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Abstract

Discrete random probability measures stand out as effective tools for Bayesian clus-
tering. The investigation in the area has been very lively, with a strong emphasis on
nonparametric procedures based on either the Dirichlet process or on more flexible
generalizations, such as the normalized random measures with independent increments
(nrmi). The literature on finite-dimensional discrete priors is much more limited and
mostly confined to the standard Dirichlet-multinomial model. While such a specifica-
tion may be attractive due to conjugacy, it suffers from considerable limitations when
it comes to addressing clustering problems. In order to overcome these, we introduce a
novel class of priors that arise as the hierarchical compositions of finite-dimensional ran-
dom discrete structures. Despite the analytical hurdles such a construction entails, we
are able to characterize the induced random partition and determine explicit expressions
of the associated urn scheme and of the posterior distribution. A detailed comparison
with (infinite-dimensional) nrmis is also provided: indeed, informative bounds for the
discrepancy between the partition laws are obtained. Finally, the performance of our
proposal over existing methods is assessed on a real application where we study a pub-
licly available dataset from the Italian education system comprising the scores of a
mandatory nationwide test.

Keywords: Bayesian nonparametrics; Normalized random measures; Random partitions; Urn
schemes.

1



1 Introduction

The definition and the investigation of flexible discrete priors, beyond the Dirichlet process,
for Bayesian analysis has attracted increasing interest in recent years. Among the proposals
that have been made, we recall the Pitman–Yor process (Pitman and Yor, 1997), the normal-
ized inverse-Gaussian process (Lijoi et al., 2005), the normalized generalized gamma process
(Lijoi et al., 2007) and the general classes of Gibbs-type priors (Gnedin and Pitman, 2005)
and of normalized random measures with independent increments (nrmis) (Regazzini et al.,
2003). These priors have been mainly employed to address predictive inference and density
estimation. More recently they have emerged as powerful tools to achieve sparsity in network
models as effectively described in Caron and Fox (2017). While these are all instances of
infinite-dimensional (nonparametric) priors, in this paper we embrace a different perspective
and rely on a class of finite-dimensional priors whose flexibility can be increased at will,
such that they can be seen as approximations of suitable nonparametric priors. Although
this argument has been provably useful in Bayesian analysis (Green and Richardson, 2001;
Miller and Harrison, 2018), it has mostly led to the specification of Dirichlet-based priors
thus introducing in the analysis some limitations that are widely known in the literature.
For example, the underlying model for the clustering structure is somehow restrictive, since
it depends on a single parameter, the so-called concentration or total mass, thus calling
for more flexible specifications. Such a narrow flexibility has further relevant effects on the
associated system of predictive distributions. In the nonparametric case, these and other
aspects are illustrated in De Blasi et al. (2015). Of course, one might mitigate this issue by
placing a prior distribution on the concentration parameter, however the resulting posterior
would not be available in closed form. Hence, albeit simple, such a specification has mostly
turned out to be a sort of “black-box” prior. Besides these drawbacks, the lack of theoretical
results has also prevented the development of computational algorithms that may facilitate
their use. For example, while our investigation leads to exact sampling from the posterior
distribution, a prior on the concentration parameter in a Dirichlet-based structure would
require a Metropolis step in the computation.

The main focus of our paper will be clustering and density estimation. Just to set up
some preliminary notation, let (Xn)n≥1 be a sequence of X-valued exchangeable random
elements and let K : X×Θ→ R+ be a transition kernel such that x 7→ K(x; θ) is a density

2



function on X, for any θ ∈ Θ. Conditionally on a random probability measure p̃, we suppose
that (Xi | p̃)

iid∼
∫

Θ
K(x; θ)p̃(dθ) and

p̃ =
H∑
h=1

πhδθ̃h , H ∈ {1, 2, . . . ,∞}, (1)

where δθ̃h denotes the unit mass at θ̃h,
∑H

h=1 πh = 1 almost surely and the collections
{θ̃1, . . . , θ̃H} and {π1, . . . , πH} are independent. Furthermore, θ̃1, . . . , θ̃H are iid draws from
a diffuse probability measure P . Hence, p̃ is a proper species sampling model (Pitman,
1996). It is worth noting that the theoretical results that are displayed in the next sections
are essential for applying our proposal to a number of other inferential problems, beyond
the specific ones we consider here. With H <∞, the symmetric dirichlet(c/H, . . . , c/H)

distribution is a popular prior choice for (π1, . . . , πH) and it is well-known that, in this case,
the law of p̃ in (1) weakly converges to the law of the Dirichlet process, with parameters
(c, P ), as H → ∞. Such a symmetric Dirichlet specification, when directly used for ex-
changeable data (X1, . . . , Xn | p̃)

iid∼ p̃, is often referred to as Dirichlet multinomial model.
See for instance Ishwaran and Zarepour (2002). It is worth recalling that this model may
be used for sparse finite mixtures as a way to circumvent the issue of selecting the number
of mixture components (Malsiner-Walli et al., 2016). Indeed, under suitable assumptions,
overfitted mixtures consistently select the correct number of mixture components (Rousseau
and Mengersen, 2011). See also Nguyen (2013) for further asymptotic validations of mixture
models based on Dirichlet-like mixing measures. In addition, the Dirichlet multinomial pro-
cess has been employed in a variety of statistical applications, e.g. for Bayesian modeling of
network data (Durante et al., 2017; Durante and Dunson, 2018), for semi-parametric random
effects in regression models (Rigon et al., 2019), and for functional data analysis (Dunson
et al., 2008; Petrone et al., 2009). Finally, the symmetric Dirichlet for (π1, . . . , πH) may be
combined with a “repulsive” prior for the locations θ̃1, . . . , θ̃H as in Xu et al. (2016).

In this paper we introduce and study a general class of finite-dimensional random prob-
ability measures p̃ as in (1), which will be termed normalized infinitely divisible multinomial
processes (nidm). The investigation we develop will benefit from the connection with ho-
mogeneous nrmis, whose theory has achieved remarkable advances in the recent years (Lijoi
and Prünster, 2010). The proposed nidm processes allow for a finer control of the under-
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lying clustering mechanism and for a robustification of the prior specification process. We
will provide both theoretical and empirical evidence in support of this claim, in line with
what was already noticed in the infinite-dimensional case (Lijoi et al., 2007). As a by-
product of our investigation, we note that one might employ nidms as approximations of
their infinite-dimensional counterpart. Besides the theoretical interest that a result of this
type may give rise to, it is also very helpful from a practical standpoint since it helps light-
ening computational bottlenecks. Indeed, posterior inference for nrmis most often relies on
series representations of the type devised in Ferguson and Klass (1972), hence requiring nu-
merical and analytical approximations. In contrast, the posterior structure of several nidms
can be computed and sampled exactly, without the need of mcmc steps. This is an impor-
tant bonus, even when compared to standard Dirichlet-multinomial specifications. Such a
gain, however, does not come for free since the probabilistic structure of our model yields
some challenging technical hurdles when it comes to determining distributional properties of
interest for Bayesian inference. These difficulties parallel those that arise when one uses a
discrete base measure for a nonparametric prior process. See, e.g., Canale et al. (2017) for
an example in the Pitman–Yor case.

The main application we focus on concerns the invalsi 2016-2017 dataset, a national
examination conducted in Italy. Specifically, we aim at measuring the teaching competen-
cies of a set of schools by taking into account the socio-demographic characteristics of its
students. Great effort has been made by the public research institute invalsi to provide
reliable quantifications of the effect of each school on the test performance. Indeed, such an
indicator is nationally relevant especially for the development and the evaluation of educa-
tional policies. We address this problem via semi-parametric modeling with nonparametric
school-specific random effects, which will be interpreted as a proxy of the added-value of the
school.

The paper is organized as follows. In Section 2 we review some background material about
completely random measures and species sampling models. In Section 3 we define nidm pro-
cesses and we discuss several a priori properties, such as the law of the random partition they
induce, and the weak convergence to nrmis. In Section 4, we discuss generalized urn schemes
and posterior characterizations, with a particular emphasis on the normalized generalized
gamma (ngg) multinomial process. In Section 5 we employ the ngg multinomial prior for
the analysis of a real dataset, highlighting practical advantages over existing methods. We
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conclude with a final discussion in Section 6. Detailed proofs are deferred to the supplemen-
tary material. This further includes an extensive simulation study that shows the greater
flexibility of the ngg multinomial prior under a wide range of data generating distributions,
with different choices of the hyperparameters and sample sizes.

2 Discrete priors and random partitions

Since nidm processes are closely related to homogeneous nrmis, we sketch a concise overview
of some preliminary definitions and notation on random measures.

Let Θ be a separable and complete metric space and let B(Θ) be its Borel σ-field. A
random measure µ̃∞ on (Θ,B(Θ)) such that µ̃∞(A1), . . . , µ̃∞(Ad) are mutually independent
random variables for any choice of pairwise disjoint A1, . . . , Ad in B(Θ), and for any d ≥ 2,
is a completely random measure (crm). For our purposes, it is useful to recall that a crm
with no fixed points of discontinuity and no deterministic drift can be represented as µ̃∞ =∑∞

h=1 Jhδθ̃h and is characterized by the Laplace functional transform

E
(

e−
∫
Θ f(θ)µ̃∞(dθ)

)
= exp

{
−
∫
R+×Θ

(
1− e−sf(θ)

)
ν(ds, dθ)

}
, (2)

where f : Θ → R+ is a measurable function and the measure ν on R+ × Θ, termed Lévy
measure, or intensity, characterizes the crm and is such that

∫
R+×A min{1, s}ν(ds, dθ) <

∞ for any bounded A ∈ B(Θ). In the following, we consider only homogeneous crms,
which amounts to having a Lévy intensity of the form ν(ds, dθ) = ρ(s)ds cP (dθ), where
P is a probability measure over (Θ,B(Θ)) and c ∈ R+. We will use the notation µ̃∞ ∼
crm(c, ρ;P ). If one additionally has that

∫
R+ ρ(s) ds = ∞, then 0 < µ̃(Θ) < ∞ almost

surely, and a homogeneous nrmi is defined as p̃∞ =
∑∞

h=1(Jh/J̄)δθ̃h , where J̄ =
∑∞

h=1 Jh =

µ̃(Θ). We will write p̃∞ ∼ nrmi(c, ρ;P ) to denote such a random probability measure.
Several relevant nonparametric priors are nrmis and a noteworthy class, which is the object
of investigation in the present paper, arises when

ρ(s) =
1

Γ(1− σ)
s−1−σ e−κs, (3)

whose additional parameters 0 ≤ σ < 1 and κ ≥ 0 are such that at least one of them
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is positive (Brix, 1999). The resulting nrmi is often referred to as normalized generalized
gamma (ngg) process, and it includes some well-known nonparametric priors as special
cases. See Lijoi et al. (2007).

Both nrmis and the novel class of nidm processes are discrete random probability mea-
sures. Thus, when their law identifies the de Finetti measure of the exchangeable sequence
of Θ-valued random elements (θn)n≥1, there will be ties with positive probability, namely
P[θi = θi′ ] > 0 for any i 6= i′. Hence, an n-sample θ(n) = (θ1, . . . , θn) will display Kn = k ≤ n

distinct values, say θ∗1, . . . , θ∗k, with respective frequencies n1, . . . , nk, so that
∑k

j=1 nj = n.
This amount to saying that θ(n) induces a random partition Ψn of [n] = {1, . . . , n} into k
sets C1, . . . , Ck such that i ∈ Cj if and only if θi = θ∗j . As discussed in Pitman (1996),
this clustering mechanism is regulated by a symmetric function called exchangeable partition
probability function (eppf), which is defined by

P(Ψn = {C1, . . . , Ck}) = Π(n1, . . . , nk) =
∑

i1 6=... 6=ik

E

(
k∏
j=1

π
nj

ij

)
, (4)

where the vector nk = (n1, . . . , nk) of positive integers is such that nj = card(Cj) and∑k
j=1 nj = n. Notice further that the conditional probabilities that θn+1 displays a new

value from the diffuse base measure P or coincides with a previously observed θ∗j , given θ(n),
can be expressed in terms of the eppf as follows w0(n(k)) = Π(n1, . . . , nk, 1)/Π(n1, . . . , nk)

and wj(n
(k)) = Π(n1, . . . , nj + 1, . . . , nk)/Π(n1, . . . , nk), for j = 1, . . . , k, which, for any

A ∈ B(Θ), entails P(θn+1 ∈ A | θ(n)) = w0(n(k))P (A) +
∑k

j=1 wj(n
(k))δθ∗j (A). If p̃∞ ∼

nrmi(c, ρ;P ), with P diffuse, the corresponding eppf is

Π∞(n1, . . . , nk) =
ck

Γ(n)

∫
R+

un−1 e−cψ(u)

k∏
j=1

τnj
(u) du, (5)

where ψ(u) =
∫
R+(1− e−us)ρ(s)ds is the Laplace exponent and τm(u) :=

∫
R+ s

me−usρ(s) ds,
for any integer m ≥ 1. If ρ is as in (3), i.e. p̃∞ is a ngg process, one finds out that
Π∞(n1, . . . , nk) = Vn,k

∏k
j=1(1 − σ)nj−1, with (a)n = a(a + 1) · · · (a + n − 1), for any real a
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and integer n ≥ 1, (a)0 = 1, and

Vn,k :=
eβσk−1

Γ(n)

n−1∑
i=0

(
n− 1

i

)
(−1)iβi/σΓ

(
k − i

σ
; β

)
, (6)

where β = cκσ/σ, and Γ(x; a) =
∫∞
x
sa−1e−sds for any a > 0 is the incomplete gamma

function. One may refer to Lijoi et al. (2007) for details about the determination of (6).

