corresponding to

c′ is above the one corresponding to c. If they were to intersect at some other S < S0, the

solution path corresponding to c′ would have to intersect the solution path corresponding

to c from above and stay below it. This would contradict the finding that the solution

path corresponding to c′ is above the one corresponding to c for S slightly below S0.

Finally, given that the solution path under c′ is above the solution path under c, the peak

of infection under c′ must be higher than the peak of infection under c.

Part (i): We break up the proof for β into two steps.

Step 1: I∗ is decreasing in β for β ∈ [ c
2I0η

, β]. The derivative of the quotient differential

equation (7) at a given point (S, I(S)) with respect to β is

∂

∂β

(
dI

dS
(β)

)
= − γ

β2S

1− 2βη
c
I(S)

(1− βη
c
I(S))2

. (28)

The above derivative evaluated at (S0, I0) is greater or equal to 0, for β ≥ c
2I0η

. This

means that at (S0, I0), a higher β leads to a slower spread of the infection when the

starting β is high enough. At (S0, I0) solution paths are decreasing, thus the positive

derivative with respect to β means that the solution path becomes flatter as β increases.

That is, around (S0, I0) the solution path corresponding to a higher β is, therefore, below

the one with the lower β.

Moreover, ∂
∂β

(
dI
dS
(β)
)
≥ 0 at (S0, I0), for β ≥ c

2I0η
, implies that the same is true for

all (S, I) with I > I0. This means that if two solution paths corresponding to some β

and β′ > β in [ c
2I0η

, β] intersect, then the solution path corresponding to β′ must have a

larger slope. One such point of intersection is (S0, I0). Therefore, a solution path for β′ is

below the one of β just below S0 and it cannot intersect it anymore as long as I ≥ I0. In

other words, the solution path of β′ is strictly below the solution path of β for all I > I0.

30Recall that when İ(0) > 0, exposure is interior for all t.
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The maximum of I for β′ is, therefore, strictly below the maximum of I for β.

Step 2: There exists a β1 such that I∗ is increasing in β on (β, β1). We divide this

step into three substeps. First, we show that the peak I∗ is continuous in β. Then, we

show that ∂
∂β

(
dI
dS
(β)
)
< 0 along the entire solution path. Finally, we combine these two

insights to show that for β > β but sufficiently close, ∂
∂β

(
dI
dS
(β)
)
< 0 implying that the

peak is increasing in β for β ∈ (β, β + δ) for some δ > 0.

Step 2.1: We argue that I∗ is continuous in β ∈ (0, β). For β ∈ (0, β), I∗ = I0.

For β ∈ (β, β), in the (S, I)-phase space, (S, I) = (S∗, I∗) satisfies equation (8)

and dI
dS

= 0, i.e., S∗ = γ
β

1

1− ηβ
c
I∗
. Substituting the latter equation into the former and

rearranging, we obtain

exp

(
− η

2γc

(
β − c

η

)2
)

1

S0

+ β

√
2η

γc

∫ √
η

2γc(β−
c
η )

√
η

2γc

(
γ

1−βη
c I∗

+βI∗− c
η

) e−v2dv

=
1

γ

(
β − β2η

c
I∗
)
exp

− η

2γc

(
γ

1− βη
c
I∗

+ βI∗ − c

η

)2
 .

This implies that I∗ is differentiable and thus continuous in β for β ∈ (β, β).

Finally, if β = β then (S∗, I∗) = (S0, I0) satisfies the above implicit equation. Thus,

I∗ is also continuous at β = β.

Step 2.2: ∂
∂β

(
dI
dS
(β)
)
< 0, along the entire solution path whenever it holds along the

path that 1− 2
βη

c
I(S) > 0. This is satisfied for β = β.

Recall that the sign of ∂
∂β

(
dI
dS
(β)
)
at each (S, I(S)) is determined by the negative of

the sign of 1− 2βη
c
I(S). Thus, it is sufficient for the derivative to be negative along the

entire path that 1− 2βη
c
I∗ > 0.

