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ABSTRACT. Recently the class of normalized random measures with independent increments,
which contains the Dirichlet process as a particular case, has been introduced. Here a new tech-
nique for deriving moments of these random probability measures is proposed. It is shown that,
a priori, most of the appealing properties featured by the Dirichlet process are preserved. When
passing to posterior computations, we obtain a characterization of the Dirichlet process as the only
conjugate member of the whole class of normalized random measures with independent increments.
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1. Introduction

In Ferguson (1973) it is shown that the Dirichlet process prior can be constructed by suitably
normalizing the increments of a Gamma process, i.e. a process having independent increments
and whose marginal distribution is Gamma. In the same way, even though not motivated by
applications to Bayesian inference, Kingman (1975) derived a random probability measure
by normalizing the so-called !-stable subordinator. These two examples clearly point out a
natural approach for defining priors on spaces of probability measures which is based on
the normalization of increasing processes having independent increments. However, the Bay-
esian non-parametric literature has mainly focussed on alternative representations of priors
on spaces of probability distributions such as, e.g. neutral to the right priors (Doksum, 1974;
Ferguson & Phadia, 1979; Walker & Muliere, 1997; Epifani et al., 2003) and Pólya tree pro-
cesses (Mauldin et al., 1992; Lavine, 1992). Only recently the ‘normalization approach’ has
gained new interest. In Regazzini et al. (2003), it has been successfully employed leading to
the definition of a novel class of priors: the ‘normalized random measures with independent
increments’ (normalized RMI). Such random probability measures, whose laws act as priors
in a Bayesian non-parametric setting, are constructed via the normalization of suitably
reparameterized increasing additive processes, i.e. increasing processes with independent but
not necessarily stationary increments. For an exhaustive account of the theory of increasing
additive processes (see, e.g. Sato, 1999). This paper focusses attention on a suitable subclass
of normalized RMI, namely those generated by increasing Lévy processes also known as
‘subordinators’. To fix ideas we briefly recall the construction of such a random probability
measure.
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Let "={"t : t ≥ 0} be a subordinator (without drift) defined on some probability space
(!, F, P). It is well known that any subordinator " is uniquely determined by its Lévy
measure # on B(R+) which satisfies

∫
R+ min(1, x)#(dx) <+∞. Indicate by $ a non-null and

finite measure on R. The time change t =$((−∞, x]), yields a new process "$ ={"$((−∞, x]) :
x∈R} which is almost surely finite. Intuitively, one can think of such an operation as observ-
ing " on the finite interval (0, $(R)) with a time deformation dictated by $. Note that "$ shares
all the properties of the subordinator " but the stationarity of the increments (unless $ is a
uniform measure on a bounded interval). By virtue of the celebrated Lévy–Khintchine rep-
resentation, the Laplace transform of "$ is given by

E
[
e−%"$((−∞, x])

]
= e−$((−∞, x])&(%) for every x ∈R

where &(%)=
∫

R+ (1−e−%v)#(dv) is known as the ‘Laplace exponent’ and E[ · ] stands for expec-
tation with respect to P. The reader interested in time changed subordinators is referred to
Barndorff-Nielsen & Shephard (2006) where such type of processes are dealt with in detail.
In the following we will use the same symbol "$ for denoting both the reparameterized pro-
cess and the corresponding random measure. At this point, a random probability measure
can be easily determined by normalization. The latter operation requires an extra condition
to ensure the normalizing random quantity to be positive and finite almost surely. Finiteness
is assured by the reparameterization, while for positiveness it suffices to require " to be an
infinite activity process, i.e. a process that jumps infinitely often on any finite time interval.
In terms of the Lévy measure infinite activity is equivalent to imposing #(R+)=+∞. The
random probability measures, obtained by normalization,

P̃( · )=
"$( · )

"$(R)
(1)

are a subclass of the normalized RMIs, introduced in Regazzini et al. (2003), and will be
termed ‘normalized homogeneous random measures with independent increments’ (normal-
ized HRMI). A few interesting facts about P̃ can be quickly pointed out. First, it should be
noted that the realizations of P̃ are discrete probability distributions on R, almost surely with
respect to P. A proof of this result is given, e.g. in James (2003). Also, observe that x
being an atom of $ implies that P̃({x}) > 0 with P–probability 1. Moreover, P̃ is supported
by a countable dense subset of R if and only if x %→ A(x)=$((−∞, x]) is strictly increas-
ing.

It seems worth recalling how to obtain the Dirichlet process as a particular case of normal-
ized HRMI as defined in (1). One starts with a Gamma process, i.e. a subordinator charac-
terized by the Lévy measure #(dv)= v−1 e−v dv. The corresponding Laplace exponent is given
by log(1+%). Such a process clearly enjoys the infinite activity property. The time change
yields an (a.s.) finite Gamma process "$ with parameter $ and the random probability
measure obtained via normalization in (1) is well defined and coincides with the Dirichlet
process.

An allied class of random probability measures, the Poisson–Kingman models, indepen-
dently proposed in a stimulating paper of Pitman (2003) not concerned with Bayesian appli-
cations, essentially coincides with the just defined normalized HRMIs under the additional
assumption of diffuseness of $ (see also James, 2002).