3 Normalized infinitely divisible multinomial processes

In order to define a more flexible, and still tractable, class of finite-dimensional priors we
crucially start from infinitely divisible masses and adopt a normalization procedure similar
to the one that yields nrmis.

3.1 nidm processes

The main building block of the new class of processes that we are proposing is a collection of
independent and infinitely divisible random variables. In particular, we will deal with finite
and strictly positive infinitely divisible random variables, say J , such that

E
(
e−λJ

)
= exp{−cψ(λ)} = exp

{
−c
∫
R+

(1− e−λs)ρ(s) ds
}
, (7)

for any λ > 0 and some constant c > 0. The function ρ is a non-negative measurable
function satisfying the same conditions outlined in Section 2, i.e.

∫
R+ min{1, s}ρ(s) ds <∞

and
∫
R+ ρ(s) ds =∞. We will henceforth use the notation J ∼ id(c, ρ).

Definition 1. A random measure µ̃H on (Θ,B(Θ)) such that

µ̃H =
H∑
h=1

Jhδθ̃h , Jh
iid∼ id

( c
H
, ρ
)
, θ̃h

iid∼ P, (8)

where H <∞ and P is a diffuse probability measure on (Θ,B(Θ)), is a multinomial random
measure with infinitely divisible jumps and will be denoted as µ̃H ∼ idm(c, ρ;P ).
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It is important to stress that idm’s are not completely random, since µ̃H(A1), . . . , µ̃H(Ad)

are not mutually independent random variables for any choice of pairwise disjoint sets
A1, . . . , Ad in B(Θ) and for any d ≥ 2. Indeed, if A ∈ B(Θ) is such that 0 < P (A) < 1, then
P(µ̃H(A) = 0) = (1−P (A))H > 0. On the other hand, P(µ̃H(A) = 0 | µ̃H(Ac) = 0) = 0 since
P(µ̃H(Θ) > 0) = 1. Hence, independence between µ̃H(A) and µ̃H(Ac) does not hold true.
Nonetheless, the Laplace functional transform of a idm is available and, for any non–negative
function f , equals

E
(

e−
∫
Θ f(θ)µ̃H(dθ)

)
=

(∫
Θ

exp

{
− c

H

∫
R+

(
1− e−sf(θ)

)
ρ(s)ds

}
P (dθ)

)H
. (9)

Now set f(θ) = λIA(θ) with λ > 0, A ∈ B(Θ) and IA denoting the indicator function of A.
Then E

(
e−λµ̃H(A)

)
= (1− P (A) + P (A) exp {−cψ(λ)/H})H , where ψ is the Laplace expo-

nent defined in (7). It is apparent that µ̃H(A) equals in distribution a binomial compound
random element, namely (µ̃H(A) | m̃)

d
=
∑m̃

j=0 Jj with m̃ ∼ binomial(H,P (A)) where,
conditional on m̃, the random variables J1, . . . , Jm̃ are iid from id(c/H, ρ) and J0 is a point
mass at zero: this provides an interesting and alternative representation of µ̃H(A).

The new class of finite-dimensional processes that we define are obtained by normalizing
random measures in Definition 1. In this respect, the construction is related to the normalized
infinitely divisible (nid) family of distributions in Favaro et al. (2011), in the sense that the
random probability weights are obtained by normalizing infinitely divisible random variables.

Definition 2. Let µ̃H ∼ idm(c, ρ;P ). If p̃H = µ̃H/µ̃H(Θ) =
∑H

h=1 πhδθ̃h where π =

(π1, . . . , πH) = (J1/
∑H

h=1 Jh, . . . , JH/
∑H

h=1 Jh), then p̃H is a normalized infinitely divisi-
ble multinomial process and is denoted as p̃H ∼ nidm(c, ρ;P ). Notice, further, that π is a
normalized infinitely divisible (nid) random vector and we use the notation (π1, . . . , πH−1) ∼
nid(c/H, . . . , c/H; ρ) to identify it.

Hence, a nidm process is a random probability measure with finite support whose vector
of probability weights π is termed nid according to the terminology in Favaro et al. (2011).
Indeed, Favaro et al. (2011) propose this class of distributions on the simplex as an alterna-
tive to the Dirichlet distribution. While they investigate some distributional properties and
discuss examples for which the density function of π is available in closed form, they neither
consider their uses in a Bayesian setting nor construct random probability measures with fi-
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nite support based on π. From Definition 2, it is apparent that µ̃(Θ) ∼ id(c, ρ), thus ensuring
that the above normalization is well-defined. Note that a nidm process is also a proper species
sampling model (1) with H < ∞, since P is diffuse. If we set ρ(s) = s−1e−s we recover the
Dirichlet multinomial process, whose weights (π1, . . . , πH−1) ∼ dirichlet(c/H, . . . , c/H).
Henceforth, we take ρ as in (3) and obtain a novel and tractable class of nidm processes
that we will term ngg multinomial process.

It is useful to point out that nidm processes display a hierarchical structure. Indeed,
if (µ̃H | p̃0,H) ∼ crm(c, ρ; p̃0,H) and p̃0,H = (H)−1

∑H
h=1 δθ̃h , with θ̃h

iid∼ P , then µ̃H ∼
idm(c, ρ;P ). Hence, if we pick p̃H = µ̃H/µ̃H(Θ) one has that p̃H ∼ nidm(c, ρ;P ) and in view
of the previous remark, it can be described through the following hierarchical model

(p̃H | p̃0,H) ∼ nrmi(c, ρ; p̃0,H), p̃0,H =
1

H

H∑
h=1

δθ̃h . (10)

The converse holds true as well: any nidm can be represented as a hierarchical process with
a nrmi having a discrete baseline measure at the bottom of the hierarchy. Note that the
law of p̃0,H is that of a specific Gibbs–type prior, arising when the discount parameter goes
to −∞; see Gnedin and Pitman (2005). Furthermore, this representation relates any nidm
process to hierarchical constructions like those presented in Camerlenghi et al. (2018).

In view of (10), it is instructive to compare the finite-dimensional distributions of a
nidm p̃H with those of a p̃∞ ∼ nrmi(c, ρ;P ). In particular, it follows that, for any finite
partition {B1, . . . , Bd} of Θ into B(Θ)-sets, the distribution of (p̃H(B1), . . . , p̃H(Bd−1)) can
be expressed as a mixture of a nid distribution with multinomial weights, motivating the
nidm denomination. More precisely,

(p̃H(B1), . . . , p̃H(Bd−1)) | (m̃1, . . . , m̃d) ∼ nid
(
c
m̃1

H
, . . . , c

m̃d

H
; ρ

)
(m̃1, . . . , m̃d) ∼ multinomial (H, (P (B1), . . . , P (Bd))) .

On the other hand, since p̃∞(Bi) = Ji/
∑d

j=1 Jj, where Ji = µ̃∞(Bi) ∼ id(cP (Bi); ρ), one
has (p̃∞(B1), . . . , p̃∞(Bd−1)) ∼ nid (cP (B1), . . . , cP (Bd); ρ). As H → ∞, an application of
the law of large numbers yields (cm̃1/H, . . . , cm̃d/H)

a.s.−→ (cP (B1), . . . , cP (Bd)). A similar
argument will be used in the next section to show that nidm processes weakly converge to
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the corresponding homogeneous nrmi as H →∞. Finally, note that the moments of a nidm
process can be obtained in closed form; see the supplementary material for details.

3.2 Convergence of nidm processes

The previous discussion suggests that, when H is large enough, a nidm approaches a non-
parametric prior that corresponds to a homogeneous nrmi. The main result of this Section
concerns the convergence of idm random measures to homogeneous crms and we henceforth
resort to the more concise notation µ̃(f) =

∫
Θ
f(θ) µ̃(dθ).

Theorem 1. Let µ̃H ∼ idm(c, ρ;P ) and µ̃∞ ∼ crm(c, ρ;P ). Then as H → ∞, one has
E
(
e−µ̃H(f)

)
→ E

(
e−µ̃∞(f)

)
for any positive and measurable function f : Θ → R+ such that∫

Θ
ψ(f(θ))P (dθ) <∞.

Note that if f in the above theorem is integrable with respect to P then the condition∫
Θ
ψ(f(θ))P (dθ) < ∞ is satisfied. In addition, given the convergence of the Laplace func-

tionals, vague convergence µ̃H
v−→ µ̃∞ as H →∞ is implied by Kallenberg (Theorem 4.11,

2017) since the above condition is satisfied if f is a positive, continuous and bounded func-
tion. Now recall that p̃H ∼ nidm(c, ρ;P ) and that p̃∞ ∼ nrmi(c, ρ;P ). An important
implication of Theorem 1 is the convergence of the finite-dimensional distributions of p̃H
to those of p̃∞. Indeed, plugging in Theorem 1 the simple function f(θ) =

∑d
i=1 λiIAi

(θ),
for any collection of sets A1, . . . , Ad ∈ B(Θ) and positive constants λ1, . . . , λd > 0, one has
that (p̃H(A1), . . . , p̃H(Ad))

d−→ (p̃∞(A1), . . . , p̃∞(Ad)), as H → ∞, as a consequence of the
continuous mapping theorem. When working with random probability measures, the con-
vergence of the finite-dimensional distributions suffices to guarantee the weak convergence of
the whole process, which will be indicated with the w−→ notation; see Kallenberg (Theorem
4.11, 2017).

Corollary 1. Let p̃H ∼ nidm(c, ρ;P ) and p̃∞ ∼ nrmi(c, ρ;P ). Then p̃H
w−→ p̃∞ as H →∞.

The above statement implies the convergence in distribution of general functionals p̃H(f)
d−→

p̃∞(f) as H →∞ when f is a continuous and bounded function. In the Dirichlet multinomial
process case, related results were previously obtained, e.g., in Kingman (1975) and Green
and Richardson (2001).
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3.3 Random partitions and number of clusters

In this section we study the clustering mechanism underlying a nidm process that amounts
to determining the eppf, namely the probability distribution of the induced exchangeable
partition: this will be denoted by ΠH and it is defined through (4), with p̃ being replaced
by p̃H . To be more specific, it will be shown that the eppf of any nidm process is a finite
mixture of the partition functions arising in the infinite-dimensional setting. Before stating
the theorem, let us introduce some further quantity of interest. Define for any m ≥ 1

Vm,H(u) :=

(
(−1)m

∂m

∂um
e−

c
H
ψ(u)

)
e

c
H
ψ(u) =

c

H
∆m,H(u),

and set V0,H := 1, where ψ(u) is the Laplace exponent defined as in (7) and

∆m,H(u) =
m∑
`=1

( c
H

)`−1 1

`!

∑
q

(
m

q1 · · · q`

) ∏̀
r=1

∫ ∞
0

sqr e−usρ(s) ds,

with the inner sum running over all vectors q = (q1, . . . , q`) of positive integers such that∑`
r=1 qr = m. Moreover, for any vector x ∈ Rp, we let |x| =

∑p
i=1 xi.

Theorem 2. Let (θn)n≥1 be an exchangeable sequence directed by a nidm process prior.
Then, the associated eppf when k ≤ min{n,H} is given by

ΠH(n1, . . . , nk) =
H!

Hk(H − k)!

ck

Γ(n)

∫
R+

un−1e−cψ(u)

k∏
j=1

∆nj ,H(u)du,

Moreover, if Π∞ is the eppf of the corresponding homogeneous nrmi in (4), one has

ΠH(n1, . . . , nk) =
H!