Observe that the solution β of equation (23) is given by

β =
c

2ηI0

(
1−

(
1− 4

ηγ

c

I0
S0

) 1
2

)
.

Therefore,

1− 2
βη

c
I0 =

(
1− 4

ηγ

c

I0
S0

) 1
2

> 0,

where the inequality follows due to the assumption on I0 in the statement of the result.
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Consequently,

∂

∂β

(
dI

dS
(β)

)
< 0.

Step 2.3: I∗ is increasing in β for β ∈ (β, β + δ) for some δ > 0.

Since 1−2
βη

c
I0 > 0, there exists a δ1 > 0 such that 1−2βη

c
I0 > 0 for all β ∈ [β, β+δ1).

By continuity of the peak, for every δ2 > 0, there exists a δ3 > 0, such that β ∈
[β, β + δ3) implies I∗(β) < I0 + δ2. Choose δ2 to correspond to the δ1 argued above Step

2.2, and let δ3 corresponds to such δ2. This guarantees that we consider β to lie in a

range such that the peak is sufficiently low to ensure that the slopes of the solution paths

can be ordered by comparing β.

By Steps 2.1 and 2.2, for any such β, 1− 2βη
c
I(S) > 0 and therefore ∂

∂β

(
dI
dS
(β)
)
< 0.

This implies that whenever two solution paths corresponding to different β in (β, β + δ3)

intersect at a point, the one with the higher β has the smaller slope. Indeed, one point

of intersection is (S0, I0). The solution path with a higher β must be steeper than the

other path; the two are decreasing at (S0, I0). Suppose the two solution paths were to

intersect at some S < S0 and let S̃ be the largest such S. Then due to ∂
∂β

(
dI
dS
(β)
)
< 0,

the solution path with the higher β would need to intersect the solution path with the

lower β from above, and fall below it for S > S̃. But this contradicts the fact that at S0

the solution path corresponding to a higher β is above the one with the lower β.

Proof of Proposition 7. We begin by proving a lemma establishing bounds for S∞.

Lemma 3. The following chain of inequalities holds:

0 < S0e
−β

γ ≤ Ŝ∞ ≤ S∞ <
γ

β
.

Proof of Lemma 3. We start with showing S0e
−β

γ ≤ Ŝ∞. Let R̂∞ := lim
t→∞

R̂(t). It

follows from the SIR dynamics that

Ŝ∞ = S0 exp

(
−β

∫ ∞

0

Î(s)ds

)
= S0 exp

(
−β

γ
R̂∞

)
≥ S0e

−β
γ .

The first equality follows from integrating both sides of (2) with S and I replaced by

Ŝ and Î, respectively, and with ε = 1. The second equality follows from integrating

(4) (precisely, with R and I replaced by R̂ and Î, respectively). The inequality follows

33



because R̂∞ ≤ 1.

Second, we show Ŝ∞ ≤ S∞. It suffices to show that Ŝ(t) ≤ S(t), as letting t → ∞
yields the desired result. Suppose to the contrary that there exists some t̃ such that

S(t̃) < Ŝ(t̃). At time 0, S(0) = Ŝ(0) and Ṡ(0) >
˙̂
S(0). Thus, there exists an interval

in which S(·) > Ŝ(·). Then there would have to exist t0 such that S(t0) = Ŝ(t0) and

Ṡ(t0) <
˙̂
S(t0). However, it follows from S(t0) = Ŝ(t0) and the previous argument that

I(t0) ≤ Î(t0), and thus

Ṡ(t0) = −βε(t0)S(t0)I(t0) > −βS(t0)I(t0) > −βŜ(t0)Î(t0) =
˙̂
S(t0),

which is impossible.