The aim of this paper was to study the distinctive features of the Dirichlet process within
the class of normalized HRMI. On the one hand, it is shown that, a priori, most of the
appealing properties featured by the Dirichlet process are preserved. On the other hand,
when passing to posterior computations, we derive a characterization of the Dirichlet pro-
cess as the only conjugate member of the whole class of normalized HRMI. The reader may
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note that we obtain opposite results with respect to the ones well known for neutral to the
right priors. Indeed, it is known that in generalizing the Dirichlet process to a neutral to the
right process one preserves conjugacy, but loses a simple moment structure both a priori and
a posteriori.

To carry out our analysis a new technique for deriving moments of normalized HRMI
is introduced. Section 2 investigates some distributional properties normalized HRMI share
with the Dirichlet process. Attention is devoted to the expectation, the variance and corre-
lation structure of a normalized HRMI. In section 3 it is shown that the Dirichlet process
is the only conjugate normalized HRMI. Finally, predictive distributions are considered. In
order to ease the flow of ideas, proofs are given in the appendix.

2. Moments of a normalized HRMI

The Dirichlet process has undoubtedly been playing a prominent role in Bayesian non-
parametric inference for the last 30 yr. Its success is to be attributed to a number of
properties it enjoys, which can be easily derived by exploiting the knowledge of its finite-
dimensional distributions. When considering moments of normalized HRMI, the major
difficulty to be overcome is represented by the fact that the finite–dimensional distribution
are, in general, unknown even for a non-normalized HRMI.

As far as a priori moments are concerned, the first issue to be considered is the deter-
mination of the expected value of P̃ which takes the interpretation of prior guess at the
shape of P̃. As a normalized HRMI is a species sampling model, i.e. it admits a representa-
tion as "i≥1Pi'Xi , where the sequences of weights (Pi)i≥1 and locations (Xi)i≥1 are indepen-
dent, it follows immediately that

P0(B) :=E
[
P̃(B)

]
= $(B)

a
for every B ∈B(R) (2)

having set a :=$(R) (see Pitman, 2003 for details). Thus, a well-known property of the
Dirichlet process prior extends to the more general class of normalized HRMI. The fact that
just in the Gamma case the normalized increments are independent of the total mass, might
lead to conjecture that (2) is peculiar to the Dirichlet process. Thus, one has that, for any
normalized HRMI, the marginal distribution of the first observation does not depend upon
the process employed to define it.

To our purposes it is useful to prove (2) by means of a new technique, which does not
resort to the theory of species sampling models, as most of the following results heavily rely
on this type of arguments. The key point for obtaining (2) is the equality

E[P̃(B)]=E

[
"$(B)

"a

]
=
∫ +∞

0
E
[
e−u"a "$(B)

]
du

which follows from Fubini’s theorem. If one writes "a ="$(B) +"$(Bc), with Bc denoting the
complement of a set B, and exploits independence of the increments of "$, it is easy to show
that

E
[
P̃(B)

]
=
∫ +∞

0
E
[
"$(B) e−u"$(B)

]
E
[
e−u"$(Bc )

]
du

=
∫ +∞

0
E

[
− d

du
e−u"$(B)

]
E
[
e−u"$(Bc )

]
du.
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An application of theorem 16.8 in Billingsley (1995) leads to

E
[
P̃(B)

]
=
∫ +∞

0

{
− d

du
E
[
e−u"$(B)

]}
E
[
e−u "$(Bc )

]
du

=$(B)
∫ +∞

0
e−a &(u)

(
d

du
&(u)

)
du

= $(B)
a

∫ +∞

0

{
− d

du
e−a &(u)

}
du = $(B)

a
(1− e−a #(R+))

and (2) follows as a > 0 and #(R+)=+∞.
Now we move on in analysing various properties of normalized HRMIs summarized by

suitable descriptive indices. These quantities, once the prior guess at the shape of P̃ is set,
are usually fixed in such a way to incorporate additional qualitative prior knowledge into the
model. For instance, Walker & Damien (1998) suggest to control the variance of P̃, while
Dickey & Jiang (1998) are more concerned with the correlation structure. Refer to Walker
et al. (1999) for a comprehensive discussion of prior specification in a non-parametric setting.
Before stating the results, which are expressed in terms of the prior guess P0, it is useful to
introduce some quantities which will be frequently used throughout. For any (> 0, set

V (n)
( (u) :=

{
(−1)n dn

dun e−(&(u)
}

e(&(u) n=1, 2, . . . , (3)

V (0)
( (u)≡1 and, after defining

)n(u) :=
∫

R+
vn e−uv #(dv)= (−1)n−1 dn

dun &(u) ∀u > 0,

let

#(n)
( (u) :=

n−1∑

i =0

(
n−1

i

)
)n−i(u)V (i)

( (u).

Finally, we introduce

Ia :=a
∫

R+
u e−a&(u) )2(u) du and Ja :=a

∫

R+
u2 e−a&(u) )3(u) du.

We are now in a position to state the following proposition.