Hk(H − k)!

∑
`

1

H |`|−k

k∏
j=1

1

`j!

∑
qj

(
nj

qj1, . . . , qj`j

)
× Π∞(q11, . . . , q1`1 , . . . , qk1, . . . , qk`k), (11)

where the first sum runs over all vectors ` = (`1, . . . , `k) such that `j ∈ {1, . . . , nj}, and the
jth of the k sums runs over qj = (qj1, . . . , qj`j) such that qjr ≥ 1 and with |qj| = nj.
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This mixture representation in (11) is reminiscent of the one in Camerlenghi et al. (2018)
for hierarchical nrmis, which is not surprising in view of the hierarchical representation of
nidm processes in (10). Furthermore, note that limH→∞∆m,H(u) = τm(u) for any u > 0

and m ≥ 1. This leads to show that limH→∞ΠH = Π∞, namely the eppf associated to a
nidm process converges to the one induced by a homogeneous nrmi and displayed in (5).
As a matter of fact, one can say something more precise and identify bounds for the ratio
between ΠH and Π∞, for any H, as stated in the next theorem.

Theorem 3. For any k ≤ min{n,H} one has

H!

Hk(H − k)!
≤ ΠH(n1, . . . , nk)

Π∞(n1, . . . , nk)
≤
∫
R+

k∏
j=1

∆nj ,H(u)

τnj
(u)

q∞(u)du,

where q∞(u) ∝ un−1e−cψ(u)
∏k

j=1 τnj
(u) is a density function.

Note that q∞ is the density function of a latent random variable that is used in James
et al. (2009) to provide posterior characterizations of nrmis. Both bounds converge to 1

as H → ∞. As a simple application of Theorem 3, one might obtain bounds also for the
predictive distributions, by exploiting their relationship with the eppf. For ngg multinomial
processes and, a fortiori, in the Dirichlet multinomial case, the eppf and the related bounds
can be computed explicitly. This is illustrated in the following examples.

Example 1 (Dirichlet multinomial process). Let the nidm process be characterized by the
intensity function ρ(s) = s−1e−s. For any k ≤ min{n,H}, in view of Theorem 2 one has
ΠH(n1, . . . , nk) = H!/(H − k)!(c)−1

n

∏k
j=1 (c/H)nj

. This eppf can be found, e.g., in Green
and Richardson (2001). Additionally, note that such a prior is a Pitman–Yor process with
discount parameter σ = −c/H < 0 and H|σ| = c > 0. See, e.g., De Blasi et al. (2015).
Straight application of Theorem 3 yields

H!

Hk(H − k)!
≤ ΠH(n1, . . . , nk)

Π∞(n1, . . . , nk)
≤

k∏
j=1

(1 + c/H)nj−1

(nj − 1)!
.

This makes clear that ΠH and Π∞ are close when either H is large, as it is natural to expect
on the basis of Corollary 1, or the total mass parameter c is small. Note that this is the same
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bound obtained in the Appendix of Ishwaran and Zarepour (2002) by means of different
techniques, and thus Theorem 3 can be seen as a generalization of their result.

Example 2 (ngg multinomial process). Let the nidm process be characterized by the
generalized gamma intensity function ρ(s) given in (3). On the basis of Theorem 2, for any
k ≤ H one has

ΠH(n1, . . . , nk) =
H!

(H − k)!

∑
`

Vn,|`|
H |`|

k∏
j=1

C (nj, `j;σ)

σ`j
,

where Vn,k is in (6) and C (n, k;σ) := (k!)−1
∑k

j=0(−1)j
(
k
j

)
(−jσ)n for k ≤ n are the general-

ized factorial coefficients, which can be computed by exploiting recursive formulas. Hence,
the eppf of a ngg multinomial process has a simpler form compared to the general equa-
tion (11), because it only depends on the integers `1, . . . , `k. This also enables the actual
evaluation of the upper bound in Theorem 3, thus yielding

H!

Hk(H − k)!
≤ ΠH(n1, . . . , nk)

Π∞(n1, . . . , nk)
≤
∑
`

Vn,|`|
Vn,k

( c

σH

)|`|−k k∏
j=1

C (nj, `j;σ)

C (nj, 1;σ)
,

where C (nj, 1;σ) = σ(1− σ)nj−1.

The availability of ΠH naturally leads one to address the problem of determining the
distribution of the number of partition sets Kn,H , that is, the law of the number of distinct
values observed in a sample θ(n) from a nidm process prior. As one might expect, Kn,H con-
verges to the number of partition sets Kn,∞, namely the number of distinct values generated
by an exchangeable n-sample from homogeneous nrmi, when H →∞. Another interesting
connection between Kn,H and Kn,∞ is formalized in the following theorem.

Theorem 4. For any k ≤ min{H,n}

P(Kn,H = k) =
H!

Hk(H − k)!

n−k∑
`=0

1

H`
S (`+ k, k)P(Kn,∞ = `+ k),

where S (`, k) = (k!)−1
∑k

r=0(−1)k−r
(
k
r

)
r` is the Stirling number of the second kind for `, k ≥
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0. Moreover, the expected value of Kn,H is given by

E(Kn,H) = H −HE

((H−1∑
h=1

πh

)n)
= H −HE

((
1− 1

H

)Kn,∞
)
.

From Theorem 4 it can be easily seen that P(Kn,H = k) → P(Kn,∞ = k) for all k as
H →∞, since S (k, k) = 1. Hence, Kn,H

d−→ Kn,∞. Additionally, we have that E(Kn,H)→
E(Kn,∞) as H → ∞, and the following asymptotic expansion holds E(Kn,H)/E(Kn,∞) =

1 − (2H)−1
(
E(K2

n,∞)/E(Kn,∞)− 1
)

+ O (H−2), as H → ∞. Thus, the convergence of the
expected value to the infinite case occurs at the linear rate O(1/H). We expanded the
above ratio up the the second order, to gain further understanding about the speed at
which E(Kn,H) approaches its limit: broadly speaking, quick convergence occurs whenever
E(K2

n,∞) ≈ E(Kn,∞), which is the case when E(Kn,∞) is relatively small. On the other
hand, one needs a large value of H when trying to approximate an infinite-dimensional
process having a high number of expected clusters in a sample of size n. This is in line with
the discussion of Example 1.

Example 3 (Dirichlet multinomial process, cont’d). A straightforward application of Theo-
rem 4 yields P(Kn,H = k) = [H!/(H−k)!](−1)kC (n, k;−c/H)/(c)n, for k = 1, . . . ,min{H,n}.
This simple form is due to the Gibbs-type structure of the Dirichlet multinomial process,
and indeed the above formula might be deduced from Gnedin and Pitman (2005). In the
relevant particular case c = H, that is, when the weights of the nidm process are uni-
formly distributed, the following simplification occurs: P(Kn,H = k) = n!

(
H
k

)(
n−1
k−1

)
/(H)n,

for k = 1, . . . ,min{H,n}, a particular instance of hypergeometric distribution. As for the
expected value of Kn,H , for any value of c we have the following simple formula: E(Kn,H) =

H − (H − 1)(c + 1 − c/H)n−1/(c + 1)n−1. Note that, as H → ∞, the right-hand-side con-
verges to the expected number of cluster induced by the Dirichlet process with concentration
parameter c.

Example 4 (ngg multinomial process, cont’d). Direct application of Theorem 4 yields

P(Kn,H = k) =
H!

(σH)k(H − k)!

n−k∑
`=0

Vn,`+k
H`

S (`+ k, k)
C (n, `+ k;σ)

σ`
,
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Figure 1: Distribution of K100,H with n = 100, under a Dirichlet multinomial process (c =
5.87), and a ngg multinomial process (c = 1/2, κ = 1, σ = 1/2), for different levels of
H ∈ {20, 50, 250,∞}. The distribution is depicted only for the values in the interval [1, 40]
for graphical reasons.

for any k = 1, . . . ,min{H,n}, since P(Kn,∞ = k) = Vn,kσ−kC (n, k;σ). Furthermore, the
expected value of Kn,H is given by E(Kn,H) = H −H

∑n
`=1 (1− 1/H)` Vn,`C (n, `;σ)σ−`.

To illustrate the clustering mechanism, in Figure 1 we depicted the distribution of the
random variable K100,H under both a Dirichlet multinomial process and a ngg multinomial
process, for different values of H. To make these prior choices comparable, we have set the
hyperparameters c and (β, σ) such that the expected number of clusters for the corresponding
infinite-dimensional nrmis E(K100,∞) is the same.

As highlighted in Figure 1, the distribution of K100,H under the ngg multinomial prior
is “flatter”, i.e. less informative, compared to the one induced by the Dirichlet multinomial
prior, for any of the values of H being considered. We note that the variance of Kn,H in the
ngg prior can be tuned through the parameter σ. When σ → 0 the Dirichlet multinomial
case is recovered. If H →∞, this effect of σ was extensively discussed in Lijoi et al. (2007)
and it comes as no surprise it is reflected also in the finite H case, in view of Theorem 4.
Theorems 2-4 show that, despite the technical difficulties posed by the finite H setting,
distributional properties similar to those available in the infinite-dimensional case can still
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be achieved. Nonetheless, we remark that if one is interested in approximating the infinite-
dimensional nrmi prior, a relatively large value of H is typically required. For instance,
Figure 1 suggests that we should set H = 250 to satisfactorily approximate both the Dirichlet
and the ngg processes with their nidm counterparts, in this specific setting.

4 Posterior characterizations

We complete here the picture of the distributional properties of nidm processes by deter-
mining their posterior distribution. We will refer to a framework where

(θ1, . . . , θn | p̃H)
iid∼ p̃H , p̃H ∼ nidm(c, ρ;P ). (12)

and will provide two representations of the posterior distribution of p̃H one of which is
effectively described in terms of the the multiroom Chinese restaurant metaphor introduced
in Camerlenghi et al. (2018). While our results are general, particular emphasis is given
to the ngg multinomial process and, despite the lack of conjugacy, we are able to devise
algorithms for exact (iid) sampling of the posterior. In contrast with most widely known
samplers for homogeneous nrmis (e.g. Lijoi and Prünster, 2010; Barrios et al., 2013; Favaro
and Teh, 2013; Arbel and Prünster, 2017), which either require Gibbs-sampling strategies
or truncating certain series representations, the posterior laws of nidm processes can be
sampled exactly.

4.1 Predictive distributions and posterior laws

Since the eppf ΠH can be evaluated through Theorem 2, it is straightforward to compute
the predictive distributions. To this end, for any n ≥ 1 we define a positive random variable
U whose density function on R+, conditional on the sample θ(n), equals

qH(u) ∝ un−1e−cψ(u)

k∏
j=1

∆nj ,H(u). (13)

The normalizing constant of the above density is finite and it essentially identifies the eppf
of a nidm process. The density function qH parallels the one, say q∞, of the latent variable
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appearing in the posterior representation for nrmis. See James et al. (2009). Note that qH
converges pointwise to q∞ as H →∞ since ∆m,H(u)→ τm(u) for any m ≥ 1 and u > 0.

Corollary 2. Let θ1, . . . , θn be as in (12), and such that they admit k distinct values θ∗1, . . . , θ∗k
with θ∗j having frequency nj. Then P(θn+1 ∈ A | θ(n)) = w0(n(k))P (A)+

∑k
j=1 wj(n

(k))δθ∗j (A),
where n(k) = (n1, . . . , nk) and for any j = 1, . . . , k

w0(n(k)) =

(
1− k

H

)
c

n

∫
R+

u∆1,H(u)qH(u)du, wj(n
(k)) =

1

n

∫
R+

u
∆nj+1,H(u)

∆nj ,H(u)
qH(u)du.

This result is reminiscent of the predictive distributions obtained for homogeneous nrmis,
and indeed similar sampling strategies can be borrowed from that context. For exam-
ple, note that conditionally on the latent variable U one has P(θn+1 ∈ A | θ(n), U) ∝
(1− k/H) c∆1,H(U)P (A) +

∑k
j=1{∆nj+1,H(U)/∆nj ,H(U)}δθ∗j (A). Hence, one can devise a

generalized Pólya-urn scheme by first drawing U from its density qH and then sampling from
the predictive distribution using the above formula. The terms ∆m,H might be expensive to
compute in practice, mainly because of their combinatorial nature. However, this issue can
be attenuated by relying on the recursive definition of ∆m,H provided in James et al. (2006).
Furthermore, in the fairly general ngg multinomial case, the weights ∆m,H have an explicit
formula, and this allows for the implementation of an exact sampling algorithm for U ; see
the supplementary material.