Third, we show S∞ < γ
β
in two steps. The first step establishes S∞ ≤ γ

β
. Suppose

not. As S(t) is weakly decreasing throughout, there exists a δ > 0 such that S(t) ≥ δ+ γ
β

for all t ≥ 0. Since lim
t→∞

ε(t) = 1 and δ > 0, for a given κ ∈ (0, δ), there exists t1 ∈ [t0,∞)

such that δε(t)− γ
β
(1− ε(t)) > κ for all t ≥ t1. Then, for all t ≥ t1, we have

İ(t) = βI(t)(S(t)ε(t)− γ

β
) ≥ βI(t)((δ +

γ

β
)ε(t)− γ

β
) > βI(t)κ,

that is, İ(t)
I(t)

> βκ (note that, since İ(t) ≥ −γI(t), I(t) is always positive: I(t) ≥
I(0)e−γt > 0). Thus, I(t) ≥ I(t1)e

βκt, which yields I∞ = +∞. This is a contradic-

tion to I∞ = 0.

The second step establishes S∞ ̸= γ
β
. Suppose to the contrary S∞ = γ

β
. Then,

dI
dS
(S∞) = −1 + γ

β
1

S∞
= 0 as lim

t→∞
ε(t) = 1. However, note that

d

dS

dI

dS
(S∞) = −γ

β

1

ε(I(S))S

(
1

S
+

1

ε(I(S))

dε(I(S))

dI(S)

dI

dS

)
= −γ

β

1

ε(I(S))S2
< 0

as dI
dS
(S∞) = 0, where ε(I(S)) = 1 − β η

c
I(S). Thus, there is a δ > 0 such that for

S ∈ (S∞, S∞+δ), dI
dS
(S∞+δ) < 0 and, hence, that I(S∞+δ) < 0, a contradiction. Thus,

S∞ < γ
β
.

We now move on to proving the comparative statics of S∞. It follows from Proposition

5 that S∞ is increasing in c. Thus, we show that S∞ is decreasing in β for the following

three cases: (1) β ∈ [0, β]; (2) β ∈ [β, β]; and (3) β ∈ [β, c
ηI0

].
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Case 1. Let β ∈ [0, β]. In this case, I∗ = I0, and İ(t) < 0 for all t ∈ (0,∞). Also,

ε(·) ∈ (0, 1) as ε(t) = 1 − β η
c
I(t) is decreasing in I(t), I(t) > 0 is decreasing, and

β < c
ηI(0)

.

The derivative of the quotient differential equation with respect to β at (S, I(S)) is

∂

∂β

dI

dS
= − γ

βS

1

β(1− βη
c
I(S))

(
1− 2

βη

c
I(S)

)
< 0.

This implies that, for any β, β′ ∈ [0, β] with β < β′, the solution path associated with β′

has a flatter slope than the one associated with β at any point S ∈ (S0, S∞(β)), where

S∞(β) is S∞ associated with β. Thus, I(S∞(β)) > 0 for the solution path associated

with β′, and hence S∞(β′) < S∞(β).

Case 2. Let β ∈ [β, β]. In this case, İ(0) ≥ 0 and ε(·) ∈ (0, 1). Substituting (S, I) =

(S∞, 0) into (8) yields

S∞ =

exp

(
− η

2γc

(
βS∞ − c

η

)2)
exp

(
− η

2γc

(
β − c

η

)2
)

1

S0

+ 2β

√
η

2γc

∫ √
η

2γc(β−
c
η )

√
η

2γc(βS∞− c
η )

e−v2dv

. (29)

Rewriting Expression (29),

exp

(
− η

2γc

(
β − c

η

)2
)

S∞

S0

+2βS∞

√
η

2γc

∫ √
η

2γc(β−
c
η )

√
η

2γc(βS∞− c
η )

e−v2dv = exp

(
− η

2γc

(
βS∞ − c

η

)2
)
.

(30)

For the right-hand side,

∂

∂β
(RHS) = − exp

(
− η

2γc

(
βS∞ − c

η

)2
)

︸ ︷︷ ︸
=(RHS)

η

γc

(
βS∞ − c

η

)(
S∞ + β

∂S∞

∂β

)
.