Proposition 1
Let B, B1, B2 ∈B(R) and set C :=B1 ∩B2. If P̃ is a normalized HRMI, then

var
[
P̃(B)

]
=P0(B)(1−P0(B))Ia (4)

cov(P̃(B1), P̃(B2))= [P0(C)−P0(B1) P0(B2)]Ia (5)

!1(P̃(B))= 1−2 P0(B)
2
√

P0(B)(1−P0(B))
Ja

(Ia)3/2 (6)

where !1 denotes the skewness coefficient.

At this point, a comparison with the corresponding properties of the Dirichlet process is
in order. One easily verifies that for the Dirichlet process Ia =1/(a +1) and Ja =4[(a +1) ×
(a +2)]−1. Inserting them in (4)–(6) leads to the desired quantities for the Dirichlet case. It
seems worth noting that the particular subordinator, on which P̃ is based, acts on (4)–(6) just
as a multiplicative constant (by means of Ia and Ja) without affecting the deep structure of P̃.

© Board of the Foundation of the Scandinavian Journal of Statistics 2005.
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In particular, with reference to the correlation structure, as a straightforward consequence of
(5), one has that

cov(P̃(B1), P̃(B2))=−P0(B1) P0(B2)Ia

whenever B1 and B2 are disjoint, thus yielding the following expression for the correlation
coefficient

((P̃(B1), P̃(B2))=−

√
P0(B1) P0(B2)

[1−P0(B1)] [1−P0(B2)]

which obviously is the same whatever normalized HRMI has been chosen.
According to the inferential problem at issue, one can alternatively be interested in the

expected value of some dispersion indices of the random probability measure. This leads to
considering, for instance, random functionals of P̃ such as the variance, VP̃ =

∫
x2P̃(dx) −

(
∫

xP̃(dx))2, or Gini’s mean difference, #P̃ =
∫

|x − y| P̃(dx) P̃(dy). It turns out that also in
this case the Dirichlet process does not play a particular role within the class of normalized
HRMI. Indeed, provided

∫
x2 $(dx) <+∞, one has

E
[
VP̃

]
= (1−Ia) VP0 (7)

E
[
#P̃

]
= (1−Ia)#P0 (8)

where VP0 and #P0 are the variance and Gini’s mean difference, respectively, of the proba-
bility measure P0. Details about the determination of (7) and (8) are given in the appendix.

These results allow us to state that some properties, which were thought to be distinctive
of the Dirichlet process, are shared by any normalized HRMI. Hence, it seems that such
properties crucially depend upon the normalization procedure itself and not upon the
particular process to be normalized. In moving on to posterior computations, the real dis-
tinctive feature of the Dirichlet process will become apparent. Before proceeding, a small
illustrative example might help clarifying ideas.

Example. A remarkable example of Lévy process that can be used for defining a random
probability measure is the !-stable subordinator. Its Lévy measure is given by

#(dv)= v−!−1 dv !∈ (0, 1).

The resulting normalized HRMI was first considered in Kingman (1975) with $ equal to the
uniform distribution on the unit interval. Note that it also arises as a limiting case of the two
parameter Poisson–Dirichlet family due to Pitman (1995). In this case, one has Ia =1−! and
Ja = (2− !)(1− !) thus yielding, e.g.

var
[
P̃(B)

]
=P0(B)(1−P0(B)) (1− !)

!1(P̃(B1))= 1−2 P0(B)
2
√

P0(B)(1−P0(B))
2− !√
(1− !)

.

Analogously, one can easily determine the covariance structure of the prior and expectations
of dispersion indices.

3. Characterization of the Dirichlet process

In this section, we look at posterior quantities under the usual assumption of exchange-
ability of the observations. Suppose that a sequence (Xn)n≥1 of exchangeable observations

© Board of the Foundation of the Scandinavian Journal of Statistics 2005.



110 L. F. James et al. Scand J Statist 33

is defined on (!, F, P) in such a way that, given P̃, the Xis are independent and identi-
cally distributed (i.i.d.) with distribution P̃. It is well known that the Dirichlet process is
conjugate, i.e. given (X1, . . . , Xn) its posterior distribution is again a Dirichlet process with
parameter measure $+"n

i =1'Xi . The main result of this paper is given in the next theorem
which provides a characterization of the Dirichlet process in the sense that it identifies con-
jugacy as the only distinctive feature of the Dirichlet process within the class of normalized
HRMI.

Theorem 1
Let P be the class of normalized HRMI and let P̃ be in P. Then, the posterior distribution
of P̃, given a sample X1, . . . , Xn, is in P if and only if P̃ is the Dirichlet process.

An important goal in inferential procedures is the prediction of future values of a random
quantity based on its past outcomes. One of the reasons of the success of the Dirichlet
process is certainly the appealing form of its predictive distributions that are given by

P(Xn+1 ∈B|X1, . . . , Xn)= a
a +n

$(B)
a

+ n
a +n

1
n

n∑

i =1

'Xi (B). (9)

Although normalized HRMI are not conjugate, it is possible to determine expressions for
their predictive distributions. The following proposition provides the predictive distributions
corresponding to grouped data, i.e given that, among the past n observations, nj fall into Cj ,
for j =1, . . . , k, with C1, . . . , Ck disjoint subsets of B(R) and "jnj =n.

