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A FINITELY ADDITIVE VERSION OF THE LAW OF THE
ITERATED LOGARITHM∗

I. EPIFANI AND A. LIJOI†

Abstract. A finitely additive version of the law of the iterated logarithm (LIL) is proposed.
The formulation involves only finite-dimensional distributions of a sequence of independent random
variables (Xn)n!1. It is also proved that in the case where one deals with σ-additive probabilities,

the given result is equivalent to the classical version of the LIL.
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1. Introduction. When dealing with probabilities that are σ-additive, one is
fundamentally concerned with the problem of measurability of subsets of a given
space of elementary events. In this abstract mathematical approach to probability
theory, the notion of event is equivalent to that of a measurable set.

More realistically, and in the spirit of de Finetti’s stance, one might think of
an event as something independent of measurability issues. From this viewpoint
observability becomes crucial. In other words, probability assessment of an event
makes sense only when it is observable.

This remark is quite relevant with respect to limit theorems in probability theory.
As an introduction to our work, consider the set {lim supZn = c}, where (Zn)n!1 is
a sequence of random variables (r.v.’s), and c is a real constant. If (Zn)n!1 satisfies
some suitable conditions, well known, the law of the iterated logarithm (LIL) assigns
probability 1 to the previous set. But {lim supZn = c}, though measurable, is not
an observable property. This raises the problem of giving alternative formulations of
limit theorems, usually presented in the measure-theoretic approach to probability
theory.

We proceed in proving a finitistic version of the LIL when one takes into account
the possibility of working with probabilities that are not necessarily σ-additive.

The ideas we try to exploit are well expounded in de Finetti [6] and in later
contributions by Dubins [7], Zanoni [19], and Regazzini [16], [17], [18]. They provide
finitistic versions of some classical laws of large numbers and useful suggestions for
further developments in this field.

As a matter of fact, there is a wide variety of works concerning the study of
limit laws for sequences of r.v.’s in the finitely additive setting. However, they fol-
low an approach which is different from the one we resort to. Instead of providing
formulations of limiting properties in finitistic terms, they aim at giving versions of
these properties that are identical to the σ-additive counterparts but still valid for
non-σ-additive probabilities. The key notion in this framework is that of strategy,
and guidelines are developed in [8], [9], [7], and [14]. We will not linger on this topic,
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even though we think that tracing a comparison between the two approaches would
be quite a stimulating task.

In what follows, we refer to de Finetti’s ideas in order to prove a weak version of
the LIL. In section 2 we describe the finitely additive setting with which we work. In
particular we clarify the concept of stochastically independent r.v.’s. In section 3 we
prove the main theorem and specify some of its relevant features. In section 4 it is
shown that in the case P is a σ-additive probability measure, the classical version of
the LIL is equivalent to our result. Finally, in section 5 we illustrate two examples in
which the LIL fails, whereas the finitistic law being proposed is applicable.

2. Preliminaries. In this section we introduce some definitions and general
results to be used later. Let Ω be any set of elementary cases, A an algebra of subsets
of Ω, and P a probability on (Ω,A). Namely, P is a nonnegative, finitely additive
set function on Ω such that P(Ω) = 1. A Borel-measurable function Xn : Ω → R
(n ! 1) will be called a random variable (r.v.). Moreover, B(Rn) denotes the class
of Borel subsets of Rn for all n ! 1. In the following sections, we mean by EX the
Dunford–Schwartz integral (see [10, section III.2], or, alternatively, [1, section 4.4]). A
relevant concept to be introduced for our results is that of stochastic independence. In
a finitely additive setting, one may give various definitions of stochastic independence,
and in general they are not equivalent (for deeper insight see [6, pp. 321–323]). For
mathematical convenience, we refer to the following definition.

Definition 1. (Xn)n!1 is a sequence of stochastically independent r.v.’s on
(Ω,A,P) if

P
{
ω :
(
X1(ω), . . . , Xn(ω)

)
∈ A1,

(
Xn+1(ω), . . . , Xn+m(ω)

)
∈ A2

}

= P
{
ω :
(
X1(ω), . . . , Xn(ω)

)
∈ A1

}
P
{
ω :
(
Xn+1(ω), . . . , Xn+m(ω)

)
∈ A2

}

for all A1 ∈ B(Rn), for all A2 ∈ B(Rm), for all n,m ! 1.
In the last section we give examples of sequences of r.v.’s stochastically inde-

pendent according to previous definition and governed by a proper finitely additive
probability.

Now take (Ω,A) to be equal to (R∞,B(R∞)) and (Xn)n!1 the coordinate process,
i.e., Xk(x) = xk, x = (x1, x2, . . . ) ∈ R∞. It is possible to define a finitely additive
probability P on (R∞,B(R∞)) with respect to which the Xn’s are stochastically
independent according to Definition 1. The existence of such a P follows from an
analogue of Kolmogorov’s extension theorem valid in this more general setting. For
a proof of the latter result, the reader may refer to [5, p. 41] and [1, section 3.2].

Let us give the following definition.
Definition 2. Let (Zn)n!1 be a sequence of r.v.’s. We say that b∗(n) and b∗(n)

are upper and lower sequences, respectively, for (Zn)n!1 if b∗(n) > 0, b∗(n) > 0 and
(a) for all η > 0 ∃N∗ = N∗(η) such that for all k ! 1

P

{
N+k⋂

n=N

{
Zj

b∗(j)
< 1

}}

> 1 − η ∀N ! N∗;

(b) for all η > 0 ∃N∗ = N∗(η) and for all N ! N∗ and for all k ! 1 ∃ p∗ =
p∗(η, N, k) such that

P

{
N+k⋂

n=N

{
max

n"j"n+p

Zj

b∗(j)
> 1

}}

> 1 − η ∀ p ! p∗.
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We introduced Definition 2 in order to study the oscillations of a sequence of
independent r.v.’s in a finitistic setting. As one may note, there is no need to
specify any extension of the finite-dimensional distributions of the process (Zn)n!1

to (R∞,B(R∞)). Therefore, our problem is equivalent to the determination, under
suitable conditions, of upper and lower sequences for the sequence of partial sums.
We will stress this point in Theorems 1 and 2, and a simple application of these very
same theorems provides a finitely additive version of the LIL in Theorem 3.

