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Abstract
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�We thank Pierre-André Chiappori, Larry Epstein, Bart Lipman, Jawwad Noor, Paolo Siconol�, Alex

Tetenov and, especially, Peter Klibano¤, Aldo Rustichini, and Tom Sargent, for some very useful comments.

Part of this research was done while some of the authors were visiting the Economics Department of Boston

University and the Collegio Carlo Alberto, which they thank for their hospitality. The �nancial support of

ERC (advanced grant BRSCDP-TEA) is gratefully acknowledged.

1



1 Introduction

Beginning with the seminal works of David Schmeidler, several choice models have been

proposed in the past twenty years in the large literature on choice under uncertainty that

deals with ambiguity, that is, with Ellsberg-type phenomena. As a result, there are now a

few possible models of choice under ambiguity, each featuring some violation of the classic

independence axiom, the main behavioral assumption questioned in this literature.

Our purpose in this paper is to put some order in this class of models by providing

a common representation that, through its properties, allows to unify and classify them.

Since a notion of minimal independence among uncertain acts is, at best, elusive both at

a theoretical and empirical level, the starting point of our analysis is that this common

representation has to be independence-free. That is, it must not rely on any independence

condition on uncertain acts, however weak it may appear.

This leads us to consider complete and transitive preferences that are monotone and

convex, without any independence requirement. Besides its unifying power, this is arguably

the most fundamental class of economic preferences that model decision making under un-

certainty. General equilibrium results are, for example, typically based on them, as well as

the classic arbitrage arguments of �nance.1

Transitivity and monotonicity are fundamental principles of economic rationality. The

former requires that decision makers be consistent across their choices, while the latter

requires that they prefer acts that deliver better outcomes in each state. Convexity re�ects a

basic negative attitude of decision makers toward the presence of uncertainty in their choices,

an attitude arguably shared by most decision makers and modelled through a preference for

hedging/randomization.2 Finally, completeness �which requires decision makers to be able

to compare any pair of uncertain acts �is a common simplifying assumption that can then

be weakened in subsequent analysis.3

We call uncertainty averse the preferences that satisfy these properties, that is, the

complete and transitive preferences that are monotone and convex. In the paper we establish

a representation for uncertainty averse preferences which is, at the same time, general and

rich in structure. Speci�cally, in a standard Anscombe-Aumann set up, let F be the set of

all uncertain acts f : S ! X, where S is a state space and X a convex outcome space, and

let � be the set of all probability measures on S. We show that a preference % is uncertainty
1See, e.g., Rigotti, Shannon, and Strzalecki [45] and the references therein.
2See the classic discussions in Debreu [15, p. 101] and Schmeidler [51].
3Along, for example, the lines of Bewley [6]. See also the discussion in Gilboa, Maccheroni, Marinacci,

and Schmeidler [28].
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averse and satis�es some suitable technical conditions if and only if there are a utility index

u : X ! R and a quasiconvex function G : u (X)�� ! (�1;1], increasing in the �rst
variable, such that the preference functional

V (f) = min
p2�

G

�Z
u (f) dp; p

�
8f 2 F (1)

represents %. We also show that u and G are essentially unique.

In this representation decision makers consider through the term G
�R

u (f) dp; p
�
all

possible probabilities p�i.e., all possible �models,�in the macroeconomics language �and the

associated expected utilities
R
u (f) dp of act f . They then summarize all these evaluations

by taking their minimum. The quasiconvexity of G and the cautious attitude re�ected by

the minimum in (1) derive from the convexity of preferences. Their monotonicity, instead,

is re�ected by the monotonicity of G in its �rst argument.

Behaviorally, G can be interpreted as an index of uncertainty aversion, as Proposition 6

shows. In particular, higher degrees of uncertainty aversion correspond to pointwise smaller

indices G. Moreover, the index G can be elicited from choice data, that is, it is behaviorally

determined. In fact, we show that

G (t; p) = sup
f2F

�
u (xf ) :

Z
u (f) dp � t

�
where xf is the certainty equivalent of act f . As a result, once the utility function u is

elicited, something that can be done by standard methods, the quantity G (t; p) can be

recovered from choice data by determining the certainty equivalents of the acts f such thatR
u (f) dp � t. In this way, the preference functional (1) itself can be behaviorally (e.g.,

through experimental analysis) determined and tested.