Proposition 2
Let P̃ be a normalized HRMI. The predictive distribution of Xn+1, given (X1, . . . , Xn)∈×k

j=1Cnj
j ,

is of the form

P

(
Xn+1 ∈B

∣∣∣∣∣ (X1, . . . , Xn)∈×k
j =1Cnj

j

)

= $(B ∩Ck +1)
n

∫ +∞
0 une−a &(u) )1(u)

∏k
j =1 #

(nj )
$j (u) du

∫ +∞
0 un−1e−a &(u)

∏k
j =1 #

(nj )
$j (u) du

+ 1
n

k∑

j =1

$(B ∩Cj)
$(Cj)

nj∑

i =0

(
nj

i

)

×

∫ +∞
0 une−a &(u)

(∏
l ̸= j #

(ni )
$i

(u)
)

#(i +1)
$(B∩Cj )

(u) V (nj −i)
$(Bc∩Cj )

(u) du
∫ +∞

0 un−1e−a &(u)
∏k

j =1 #
(nj )
$j (u) du

(10)

having set $i =$(Ci) for i =1, . . . , k.

The predictive distribution for grouped data in the Dirichlet case, first given in Regaz-
zini (1978), can be obtained by setting # as the Lévy measure of the Gamma process in (10).
Moreover, from the previous result one can easily deduce the expression for exact data, but
unfortunately it remains rather complicated. On the contrary, if one makes the additional
assumption of diffuseness of $, it is possible to recover a nice result due to Pitman (2003)
(see also Prünster, 2002; James, 2002).

Corollary 1
If P̃ is a normalized HRMI and $ is diffuse, then the predictive distributions are of the form

© Board of the Foundation of the Scandinavian Journal of Statistics 2005.



Scand J Statist 33 Characterizing the Dirichlet process 111

P(Xn+1 ∈B |X1, . . . , Xn)

=
a
∫

R+ une−a&(u))n1
(u) . . .)nk

(u))1(u) du

n
∫

R+ un−1e−a&(u))n1
(u) . . .)nk

(u) du
$(B)

a

+ 1
n

k∑

j =1

∫
R+ une−a&(u))n1

(u) . . .)nj +1(u) . . .)nk
(u) du

∫
R+ un−1e−a&(u))n1

(u) . . .)nk
(u) du

'X ∗
j
(B),

having denoted by X ∗
1 , . . . , X ∗

k the k distinct observations within the sample, nj > 0 terms being
equal to X ∗

j , for j =1, . . . , k.

Thus, in the case of diffuse $, the predictive distributions have quite intuitive forms, as they
consist of a linear combination of the prior guess and of a weighted version of the empirical
distribution.

Example (continued). By proposition 2, it is clear that the normalized stable HRMI is not
conjugate. As far as the structure of predictive distributions is concerned, one easily finds
that

#(n)
( (u)=

n−1∑

j =0

wj(u;()

where w0(u;()=()n(u) and, for j =1, . . . , n−1,

wj(u;()=(j +1
∑

(i1, ..., ij )∈$j

*(i1, . . . , ij ; n))n−i1 (u) . . . )ij−1−ij (u))ij (u)

having set $j ={(i1, . . . , ij) : 1 ≤ ij < ij−1 < · · · < i1 ≤ n − 1}, and *(i1, . . . , ij ; n) : =
(

n−1
i1

)

(
i1 −1

i2

)
. . .
(

ij−1 −1
ij

)
. An explicit expression for )m(u), with m ≥ 1, is available, so that

one easily gets )n−i1 (u) . . .)ij−1−ij (u))ij (u)=u−n+(j +1)! %(n− i1 −!) . . . %(ij−1 − ij −!)%(ij −!), for
j =1, . . . , n−1, and )n(u)=u−n+ !%(n− !) if j =0.

In the case of $ being non-atomic with exact observations, the predictive distribution
reduces to the simple expression

P(Xn+1 ∈B|X1, . . . , Xn)= k
n

!
$(B)

a
+ 1

n

k∑

j =1

(nj − !)'X ∗
j
(B) (11)

obtained first by Pitman (1995) in considering the two parameter Poisson–Dirichlet family.

4. Concluding remarks

In this study, we have investigated the role played by the Dirichlet process within the class
of normalized HRMIs and identified conjugacy as its distinctive feature. Although not being
conjugate, normalized HRMIs address some interesting issues: as they allow for a relatively
simple moment structure, they may represent a useful alternative to the Dirichlet process
within the context of hierarchical mixture modelling. To this end it seems necessary to find
special normalized HRMIs for which the relevant quantities can be derived in explicit form
and, moreover, to adapt simulation techniques such as those proposed in Ishwaran & James
(2001).
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Appendix A

Moment calculations
We begin this appendix with a couple of technical points that play a crucial role in proving
propositions 1 and 2. First, we deal with the computation of the following moments

E
[
P̃(B1)n1 . . . P̃(Bk)nk

]

where {B1, . . . , Bk} is a family of pairwise disjoint sets in B(R) and the integers nj are such
that

∑k
j =1 nj =n. To do so, exploit the definition of P̃ in (1) and notice that

E
[
P̃(B1)n1 . . . P̃(Bk)nk

]
= 1

%(n)

∫ +∞

0
un−1 E

⎡

⎣e−u"a

k∏

j =1

"
nj
$(Bj )