3. Main results. In this section we illustrate a version of the LIL which holds
in the finitely additive setting. The formulation is strictly related to an article by
Cantelli [2], in which the author provides a first extension of Kolmogorov’s LIL to a
sequence of unbounded r.v.’s; see [11]. Let us specify some notation. (Xn)n!1 is a
sequence of stochastically independent r.v.’s defined on (R∞,B(R∞)) in the sense of
section 2. Let σ2

n = DXn, Sn =
∑n

i=1 Xi, s2
n = DSn =

∑n
i=1 σ

2
i , t

2
n = 2 log log s2

n,
S∗
n = Sn/(sntn) for all n ! 1.

The main assumptions for the validity of our results concern the variance σ2
n and

the absolute moments of order (2 + δ) of the Xn’s, for some δ ∈ (0, 1]:
(I) σ2

n ! β > 0 for some constant β and for all n ! 1,
(II) E|Xn|2+δ < αδ for some δ ∈ (0, 1], for some αδ > 0, and for all n ! 1.
We are now in a position to assert the first theorem which specifies the upper

sequence.
Theorem 1. Let (Xn)n!1 be a sequence of independent r.v.’s with zero means for

which (I)–(II) hold. Then for all ε > 0 (1+ ε)sntn is an upper sequence for (Sn)n!1.

Proof. Let (ni)i!3 be a subsequence in N defined by ni := [exp{i/ log i}], where [x]
denotes the integer part of x ∈ R. By resorting to simple probabilistic arguments,
the following inequalities can be shown to hold:

P

{
ν+m⋃

j=ν

{
max

1"n"nj

Sn ! (1 + ε) snj−1tnj−1

}}

"
ν+m∑

j=ν

P

{
max

1"n"nj

Sn ! (1 + ε) snj−1tnj−1

}

" 21+γ
∞∑

j=ν

P
{
Snj ! (1 + ε) snj−1tnj−1 − C

}

for all γ > 0 and for some C > 0 (for the second inequality above, see Lemma 3.2
in [11]). Moreover, by Lemma 3.1 in [11],

∑∞
j=ν P{Snj ! (1 + ε) snj−1tnj−1 − C}

is the remainder of a convergent series. Therefore, for all ε > 0 and for all η > 0
∃ ν0 = ν0(ε, η) such that

P

{
ν+m⋃

j=ν

{
max

1"n"nj

Sn ! (1 + ε) snj−1tnj−1

}}

< η ∀m ! 1,

or, equivalently,

P

{
ν+m⋂

j=ν

{
max

1"n"nj

Sn < (1 + ε) snj−1tnj−1

}}

> 1 − η
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for all m ! 1. Since snj−1tnj−1 " sntn for all n ∈ {nj−1, nj−1 + 1, . . . , nj}, one has

P

{
ν+m⋂

j=ν

nj⋂

n=1

{
Sn < (1 + ε) snj−1tnj−1

}
}

" P

{
ν+m⋂

j=ν

nj⋂

n=nj−1

{
Sn < (1 + ε) sntn

}
}

= P

{ nν+m⋂

j=nν

{
Sn < (1 + ε) sntn

}
}

.

Take N∗ = nν0 and N = nν . For all k ! 1 there exists an m ∈ N such that
nν+m > N + k. It follows that

P

{
N+k⋂

n=N

{
Sn < (1 + ε) sntn

}
}

! P

{ nν+m⋂

j=nν

{
Sn < (1 + ε) sntn

}
}

.

Theorem 1 is proved.
Theorem 2. If (Xn)n!1 is a sequence of independent r.v.’s with zero means

satisfying (I)–(II), then for all ε, η > 0, ∃N∗ = N∗(ε, η) and for all N ! N∗ ∃ p0 =
p0(ε, η, N) such that

P

{
N+k⋂

n=N

n+p⋃

j=n

{S∗
j > 1 − ε}

}

> 1 − η(1)

for all k ! 1, for all p ! max{p0, ek}.
It is possible to split the proof of Theorem 2 into three steps.
In the first step we need to work with independent events. Thus, we give a

result for the differences of partial sums along a convenient subsequence of positive
integers. The second step consists in passing from the subsequence of differences to
the subsequence of partial sums. Finally, we get the assertion over the whole sequence
by reductio ad absurdum.

The first step is characterized by the following lemma.
Lemma 1. Let (ni)i!3 be a subsequence of positive integers defined by ni :=

[exp{i log log i}] and (∗) := {j1, . . . , jl+1 ∈ {nν+1, nν+2, . . . , nν+m} : j1< · · · <jl+1}.
Then for all ε, η > 0 ∃ ν0 = ν0(ε, η) and for all ν ! ν0 ∃m0 = m0(ε, η, ν) such that

P

{
⋃

(∗)

l+1⋂

r=2

{
Sjr − Sjr−1 > (1 − ε) sjr tjr

}
}

> 1 − η(2)

for all l ! 1, for all m ! max{m0, 2l}.
Proof. To simplify notation, let

A(ε)
jr

:=
{
Sjr − Sjr−1 > (1 − ε) sjr tjr

}
, Cε

ν,m,l :=
⋂

(∗)

l+1⋃

r=2

A(ε)c

jr
.