For the left-hand side, we obtain

∂

∂β
(LHS) = exp

(
− η

2γc

(
β − c

η

)2
)

S∞
S0

(
− η

γc
β(1− S0) +

1

γ
+

∂S∞
∂β

S∞

)

+ 2βS∞

√
η

2γc

∫ √
η

2γc

(
β− c

η

)
√

η
2γc

(
βS∞− c

η

) e−v2dv

(
1

β
+

∂S∞
∂β

S∞

)

− βS∞
η

γc

(
S∞ + β

∂S∞
∂β

)
exp

(
− η

2γc

(
βS∞ − c

η

)2
)
.
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Equating the derivatives of the left-hand and right-hand sides and using Expression (30)

and rearranging yield

exp

(
− η

2γc

(
βS∞ − c

η

)2
)((

β

γ
− 1

S∞

)
∂S∞
∂β

+
1

γ

(
S∞ − γ

β

))

=exp

(
− η

2γc

(
β − c

η

)2
)

S∞
S0

(
1

γ

(
1− ηβ(1− S0)

c
− γ

β

))
.

Thus,

(
β

γ
− 1

S∞

)
∂S∞

∂β
=

exp

(
− η

2γc

(
β − c

η

)2)
exp

(
− η

2γc

(
βS∞ − c

η

)2) S∞

S0

1

γ

(
ε(0)− γ

β

)
− 1

γ

(
S∞ − γ

β

)
. (31)

Since S∞ < γ
β
follows from Lemma 3,31 it follows that

∂S∞

∂β
=

S∞

β

 exp

(
− η

2γc

(
β − c

η

)2)
exp

(
− η

2γc

(
βS∞ − c

η

)2) S∞

S0

ε(0)− γ
β

S∞ − γ
β

− 1

 < 0.

Case 3. The case with β ∈ [β, c
ηI0

] is analogous to Case 1, and thus the proof is omitted.

Remark 1. First, we derive equation (10). Suppose that an individual gets infected at

time τ . The (conditional) probability that the individual will have been recovered after

time τ + t is 1− e−γt. Therefore,

VI(τ) =

∫ ∞

0

e−ρt
(
e−γtπI + (1− e−γt)πR

)
dt =

1

ρ+ γ

(
πI +

γ

ρ
πR

)
,

which is independent of τ ; see also Toxvaerd (2020).

Second, the payoff in (11) can be obtained from∫ ∞

0

e−ρt(1− pi(t))

[
πS − c

2
(1− εi(t))

2 +
ṗi(t)

1− pi(t)
VI

]
dt.

With probability 1−pi(t) individual i has not been infected by time t and receives the flow

payoff (πS − c
2
(1 − εi(t))

2)dt. In addition, with probability ṗi(t)dt she becomes infected

31In fact, Equation (31) itself yields S∞ ̸= γ
β . Since İ(0) ≥ 0, we have ε(0) ≥ γ

βS0
> γ

β . Since the

first-term of the right-hand side of (31) is not zero, it cannot be the case that S∞ = γ
β .
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and receives the lump sum payoff VI . The above payoff is obtained by integration by

parts. This approach was previously used in Toxvaerd (2020); for the approach dealing

with all three states (S, I and R) see Rachel (2020a).

Remark 2. We have assumed pi(t) < 1 in deriving equation (12). We show that the

condition is satisfied in three steps. First, the proof of the inequality S0e
−β

γ ≤ S∞ in

Lemma 3 holds for any SIR dynamics (19), (20) and (21) with ε(·) ∈ [0, 1]. Specifically,

it holds for the model with the endogenous cost of infection in which η evolves according

to (13). Second, 1−p∞
1−p(0)

= S∞
S0

> 0 holds, where p∞ := lim
t→∞

p(t) and where the equality

follows from observations in the proof of Lemma 1 and the inequality from the first step.

Third, pi, which follows (9), is weakly increasing and satisfies pi = p in equilibrium.

Then, p(t) ≤ p∞ < 1, as desired.

Proof of Lemma 1. We prove the equation (14) in two steps. First, it follows from

equation (9) that

d

dt
log(1− pi(t)) = − ṗi(t)

1− pi(t)
= −εi(t)βI(t).