⎤

⎦ du

= 1
%(n)

∫ +∞

0
un−1

k +1∏

j =1

E
[
e−u"$(Bj ) "

nj
$(Bj )

]
du

= 1
%(n)

∫ +∞

0
un−1

⎧
⎨

⎩

k +1∏

j =1

(−1)nj
dnj

dunj
e−$(Bj )&(u)

⎫
⎬

⎭ du

where we set Bk+1 = (∪k
j =1Bj)c and nk+1 =0. By virtue of the definition of V (n)

( as provided in
(3) we then have

E
[
P̃(B1)n1 . . . P̃(Bk)nk

]
= 1

%(n)

∫ +∞

0
un−1 e−a&(u)

⎧
⎨

⎩

k∏

j =1

V (nj )
$(Bj )

(u)

⎫
⎬

⎭ du. (12)

In order to determine the quantities V (nj )
$(Bj )

it is possible to resort to the following recursion
formula

V (n)
( (u)=(

n−1∑

i =0

(
n−1

i

)
)n−i(u)V (i)

( (u)=(#(n)
( (u) (13)

which holds true for any (> 0 and can be proved by induction.
The second issue we face here is proving that

lim
u→0

un )n(u)=0. (14)

Note that
∫

(0,1] vn e−uv#(dv) ≤
∫

(0,1] v #(dv) <+∞, so we have to care only about the integral
on (1, +∞). Let W (v) := #((1, v]), for any v > 1 and integrate by parts to obtain

∫

(1,+∞)
vn e−uv #(dv)=

[
vn e−uv W (v)

]+∞
v=1 −

∫ +∞

1
(nvn−1e−uv −uvne−uv) W (v) dv.

As limv→+∞ W (v) is finite, the first summand above vanishes. As far as the second summand
is concerned, the change of variable z =g(v)=uv yields

∫ +∞

1
(nvn−1e−uv −uvne−uv) W (v) dv= 1

un−1

∫ +∞

u
W
( z

u

) {
nzn−1e−z − zne−z} dz.
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Hence

lim
u→0

un
∫

(1, +∞)
vn e−uv #(dv)= lim

u→0
u
∫ +∞

u
W
( z

u

) {
zne−z −nzn−1e−z} dz =0

as the integral is a bounded function of u. This implies the validity of (14).

Proof of proposition 1
Let us start by determining the variance of P̃(B). To compute the second moment, we can
resort to (12), with k =1 and n1 =n=2, and to the recursion formula in (13) thus getting

E
[
P̃(B)2

]
=
∫ +∞

0
u e−a &(u) V (2)

$(B)(u) du

=$(B)
∫ +∞

0
u e−a &(u)

{
)2(u)+)1(u) V (1)

$(B)(u)
}

du

=$(B)
∫ +∞

0
u e−a &(u) {)2(u)+$(B))1(u)2} du

= $(B)
a

Ia +$(B)2
∫ +∞

0
u e−a &(u) (&′(u))2 du.

As for the integral appearing in the second summand above, one can apply integration by
parts and obtain

∫ +∞

0
u e−a &(u) (&′(u))2 du

=−1
a

{[
u &′(u) e−a&(u)]+∞

0 −
∫ +∞

0
(&′(u)+u &′′(u)) e−a&(u) du

}
.

It can be immediately checked that limu→+∞ u &′(u) e−a&(u) =0. Moreover, by virtue of (14),
with n=1, one has limu→0 u &′(u) e−a&(u) = limu→0 u &′(u)=0. Hence

∫ +∞

0
u e−a &(u) (&′(u))2 du = 1

a2 {1−Ia}

and

E
[
P̃(B)2

]
= $(B)2

a2 + $(B)(a −$(B))
a2 Ia.

At this point, (4) can be easily deduced.
As far as the covariance is concerned, set B∗

1 :=B1 ! C, B∗
2 :=B2 ! C. Then

E
[
P̃(B1) P̃(B2)

]
=E
[
P̃(B∗

1)P̃(B∗
2)
]
+E
[
P̃(C)P̃(B∗

2)
]

+E
[
P̃(B∗

1)P̃(C)
]
+E
[
P̃2(C)

]
.

The last summand can be computed as performed above, whereas the first three summands
can still be determined by using the general formula (12) for moment measures with k =2
and n1 =n2 =1. Simple algebra leads to

E
[
P̃(B1) P̃(B2)

]
= $(B1)$(B2)

a2 + a $(C)−$(B1)$(B2)
a2 Ia (15)

and (5) easily follows.
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At this point we are left with showing that (6) holds. To this end let us compute the third
centred moment of P̃(B) for any B ∈B(R). Resorting to (2) and (15) one has

E

[(
P̃(B)− $(B)

a

)3
]

=E
[
P̃(B)3

]
−3

$2(B)(a −$(B))
a3 Ia − $3(B)

a3 . (16)

With reference to the computation of E[P̃(B)3] one can resort to (12). Set k =1 and n1 =3
to obtain

E[P̃(B)3]= 1
%(3)

∫ +∞

0
u2 e−a&(u) V (3)

$(B)(u) du.