We can interpret Cε
ν,m,l as the event which is true if and only if at most l − 1 of

the m events A(ε)
ni (i = ν + 1, . . . , ν + m) are verified. Hence, if B(j)

ν,m is the event

corresponding to exactly j of the A(ε)
ni ’s (i = ν + 1, . . . , ν + m) being verified,

P(Cε
ν,m,l) =

l−1∑

j=0

P(B(j)
ν,m).
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We try to estimate P(B(j)
ν,m). If j = 0,

P(B(0)
ν,m) = P

{
ν+m⋂

i=ν+1

A(ε)c

ni

}

=
ν+m∏

i=ν+1

(
1 − P(A(ε)

ni
)
)

" exp

{

−
ν+m∑

i=ν+1

pni

}
[
pni := P(A(ε)

ni
)
]
.

For any other j ∈ {1, . . . , l − 1}, we define (#) := {s1, . . . , sj ∈ {nν+1, . . . , nν+m},
s1 < · · · < sj} and qj+1, . . . , qm ∈ {nν+1, . . . , nν+m} \ {s1, . . . , sj}, so that

P(B(j)
ν,m) =

∑

(#)

ps1 · · · psj
m∏

i=j+1

(1 − pqi) "
∑

(#)

ps1 · · · psj exp

{

−
m∑

i=j+1

pqi

}

= exp

{

−
ν+m∑

i=ν+1

pni

}
∑

(#)

ps1 · · · psj exp

{
j∑

i=1

psi

}

= exp

{

−
ν+m∑

i=ν+1

pni

}
∑

(#)

∑

(∗∗)

1

j!
pγ1 · · · pγj exp

{
j∑

i=1

pγi

}

,

where (∗∗) stands for the set of all permutations γ1, . . . , γj of indices s1, . . . , sj .
Moreover,

∑
(#)

∑
(∗∗) pγ1 · · · pγj =

∑
(+) pγ1 · · · pγj , where the latter sum is ex-

tended over all j-permutations of a set of m elements. Thus

P(B(j)
ν,m) " exp

{

−
ν+m∑

i=ν+1

pni

}
1

j!

∑

(+)

pγ1e
pγ1 · · · pγje

pγj

" exp

{

−
ν+m∑

i=ν+1

pni

}
1

j!

(
ν+m∑

i=ν+1

pnie
pni

)j

= exp

{

−
ν+m∑

i=ν+1

pni(1 − epni )

}
1

j!

(
ν+m∑

i=ν+1

pnie
pni

)j

× exp

{

−
(

ν+m∑

i=ν+1

pnie
pni

)}

,

P(Cε
ν,m,l) =

l−1∑

j=0

P(B(j)
ν,m) " exp

{

−
ν+m∑

i=ν+1

pni(1 − epni )

}

×
l−1∑

j=0

1

j!

(
ν+m∑

i=ν+1

pnie
pni

)j

exp

{

−
ν+m∑

i=ν+1

pnie
pni

}

.(3)

In order to estimate the expression in (3), the following inequalities for pni are valid.
With (ni)i!3 as above, for every ε > 0, γ > 0 there exist i0 = i0(ε, γ) and

Cj = Cj(ε, γ, δ,β,αδ) (j = 1, 2) such that for all i ! i0

C1

(
1

i log log i

)(1+γ)(1−ε)2

" pni " C2

(
1

i log log i

)(1−γ)(1−ε)2

.(4)
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The required estimate of pni is achieved by applying a large deviations type result.
Proceeding in a similar fashion as in Theorem 7.1.3 in [3, p. 203], one can prove that
if (ni)i!1 is such that ni − ni−1 ∼ ni (i → ∞), and if

zni := log

∑ni

j=ni−1+1 E|Xj |2+δ

s2+δ
ni

+ (1 + γ) (1 − ε)2
s2
ni−1

t2ni−1

2(s2
ni

− s2
ni−1

)
−→ −∞(5)

as i → ∞ for all ε > 0 and for all γ > 0, then there is i∗ = i∗(ε, γ) such that

exp

{
− (1 + γ) (1 − ε)2

s2
ni
t2ni

2(s2
ni

− s2
ni−1

)

}

" pni " exp

{
− (1 − γ) (1 − ε)2

s2
ni
t2ni

2(s2
ni

− s2
ni−1

)

}
(6)

for all i ! i∗.
When ni = [exp{i log log i}], it is easily verified that ni − ni−1 ∼ ni and, under

our assumptions (I)–(II), (5) is valid. Indeed,

β2+δ < (σ2
n)2+δ "

(
E|Xn|2+δ

)2
< α2

δ ,

and

log

{∑ni

j=ni−1+1 E|Xj |2+δ

s2+δ
ni

}

+ (1 + γ) (1 − ε)2
s2
ni
t2ni

2(s2
ni

− s2
ni−1

)

< log
(ni − ni−1)αδ

(ni − ni−1)1+δ/2β1+δ/2

+ (1 + γ) (1 − ε)2
niα

2/(2+δ)
δ 2

2(ni − ni−1)β
log log(niα

2/(2+δ)
δ )

= log
αδ

(ni − ni−1)δ/2β1+δ/2

+ (1 + γ) (1 − ε)2
niα

2/(2+δ)
δ

(ni − ni−1)β
log log(niα

2/(2+δ)
δ )

∼ −δ

2
log(ni − ni−1) + (1 + γ) (1 − ε)2

α2/(2+δ)
δ

β
log log ni −→ −∞.

By (I)–(II), for every i there is a κi ∈ (β,α2/(2+δ)
δ ) such that s2

ni
= κini, and, therefore,

s2
ni
t2ni

2(s2
ni

− s2
ni−1

)
∼ 1

i log log i
as i → ∞

and this completes the proof of (4) if we choose a suitable i0 = i0(ε, γ) > i∗.
Now, for sufficiently small ε > 0 one can determine a γ = γ(ε) > 0 such that

(1+γ)(1−ε)2 < 1 and 2(1−γ)(1−ε)2 > 1. These two conditions imply
∑∞

i=3 pni = ∞
and

∑∞
i=3 p

2
ni

< ∞.
In other words, we can now write in (4) i0 = i0(ε).
Turning back to (3), the first term in the product, exp{−

∑ν+m
i=ν+1 pni(1− epni )},

is bounded for every ν,m ! 1. To see this, note that −pni(1−epni ) ∼ p2
ni

(as i → ∞).