Remark 1. If one is only interested in obtaining an exchangeable draw for θ(n), a direct
strategy consists in simulating p̃H and then, conditionally on it, sampling iid observations
from p̃H , according to (12). Indeed, any id random variable whose Laplace exponent is
available in closed form can be sampled, for example through the general algorithm of Ridout
(2009), and this enables the simulation of nidm processes.

We now provide a posterior characterization for the law of the random measure µ̃H
given θ(n): the posterior distribution of p̃H can, then, be recovered by normalization. To
ease notation, the posterior law is expressed conditionally on the latent variable U , whose
density is qH . Moreover, when the sample θ(n) = (θ1, . . . , θn) displays k < H distinct values
θ∗1, . . . , θ

∗
k, we let θ̄k+1, . . . , θ̄H represent the point masses in p̃H that are not included in θ(n),

corresponding to the original θ̃h’s, not included in θ(n), up to a permutation.
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Theorem 5. Let θ1, . . . , θn be as in (12) and, conditionally on θ(n), let U be a random
variable with density qH as in (13). Then

(µ̃H | θ(n), U)
d
=

H∑
j=k+1

J∗j δθ̄j +
k∑
j=1

(J∗j + Ij)δθ∗j , (14)

where θ̄k+1, . . . , θ̄H are iid draws from P and (J∗h | U)
iid∼ id

(
c
H
, ρ∗
)
, with ρ∗(s) = e−Usρ(s),

for h = 1, . . . , H. Finally, the jumps I1, . . . , Ik are independent and nonnegative random
variables characterized by E

(
e−λIj

∣∣∣θ(n), U
)

= ∆nj ,H(λ+ U)/∆nj ,H(U), for j = 1, . . . , k.

This representation is related to the posterior representation for homogeneous nrmis,
which can be recovered as H → ∞. Indeed, the first term in (14) converges to a crm with
the exponentially tilted Lévy intensity ρ∗, as a consequence of Theorem 1. On the other
hand, J∗j

d−→ 0 and E
(
e−λIj | θ(n), U

)
→ τnj

(λ + U)/τnj
(U) for any j = 1, . . . , k: hence,

the second term on the right-hand-side of (14) converges to the fixed jumps component of
the posterior representation of nrmis. See James et al. (2009). Interestingly, a structural
property is shared by nrmis and nidms: conditionally on a latent variable U the posterior
law is a mixture of: (i) a component with a tilted intensity and (ii) a collection of independent
jumps corresponding to the distinct values θ∗1, . . . , θ∗k in the sample θ(n). However, it must
be stressed that for nidms the tilted component vanishes as soon as k = H distinct values
are recorded in the sample, and the posterior distribution will coincide with the law of a
measure with jumps at fixed locations identified by the distinct values θ∗1, . . . , θ∗H .

Example 5 (Dirichlet multinomial process, cont’d). Note that ∆m,H(λ + u)/∆m,H(u) =

τm(λ + u)/τm(u) for any m ≥ 1 and H, implying that the random variables in Theorem 5
have a simple form (J∗j | θ(n), U)

iid∼ gamma (c/H, 1 + U), (Ij | θ(n), U)
ind∼ gamma(nj, 1+U),

for j = 1, . . . , H, where we agree that Ij = 0 a.s. for any j > k. Hence, after normalization,
we get the usual Dirichlet structure with updated parameters, which does not depend on the
latent variable U . Finally, it is easy to check that Corollary 2 can be specialized to obtain
the well-known predictive distributions of the Dirichlet multinomial process.

Example 6 (ngg multinomial process, cont’d). For any m ≥ 1 one has

∆m,H(u) =
m∑
`=1

( c
H

)`−1 C (m, `;σ)

σ`
(κ+ u)−m+`σ.
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Moreover, the random variables J∗1 , . . . , J∗H of Theorem 5 are conditionally conjugate, because
ρ∗(s) = e−Usρ(s) = Γ(1 − σ)−1s−1−σe−(κ+U)s identifies an updated generalized gamma pro-
cess. The distribution of each J∗1 , . . . , J∗H is known as tempered stable and there exists several
methods for drawing samples from it; see e.g. Ridout (2009) and references therein. Fur-
thermore, the random variables I1, . . . , Ik, given U , have the following conditional mixture
densities

fIj(w | u) =

nj∑
`=1

ξnj ,`,H(u)

∆nj ,H(u)
gamma(w;nj − `σ, κ+ u), (15)

for j = 1, . . . , k, where gamma(w; a, b) denotes the density function of a gamma random
variable. Finally, for any A ∈ B(Θ) some algebra yields

P(θn+1 ∈ A | θ(n), U) ∝
(

1− k

H

)
c(κ+ U)σP (A)

+
k∑
j=1

 1

H
c(κ+ U)σ +

nj∑
`j=1

ξnj ,`j ,H(U)

∆nj ,H(U)
(nj − `jσ)

 δθ∗j (A).

(16)

Remark 2. To enable posterior inference through random sampling it suffices to simulate
iid U values from qH and, then, make use of the above posterior representation. Although
qH is known up to a normalizing constant, we can nonetheless draw samples by acceptance-
rejection algorithms. The simulation of the limiting density q∞ was typically addressed via
Markov Chain Monte Carlo (Lijoi et al., 2007). However, this further complication can be
avoided in the ngg setting, given the availability of algorithms for exact sampling, which are
discussed in the supplementary material both for qH and q∞. As such, these algorithms might
be useful beyond their application to nidms. This data-augmentation scheme circumvents
the need of computing the weights Vn,k, which may be numerically unstable for large values
of n (Lijoi et al., 2007). In contrast, a potential bottleneck of such a strategy is the evaluation
of the generalized factorial coefficients C (n, k;σ) when n is large, although the availability
of recursive formulas for C (n, k;σ) may mitigate the issue.
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q11 = 3 q12 = 1 q13 = 2 Room 1, associated to the 1st dish.

q21 = 5 q22 = 2 Room 2, associated to the 2nd dish.

Figure 2: The multiroom chinese restaurant metaphor: circles represent tables and bullets
represent customers. The number of tables for these two rooms are (`1, `2) = (3, 2) so
that |`| = `1 + `2 = 5. The number of customers eating the first dish (i.e., first room) is
n1 =

∑`1
r=1 q1r = 6, while the number of customers eating the second dish (i.e., second room)

are n2 =
∑`2

r=1 q2r = 7.

4.2 Multiroom Chinese restaurant metaphor

To gain further insights about structural properties of nidm processes, we now describe a
data-augmentation based on the hierarchical representations (10)-(11). To this purpose, it is
worth recalling the so-called multiroom Chinese restaurant metaphor coined by Camerlenghi
et al. (2018), which can be adapted to nidm processes. Suppose that there exists a restaurant
which serves a finite number of dishes H, corresponding to iid draws from the diffuse P . The
restaurant has infinitely many rooms, and each room contains infinitely many tables and is
associated to a single dish out of the H available from the menu. The first customer seats
at one of the tables of the first room and selects a dish. The nth customer can either select
a dish previously chosen by the other n− 1 customers or she can choose a new dish. In the
former case, she will be seated in the room serving the dish of choice and she may be seated
either at a new table or at an existing one. If a new dish is chosen, she will sit in a new room
and at a new table. An illustration of this generative scheme is depicted in Figure 2.

Recalling the notation used so far, the entries of θ(n) = (θ1, . . . , θn) represent the dishes
eaten by the n customers of the restaurant, whereas the labels identifying the single tables and
their respective frequencies tables are unobservable and, hence, latent quantities. Specifically,
we consider the latent random variables T (n) = (T1, . . . , Tn), which can be thought of as the
label of the table where each customer is seated. Recall that k distinct dishes are served
at the restaurant, that is, there are θ∗1, . . . , θ∗k distinct values having frequencies n1, . . . , nk,
meaning that the total number of customers seating in room j or, equivalently, eating dish
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j, corresponds to the frequency nj. Finally, each `j ∈ {1, . . . , nj} represents the number of
tables in room j where customers are seated, while each qjr denotes the number of customers
seating at table r in room j, so that

∑k
j=1

∑`j
r=1 qjr =

∑k
j=1 nj = n. When H → ∞, the

probability of observing a new table where the same dish is being served tends to zero, since
`j −→ 1 for any j = 1, . . . , k. This in turn implies |`| −→ k and, hence, each room will
have only one table. We denote the |`| distinct labels of the tables with T ∗j1, . . . , T ∗j`j having
frequencies qjr for r = 1, . . . , `j and j = 1, . . . , k. Thus, the joint augmented model for
θ(n) = (θ1, . . . , θn) and T (n) = (T1, . . . , Tn) follows immediately from equation (11). Indeed,
one has the following

Corollary 3. The joint probability distribution of (θ(n),T (n),Ψn,H), where Ψn,H is the par-
tition of [n] induced by θ(n) through (12), is

k∏
j=1

P (dθ∗j )

`j∏
r=1

P (dT ∗jr)×
[

H!

(H − k)!

1

H |`|
Π∞(q11, . . . , q1`1 , . . . , qk1, . . . , qk`k)

]
. (17)

The baseline distribution of T (n) is set equal to P for simplicity, but any other diffuse
probability measure would obviously work. Indeed, only the clustering mechanism implied
by the table configuration is relevant for our purposes, and not the actual labels. The rep-
resentation in (17) thus suggests that, conditionally on the table configuration induced by
T (n), the predictive distribution for θn+1 can be easily obtained. Moreover, given the previ-
ously observed values θ(n), the table configuration can be drawn through a Gibbs sampler.
For the sake of the exposition, we do not attempt the full derivation of these conditional
distributions, but the interested reader may refer to Camerlenghi et al. (2018) for a detailed
discussion, though in a different setting.

Example 7 (ngg multinomial process, cont’d). Conditionally on the latent random vari-
ables T (n), the predictive probabilities can be readily obtained from equation (17), so that

P(θn+1 ∈ A |θ(n),T (n)) =

=

(
1− k

H

)
Vn+1,|`|+1

Vn,|`|
P (A) +

k∑
j=1

[
1

H

Vn+1,|`|+1

Vn,|`|
+

Vn+1,|`|

Vn,|`|
(nj − `jσ)

]
δθ∗j (A).

Hence, a relevant simplification occurs when considering ngg multinomial processes. In par-
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ticular, the above conditional distribution depends on the table configuration only through
the number of distinct tables `1, . . . , `k rather than on the table-specific frequencies qjr. This
is a major computational advantage, since we only need to sample k latent variables rather
than n, as in general nidm processes. Moreover, the above conditional law is intimately
related to (16), as it arises from the combination of an augmentation over the table config-
uration and of a marginalization with respect to the latent variable U .

In the following, we expand the posterior characterization of Theorem 5 by conditioning
also on the table configuration. The random variable U , conditionally on (θ(n),T (n)), is a
nonnegative latent variable whose density function is given by

q∞(u) ∝ un−1e−cψ(u)

k∏
j=1

`j∏
r=1

τqjr(u). (18)

Thus, conditionally also on T (n), the latent variable U has the same structure of that involved
in the posterior derivation of nrmis. Similar simplifications occur also for the fixed jump
component, as summarized in the next corollary.

Corollary 4. Let θ1, . . . , θn be a draw from an exchangeable sequence directed by p̃H ∼
nidm(c, ρ;P ) as in (12). Moreover, let the conditional distribution of U , given (θ(n),T (n)),
have density function q∞ defined as in (18). Then,

(µ̃H | θ(n),T (n), U)
d
=

H∑
j=k+1

J∗j δθ̄j +
k∑
j=1

(J∗j +

`j∑
r=1

Ijr)δθ∗j (A),

where θ̄k+1, . . . , θ̄H are iid draws from P , and (J∗h | U)
iid∼ id (c/H, ρ∗), with ρ∗(s) = e−Usρ(s),

for h = 1, . . . , H. Moreover, the jumps Ijr are independent and nonnegative random variables
having density fjr(s | θ(n),T (n), U) ∝ e−sUsqjrρ(s), for r = 1, . . . , `j, j = 1, . . . , k.

Hence, conditionally on the table configuration, the posterior structure of p̃H closely
resemble the one of homogeneous nrmis, for any finite value of H. Specifically, the distri-
bution of the random variables Ijr have the same distributional structure of the jumps in
nrmi–based models.
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Example 8 (ngg multinomial process, cont’d). Specializing Corollary 4 we obtain that
(
∑`j

r=1 Ijr | θ(n),T (n), U) ∼ gamma(nj− `jσ, κ+U), for j = 1, . . . , k, which depends on T (n)

only through the number of tables `1, . . . , `k. Note that this representation is essentially the
augmentation of equation (15) with respect to the number of tables. Note that when σ = 0,
the posterior law p̃H becomes independent on the table configuration.