Integration by parts, together with the application of (14), with n=2, leads to

E[P̃(B)3]= $(B) a2 −3$2(B)+2$3(B)
2a3 Ja + 3$2(B)a −3$3(B)

a3 Ia + $(B)3

a3 . (17)

By inserting (17) into (16), one obtains

E

[(
P̃(B)− $(B)

a

)3
]

= $(B)(a −$(B))(a −2$(B))
2a3 Ja. (18)

Combining (4) and (18) the result follows.

Proof of proposition 2
Letting C1, . . . , Ck denote k disjoint subsets of R, our aim consists first in determining the
probability that the (n+1)th observation lies in a set B, given that, among the past n obser-
vations, nj fall into Cj , for j =1, . . . , k, i.e.

P(Xn+1 ∈B|(X1, . . . , Xn)∈×k
j =1Cnj

j )=
E
[
P̃(B) P̃(C1)n1 . . . P̃(Ck)nk

]

E
[
P̃(C1)n1 . . . P̃(Ck)nk

] .

As far as the numerator is concerned, set Ck+1 = (∪k
j =1Cj)c and observe that

E
[
P̃(B) P̃(C1)n1 . . . P̃(Ck)nk

]
=

k+1∑

j =1

E

[
P̃(B ∩Cj)

k∏

i =1

P̃(Ci)ni

]
.

Now, one can directly compute E
[
P̃(B ∩Ck+1)

∏k
i=1 P̃(Ci)ni

]
via (12). For any other

j =1, . . . , k, one has to observe that

E

[
P̃(B ∩Cj)

k∏

i =1

P̃(Ci)ni

]

=
nj∑

r =0

(
nj

r

)
E

⎡

⎣P̃(B ∩Cj)r+1 P̃(Bc ∩Cj)nj −r
∏

i ̸= j

P̃(Ci)ni

⎤

⎦.

Hence, by virtue of (12),

E

⎡

⎣P̃(B ∩Cj)r +1 P̃(Bc ∩Cj)nj −r
∏

i ̸= j

P̃(Ci)ni

⎤

⎦

=
$(B ∩Cj)$(Bc ∩Cj)

∏
i ̸= j $(Cj)

%(n+1)

×
∫ +∞

0
un e−a&(u) #(r +1)

$(B∩Cj )
(u)#(nj −r)

$(Bc∩Cj )
(u)
∏

i ̸= j

#(ni )
$(Ci )

(u) du.
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If we let, for shortness, $i =$(Ci), $′
j =$(B ∩Cj) and $′′ =$(Bc ∩Cj), we can definitely write

E
[
P̃(B) P̃(C1)n1 . . . P̃(Ck)nk

]

= 1
%(n+1)

⎧
⎨

⎩$′
k +1

(
k∏

i =1

$i

)∫ +∞

0
une−a &(u) )1(u)

k∏

j =1

#
(nj )
$j (u) du

+
k∑

j =1

⎛

⎝
∏

i ̸= j

$i

⎞

⎠$′
j$

′′
j

nj∑

r =0

(
nj

r

)∫ +∞

0
une−a &(u)

⎛

⎝
∏

i ̸= j

#(ni )
$i

(u)

⎞

⎠#(r +1)
$′

j
(u)#(nj −r)

$′′
j

(u) du

⎫
⎬

⎭.

The denominator can be determined by using formula (12) thus yielding (10).

Proof of corollary 1
Start by setting Cj =Cj, + =(X ∗

j − +, X ∗
j + +) in (10). By the hypothesis of diffuseness of $, one

has #(ni )
$i

=)ni
+o($i) as + ↓ 0 and 'X ∗

j
(B) V (nj −i)

$(Bc∩Cj )
=0 i =0, 1, . . . , nj − 1 so that the claimed

results follows by taking the limit as +↓0.

Details for the determination of (7) and (8). The main trick in proving these relations
consists in taking a suitable discretization of the measure parameter $. More precisely, for
any m≥1 fix a partition of R into intervals, say Bm,0, . . . , Bm,km+1, where Bm, 0 = (−∞, −Rm],
Bm,km+1 = (Rm, +∞) and {Bm, i : i =1, . . . , km} is a partition of [−Rm, Rm]. Moreover, let Rm

be such that limm Rm =+∞ and let max1≤i≤km |Bm, i |→0 as m→+∞, where |B| is the length
of the interval B. The discretized measure is defined as

$m =
km+1∑

i =0

$(Bm, i)'ym, i

where ym, i is any inner point in Bm, i for i =0, . . . , km +1. This implies that the normalized
HRMI with parameter measure $m and Lévy measure # is given by

P̃m =
km+1∑

i=0

P̃(Bm, i)'ym, i .

At this stage, computation of

E
[
VP̃m

]
=

km+1∑

i=0

y2
m, i E

[
P̃(Bm, i)

]
−E

[
km+1∑

i=0

ym, i P̃(Bm, i)

]2

is straightforward, yielding

E
[
VP̃m

]
=

km+1∑

i=0

y2
m, i

$(Bm, i)
a

− (1−Ia)

{
km+1∑

i=0

ym, i
$(Bm, i)

a

}2

−Ia

km+1∑

i=0

y2
m, i

$(Bm, i)
a

.