Integrating both sides from some t0 to t1 > t0 and taking the exponential yield

1− pi(t1)

1− pi(t0)
= exp

(
−
∫ t1

t0

βεi(t)I(t)dt

)
. (32)

Second, since equation (13) is a linear first-order differential equation, let

µ(t) := e−ρt exp

(
−β

∫ t

0

εi(τ)I(τ)dτ

)
be the integrating factor. Since d

dt
[µ(t)ηi(t)] = µ(t) (η̇i(t)− (ρ+ βεi(t)I(t))ηi(t)), it fol-

lows that

d

dt
[µ(t)ηi(t)] = µ(t)

(
(πS − ρVI)−

c

2
(1− εi(t))

2
)
.

Integrating both sides on [t,∞) and using the transversality condition give

e−ρt exp

(
−β

∫ t

0

εi(τ)I(τ)dτ

)
ηi(t)

=

∫ ∞

t

e−ρs exp

(
−β

∫ s

0

εi(τ)I(τ)dτ

)(
(πS − ρVI)−

c

2
(1− εi(s))

2
)
ds.
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Thus,

ηi(t) =

∫ ∞

t

e−ρ(s−t) exp
(
−β
∫ s

0
εi(τ)I(τ)dτ

)
exp

(
−β
∫ t

0
εi(τ)I(τ)dτ

) ((πS − ρVI)−
c

2
(1− εi(s))

2
)
ds (33)

=

∫ ∞

t

e−ρ(s−t)1− pi(s)

1− pi(t)

(
(πS − ρVI)−

c

2
(1− εi(s))

2
)
ds,

where the last equality used (32).

Next, we derive equation (15) in two steps. First, observe that (2) can be rewritten

as
d

dt
log(S(t)) = −βε(t)I(t).

Integrating both sides from some t0 to t1 > t0 and taking the exponential yield

S(t1)

S(t0)
= exp

(
−
∫ t1

t0

β(t)ε(t)I(t)dt

)
. (34)

Second, in an equilibrium, (33) reduces to

η(t) =

∫ ∞

t

e−ρ(s−t) exp
(
−β
∫ s

0
ε(τ)I(τ)dτ

)
exp

(
−β
∫ t

0
ε(τ)I(τ)dτ

) ((πS − ρVI)−
c

2
(1− ε(s))2

)
ds

=

∫ ∞

t

e−ρ(s−t)S(s)

S(t)

(
(πS − ρVI)−

c

2
(1− ε(s))2

)
ds,

where the last equality used (34).

Proof of Lemma 2. We first show (17). We rearrange (15) as

η(t) =

∫ ∞

t

e−ρ(s−t)S(s)

S(t)
(πS − ρVI)ds−

∫ ∞

t

e−ρ(s−t)S(s)

S(t)

c

2
(1− ε(s))2ds. (35)

For the first term of (35), since πS − ρVI > 0,

πS − ρVI

ρ
=

∫ ∞

t

e−ρ(s−t)(πS − ρVI)ds ≥
∫ ∞

t

e−ρ(s−t)S(s)

S(t)
(πS − ρVI)ds ≥

S(∞)

S(t)

πS − ρVI

ρ
.

As t → ∞, the first term of (35) converges to πS−ρVI

ρ
. For the second term of (35),

observe I∞ = 0. This is because, if I∞ > 0, then R is unbounded, which is impossible.

By optimality condition (12), lim
t→∞

εi(t) = 1. Then, for any small number κ > 0, there
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exists t0 ∈ [0,∞) such that if t ≥ t0 then

0 ≤
∫ ∞

t

e−ρ(s−t)S(s)

S(t)

c

2
(1− ε(s))2ds ≤

∫ ∞

t

e−ρ(s−t) c

2
(1− ε(s))2ds ≤ cκ2

2ρ
.

Thus,

0 ≤ lim
t→∞

∫ ∞

t

e−ρ(s−t)S(s)

S(t)

c

2
(1− ε(s))2ds ≤ cκ2

2ρ
.

Since κ is arbitrary, the second term of (35) converges to zero. Hence, we obtain (17), as

desired.

As for the bounds, the upper bound is obtained by replacing ε(t) = 1 and S(s)
S(t)

= 1 for

all s ≥ t in (15). For the lower bound, it follows from (13) that η̇i(t) < 0 if and only if

η(t) <
πS − ρVI − c

2
(1− ε(t))2

ρ+ ε(t)βI(t)
.