5 The INVALSI dataset

We consider a publicly available dataset gathered by invalsi institute, which is a public
research center for the assessment of the Italian education system. In particular, the 2016-
2017 dataset we are going to analyze is part of a national examination program conducted in
Italy with the aim of “carrying out periodic and systematic checks on knowledge and skills of
students”, as declared in the official documentation of the invalsi statistical service1. A great
effort was put by the invalsi in order to quantify the added-value of a school, based on these
data. The Bayesian framework is a natural choice when trying to combine multiple sources of
information, i.e. the schools. This can be accomplished through hierarchical nonparametric
models, which enable flexible borrowing of information between different institutions. A
broad and systematic socio-demographic analysis is beyond the scope of this paper and,
hence, we focus on the presentation of novel modeling strategies based on nidm priors.

We focus on data related to 8th grade students from schools in the city of Bologna: more
specifically we consider those questions related to the comprehension of the Italian language.
Having omitted few observations for which covariates were not available, the resulting dataset
comprises a total of N = 8126 observations (students), belonging to 84 educational institu-
tions. The invalsi test has 45 questions and the performance of each student might be well
summarized by the proportions of correct answers. To ease the modeling process we take
a logistic transformation of the original proportions, and we define the score Sij for the ith
student in the jth school as

Sij := logit
(
# of correct answers, ith student jth school + 1/2

# of questions + 1

)
,

for i = 1, . . . , Nj and j = 1, . . . , 84, where Nj denotes the number of students in the jth
1The documentation (in Italian) is available at: https://invalsi-serviziostatistico.cineca.it
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school. In the above ratio, we added a small correction to the original proportions to avoid
boundary issues. Such a transformation maps the original scores into R, and therefore it is
more amenable for classical linear modeling with Gaussian errors. Consistently with this, we
model the scores as follows

Sij = µj + zᵀijγ + εij, εij
iid∼ N (0, σ2

ε ),

for i = 1, . . . , Nj and j = 1, . . . , 84, where zij = (1, zij1, . . . , zijp)
ᵀ is a vector of student-

specific covariates which are associated to a (p + 1)–dimensional vector of regression coef-
ficients γ = (γ0, γ1, . . . , γp)

ᵀ. Each vector zij encodes student-specific categorical variables,
namely: the gender of the student, the education level of her/his father and mother (primary
school, secondary school, etc.), the employment status of her/his father and mother, the reg-
ularity of the student (i.e. regular, in late, etc.), and the citizenship (Italian, first generation
immigrant, etc.). Moreover, the coefficients µ1, . . . , µ84 represents the school effects or, in the
terminology used so far, the added-value of the school given a set of covariates, thus being
the main quantity of interest in our analysis. Note that since the intercept term is included
in zij, the coefficients µ1, . . . , µ84 are not identified. In practice, this is not a concern if
inference is based on the “centred” set of parameters ηj = γ0 + µj, for j = 1, . . . , 84, rather
than the original random effects.

We aim at introducing a flexible nonparametric prior, for the school effects µ1, . . . , µ84,
that allows for: (i) borrowing information across schools; (ii) arbitrary deviations from Gaus-
sianity, and (iii) robustness under model misspecifications. Gaussian mixture models are able
to capture all these three aspects and we specifically let

(µj | P)
iid∼ P , P =

H∑
h=1

πhN (µ̄h, σ̄
2
h), (19)

for j = 1, . . . , 84. Selecting the appropriate number of mixture components H is typically a
difficult task, and the bic index — customarily employed in this framework — is not theo-
retically well justified here. Hence, overfitted mixture models can be exploited to circumvent
this issue. Here we propose the usage of general nidm processes, which amounts to have the

24



following prior specification for the parameters in (19)

(π1, . . . , πH−1) ∼ nid
( c
H
, . . . ,

c

H
; ρ
)
, (µ̄h, σ̄

2
h)

iid∼ P, h = 1, . . . , H,

where P is a diffuse probability measure on R × R+. By enlarging the class of priors from
the Dirichlet multinomial to general nidm multinomial processes we are essentially acting
on the robustness requirement, that is, we are ensuring that the clustering mechanism is less
affected by specific choices of the total mass c, whose specification is often critical.

For this specific application, we employed in (19) a ngg multinomial process having
jump intensity (3). The hyperparameters are set equal to c = 0.1, κ = 0.1 and σ = 0.87

and combined with a very conservative upper bound H = 70 for the number of mixture
components. The a priori effect of these values on the number of cluster Kn,H is depicted
in Figure 3, where it is compared with the distribution induced by a Dirichlet multinomial
process (c = 45.21), a Dirichlet process (c = 21.69), and a ngg process (c = 0.2, κ = 0.1, σ =

0.8), having roughly the same expected value E(Kn,H) ≈ 35. As apparent from Figure 3, the
parameter σ plays a crucial role in controlling the variability of Kn,H . Hence, one can obtain
flat distributions forKn,H , which leads to more robust inference on the cluster configurations.
Such an effect persists a posteriori, as we shall discuss later on and is further corroborated
by the extensive simulation study provided in the supplementary material. As for the choice
of P , we assume the conditionally conjugate prior µ̄h

iid∼ N (0, σ2
µ̄), σ̄−2

h

iid∼ gamma(aσ̄, bσ̄), for
h = 1, . . . , H, where we set σ2

µ̄ = 0.1 and aσ̄ = 1.5, bσ̄ = 0.045. It is well-known that the choice
of these parameters is delicate, since it may influence posterior inference. This issue however
affects both the Dirichlet and ngg specifications. To conclude our Bayesian formulation we
consider a multivariate Gaussian prior for the regression coefficients γ, and an inverse Gamma
prior for the residuals variance σ2

ε , and we let γ ∼ N (b,B), σ−2
ε ∼ gamma(aσ, bσ), where we

set b = 0 and B = diag(100, . . . , 100), to incorporate the neutral hypothesis of no relevant
effects and aσ = bσ = 1, which induces a fairly non-informative prior. Posterior inference
was conducted through a Gibbs sampling, whose details can be found in the supplementary
material. For comparison, we also estimated the same model under a Dirichlet multinomial,
a Dirichlet process, and a ngg prior as for Figure 3. We run the algorithm for 20′000

iterations after a burn-in period of 2′000 simulations; the traceplots show no evidence against
convergence and an excellent mixing.
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Figure 3: A priori and a posteriori distribution of the number of cluster Kn,H in the invalsi
application, under a Dirichlet multinomial prior, a Dirichlet process, a ngg multinomial
process prior, and ngg process with H = 70 and E(Kn,H) ≈ 35.

From Figure 3, it is apparent that the posterior of Kn,H is heavily influenced by the
choice of the prior. In the Dirichlet multinomial and Dirichlet process cases, the number of
mixture components peaks at around 29 and 24, respectively, as a consequence of the strongly
informative prior distribution. Conversely, when the less informative ngg priors are used,
the data adaptively select a much smaller number of components, peaking at around 4-6
mixture components. As expected, the infinite-dimensional ngg and the ngg multinomial
behave in a similar fashion. Thus, if a simple Gaussian random effect model were employed,
the random effects ηj would be overshrunk towards the global mean, potentially affecting the
quality of the analysis. On the other hand, the large number of clusters induced by Dirichlet
priors could lead to undershrinkage, resulting in a model that is overly adapted to the data.

To empirically validate our expectations, we estimated a Gaussian random effects model,
corresponding to H = 1, and a so-called “no pooling” model, in which no shrinkage is
induced on the school effects ηj. All these models were compared in terms of the dic, waic
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dic waic loo pdic pwaic ploo

Dirichlet multinomial 18960.33 18957.71 18961.54 109.65 107.04 108.95
Dirichlet process 18957.96 18955.49 18959.21 106.97 104.51 106.36
ngg multinomial 18955.98 18955.98 18957.62 96.77 95.14 96.78

ngg 18955.96 18954.25 18957.59 97.28 95.57 97.24

Gaussian 18967.82 18966.49 18969.31 95.62 94.28 95.70
No pooling 18975.47 18971.92 18976.50 120.90 117.35 119.64

Table 1: Information criterion dic, waic and loo (deviance scale, lower is better) in the
invalsi application, defined as in Gelman et al. (2014). The quantities pdic, pwaic, and ploo

are the associated estimates for the “effective number of parameters”.

(Gelman et al., 2014), and the Bayesian leave-one-out (loo), computed as in Vehtari et al.
(2017). These indexes, reported in Table 1, represent an overall goodness of fit measurement
and yield, as a byproduct, an estimate for the “effective number of parameters”, which is a
measure of the model complexity. In addition, in Table 2 we report the posterior mean of
some (centred) school effects ηj−γ0. According to the dic, the waic, and the loo it is clear
that a certain amount of shrinkage is required: the “no pooling” model is overly complex.
Conversely, the Gaussian model is too parsimonious and it overshrinks the school effects
ηj towards the global mean. Mixture models are in between these two extremes, although
a critical distinction between Dirichlet and ngg models is quite evident from Table 1 and
Table 2. Specifically, Dirichlet priors are much closer to the “no pooling” model, displaying a
very high number clusters a posteriori, in turn inducing undershrinkage on the school effects.
On the other hand, ngg specifications are more conservative, favoring a stronger shrinkage
while allowing deviations from Gaussianity whenever needed. In other words, the findings
in Table 1 and Table 2 imply that ngg specifications induce the right amount of shrinkage,
suitably balancing flexibility and complexity.

We finally investigated the impact of the covariates zij on the response variable Sij. The
posterior distributions of the associated coefficients γ are reported in the supplementary
material. We found that all the considered covariates explain a considerable fraction of the
variability of the response variables. In particular, we noticed a strong positive association
between the education level of the parents and the students’ performance on the test. Specific
employments (e.g. executive positions) were also found to be positively associated with the
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School id Dirichlet multinomial ngg multinomial Gaussian No pooling

1 0.19 0.11 0.12 0.26
2 0.10 0.08 0.09 0.13
3 0.27 0.15 0.15 0.39
4 0.09 0.05 0.05 0.19
5 -0.02 -0.01 -0.02 -0.04

6 0.68 0.60 0.25 0.90
7 -0.68 -0.69 -0.32 -0.82

Table 2: Posterior mean of the (centred) school effects ηj − γ0, under different model spec-
ifications. Schools with id from 1 to 5 were randomly chosen from the set of 84 schools.
Instead, schools with id 6 and 7 were identified to better emphasize the over- and under-
shrinkage effects.

outcomes. Unsurprisingly, one of the stronger predictors is the regularity of the studies,
meaning that students that failed an exam are less likely to obtain a high score at the
invalsi test.

6 Discussion

In this paper we introduce a novel class of discrete random probability measures, termed
nidms, and provide a complete toolbox for their use as priors for Bayesian inference. They
are characterized by a finite number of atoms H and, importantly, homogeneous nrmis are
recovered as a limiting case when H → ∞. Although our results are general, in applica-
tions we focus on the ngg special case, which has appealing analytical and computational
properties, representing a robust alternative to Dirichlet-multinomial specifications when in-
terest is in the number of clusters Kn. We conclude our presentation by offering a high-level
comparison between nidms and allied models.

For moderate values of H, there are important differences between nidms and the cor-
responding nrmis. An illustrative comparison between the Dirichlet-multinomial and the
Dirichlet process is given in Green and Richardson (2001), who show that the finite-dimensional
specification leads to more “balanced” random partitions. Such a difference carries over to
our setting, at least a priori, since the distribution of the weights (π1, . . . , πH) of a nidm is
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symmetric. Hence, the balancedness of the random partition is a peculiar property of nidms
which might be desirable or not, depending on the specific application.

Also for large H nidms represent a viable alternative to the corresponding homogeneous
nrmis, especially from a computational perspective. Indeed, posterior computations in the
latter case usually rely on truncations of the Ferguson and Klass (1972) representation (see
e.g. Arbel and Prünster, 2017), which requires numerical approximations while implicitly
reducing to a finite-dimensional model. Alternatively, one may use the slice sampling strategy
described in Favaro and Teh (2013), which however requires simulating a further layer of
latent variables “slicing” the infinite-dimensional model, which could potentially deteriorate
the mixing. In contrast, the algorithm we propose for ngg multinomial priors allows to draw
iid samples from the posterior distribution of p̃H given the data θ1, . . . , θn.