Taking the limit, as m→+∞, completes the proof. One proceeds in a similar fashion in order
to compute E

[
#P̃

]

Appendix B

Characterization of the Dirichlet process
We first prove a lemma providing the one-step predictive distribution.
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Lemma 1
If P̃ is a normalized HRMI and the random variables X1, X2 are, conditional on P̃, i.i.d. with
distribution P̃, then

P(X2 ∈B |X1)= $(B)
a

[1−Ia]+'X1 (B)Ia for every B ∈B(R).

Proof of lemma 1
Suppose X1 =x1 and set C+ :=(x1 − +, x1 − +) with +> 0. Note that, if D denotes the support
of $, then P(X1 ∈D)=E[P̃(D)]=1. For this reason we can assume that x1 lies in D. Hence,
the infinite activity condition #(R+)=+∞ ensures P̃(C+) > 0 a.s.–P. To prove the result, it is
enough to show that

P(X2 ∈B |X1 ∈C+)→
$(B)

a
(1−Ia)+Ia 'x1 (B) as +→0

for any set B = (−∞, y], with y∈R. To this end, choose +> 0 in such a way that either C+ ⊂B
or C+ ∩B is empty. As

P(X2 ∈B |X1 ∈C+)=
E
[
P̃(B)P̃(C+)

]

E
[
P̃(C+)

] ,

combination of (2) with (5) provides the desired result.
Before proving theorem 1, we set some notation and recall some basic facts. Let mn( · )=

E[P̃n( · )] be the (marginal) distribution of the random vector X (n) = (X1, . . . , Xn). Introduce a
family {Px(n) : x(n) ∈Rn, n≥1} of probability measures on (R, B(R)) such that x(n) %→Px(n) (B)
is B(Rn)-measurable, for any B in B(R) and

PX (n) (B)=P

[
Xn+1 ∈B

∣∣∣∣∣X
(n)

]
a.s.−P.

Hence, PX (n) is a version of the conditional distribution of Xn+1, given X (n) and Px(n) can be
interpreted as the predictive distribution of Xn+1 given that we have observed X (n) =x(n). We
will also write Px(n) (B)=P[Xn+1 ∈B|X (n) =x(n)]. Moreover, denote by P̃X (n) a random proba-
bility measure whose distribution coincides with the posterior distribution of P̃, given X (n).
With these definitions one can show that there exists a set N ∈B(Rn) such that mn(N c)=0
and for any vector x(n) ∈N

E

[
P̃(B)

∣∣∣∣∣X
(n) =x(n)

]
=E
[
P̃x(n) (B)

]
=Px(n) (B) ∀B ∈B(R).

For simplicity, and with no loss of generality, in the following we will suppose that x(n) ∈N .
Let us also recall two properties shared by the predictive distributions Px(n) . First note that

P̃x(n) can be obtained from conditioning P̃x(n−1) to Xn =xn. For a rigorous proof of this fact
see, e.g. Regazzini (1996). As a consequence, one has that for any measurable set B

Px(n) (B)=E

[
P̃x(n−1) (B)

∣∣∣∣∣Xn =xn

]
, (19)

i.e. the n-step prediction on the left-hand side can be recovered as a one-step prediction based
on P̃x(n−1) . Secondly, because of exchangeability, the mapping

x(n) %→Px(n) (B)
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is invariant with respect to permutations of the components of the vector x(n) = (x1, . . . , xn).
For instance, if n≥2 and y(n) = (x1, . . . , xn−2, xn, xn−1) then E

[
P̃y(n) (B)

]
can be understood as

E

[
P̃(B)

∣∣∣∣∣X
(n−2) =x(n−2), Xn−1 =xn, Xn =xn−1

]

and the above property entails

E
[
P̃x(n) (B)

]
=E
[
P̃y(n) (B)

]
∀B ∈B(R). (20)

We now proceed with proving theorem 1.

Proof of theorem 1
The ‘if ’ part is trivial. Let us focus, then, on the ‘only if ’ part. Assume that, for any n≥1, the
law of P̃x(n) coincides with the law of some normalized HRMI. In other words there exists a
subordinator, "(n) ={"(n)

t : t≥0} say, with Lévy measure #n such that the posterior distribution
of P̃ equals the distribution of the random probability measure P̃x(n) defined by

P̃x(n) ((−∞, y])=
"

An (y)

"an

∀ y ∈R (21)

for some finite measure $n, where An(y)=$n((−∞, y]) and an =$n(R). A simple application
of lemma 1 to (19) yields

E
[
P̃x(n) (B)

]
=Px(n) (B)= $n−1(B)

an−1

[
1−I(x(n−1))

]
+'xn (B)I(x(n−1))

where for any n≥2

I(x(n−1)) :=an−1

∫ +∞

0
u e−an−1 &n−1(u) )2, n−1(u) du,

&n−1(u)=
∫

R+
(1− e−us) #n−1(ds), )2, n−1(u)=

∫

R+
s2 e−us #n−1(ds).