We shall denote by K a constant such that exp{−
∑ν+m

i=ν+1 pni(1 − epni )} " K.
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As far as the second term in (3) is concerned, let ξi (i = ν + 1, . . . , ν + m) be a
random variable distributed according to a Poisson law with parameter pnie

pni and
let the ξi’s be stochastically independent. Then,

l−1∑

j=0

1

j!

(
ν+m∑

i=ν+1

pnie
pni

)j

exp

{

−
ν+m∑

i=ν+1

pnie
pni

}

= P

{
ν+m∑

i=ν+1

ξi " l − 1

}

.(7)

Moreover, by the Berry–Esseen inequality (cf. [13, p. 115]), we get

P

{∑
ξi " l − 1

}
= P

{∑
ξi " l − 1

}
− Φ

(
l − 1 −

∑
pnie

pni

√∑
pnie

pni

)

+ Φ

(
l − 1 −

∑
pnie

pni

√∑
pnie

pni

)

A

∑
E|ξi|3

b3/2ν,m

+ Φ

(
l − 1 −

∑
pnie

pni

√∑
pnie

pni

)

,(8)

where all sums are taken with i running from ν+1 up to ν+m, bν,m :=
∑ν+m

i=ν+1 D(ξi) =
∑ν+m

i=ν+1 pnie
pni , A > 0 is an appropriate constant, and Φ(·) is the standard Gaussian

distribution function. Obviously,

∑ν+m
i=ν+1 E|ξi|3

b3/2ν,m

=

∑ν+m
i=ν+1(pnie

pni + 3p2
ni
e2pni + p3

ni
e3pni )

(
∑ν+m

i=ν+1 pnie
pni )3/2

∼
∑ν+m

i=ν+1 pnie
pni

(
∑ν+m

i=ν+1 pnie
pni )3/2

∼ 1

(
∑ν+m

i=ν+1 pnie
pni )1/2

−→ 0, m → ∞.

As far as the second summand in (8) is concerned, Φ, we let D := {(m, l) ∈ N2 :
m ! 2l}. This implies

Φ

(
l − 1 −

∑
pnie

pni

√∑
pnie

pni

)

" Φ

(
log2 m−

∑
pnie

pni

√∑
pnie

pni

)

∀ (m, l) ∈ D.

We now try to estimate the right-hand side in the previous inequality. By Euler’s
summation formula (see [12, p. 521]), one obtains, with µ = (1 + γ) (1 − ε)2,

ν+m∑

i=ν+1

pni !
ν+m∑

i=ν+1

(
1

i log log i

)µ

∼
∫ ν+m

ν+1

(
1

x log log x

)µ

dx

=

∫ log(ν+m)

log(ν+1)

e(1−µ)t

(log t)µ
dt ! 1

1 − µ
e(1−µ) log(ν+m) 1

(log log(ν + m))µ

− 1

1 − µ
e(1−µ) log(ν+1) 1

(log log(ν + 1))µ
[integrate by parts]

∼ 1

1 − µ
· m(1−µ)

(log logm)µ
as m → ∞.

Since pni " pnie
pni for all i

log2 m−
∑

pnie
pni

√∑
pnie

pni

" log2 m− (1 − µ)−1m(1−µ)(log logm)−µ

√
(1 − µ)−1m(1−µ)(log logm)−µ

−→ −∞(9)
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as m → ∞ and

Φ

⎛

⎝ l − 1 −
∑ν+m

i=ν+1 pnie
pni

√∑ν+m
i=ν+1 pnie

pni

⎞

⎠ −→ 0.

Finally, for all (m, l) ∈ D

P(Cε
ν,m,l) " exp

{

−
ν+m∑

i=ν+1

pni(1 − epni )

}

P

{
ν+m∑

i=ν+1

ξi " l − 1

}

" KP

{
ν+m∑

i=ν+1

ξi " log2 m

}

.

Therefore, for any ε, η > 0 there is ν0 = ν0(ε, η) ! i0(ε) and for all ν ! ν0 one can
find m0 = m0(ε, η, ν) ∈ N such that P(Cε

ν,m,l) < η for all m ! max{m0, 2l}.
Taking into account the definition of the event Cε

ν,m,l ,

P

{
⋃

(∗)

l+1⋂

r=2

{Sjr − Sjr−1 > (1 − ε)sjr tjr}
}

> 1 − η

and Lemma 1 is finally proved.
Next, we aim at passing from the subsequence of differences of partial sums to

the subsequence of partial sums. Lemma 2 below provides the result we need.
Lemma 2. Let (ni)i!3 be the subsequence of positive integers defined in Lemma 1.

Then for any ε, η > 0 there is a ν00 = ν00(ε, η) > 0 and for any ν ! ν00 there is a
strictly positive integer m00 = m00(ε, η, ν) such that

P

{
ν+l⋂

h=ν+1

{
max

h"j"h+m

Snj

snj tnj

> 1 − ε

}}

> 1 − 2η,(10)

for all m ! max{m00; 2l}.
Proof. Since

ν+l⋂

h=ν+1

h+m⋃

j=h

{
Snj > (1 − ε) snj tnj

}
⊃
⋃

(∗)

l+1⋂

r=2

{
Sjr > (1 − ε) sjr tjr

}
=: Dε

ν,m,l,

it is sufficient to prove the assertion for Dε
ν,m,l. One may note that

P

{
⋃

(∗)

l+1⋂

r=2

{
Sjr > (1 − ε) sjr tjr − (1 + ε) sjr−1tjr−1

}
}

! P

{
⋃

(∗)

l+1⋂

r=2

{
Sjr − Sjr−1 > (1 − ε) sjr tjr

}⋂{
Sjr−1 > −(1 + ε)sjr−1tjr−1

}
}

! P

{
⋃

(∗)

l+1⋂

r=2

{
Sjr − Sjr−1 > (1 − ε) sjr tjr

}

⋂ m⋂

i=1

{
− Snν+i < (1 + ε) snν+itnν+i

}
}

> 1 − 2η,
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because of (2) and Theorem 1 applied to the sequence (−Xn)n!1. Since for a suf-
ficiently large r there exists ε′ > ε such that (1 − ε) sjr tjr − (1 + ε) sjr−1tjr−1 >
(1 − ε′) sjr tjr , then

P

{
⋃

(∗)

l+1⋂

r=2

{
Sjr > (1 − ε) sjr tjr

}
}

> 1 − 2η.