A fundamental feature of the representation (1) is the presence of probabilities and ex-

pected utilities, even though no independence assumption whatsoever is made on uncertain

acts. In other words, the representation (1) establishes a connection between the language

of preferences and the language of probabilities and utilities, in keeping with the tradition

of the representation theorems in choice under uncertainty pioneered by Savage [49] and

Anscombe and Aumann [3].

This connection is a key contribution of our derivation and is made possible by the dual

nature of our representation, detailed in Section 6, which generalizes the duality arguments

that since Savage underlie the representation results of choice under uncertainty. To illus-

trates the scope and explanatory power of this key connection, in Section 4 we show that

the properties of the representation (1), and in particular those of the index G, allow to fully
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characterize two important probabilistic features of a preference relation under uncertainty,

that is, probabilistic sophistication and revealed ambiguity.

1.1 Generality and Structure

Representation (1) is at the same time general and rich in structure. Due to its generality,

(1) is able to unify, as special cases, many of the choice criteria commonly used to model

choices under uncertainty, even when prima facie they may appear unrelated. Thanks to its

structure, this uni�cation is insightful since all special cases can be regarded as the result

of suitable speci�cations of the uncertainty aversion index G. Moreover, novel speci�cations

can be suggested by the properties of G and their derivation can be signi�cantly simpli�ed

by having the representation (1) at hand. For the same reason, also the derivation of known

speci�cations can be simpli�ed.4

All this can be seen in Section 5, where we illustrate the scope of the representation

(1). In particular, we show how (1) provides a common framework for two general classes of

preferences under ambiguity, the variational preferences studied by Maccheroni, Marinacci,

and Rustichini [38] and the smooth ambiguity preferences studied by Klibano¤, Marinacci,

and Mukerji [34].5

We �rst consider variational preferences. The main issue in studying a special case of (1)

is to determine the appropriate form of the uncertainty aversion index G. Proposition 12

shows that variational preferences correspond to additively separable functions G. Indeed,

variational preferences are characterized by

G (t; p) = t+ c (p)

where c : � ! [0;1] is a convex function, and in this case (1) reduces to the variational
representation

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
: (2)

As [38] shows, the variational representation (2) includes as special cases the multiple priors

model of Gilboa and Schmeidler [29] and the multiplier preferences of Hansen and Sargent

([32], [31]), which can therefore be viewed as particular speci�cations of an additively sepa-

rable uncertainty aversion index G.6

4For example, this is the case for the variational representation (2), whose derivation becomes easier when

based on the representation (1).
5See Ergin and Gul [21], Nau [43], and Seo [52] for works related to [34].
6See Strzalecki [54] for conditions on variational preferences that characterize multiplier preferences (see

also Subsection 5.2.5 below).
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Smooth ambiguity preferences are represented by

V (f) = ��1
�Z

�

�

�Z
S

u (f (s)) dp (s)

�
d� (p)

�
(3)

where � is a continuous and strictly increasing function and � is a probability measure on

�. As in standard statistical decision theory, the �rst-order probabilities p are interpreted

as possible models that govern states�realizations, while the second-order probabilities � are

priors over such models. As discussed by [34], because of ambiguity the function � may not

be linear. In particular, the concavity of � re�ects ambiguity aversion and in this case % is
an uncertainty averse preference.

Theorem 19 shows that smooth preferences with concave � correspond to the uncertainty

aversion index given by

G (t; p) = t+ min
�2�(p)

It (� k �) (4)

where It (� k �) is a suitable statistical distance function that generalizes the classic relative
entropy, and � (p) is the set of all second-order probabilities � that are absolutely continuous

with respect to � and that have p as their reduced, �rst-order, probability measure on S.