Finally, mixture models based on nidm processes lead to a quite different modeling
framework compared to mixture of finite mixtures (mfm) models (Richardson and Green,
1997; Nobile, 2004). In the latter context, a Dirichlet-multinomial process with a prior on
H is employed, the inferential target being often, albeit not always, H itself. Instead, our
focus is the number of occupied clusters Kn ≤ H, representing the number of non-empty
mixture components. Although these two quantities are sometimes used interchangeably in
applications, they are different objects. This distinction is particularly relevant in species
sampling applications, where Kn represents the number of discovered species within the
sample, whereas H represents the total number of species in the population. Using nidms
for species discovery is an interesting research direction. Nonetheless, the mfm framework
is a lively research topic, as testified by the recent contributions on asymptotic analysis (De
Blasi et al., 2013), on the algorithmical aspects (Miller and Harrison, 2018), and applications
to complex data structures (Legramanti et al., 2022). We believe that nidms may play
a pivotal role also within the context of mfms, after considering a suitable prior on H.
Indeed, we envision that our theoretical findings would enable the derivation of marginal
algorithms in the same spirit of Miller and Harrison (2018), while generalizing the current
mfm framework. Finally, it is worth noting that while the manuscript was being reviewed,
other contributions have appeared proposing alternative modeling approaches that explicitly
distinguish occupied clusters and mixture components; see, e.g., Frühwirth-Schnatter et al.
(2021), De Blasi and Gyl-Leyva (2021), Nguyen et al. (2021) and Argiento and De Iorio
(2022).
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APPENDIX

A Proofs and additional theoretical results

A.1 Laplace functional of a idm random measure

The Laplace functional of a idm random measure is readily obtained after noting that
(µ̃H | θ̃1, . . . , θ̃H) is a completely random measure with a purely atomic baseline distri-
bution, placing mass on θ̃1, . . . , θ̃H . Thus given the atoms θ̃1, . . . , θ̃H for any non-negative
function f we get

E
(

e−
∫
Θ f(θ)µ̃H(dθ)

)
= E

(
E
(

e−
∫
Θ f(θ)µ̃H(dθ) | θ̃1, . . . , θ̃H

))
= E

(
exp

{
− c

H

H∑
h=1

∫
R+

(1− e−sf(θ̃h))ρ(s) ds

})

= E

(
exp

{
− c

H

H∑
h=1

ψ(f(θ̃h))

})

=
H∏
h=1

E
(

exp
{ c

H
ψ(f(θ̃h))

})
=

(∫
Θ

exp
{
− c

H
ψ(f(θ))

}
P (dθ)

)H
.

The last two equalities follows because the locations θ̃1, . . . , θ̃H are iid from P . The Laplace
transform of µ̃H(A) readily follows having set f = λIA(x), for λ > 0 and A ∈ Θ. Indeed,
simple calculus lead to∫

Θ

exp
{
− c

H
ψ(λIA(θ))

}
P (dθ) =

∫
A

exp
{
− c

H
ψ(λIA(θ))

}
P (dθ)

+

∫
Θ\A

exp
{
− c

H
ψ(λIA(θ))

}
P (dθ)

= P (A) exp
{
− c

H
ψ(λ)

}
+ 1− P (A).

34



A.2 Moments of a nidm process

Here we confine ourseleves to considering the first two moments, which have simple analytical
forms. Let us recall that p̃0,H = (1/H)

∑H
h=1 δθ̃h , with θ̃h

iid∼ P .

Proposition 1. Let p̃H ∼ nidm(c, ρ;P ) and define I(c, ρ) = c
∫
R+ ue−cψ(u)τ2(u)du. More-

over, let A,A1, A2 ∈ B(Θ) and set C := A1 ∩ A2. Then E(p̃H(A)) = P (A) and

Var(p̃H(A)) = P (A)(1− P (A))

(
I(c, ρ) +

1− I(c, ρ)

H

)
,

Cov(p̃H(A1), p̃H(A2)) = [P (C)− P (A1)P (A2)]

(
I(c, ρ) +

1− I(c, ρ)

H

)
.

Unsurprisingly, when H →∞ the moments of a nidm process converge to those of a nrmi.
Proof. First, notice that E(p̃H(A)) =

∑H
h=1E(πh)E(δθ̃h(A)) = P (A)

∑H
h=1E(πh) = P (A).

As an application of the well-known variance decomposition

Var(p̃H(A)) = E(Var(p̃H(A) | p̃0,H)) + Var(E(p̃H(A) | p̃0,H)).

Let us focus on the second summand on the right-hand side of the above equation, which is
equal to

Var(E(p̃H(A) | p̃0,H)) = Var(p̃0,H(A)) =
P (A)(1− P (A))

H
.

As for E(Var(p̃H(A) | p̃0,H)), because of Proposition 1 in James et al. (2006) we obtain

E(Var(p̃H(A) | p̃0,H)) = E(p̃0,H(A)(1− p̃0,H(A)))I(c, ρ)

= P (A)(1− P (A))I(c, ρ)− I(c, ρ)Var(p̃0,H(A))

= P (A)(1− P (A))

(
I(c, ρ)− I(c, ρ)

H

)
,

from which the result follows. As for the covariance, note that Var(p̃H(A1), p̃H(A2)) =

P (A)(1−P (A))E
(∑H

h=1 π
2
h

)
and Cov(p̃H(A1), p̃H(A2)) = (P (C)−P (A1)P (A2))E

(∑H
h=1 π

2
h

)
,

meaning that

E

(
H∑
h=1

π2
h

)
= I(c, ρ) +

1− I(c, ρ)

H
,
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from which the result follows.

A.3 Proof of Theorem 1

Recall that the Laplace functional can be written as

E
(

e−
∫
Θ f(θ)µ̃H(dθ)

)
= E

(
exp

{
− c

H

H∑
h=1

ψ(f(θ̃h))

})
.

Now note that the expectations of each ψ(θ̃h) equals E(ψ(f(θ̃h))) =
∫

Θ
ψ(f(θ))P (dθ) < ∞,

which is finite by assumption. Hence, as an application of the strong law of large numbers,
we get

1

H

H∑
h=1

ψ(f(θ̃h))
a.s.−→

∫
Θ

ψ(f(θ))P (dθ), H →∞,

which implies that E
(
e−

∫
Θ f(θ)µ̃H(dθ)

)
→ E

(
e−

∫
Θ f(θ)µ̃∞(dθ)

)
because of bounded convergence

theorem.

A.4 Proof of Theorem 2

The symmetry among the weights implies that

ΠH(n1, . . . , nk) =
H!

(H − k)!
E

(
k∏
j=1

π
nj

j

)
.
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Recalling that µ̃(Θ) =
∑H

h=1 Jh, then we have

E

(
k∏
j=1

π
nj

j

)
=

1

Γ(n)

∫
R+

un−1E

(
e−uµ̃(Θ)

k∏
j=1

J
nj

j

)
du

=
1

Γ(n)

∫
R+

un−1

H∏
j′=k+1

E
(
e−uJj′

) k∏
j=1

E
(
e−uJjJ

nj

j

)
du

=
1

Γ(n)

∫
R+

un−1e−c
H−k
H

ψ(u)

k∏
j=1

(−1)nj
∂nj

∂unj
e−

c
H
ψ(u)du

=
1

Γ(n)

∫
R+

un−1e−cψ(u)

k∏
j=1

Vnj ,H(u)du,

which concludes the proof, since Vnj ,H(u) = c
H

∆nj ,H(u). The predictive distributions of
Corollary 2 can be obtained exploiting their relationship with the eppf and after some
algebraic manipulation. To obtain the alternative representation (10), recall the following
equality, whose proof can be found in Camerlenghi et al. (2019), which holds for m ≥ 1

Vm,H(u) =
c

H

m∑
`=1

ξm,`,H(u), ξm,`,H(u) =
( c
H

)`−1 1

`!

∑
q

(
m

q1, . . . , q`

)∏̀
r=1

τqr(u), (20)

for ` = 1, . . . ,m, where the sum runs over all the vectors of positive integers q = (q1, . . . , q`)

such that |q| = m. Thus, on the light of (20) we can write the eppf as

ΠH(n1, . . . , nk) =
H!

(H − k)!

1

Γ(n)

∫
R+

un−1e−cψ(u)

k∏
j=1

Vnj ,H(u)du

=
H!

(H − k)!

∑
`

1

H |`|

k∏
j=1

1

`j!

∑
qj

(
nj

qj1, . . . , qj`j

)
Π∞(q11, . . . , q1`1 , . . . , qk1, . . . , qk`k),

where the first sum runs over all vectors ` = (`1, . . . , `k) such that `j ∈ {1, . . . , nj}, and the
jth of the k sums runs over all the vectors qj = (qj1, . . . , qj`j) such that qjr ≥ 1 and |qj| = nj.
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A.5 Proof of Theorem 3

Let us consider the ratio among the two eppfs, which is equal for any k ≤ H to

ΠH(n1, . . . , nk)

Π∞(n1, . . . , nk)
=

H!

Hk(H − k)!

∫
R+ u

n−1e−cψ(u)
∏k

j=1 ∆nj ,H(u)du∫
R+ un−1e−cψ(u)

∏k
j=1 τnj

(u)du
.

The result follows after noting that the ratio H!
Hk(H−k)!

≤ 1, and also

∫
R+ u

n−1e−cψ(u)
∏k

j=1 ∆nj ,H(u)du∫
R+ un−1e−cψ(u)

∏k
j=1 τnj

(u)du
≥ 1.

The latter inequality can be easily obtained from (20), from which is clear that ∆m,H(u) =

τm(u) + gm(u), where gm(u) is a positive function, implying that ∆m,H(u) ≥ τm(u) for any
m ≥ 1 and u > 0.

A.6 Proof of Theorem 4

The starting point of this proof is based on Corollary 2 in Camerlenghi et al. (2018), from
which one can show that

P(Kn,H = k) =
n∑
t=k

P(Kn,∞ = t)P(Kt,0 = k), (21)

whereKn,∞ andKn,H are defined as before, whileKn,0 for any n ≥ 1 is the number of distinct
values from a sample of n exchangeable observations having prior p̃0,H . The distribution
P(Kn,0 = k) can be deduced from the associated eppf, which is

Π0(n1, . . . , nk) =
H!

(H − k)!
H−n, k ≤ H,
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implying that the distribution of Kn,0 is given for any k ≤ min{H,n}

P(Kn,0 = k) =
1

k!

∑
(n1,...,nk)

(
n

n1, . . . , nk

)
Π0(n1, . . . , nk)

=
H!

(H − k)!
H−n

1

k!

∑
(n1,...,nk)

(
n

n1, . . . , nk

)
=

H!

(H − k)!
H−nS (n, k).

where the sum runs over all the k-dimensional vectors of positive integers n = (n1, . . . , nk)

such that |n| = n. The first part of the theorem then follows after the change of variable
` = t−k in (21). As for the second part, note that the expected value of Kn,H can be written
as

E(Kn,H) = E(E(Kn,H | θ̃1, . . . , θ̃H)) = E

(
E
( H∑
h=1

I(θ̃h ∈ {θ1, . . . , θn} | θ̃1, . . . , θ̃H

))

=
H∑
h=1

E(1− P(θ1 6= θ̃h, . . . , θn 6= θ̃h | θ̃1, . . . , θ̃H))

=
H∑
h=1

(1− E((1− πh)n)) = H −HE((1− π1)n).

The randomness in these equations is given both by θ̃1, . . . , θ̃n and θ̃1, . . . , θ̃H , whereas in the
last step we have used the symmetricity of the weights of a nidm process. Moreover, with
the same steps as for the proof of Theorem 2, one can easily show that

E((1− π1)n) =
n∑
`=1

(
1− 1

H

)`
1

`!

∑
q

(
n

q1, . . . , q`

)
Π∞(q1, . . . , q`),

where the sums runs over q = (q1, . . . , q`) such that qj ≥ 1 and |q| = n, from which the
second part of the Theorem follows.
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A.7 Bounding the distribution of the number of clusters

The actual evaluation of the probability distribution ofKn,H in Theorem 4 might be cumber-
some due to the presence of the Stirling numbers. Thus, in cases where it is more convenient
to rely on the probability distribution of Kn∞ it may be interesting to provide simple bounds
for the ratio P(Kn,H = k)/P(Kn,∞ = k). This is achieved in the next Theorem.

Lemma 1. For any k ≤ min{H,n− 1}

H!

Hk(H − k)!
≤ P(Kn,H = k)

P(Kn,∞ = k)
≤ H!