Lemma 2 is proved.
Proof of Theorem 2. By virtue of Lemma 2, we need only to extend (10) to the

whole sequence. We proceed by reductio ad absurdum. Suppose (1) does not hold.

Then for some ε, η > 0, for every N∗, p0 ∈ N there are Ñ ! N∗, k̃ = k̃(p0, N∗), and

p∗ ! max{p0, ek̃} such that

1 − η > P

{
Ñ+k̃⋂

n=Ñ

n+p∗
⋃

j=n

{S∗
j > 1 − ε}

}

! P

{
Ñ+p∗
⋃

j=Ñ+k̃

{S∗
j > 1 − ε}

}

.

Choose η∗ such that 2η∗ < η. Then we can find a ν00 = ν00(ε, η∗) and for
any ν ! ν00 there is a m00 = m00(ε, η∗, ν) such that for every l ∈ N, and m !
max{m00, 2l}, relation (10) holds with η∗ in place of η. Observe that

ν+l⋂

r=ν+1

r+m⋃

j=r

{S∗
nj

> 1 − ε} ⊂
l−1⋂

r=1

nν+r+1⋂

j=nν+r

nν+m+r+1⋃

i=j

{S∗
i > 1 − ε}

⊂
nν+2⋂

j=nν+1

nν+m+2⋃

i=j

{S∗
i > 1 − ε} ⊂

nν+m+2⋃

i=nν+2

{S∗
i > 1 − ε}.

For Ñ and k̃ fixed above, it is possible to find a ν ∈ N (ν > ν00) such that Ñ + k̃ "
nν+2 = [exp{(ν + 2) log log(ν + 2)}], i.e., k̃ " exp{(ν + 2) log log(ν + 2)}− Ñ − 1. If

we also find out that Ñ + p∗ ! nν+m+2 = [exp{(ν +m+ 2) log log(ν +m+ 2)}], then
we would have

Ñ+p∗
⋃

n=Ñ+k̃

{S∗
n > 1 − ε} ⊃

nν+m+2⋃

j=nν+2

{S∗
j > 1 − ε}.(11)

Since p∗ > ek̃, it is sufficient that

Ñ + ek̃ ! exp
{
(ν + m + 2) log log(ν + m + 2)

}
,

which means k̃ > log(exp{(ν+m+2) log log(ν+m+2)}−Ñ) = (ν+m+2) log log(ν+
m + 2) + log(1 − Ñe−(ν+m+2) log log(ν+m+2)). Hence, (11) holds if

zν = (ν + m + 2) log log(ν + m + 2) + log
(
1 − Ñe−(ν+m+2) log log(ν+m+2)

)

" k̃ " exp
{
(ν + 2) log log(ν + 2)

}
− Ñ − 1 = yν ,

and these inequalities are consistent for a sufficiently large ν ! ν00. In the case zν > k̃
we have

Ñ+p∗
⋃

n=Ñ+k̃

{S∗
n > 1 − ε} ⊃

Ñ+p∗
⋃

n=Ñ+[zν ]

{S∗
n > 1 − ε} ⊃

nν+m+2⋃

j=nν+2

{S∗
j > 1 − ε}.



642 I. EPIFANI AND A. LIJOI

Finally, as a consequence of our hypotheses we would have

1 − η > P

{
Ñ+p∗
⋃

n=Ñ+k̃

{S∗
n > 1 − ε}

}

! P

{ nν+m+2⋃

j=nν+2

{S∗
j > 1 − ε}

}

> 1 − 2η∗

and this is absurd because 2η∗ < η. Theorem 2 is proved.
Joint application of the results in Theorems 1 and 2 provides a finitistic charac-

terization of the oscillations problem for the sequence (Sn)n!1.
Theorem 3. Let (Xn)n!1 be a sequence of independent r.v.’s with zero means.

If assumptions (I)–(II) are satisfied, then for all ε, η > 0, ∃N0 = N0(ε, η) ∈ N, and
for all N ! N0 ∃ p0 = p0(ε, η, N) such that

P

{
N+k⋂

n=N

{∣∣∣∣ max
n"j"n+p

Sj

sjtj
− 1

∣∣∣∣ < ε

}}

> 1 − η(12)

for all k ! 1, for all p ! max{p0, ek}.
Proof. Let us put

A(ε)
1 (N, p, k) :=

N+k⋂

n=N

{
max

n"j"n+p
S∗
j < 1 + ε

}
,

A(ε)
2 (N, p, k) :=

N+k⋂

n=N

{
max

n"j"n+p
S∗
j > 1 − ε

}
.

In order to prove (12) one can show that for every ε > 0 and η > 0 there is a
strictly positive integer N0 = N0(ε, η) and for every N ! N0 there exists a p0 =
p0(ε, η, N) ∈ N such that, if p∗ = max{p0, ek},

P
(
A(ε)

1 (N, p, k)
)
> 1 − η

2
∀N ! N0, ∀ k ! 1, ∀ p ! p∗,(13)

P
(
A(ε)

2 (N, p, k)
)
> 1 − η

2
∀N ! N0, ∀ k ! 1, ∀ p ! p∗.(14)

But, clearly, if N0 = max{N∗, N∗} (see Theorems 1 and 2), then Theorem 1 entails
(13), whereas (1) implies (14). Theorem 3 is proved.