If η(t) satisfies η(t) <
πS−ρVI− c

2

ρ+β
, then from time t on η is always decreasing, which

contradicts the statement that η converges to its upper bound as time goes to infinity.

Next, assume η̇(0) < 0. Observe that η is bounded because it is continuous and

converges to the finite upper bound (17). Letting tη be a time at which η attains a

minimum, it follows from the assumption η̇(0) < 0 that η̇(tη) = 0. Thus,

η(tη) =
πS − ρVI − c

2
(1− ε(tη))

2

ρ+ ε(tη)βI(tη)
.

Substituting for βI(t) from equation (12) for optimal distancing and rearranging yield

η(tη) =
πS − ρVI

ρ
− c

2ρ
(1− ε2(tη)) (36)

≥
πS − ρVI − c

2

ρ
.

Finally, we show that the lower bound
πS−ρVI− c

2

ρ
is approximately tight when η̇(0) < 0.

Substituting (36) into optimality condition (12) yields the following quadratic equation

with respect to ε(tη):

βI(tη)

2ρ
ε2(tη) + ε(tη)− 1 +

β

c
I(tη)

πS − ρVI − c
2

ρ
= 0.
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This quadratic equation admits a unique solution ε(tη) ∈ [0, 1]:

ε(tη) = − ρ

βI(tη)

(
1−

√
1 + 2

βI(tη)

ρ

(
1− β

c
I(tη)

πS − ρVI − c
2

ρ

))
.

Since 1−
√
1 + 2x ≈ −x and 1−

√
1 + 2x ≥ −x,

ε(tη) ≈
ρ

βI(tη)

(
βI(tη)

ρ

(
1− β

c
I(tη)

πS − ρVI − c
2

ρ

))
= 1− β

c
I(tη)

πS − ρVI − c
2

ρ
.

Comparing the last equation with optimality condition (12), we obtain η(tη) ≈
πS−ρVI− c

2

ρ
.

Proof of Proposition 8. Recall that

dI

dS
= −1 +

γ

βSmax
(
0, 1− βη

c
I
) ,

and denote the solution path of the model with endogenous cost of infection by (Se, Ie)

and its co-state by ηe. By construction, ηe(·) ∈ [ηL, ηH ]. Therefore, for any fixed values

of S and I, the following chain of inequalities obtains: dIL
dSL

≤ dIe
dSe

≤ dIH
dSH

. Finally, recall

that all three solution paths go through (S0, I0).

Consider first the solution path of the model with an endogenous cost of infection and

the model with the fixed cost of infection ηH . Since
dIH
dSH

≥ dIe
dSe

, at any point of intersection

the solution path of the model with the fixed cost ηH intersects the model with the

endogenous cost from below. Hence, for δ > 0 small enough IH(S0 − δ) ≤ I(S0 − δ). But

then there can be no intersection for any S < S0 as otherwise at such an intersection
dIH
dSH

< dIe
dSe

. Thus, IH(S) ≤ Ie(S).

The proof for the case with the fixed cost of infection ηH is analogous and, therefore,

IL(S) ≥ Ie(S).

B Parameters and Computational Algorithm

We simulate the model at a daily frequency. We follow Farboodi et al. (2021) for most

model parameters as summarized in Table 1. We set γ = 1/7, assuming that the average

length of disease is 7 days. For the transmission rate β for the baseline simulation of the

endogenous cost of infection model, we assume that the initial growth rate İ(0)
I(0)

without
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behavior is 0.3. Since it is given as β − γ for the dynamics of the standard SIR model

with S0 = 1, we set β = 0.3 + γ = 0.443. This gives R0 = 3.1 without behavior. We

vary β for various numerical simulations. For I0, we match 194 people who died from

COVID-19 in the US on or before March 18, a week after the pandemic declaration of

the WHO on March 11, 2020. Given a population of 328 million and an IFR of 0.0062,

we set I0 = 0.95 × 10−4. We take ρ = ρ̃ + λ = (0.05 + 0.67)/365, where ρ captures a 5

percent annual discount rate, and λ implies an expected time until the arrival of a cure

of 1.5 years as in Alvarez et al. (2021) and Farboodi et al. (2021).