Hk(H − k)!

(
1 +

1

2

n−k∑
`=1

(
k

H

)`(
`+ k

k

)
P(Kn,∞ = `+ k)

P(Kn,∞ = k)

)
,

whereas when k = n = H, it holds P(Kn,H = n)/P(Kn,∞ = n) = H−nH!/(H − n)!.

Interestingly, the lower bound in the above Lemma does not depend on the specific nidm
process, and actually coincide with the one obtained by Ishwaran and Zarepour (2002) in
the special case of the Dirichlet multinomial nidm. Instead, the upper bound can be lower
than 1, and therefore it is usually tighter than the one already known for the Dirichlet
prior. Hence, besides being a generalization to all nidm processes, Lemma 1 also yields an
improvement over existing bounds.
Proof. Recall that the ratio of interest is given by

P(Kn,H = k)

P(Kn,∞ = k)
=

H!

Hk(H − k)!

n−k∑
`=0

1

H`
S (`+ k, k)

P(Kn,∞ = `+ k)

P(Kn,∞ = k)
,

and therefore the lower bound follows naturally. We will write

H!

Hk(H − k)!
≤ P(Kn,H = k)

P(Kn,∞ = k)
=

H!

Hk(H − k)!

(
1 +

n−k∑
`=1

1

H`
S (`+ k, k)

P(Kn,∞ = `+ k)

P(Kn,∞ = k)

)
.

Now recall the well-known inequality due to Rennie and Dobson (1969), for which for any
n ≥ 2 and 1 ≤ k ≤ n− 1 a Stirling number of the second kind can be bounded above by

S (n, k) ≤ 1

2

(
n

k

)
kn−k,
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implying that we can further bound the summation of the above equation for 1 ≤ k ≤
min{H,n− 1} in the following way

n−k∑
`=1

1

H`
S (`+ k, k)

P(Kn,∞ = `+ k)

P(Kn,∞ = k)
≤ 1

2

n−k∑
`=1

(
k

H

)`(
`+ k

k

)
P(Kn,∞ = `+ k)

P(Kn,∞ = k)
.

Hence, the result follows.

A.8 Proof of Theorem 5

We first derive the posterior distribution of p̃0,H = (H)−1
∑H

h=1 δθ̃h given the θ(n). This fact
is summarized in the following proposition.

Lemma 2. Let θ1, . . . , θn be a draw from an exchangeable sequence directed by a nidm
process. Then, the posterior distribution of p̃0,H for any A ∈ B(Θ) is

(p̃0,H | θ(n))
d
=

1

H

[
H∑

j=k+1

δθ̄j +
k∑
j=1

δθ∗j

]
,

where the atoms θ̄k+1, . . . , θ̄H are iid draws from P .

Proof. Since the weights of p̃0,H are fixed and equal, we only need to determine the posterior
law of the atoms (θ̃1, . . . , θ̃H | θ(n)). Recall that a nidm process is a species sampling model,
meaning that k out of H atoms are necessarily equal almost surely to one of the previously
observed values θ∗1, . . . , θ∗k, while the remaining H−k are iid draws from the baseline measure
P . Notice that the actual order of the weights is irrelevant, because of the symmetry of the
weights of p̃0,H . Hence, the result in Lemma 2 follows.

Because of symmetry of the weights, we can assume without loss of generality that the
distinct values θ∗1, . . . , θ∗k are associated to the first k random weights π1, . . . , πk of the process
p̃H . The Laplace functional of µ̃H , given θ(n) and p̃0,H is given by

E
(
e−µ̃H(f) | θ(n), p̃0,H

)
=
E
(

e−µ̃H(f)
∏k

j=1 π
nj

j | p̃0,H

)
E
(∏k

j=1 π
nj

j | p̃0,H

) ,
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and hence, with similar steps as for Theorem 2, both at the numerator and the denominator,
we obtain

E
(
e−µ̃H(f) | θ(n), p̃0,H

)
=

∫
R+ u

n−1e−
c
H

∑k
j=1 ψ(f(θ∗j )+u) e−

c
H

∑H
h=k+1 ψ(f(θ̃h)+u)

∏k
j=1 ∆nj ,H(f(θ∗j ) + u)du∫

R+ un−1e−cψ(u)
∏k

j=1 ∆nj ,H(u)du

=

∫
R+

e−
c
H

∑k
j=1 ψ

(u)(f(θ∗j )) e−
c
H

∑H
h=k+1 ψ

(u)(f(θ̃h))

k∏
j=1

∆nj ,H(f(θ∗j ) + u)

∆nj ,H(u)
qH(u) du

=

∫
R+

H∏
h=k+1

E
(

e−f(θ̃h)J∗h

) k∏
j=1

E
(

e−f(θ∗j )(J∗j +Ij)
)
qH(u) du

where we used the fact that ψ(f(θ) + u) = ψ(u)(f(θ)) + ψ(u), with ψ(u)(λ) denoting the
Laplace exponent associated to the tilted jump measure ρ∗(ds) = e−usρ(s)ds. It remains
to show that any ratio ∆m,H(λ + u)/∆m,H(u) is indeed the Laplace transform associated
to some nonnegative random variable, for any m ≥ 1 and λ > 0. This is immediately
evident from equation (20), because each ∆m,H(u) can be expressed as a linear combination
of Laplace exponents of the form τm(λ + u)/τm(u), meaning that each random variable Ij
can be interpreted as a mixture of convolutions of random variables. By combining Lemma 2
with the above Laplace functional the result follows.

A.9 Proof of Corollary 4

By exploiting equation (20), one can easily notice that E
(
e−µ̃H(f) | θ(n), p̃0,H

)
obtained in

the proof of Theorem 5 can be interpreted as a mixture over the table configurations. Thus,
by augmenting and subsequently conditioning on the table frequencies, one can easily obtain

E
(
e−µ̃H(f) | θ(n),T (n), p̃0,H

)
=

∫
R+

e−
c
H

∑H
h=k+1 ψ

(u)(f(θ̃h)) e−
c
H

∑k
j=1 ψ

(u)(f(θ∗j ))

×
k∏
j=1

`j∏
r=1

τqjr(f(θ∗j ) + u)

τqjr(u)
q∞(u)du

=

∫
R+

H∏
h=k+1

E
(

e−f(θ̃h)J∗h

) k∏
j=1

`j∏
r=1

E
(

e−f(θ∗j )(J∗j +Ijr)
)
q∞(u)du,
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from which the result follows, by combining the above equation with Lemma 2.

A.10 Dirichlet multinomial process

In order to derive the eppf of the Dirichlet multinomial from Theorem 2 one just need to
notice that when ρ(s)ds = s−1e−sds, then for any m ≥ 1 and u > 0 it holds

Vm,H(u) =
c

H
∆m,H(u) =

Γ(m+ c/H)

Γ(m)Γ(c/H)
τm(u),

which can be verified directly from the definition of Vm,H(u) and τm(u). Substituting the
above quantity in general formula of Theorem 2, one has simply that for k ≤ H

ΠH(n1, . . . , nk) =
H!

(H − k)!

1

ckΓ(c/H)k

k∏
j=1

(
Γ(nj + c/H)

Γ(nj)

)
× Π∞(n1, . . . , nk),

where Π∞(n1, . . . , nk), the eppf a Dirichlet process, is Π∞(n1, . . . , nk) = ck
∏k

j=1 Γ(nj)/(c)n.
Hence the desired eppf can be obtained with some simple algebra. Notice that one could
also obtain this result specializing the general eppf of the ngg multinomial process, by
letting σ → 0. Indeed, recall that in the Dirichlet process case Vn,k = ck/(c)n, and that as
σ → 0 one has σ−kC (n, k;σ)→ |s(n, k)|, the sign-less Stirling number of the first kind. The
distribution of Kn,H is also obtained by exploiting properties of Stirling numbers. Indeed,
specializing Theorem 4 and after a change of variable

P(Kn,H = k) =
H!

(H − k)!

1

(c)n

n∑
t=k

( c
H

)t
S (t, k)|s(n, t)|

=
H!

(H − k)!

(−1)n

(c)n

n∑
t=k

(
− c

H

)t
S (t, k)s(n, t)

=
H!

(H − k)!

(−1)k

(c)n
C (n, k;−c/H).
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A.11 ngg multinomial process

Substituting the eppf of a generalized gamma nrmi in (11), and focusing on the summation
one has

1

`j!

∑
qj

(
nj

qj1, . . . , qj`j

)
Π∞(q11, . . . , q1`1 , . . . , qk1, . . . , qk`k) =

= Vn,|`|
1

`j!

∑
qj

(
nj

qj1, . . . , qj`j

) `j∏
r=1

(1− σ)qjr−1 = Vn,|`|
C (nj, `j;σ)

σ`j
,

from which the eppf of a ngg multinomial process follows. With the same reasoning, one
also obtain the explicit relation for ∆m,H(u) after recalling (20).

B Algorithms and computational strategies

B.1 Simulation of U in the ngg multinomial case

We devise here a simple acceptance-rejection method for sampling the latent variable U in
the ngg multinomial case, whose density was denoted with qH(u). Let us focus on the
limiting case H → ∞, and suppose we want to simulate a random variable having density
proportional to

q∞(u) ∝ un−1(κ+ u)−n+kσ exp
{
− c
σ

[(κ+ u)σ − κσ]
}
.

Rather than handling U directly it is convenient to draw samples from V := logU , whose
density function is readily available after a change of variable:

q∞(v) ∝ evn(κ+ ev)−n+kσ exp
{
− c
σ

[(κ+ ev)σ − κσ]
}
.

The distribution of V is log-concave, that is, the logarithm of its density is concave, as
one can readily verify through direct calculation of the second derivative. This is a major
computational advantage and it implies, for instance, that the distribution of V is unimodal.
Moreover, we note that everal black-box techniques were developed for sampling log-concave
distributions.

We propose a simple sampling algorithm which has the advantage of being straightforward

44



to implement, and it can be easily extended to the finite-dimensional setting. As a matter
of fact, it is just an application of the well-known ratio-of-uniform method, which we recall
here for convenience. Set

b =
√

sup{q∞(v) : v ∈ R}, b− = −
√

sup{v2q∞(v) : v ≤ 0}, b+ =
√

sup{v2q∞(v) : v ≥ 0}.

Log-concavity of V ensures that the above constants are finite. Unfortunately, there are no
closed form expressions for b, b− and b+, but they can be readily computed via univariate
numerical maximization, which is a particularly simple problem in this log-concave setting.
Then, a draw from U can be obtained as follows:
Step 1. Sample independently I1, I2 uniformly on (0, b) and (b−, b+), respectively.
Step 2. Set the candidate value V ∗ = I2/I1.
Step 3. If I2

1 ≤ q∞(V ∗) then accept V ∗ and set V = V ∗, otherwise repeat the whole
procedure.
Step 4. Set U = expV .
The simulation from qH(u) proceeds in a similar manner, with the obvious modifications.
A good degree of tractability is preserved because qH(u), and equivalently qH(v), is a finite
mixture of densities having the kernel of q∞(u), namely

qH(u) ∝
∑
`

[
k∏
j=1

( c
H

)`j−1 C (nj, `j;σ)

σ`j

]
× un−1(κ+ u)−n+|`|σ exp

{
− c
σ

[(κ+ u)σ − κσ]
}
,

∝ un−1 exp
{
− c
σ

[(κ+ u)σ − κσ]
} k∏
j=1

nj∑
`j=1

ξnj ,`j ,H(u),

which implies that the constants b, b− and b+ involved in the simulation of qH(v) are finite
also in this case. Moreover, as H →∞ the density qH(v) converges to q∞(v), implying that
log-concavity is recovered at the limit.