Remark 1. As a matter of fact, (12) does not completely characterize oscillations
of partial sums on finitary sets. We have to look at the behavior of minS∗

n as well.
Corollary 1. Suppose hypotheses (I)–(II) are satisfied. Then for all ε, η > 0

∃N0 = N0(ε, η) ∈ N and for all N ! N0 ∃ p0 = p0(ε, η, N) ∈ N such that

P

{
N+k⋂

n=N

{∣∣∣∣ min
n"j"n+p

Sj

sjtj
+ 1

∣∣∣∣ < ε

}}

> 1 − η(15)

for all k ! 1, for all p ! max{p0, ek}.
Proof. One may proceed exactly as in the proof of (12) using the sequence

(−Xn)n!1, instead of (Xn)n!1, and observing that minS∗
j = −max(−S∗

j ).
Remark 2. A natural question to be raised in our framework regards uniqueness

of the upper and lower sequences obtained in Theorem 3. More precisely, it is worth
investigating the possibility of existence of an r.v. Y (defined on the same probability
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space as the Xn’s) such that b̄(ε, n) = (Y + ε) sntn and b(ε, n) = (Y − ε) sntn are also
upper and lower sequences. The answer requires the notion of equivalence.

Definition 3. Two r.v.’s, X and Y , are called equivalent; write X ≃ Y if for
all ε > 0 P{|X − Y | < ε} = 1.

Notice that, unlike the σ-additive setting, the previous definition does not imply
P{X = Y } = 1 (see [19] for some illustrative examples).

Proposition 1. Suppose (12) holds. Then for all ε, η > 0, ∃N0 = N0(ε, η), and
for all N ! N0 ∃ p0 = p0(ε, η, N) such that

P

{
N+k⋂

n=N

{∣∣∣∣ max
n"j"n+p

S∗
j − Y

∣∣∣∣ < ε

}}

> 1 − η ∀ k ! 1, ∀ p ! max{p0, e
k}(16)

if and only if Y ≃ 1.
Proof. Suppose Y is an r.v. for which (16) holds. We need to show (i) P{Y >

1 + ε} = 0 and (ii) P{Y < 1 − ε} = 0. Observe that trivially

P{Y > 1 + ε} = P

{
N+k⋂

n=N

n+p⋃

j=n

{
S∗
j > Y − ε

2

}⋂
{Y > 1 + ε}

}

+P

{
N+k⋃

n=N

n+p⋂

j=n

{
S∗
j " Y − ε

2

}⋂
{Y > 1 + ε}

}

and {Y > 1 + ε} ≡ {Y − ε/2 > 1 + ε/2}. Thus, by (16),

P{Y > 1 + ε} < P

{
N+k⋂

n=N

n+p⋃

j=n

{
S∗
j > 1 +

ε

2

}}

+
η

2
< η.

Proceeding in a similar fashion

P{Y < 1 − ε} < P

{
N+k⋂

n=N

{
S∗
n < 1 − ε

2

}}

+
η

2
< η.

The arbitrariness of η > 0 provides the result we were to prove.
Conversely, suppose Y ≃ 1. Let us choose ε > 0 and δ ∈ (0, ε). If we fix η > 0,

then there exists N0 = N0(ε, η) such that for all N ! N0 and for all k ! 1

1 − η < P

{
N+k⋂

n=N

{
S∗
n < 1 + (ε− δ)

}
}

= P

{
N+k⋂

n=N

{
S∗
n < 1 + (ε− δ)

}⋂
{Y > 1 − δ}

}

" P

{
N+k⋂

n=N

{S∗
n < Y + ε}

}

.

On the other hand,

1 − η < P

{
N+k⋂

n=N

n+p⋃

j=n

{
S∗
j > 1 − (ε− δ)

}
}

= P

{
N+k⋂

n=N

n+p⋃

j=n

{
S∗
j > 1 − (ε− δ)

}⋂
{Y < 1 + δ}

}

" P

{
N+k⋂

n=N

n+p⋃

j=n

{S∗
j > Y − ε}

}

.

Proposition 1 is proved.
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4. Connections with the σ-additive case. We shall look more carefully
at (12) in order to explain why it can be considered a finitistic version of the LIL.
As is well known, in the σ-additive setting lower and upper sequences for the partial
sums of independent r.v.’s are provided by the LIL. In the case where P is σ-additive,
our result (12) implies the LIL. Conversely, it is also possible to prove that if the LIL
holds, then an analogue to (12) is easily deduced. We will better specify this point
below.

Proposition 2. Let P be a probability measure. Then

P{lim supS∗
n = 1} = 1(17)

if and only if for all ε, η > 0, for all k ! 1 ∃N0 = N0(ε, η), and for all N ! N0

∃ p0 = p0(ε, η, N, k) such that

P

{
N+k⋂

n=N

{∣∣∣∣ max
n"j"n+p

S∗
j − 1

∣∣∣∣ < ε

}}

> 1 − η ∀ p ! p0.

Proof. If P is σ-additive, (17) holds if and only if

(18a) P{S∗
n < 1 + ε for all but finitely many n} = 1 ∀ ε > 0

and

(18b) P{S∗
n > 1 − ε infinitely often} = 1 ∀ ε > 0.

Now, (18a) can be written as P{∪∞
n=1 ∩∞

j=n {S∗
j < 1 + ε}} = 1, that is,

P

{

lim
n→∞

∞⋂

j=n

{S∗
j < 1 + ε}

}

= 1.

By the continuity of P, we have limn P{∩∞
j=n{S∗

j < 1 + ε}} = 1. This entails that for
all ε, η > 0, ∃N0 = N0(ε, η) such that

P

{
N+k⋂

n=N

{S∗
n < 1 + ε}

}

> 1 − η ∀N ! N0, ∀ k ! 1.