For the flow payoff, we normalize it to be −(1−ε(t))2. Thus, we set c = 2 and πS = 0.

To compute the parameter η of the constant cost of infection model, we follow the same

steps as in Farboodi et al. (2021). We assume the value of a statistical year of life to be

US$ 270, 000 and an average remaining life expectancy of COVID-19 victims to be 14.5

years, which gives US$ 3, 915, 000 where the numerical values are taken from Hall et al.

(2020). Hence, to avoid a 0.1 percent probability of death an individual would be willing

to pay US$ 0.001 × 3, 915, 000. Using the discount rate to translate this into flow units

we obtain US$ ρ · 3, 915 as the willingness to pay to avoid the 0.1 percent probability

of death. To translate this into utils, we also use the US per capita consumption from

Hall et al. (2020) of US$ 45,000 per year implying that an individual is willing to give up
3,915ρ·365
45,000

= 31.755ρ in terms of annual consumption units, i.e., ε = 1− 31.755ρ, to avoid

a 0.1 percent risk of death. Applying the assumed utility function, an individual, who is

willing to give up 31.755 ρ units of consumption per period to avoid a 0.1 percent risk of

death, is indifferent between this and full exposure with a 0.001 risk of death which has

a utility cost of v:

−(1− 1)2

ρ
− 0.001v = −(1− 31.755ρ)2

ρ
.

Multiplying this value of life in utils by the death rate of 0.0062 (also from Hall et al.,

2020) yields a cost of infection η = 2761.63.

For the endogenous cost of infection model, we set πR = 0 and πI = −399.96 so that

VI = πI

ρ+γ
= −η works as the upper bound of η(t) in the endogenous cost of infection

model. The lower bound of η is 2761.63− c/2
ρ

= 2254.68, which we also use in the constant

cost of infection model.

We have solved the constant cost of infection model using the fourth-order Runge-

Kutta method. For the endogenous cost of infection model, recall that the equilibrium

of the model is characterized as follows. First, (S, I, R) follow (2), (3), and (4) with the

initial condition (S(0), I(0), R(0)) = (S0, I0, 0), where ε(t) = 1 − βη(t)
c

I(t) is the average
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Table 1: Table of Baseline Parameters for Numerical Analysis.

Parameter Description Value Source
γ Recovery Rate 1/7 Farboodi et al. (2021)
β Transmission Rate 0.3 + γ Farboodi et al. (2021)

I0 Initial Seed of Infections 0.95× 10−4 Based on death toll in the
US before March 19, 2020

ρ̃ Discount Rate 0.05/365 Farboodi et al. (2021)
λ Arrival Rate of Cure 0.67/365 Farboodi et al. (2021)
c Cost of Distancing 2 Normalization
πS Flow Payoff of Susceptibles 0 Normalization
η Cost of Infection {2254.68, 2761.63} Hall et al. (2020)

exposure. Second, η follows equation (13) with lim
t→∞

η(t) =
πS − ρVI

ρ
as in (17).

To numerically solve (S, I, R, η), we set η(T ) = πS−ρVI

ρ
at T = 400×365 (days). Then,

given η, we solve for (S, I, R) with the initial condition. In turn, given (S, I, R), we solve

for η with the terminal condition η(T ) = πS−ρVI

ρ
. We iterate the procedure until the sum

of the distances of (S, I, R, η) in two successive iterations is below a threshold value. To

facilitate the computation, at each iteration, when S(t)−S(t+1) and I(t+1) are below

threshold values, we have terminated the simulation of (S, I, R) at t + 1, and we start

the computation of η with η(t + 1) = πS−ρVI

ρ
and (S, I, R). Once the iterations end, we

have checked whether ε(τ) ∈ [0, 1] for every time τ . The right panel of Figure 5 depicts

the peak prevalence when ε(τ) ∈ [0, 1] for every time τ .
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