B.2 Gibbs sampling algorithm for the invalsi application

We describe here a Gibbs sampling algorithm for posterior computation of the model de-
scribed in Section 5. Let Gj ∈ {1, . . . , H} be an indicator function denoting to which mixture
component each school is allocated, for j = 1, . . . , 84. The Gibbs sampling algorithm alter-
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nates between the following full conditional steps:
Step 1. Exploiting standard results of Gaussian linear models, the full conditional for the
coefficients γ is multivariate Gaussian with

(γ | −) ∼ N (µ̃, Σ̃), Σ̃ = (ZᵀZ/σ2 +B−1)−1, µ̃ = Σ̃(Zᵀηγ/σ
2 +B−1b),

where ηγ is a vector with entries ηijγ = Sij−µj, for i = 1, . . . , Nj and j = 1, . . . , 84, whereas
Z is the corresponding design matrix having row entries zᵀij.
Step 2. The full conditional for the residual variance is

(σ−2
ε | −) ∼ gamma

aσ +N/2, bσ +
1

2

84∑
j=1

Nj∑
i=1

(Sij − µj − zᵀijγ)2

 ,

which can be obtained through standard calculations involved in Gaussian linear models.
Step 3. We update the cluster indicators Gj ∈ {1, . . . , H} from their full conditional
categorical random variables

P(Gj = h) =
πhN (µj; µ̄h, σ̄

2
h)∑H

h′=1 πh′N (µj; µ̄h′ , σ̄2
h′)
, h = 1, . . . , H,

for any j = 1, . . . , 84.
Step 4. The full conditional for the school-specific parameters, given the above cluster
assignments, is easily available as

(µj | −)
ind∼ N

(∑Nj

i=1(Sij − zᵀijγ)/σ2 + µ̄Gj
/σ̄2

Gj

1/σ̄2
Gj

+Nj/σ2
,

1

1/σ̄2
Gj

+Nj/σ2

)
,

independently for every j = 1, . . . , 84.
Step 5. The full conditional for µ̄h and σ̄2

h are given by

(µ̄h | −)
ind∼ N

( ∑
j:Gj=h µj/σ̄

2
h

1/σ2
µ̄ + 1/σ̄2

h

∑84
j=1 I(Gj = h)

,
1

1/σ2
µ̄ + 1/σ̄2

h

∑84
j=1 I(Gj = h)

)
,
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independently for h = 1, . . . , H and

(σ̄−2
h | −)

ind∼ gamma

aσ̄ +
1

2

84∑
j=1

I(Gj = h), bσ̄ +
1

2

∑
j:Gj=h

(µj − µ̄Gj
)2

 ,

again independently for h = 1, . . . , H.
Step 6. Update the weights (π1, . . . , πH) from their full conditional distribution by exploiting
the posterior characterization of Theorem 5 and the simplifications described in Example 6.
The frequencies n1, . . . , nk in the notation of Theorem 5 corresponds to the non-zero elements
of the vector

(n̄1, . . . , n̄H) =

(
84∑
j=1

I(Gj = 1), . . . ,
84∑
j=1

I(Gj = H)

)
,

in any arbitrary order. In first place, we sample the latent random variable U given the
frequencies n1, . . . , nk from qH(u), following the procedure described in Section B.1. Con-
ditionally on U , then one samples the iid random variables J∗1 , . . . , J∗H according to a tem-
pered stable distribution (Ridout, 2009), whose parameters are described in Example 6.
Finally, conditionally on U , we need to sample the collection of independent random vari-
ables Ī1, . . . , ĪH with associated frequencies n̄1, . . . , n̄H . For any h = 1, . . . , H the density of
a random variable Īh is described in equation (15) of the manuscript when the corresponding
frequency n̄h > 0. Samples from (15) can be easily drawn, being a finite mixture of gamma
densities. Instead, for any h = 1, . . . , H such that n̄h = 0 we set Īh = 0. Hence, a sample
from the full conditional is obtained by letting

(π1, . . . , πH) =

(
J∗1 + Ī1∑H

h=1(J∗h + Īh)
, . . . ,

J∗H + ĪH∑H
h=1(J∗h + Īh)

)
.

C Additional material for the INVALSI application

In this Section we provide additional results and plots for the invalsi application. In Fig-
ure 4, we display the posterior distribution of the ηj random effects for 40 randomly selected
schools. It is, then, apparent that a certain degree of variability among schools is present and
a posterior summary as the median of each ηj might be employed, for example, to identify
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virtuous schools. In Figure 4 we also depict the posterior mean of
∑H

h=1 πhN (µ̄h, σ̄
2
h) that

stands as an estimate of the data generating density, under three model specifications.
Moreover, in Figures 5-7 we report the posterior distributions of the γ coefficients using

violin plots. Recall that student-specific categorical variables are: the gender of the student,
the education level of her/his father and mother (primary school, secondary school, etc.),
the employment status of her/his father and mother, the regularity of the student (i.e.
regular, in late, etc.), and the citizenship (Italian, first generation immigrant, etc.). To avoid
collinearity, the first category is omitted and regarded as baseline.
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Figure 4: Top panel: Posterior distribution of the random effects ηj for 40 randomly selected
schools, ordered according to the posterior median. Bottom panel: Posterior mean of the
random density

∑H
h=1 πhN (µ̄h, σ̄

2
h).
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Figure 5: Posterior distribution of the γ coefficients in the invalsi application.
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52



D Overfitted mixture illustration

We empirically illustrate the additional flexibility provided by the ngg multinomial prior on
a synthetic dataset. Let us consider a mixture model having density

H∑
h=1

πhN (µ̄h, σ̄
2
h),

for a set of observations Y1, . . . , Yn. We propose the use of general nidm processes as mixing
measure, corresponding to the following prior specification

(π1, . . . , πH−1) ∼ nid
( c
H
, . . . ,

c

H
; ρ
)
, (µ̄h, σ̄

2
h)

iid∼ P, h = 1, . . . , H,

where P is a diffuse probability measure on R × R+. In our simulation studies, we employ
a ngg multinomial process in the above specification, which will be be compared to the
Dirichlet multinomial process, the Dirichlet process (dp), and the infinite-dimensional ngg
process, in a broad variety of scenarios, hyperparameter settings, and sample sizes. In all
these cases, the aim is to infer the true number of mixture components from the data by
relying on the overfitted mixture approach (Rousseau and Mengersen, 2011). We also obtain
a posterior estimate for the random density

∑H
h=1 πhN (µ̄h, σ̄

2
h). We consider 5 different

data generating processes, corresponding to mixture models with different characteristics.
Moreover, the analyses are replicated by varying the hyperparameter settings and the sample
sizes, for a total of 5 datasets × 4 scenarios (i.e. hyperparameter settings and sample sizes)
= 20 comparisons among the aforementioned dp, dp multinomial, ngg, ngg multinomial
models.

The first synthetic dataset (dataset 1) consists of an independent sample Y1, . . . , Yn of
observations from the Gaussian distribution

N (y; 0, 0.252),

where N (y; µ̄, σ̄2) denotes the density function of a Gaussian. In dataset 1 we aim at
showing that a mixture model is able to recover a simple parametric specification. In the
second synthetic dataset (dataset 2), the simulated data Y1, . . . , Yn are independent samples
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from the following mixture

1

2
N (y; 0, 0.252) +

1

2
N (y; 1, 0.252),

corresponding to an equally weighted mixture of Gaussians models with two components.
The third synthetic dataset (dataset 3), is obtained by sampling from the following mixture
model

1

5
N (y;−2, 0.22) +

1

5
N (y;−1, 0.22) +

1

5
N (y; 0, 0.22),+

1

5
N (y; 1, 0.22) +

1

5
N (y; 2, 0.22).

In dataset 3 the true number of mixture components is 5, and the mixing weights are equal.
The fourth synthetic dataset (dataset 4) is a variant of the second, having considered
unbalanced weights. Namely, in dataset 4 the observations are generated from

1

5
N (y; 0, 0.252) +

4

5
N (y; 1, 0.252).

In a similar fashion, the fifth and last syntetic dataset (dataset 5) that we consider is a
variant of the third. Indeed, in dataset 5 the observations are drawn from

1

15
N (y;−2, 0.22) +

2

15
N (y;−1, 0.22) +

3

15
N (y; 0, 0.22),+

4

15
N (y; 1, 0.22) +

5

15
N (y; 2, 0.22),

thus displaying unequal weights.
Throughout the simulation studies, we assume the conditionally conjugate prior µ̄h

iid∼
N (0, σ2

µ̄), σ̄−2
h

iid∼ gamma(aσ̄, bσ̄), for h = 1, . . . , H, where we set σ2
µ̄ = 1000 and aσ̄ =

2.5, bσ̄ = 0.1. Moreover, we let H = 30, a fairly conservative upper bound for the true
number of mixture components. The choice of the other hyperparameters will depend on
the specific scenario, as detailed in the subsequent Sections. Posterior samples for all the
relevant quantities, such as Kn,H , can be obtained via mcmc through Gibbs sampling steps
similar to those described in Section B.2. We run the algorithms for 12′000 iterations and
hold out the first 2′000 as burn-in period.
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D.1 Scenarios of the simulation study

We consider a total of 4 scenarios (a, b, c, d), each with a specific sample size: n =

100, 300, 600 and then again n = 100. For all the 5 datasets we consider a sample Y1, . . . , Yn,
with n being determined by the corresponding scenario. In each scenario, we also consider
four different prior specifications having roughly the same a priori expected value E(Kn,H),
for suitable sets of parameters c, κ, σ, and H that correspond to the Dirichlet multinomial
process, the Dirichlet process (dp), and the infinite-dimensional ngg process. The only
exception is represented by the last scenario (scenario d), in which the expected value
E(Kn,H) is different across the a priori specifications. The details of the parameter settings
are reported in Table 3, Table 4, Table 5, and Table 6.

Table 3: Hyperparameter settings for the simulation study in scenario a, n = 100

Hyperparameters Dirichlet multinomial dp ngg multinomial ngg

c 21.9 8.2 0.1 0.22
κ 1 1 0.2 1
σ 0 0 0.8 0.6
H 30 ∞ 30 ∞
E(Kn,H) 21.6 21.6 21.6 21.6

Table 4: Hyperparameter settings for the simulation study in scenario b, n = 300

Hyperparameters Dirichlet multinomial dp ngg multinomial ngg

c 17.4 6.16 0.1 0.18
κ 1 1 1 1
σ 0 0 0.7 0.5
H 30 ∞ 30 ∞
E(Kn,H) 24.6 24.6 24.6 24.6

D.2 Summary of the results

The results of the simulation studies are reported in Figures 8–27, displaying the a priori
and the a posteriori distribution of the number of clusters, together with the posterior mean
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Table 5: Hyperparameter settings for the simulation study in scenario c, n = 600

Hyperparameters Dirichlet multinomial dp ngg multinomial ngg

c 10.6 4.6 0.2 0.16
κ 1 1 0.2 0.2
σ 0 0 0.6 0.45
H 30 ∞ 30 ∞
E(Kn,H) 23.0 23.0 23.0 23.0

Table 6: Hyperparameter settings for the simulation study in scenario d, n = 100

Hyperparameters Dirichlet multinomial dp ngg multinomial ngg

c 0.60 0.55 0.1 0.22
κ 1 1 0.2 1
σ 0 0 0.8 0.6
H 30 ∞ 30 ∞
E(Kn,H) 3.5 3.5 21.6 21.6

of the density.
In all scenarios and datasets, it is apparent that, under the Dirichlet multinomial and

Dirichlet process specifications, the distribution of Kn,H struggles to deviate from the prior.
Conversely, for both the ngg and the ngg multinomial cases, the posterior law of Kn,H

correctly recovers the true number of mixture components even when the mean of the prior
distribution is far from the true number. This behavior motivates the use of the ngg
multinomial to robustify mixture modeling. The estimates of the ngg and ngg multinomial
are quite similar, as one would expect given the theoretical findings that are illustrated in the
main paper. As expected, the effect becomes somewhat less pronounced when the sample
size is high (scenario c), because there is more information in the data. Conversely,
when the sample size is low (scenario a) and the mixtures are not perfectly separated
(e.g. Figure 10) the differences are important. In scenario d we compare the case in which
Dirichlet-based priors are well-calibrated, whereas ngg priors are not. Insterestingly, despite
this disadvantage, the ngg priors lead to a posterior distribution for Kn,H that is similar to
that of the well-calibrated Dirichlet specifications.

In terms of density estimation, the four procedures lead to comparable results when
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the sample size is sufficiently high, namely when n = 600. Conversely, when the sample
size is low, i.e. when n = 100, a misscalibrated prior choice for Kn,H has an impact also
the posterior estimate for the density. For instance, in Figure 8 the Dirichlet multinomial
specification has heavier tails than the ngg, since it is capturing the spikes present in the
tails of the distribution, although the latter can be regarded as noise.
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Figure 8: dataset 1, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 9: dataset 2, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 10: dataset 3, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 11: dataset 4, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 12: dataset 5, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 13: dataset 1, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 14: dataset 2, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 15: dataset 3, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 16: dataset 4, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 17: dataset 5, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 18: dataset 1, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 19: dataset 2, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 20: dataset 3, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 21: dataset 4, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 22: dataset 5, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 23: dataset 1, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 24: dataset 2, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 25: dataset 3, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 26: dataset 4, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 27: dataset 5, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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