On the other hand, (18b) is tantamount to P{∩∞
n=1 ∪∞

j=n {S∗
j > 1 − ε}} = 1. Let us

denote by D(n)
j (j > n) the event

{S∗
m < 1 − ε, m = n, . . . , j − 1, and S∗

j > 1 − ε},

whereas D(n)
n = {S∗

n > 1− ε}. For a given n, the events {D(n)
j : j = n, n+ 1, . . . } are

disjoint and ∪∞
j=nD

(n)
j = ∪∞

j=n{S∗
j > 1 − ε}. As usual, IA is the indicator function

of A; (18b) is rewritten as follows:

E

( ∞∏

n=1

∞∑

j=n

I
D(n)

j

)

= 1.

A fortiori, E(
∏N+k

n=N

∑∞
j=n I

D(n)
j

) = 1 for all N ! 1, for all k ! 1 and, consequently,

E

(

lim
p→∞

N+k∏

n=N

n+p∑

j=n

I
D(n)

j

)

= 1.
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Since
∏N+k

n=N

∑n+p
j=n I

D(n)
j

is a nondecreasing sequence in p, by the monotone conver-

gence theorem

lim
p→∞

E

(
N+k∏

n=N

n+p∑

j=n

I
D(n)

j

)

= 1,

which means that for all ε, η > 0, for all k ! 1, for all N ! 1, ∃ p0 = p0(ε, η, N, k)
such that

E

(
N+k∏

n=N

n+p∑

j=n

I
D(n)

j

)

> 1 − η ∀ p ! p0.

If we express the latter in terms of the probability P we reach the result. Indeed

E

(
N+k∏

n=N

n+p∑

j=n

I
D(n)

j

)

= E

(
I⋂N+k

n=N

⋃n+p

j=n
D

(n)
j

)
= E

(
I⋂⋃

{S∗
j
>1−ε}

)

= P

{
N+k⋂

n=N

n+p⋃

j=n

{S∗
j > 1 − ε}

}

.

Conversely, suppose that for all ε, η > 0, ∃N0 = N0(ε, η) such that

P

{
N+k⋂

n=N

{S∗
j < 1 + ε}

}

> 1 − η ∀N ! N0, ∀ k ! 1.

By continuity of P we get P{∩∞
n=N{S∗

n < 1+ ε}} > 1− η which clearly implies (18a).
Moreover, if for all ε, η > 0 ∃N0 = N0(ε, η) and for all N ! N0 ∃ p0 = p0(ε, η, N)

such that P{∩N+k
n=N{maxn"j"n+p S

∗
j > 1 − ε}} > 1 − η for all k ! 1 and for all

p ! max{p0, ek}, a fortiori

P

{
N+k⋂

n=N

{
max
j!n

S∗
j > 1 − ε

}}

> 1 − η.

Again, by continuity of P, if we take the limit as k → ∞ we have P{∩∞
n=N ∪∞

j=n {S∗
j >

1 − ε}} > 1 − η. But the latter implies, by virtue of the arbitrariness in η, (18b).
Proposition 2 is proved.

This very same proposition allows us to say that (12) implies, in a σ-additive
setting, the LIL. Actually (12) contains an even stronger information, in the sense it
provides an estimate of p0(ε, η, N, k) in k, since we found that p0(ε, η, N, k) > ek.

5. Two illustrative examples. In this section we illustrate a couple of exam-
ples which do not allow the application of the σ-additive version of the LIL. On the
other hand, it is meaningful to study the oscillations of partial sums in a finitistic
setting according to Theorem 3 and Corollary 1. This also supports the fact that (12)
and (17) are equivalent only if P is completely additive.

Example 1. Let Ω := {1, 2, . . . } and A = P(Ω), the power set of Ω. We define
on (Ω,P(Ω)) the following probability measure, for every n ! 1:

Pn(E) :=
1

n
#(ω ∈ Ω : 1 " ω " n, ω ∈ E)
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for all E ∈ P(Ω) and #B denotes the cardinality of the set B. A finitely additive
probability, P, is obtained via the rule

P(E) = lim
n→∞

Pn(E)

for all E such that the previous limit exists. Let L be the class of events for which this
limit exists. Now consider the set of prime numbers and its ordering in p0, p1, p2, . . .
(p0 = 1, p1 = 2, p2 = 3, . . . ) and associate to each ω ∈ Ω its factorization in prime

numbers ω =
∏∞

r=1 p
αr(ω)
r , where αr(ω) stands for the exact power of pr in the

factorization of ω. If ω is not divisible by pr, then αr(ω) = 0. As a consequence, only
a finite number of αr’s in the previous representation is different from zero. In this
framework, let (Xn)n!1 be a sequence of r.v.’s on (Ω,L,P) defined by

Xi(ω) =

{
1, ω ∈ [0]pi ,

0, ω ̸∈ [0]pi ,

and [0]pi is the residue class of 0 modulo pi. It is easy to prove that

Pn{ω : Xi(ω) = 1} =
1

n

[
n

pi

]
∀ i ! 1 ∀n ! 1,

and immediately one obtains P{ω : Xi(ω) = 1} = 1/pi for all i ! 1. By virtue of the
additivity of the Pn’s

Pn

{
ω : Xi(ω) = 0

}
= 1 − Pn

{
ω : Xi(ω) = 1

}
−−−−→
n→∞

1 − 1

pi
.

Hence, Xi is an r.v. distributed according to a Bernoulli law with parameter 1/pi.
Now take a pair of r.v.’s Xi, Xj (for all i ̸= j) and notice that

Pn

{
ω : Xi(ω) = 1, Xj(ω) = 1

}
=

1

n

[
n

pipj

]
−−−−→
n→∞

1

pipj

= P
{
ω : Xi(ω) = 1, Xj(ω) = 1

}
.