Let us also agree that I(x(0)) :=Ia. As $n−1( · )/an−1 =Pxn−1 ( · ), combination of (19) and of
lemma 1 yields

$n−1(B)
an−1

= $(B)
a

n−2∏

j =0

[
1−I(x(j))

]
+

n−1∑

k =1

'xk (B)I(x(k−1))
n−2∏

j =k

[
1−I(x(j))

]
(22)

with the proviso that
∏n−2

j =n−1

[
1−I(x(j))

]
≡1. We now claim that, for any n≥2, one has

I(x(n−1))= Ia

1+(n−1)Ia
. (23)

By virtue of (22)

E
[
P̃x(n) (B)

]
= $(B)

a

n−1∏

j =0

[
1−I(x(j))

]
+

n∑

k =1

'xk (B)I(x(k−1))
n−1∏

j =k

[
1−I(x(j))

]
,

so that, if I( · ) is replaced by the expression in (23), one has

E
[
P̃x(n) (B)

]
= 1

1+(n−1)Ia

{
$(B)

a
(1−Ia)+Ia

n∑

i =1

'xi (B)

}
.

It can be seen that Ia is a constant in [0, 1], so that there exist a constant c ≥ 0 such that
Ia = 1

c +1 . One, then gets to the conclusion that E[P̃x(n) (B)]=Px(n) (B) has the form (9). As it
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has been shown in Regazzini (1978) and Lo (1991), (9) also characterizes the Dirichlet pro-
cess. Thus c =a.

In order to complete the proof, we need to show that (23) holds true. To this end, we pro-
ceed by induction. Let us first show that (23) is true for n=2. By virtue of the assumption in
theorem 1, both P̃x1 and P̃x2 are normalized HRMIs with parameters ($x1 , #1) and ($x2 , #2)
respectively. This fact, together with lemma 1, implies that

E
[
P̃xj (B)

]
=

$xj (B)
axj

= $(B)
a

(1−Ia)+'xj (B)Ia j =1, 2.

Next, resort to (20), with x(2) = (x1, x2) and y(2) = (x2, x1), and to (19) to state the validity of
the following equalities

E
[
P̃x(2) (B)

]
= $x1 (B)

ax1

(1−I(x1))+'x2 (B)I(x1)

= $(B)
a

(1−Ia)(1−I(x1))+'x1 (B)Ia (1−I(x1))+'x2 (B)I(x1)

=E
[
P̃y(2) (B)

]
= $x2 (B)

ax2

(1−I(x2))+'x1 (B)I(x2)

= $(B)
a

(1−Ia)(1−I(x2))+'x1 (B)I(x2)+'x2 (B)Ia (1−I(x2)).

Here, I(x2) is defined in a similar fashion as I(x1) and it refers to the normalized HRMI
P̃x2 . As the previous equalities do hold for any set B ∈B(R), it must be

I(x1)=I(x2)= Ia

1+Ia
,

which proves (23) for n=2. Suppose, now that I(x(j)) is of the form (23) for each j =1, . . . ,
n−2, with n > 2. Let

I(x(n−2), xn) :=a∗
∫ +∞

0
u e−a∗ &∗(u)

(∫

R+
v2 e−uv #∗(dv)

)
du

where a∗ =$∗(R) and $∗ and #∗ are the parameter and the Lévy measure, respectively, asso-
ciated to the normalized HRMI P̃x(n−2),xn

. Thus, lemma 1 combined with (19) provides

E
[
P̃y(n) (B)

]
= $∗(B)

a∗

[
1−I(x(n−2), xn)

]
+'xn−1 (B)I(x(n−2), xn).

As Pxn−2 is an HRMI with parameters ($n−2, #n−2), one has

$∗(B)
a∗

=E
[
P̃x(n−2), xn

(B)
]
= $n−2(B)

an−2

[
1−I(x(n−2))

]
+'xn (B)I(x(n−2))

=

⎧
⎨

⎩
$(B)

a

n−2∏

j =1

[
1−I(x(j−1))

]
+

n−2∑

k =1

'xk (B)I(x(k−1))
n−3∏

j =k

[
1−I(x(j))

]
⎫
⎬

⎭

×
[
1−I(x(n−2))

]
+ 'xn (B)I(x(n−2))

= $(B)
a

1−Ia

1+ (n−2)Ia
+
(

n−2∑

k =1

'xk (B)+'xn (B)

)
Ia

1+ (n−2)Ia
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where the last two equalities have been deduced by virtue of (22) and by the hypothesis on
I(x(j)), for j =1, . . . , n−2. Finally

E
[
P̃y(n) (B)

]
= $(B)

a
(1−Ia) [1−I(x(n−2), xn)]

1+(n−2)Ia

+
(

n−2∑

k =1

'xk (B)+'xn (B)

)
Ia [1−I(x(n−2), xn)]

1+(n−2)Ia

+'xn−1 (B)I(x(n−2), xn).

In a similar fashion one gets

E
[
P̃x(n) (B)

]
= $(B)

a
(1−Ia) [1−I(x(n−1))]

1+(n−2)Ia

+
(

n−1∑

k =1

'xk (B)

)
Ia [1−I(x(n−1))]

1+(n−2)Ia
+'xn (B)I(x(n−1)).

As (19) holds true, then I(x(n−2), xn)=I(x(n−1)) and

I(x(n−1))= Ia [1−I(x(n−1))]
1+(n−2)Ia

.

This proves that (23) is valid for any n≥2.
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