Moreover,

Pn

{
ω : Xi(ω) = 0, Xj(ω) = 1

}

= Pn

{
ω : Xj(ω) = 1

}
− Pn

{
ω : Xi(ω) = 1, Xj(ω) = 1

}

−−−−→
n→∞

1

pj

(
1 − 1

pi

)
= P

{
ω : Xi(ω) = 0, Xj(ω) = 1

}

and

Pn

{
ω : Xi(ω) = 0, Xj(ω) = 0

}

= Pn

{
ω : Xi(ω) = 0

}
− Pn

{
ω : Xi(ω) = 0, Xj(ω) = 1

}

−−−−→
n→∞

(
1 − 1

pi

)(
1 − 1

pj

)
= P

{
ω : Xi(ω) = 0, Xj(ω) = 0

}
.

In a similar fashion, one may prove that

P
{
ω : X1(ω) = x1, . . . , Xk(ω) = xk

}
=

k∏

i=1

(
1

pi

)xi
(

1 − 1

pi

)1−xi
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for every (x1, . . . , xk) ∈ {0, 1}k and k ! 1. Therefore, (Xn)n!1 is a sequence of
stochastically independent r.v.’s, in accordance with Definition 2. It is clear that
Sn(ω) =

∑n
j=1 Xj(ω) is bounded for every ω ∈ Ω and n ! 1. Furthermore, since

it is known that pj ≍ j log j, µn := ESn =
∑n

j=1(1/pj) −→ ∞, n → ∞, s2
n =∑n

j=1(1/pj)(1 − (1/pj)), and

{

ω : lim
n→+∞

Sn(ω) − µn√
2s2

n log log s2
n

= −∞
}

= Ω.

Consequently, the classical version of the LIL does not hold. On the other hand, since
assumptions of Theorem 3 are satisfied, it is possible to characterize the oscillating
behavior of Sn on finitary sets in the following terms: for all ε, η > 0 ∃N0 = N0(ε, η)
and for all N ! N0 ∃ p0 = p0(ε, η, N) such that for all k ! 1 for all p ! max{p0, ek}

P

{
N+k⋂

n=N

{∣∣∣∣ max
n"j"n+p

Sj − µj√
2s2

n log log s2
n

− 1

∣∣∣∣ < ε

}}

> 1 − η,

P

{
N+k⋂

n=N

{∣∣∣∣ min
n"j"n+p

Sj − µj√
2s2

n log log s2
n

+ 1

∣∣∣∣ < ε

}}

> 1 − η.

An example, analogous to the one just illustrated, was given by de Finetti [4] and it
was later rediscovered, independently, by Ramakrishnan and Sudderth [15]. They aim
at showing that the σ-additive law of large numbers may fail in the finitely additive
setting.

Example 2. Let π(·) be a probability measure defined by π{X = x} = e−1/x!,
x = 0, 1, 2, . . . , and take

Q1{X1 = x1, . . . , Xm = xm} =
e−m

∏m
j=1(xj !)

.

Let us now introduce, for some strictly positive integer M , the probability

Q{X1 = x1, . . . , Xm = xm} :=
Q1{X1 = x1, . . . , Xm = xm, X1 " M, . . . ,Xm " M}

Q1{X1 " M, . . . ,Xm" M}

=
m∏

j=1

π{Xj = xj ; Xj " M}
π{Xj " M} =:

m∏

j=1

Q{Xj = xj},

where Q{X = x} = (1/x!) (
∑M

y=0 1/y!)−1, x = 0, 1, . . . ,M . Let C be the algebra gen-
erated by the cylinders of N∞ with measurable and finite-dimensional basis. Let σ(C)
be the σ-algebra generated by C and P1 the σ-additive extension of Q1 to σ(C). If

P(E) := lim
m→+∞

P1{E
⋂⋂m

j=1{Xj " M}}
Q1{

⋂m
j=1{Xj " M}}

is defined on the class L = {E : P(E) exists}, then L ⊂ σ(C) and P is a probability
on L (see [15]). Moreover, P(E) = Q(E) for all E ∈ C. Indeed, one observes that
C ⊂ L, since for all E ∈ C

P(E) = lim
m→+∞

Q1{E
⋂⋂m

j=1{Xj " M}}
Q1{

⋂m
j=1{Xj " M}}

= lim
m→∞

Q(E) = Q(E).
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The r.v.’s X1, . . . , Xn, . . . are independent with respect to P. In fact, for every k-tuple
n1, . . . , nk of integers, one has

P{Xn1 = x1, . . . , Xnk = xk} = Q{Xn1 = x1, . . . , Xnk = xk}

=
k∏

j=1

Q{Xnj = xj} =
k∏

j=1

P{Xnj = xj}.

By straightforward algebra, we obtain the following expressions for the mean and the
variance of the Xn’s:

EX = 1 − 1

M !
∑M

x=0 1/x!
=: µM ,

DX = 1 − 1

M !
∑M

x=0 1/x!

(
M − 1

M !
∑M

x=0 1/x!

)
=: σ2

M
.

It is clear that 0 < µM < 1. We shall verify {lim sup(Sn − nµM )/
√

2nσ2
M

log log σ2
M

=
1} ∈ L. In order to show it, write

Sn − nµM√
2nσ2

M
log log σ2

M

=
Sn − n√

2n log log n
·

√
log log n

log log nσ2
M

· 1

σM

+
n(1 − µM )

√
2nσ2

M
log log σ2

M

= An + Bn.

Trivially, Bn → +∞ (n → ∞). Moreover, lim inf(Sn−n)/
√

2n log log n = −1 P1-a.s.
But lim sup(An + Bn) ! lim inf An + limBn = +∞ P1-a.s. Therefore,

P1

{

lim sup
Sn − nµM√

2nσ2
M

log log σ2
M

= 1

}

= 0.

By taking into account the definition of P,

P

{

lim sup
Sn − nµM√

2nσ2
M

log log σ2
M

= 1

}

= 0.

Thus {lim sup(Sn − nµM )/
√

2nσ2
M

log log σ2
M

= 1} ∈ L and the LIL does not hold.
If we instead consider the problem in a finitistic setting, we notice that the hy-

potheses of Theorem 3 are verified with respect to P. Again, by means of (12) we can
describe, in finitistic terms, the oscillations of the Sn’s.
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