As a result, the uncertainty averse representation (1) of smooth preferences is

V (f) = ��1
�Z

�

�

�Z
S

u (f) dp

�
d� (p)

�
= min

p2�

�Z
S

u (f) dp+ min
�2�(p)

IR
S u(f)dp

(� k �)
�
(5)

or, equivalently,7

V (f) = min
�2��(B(�);�)

�Z
�

�Z
S

u (f) dq

�
d� (q) + IR

�(
R
S u(f)dq)d�(q)

(� k �)
�
: (6)

Representation (6), established in Proposition 20, is especially interesting. In fact, as we

discuss in detail in Section 5.2.2, it suggests a novel prior uncertainty interpretation of the

smooth model in which each prior � is considered via its expected utilityZ
S

u (f) dp =

Z
�

�Z
S

u (f) dq

�
d� (q)

suitably weighted through its distance IR
�(
R
S u(f)dq)d�(q)

(� k �) from the reference prior �.

The resulting term Z
�

�Z
S

u (f) dq

�
d� (q) + IR

�(
R
S u(f)dq)d�(q)

(� k �)

is then minimized over all priors � in �� (B (�) ; �), in keeping with the uncertainty averse
nature of the representation.

7�� (B (�) ; �) is the set of all second-order probabilities � that are absolutely continuous with respect
to �.
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In the important exponential case � (t) = �e��t, Corollary 22 shows that (4) takes the
form

G (t; p) = t+
1

�
min
�2�(p)

R (� k �)

that is, It (� k �) reduces to the relative entropy R (� k �).8 In this case the uncertainty averse
representations (5) and (6) take the form

V (f) = min
p2�

�Z
u (f) dp+

1

�
min
�2�(p)

R (� k �)
�

(7)

= min
�2��(B(�);�)

�Z
�

�Z
S

u (f) dq

�
d� (q) +

1

�
R (� k �)

�
:

This preference functional is also variational, with c (p) = 1
�
min�2�(p)R (� k �). The expo-

nential case thus turns out to be both smooth and variational. Our last result on smooth

preferences, Theorem 23, shows that the overlap between these two classes of preferences is

indeed characterized by functions � that are constant absolute risk averse (CARA), that is,

that have either the form � (t) = ��e��t + � or � (t) = �t+ �, with �; � > 0 and � 2 R.
Inter alia, all these results shed light on the relations between smooth and variational

preferences by showing that, �rst, (1) is the general representation that encompasses them

as special cases, and, second, that the CARA case can be regarded as their overlap.

Since variational preferences feature additively separable uncertainty aversion indices, a

natural class of uncertainty averse preferences to consider are those characterized by multi-

plicatively separable uncertainty aversion indices. To further illustrate the �exibility of the

representation (1), in Section 5 we carry out this exercise, which is related to the analysis of

Chateauneuf and Faro [10].

1.2 Final Remarks and Organization

Our setting admits a game against Nature interpretation, where decision makers view them-

selves as playing a zero-sum game against (a malevolent) Nature. This is discussed in Section

7.

The analysis of this paper is static and its dynamic extension is a natural future research

topic, along the lines of Epstein and Schneider [20] and Maccheroni, Marinacci, and Rusti-

chini [39]. In this regard, it is also important to notice that Siniscalchi [53] and Hanany and

8Recall that

R (�k�) =

8<:
R
�
d�
d� log

�
d�
d�

�
d� if � � �

1 otherwise.

6



Klibano¤ [30] have recently studied in depth updating rules for uncertainty averse prefer-

ences. Speci�cally, Hanany and Klibano¤ [30] show how the representation (1) can be used

to characterize dynamically consistent update rules for uncertainty averse preferences.

Finally, to derive the results of this paper we had to establish some novel duality results

for monotone quasiconcave functions. This is a further contribution of this research project,

developed in Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [7]. In Appendices

A and B we report some of these results on quasiconcave functions and we adapt them to

the needs of our derivation. These quasiconcave methods are altogether di¤erent from the

concave duality methods that Maccheroni, Marinacci, and Rustichini [38] use in their study

of variational preferences.

The rest of the paper is organized as follows. Section 2 presents some preliminary no-

tions, needed to establish in Section 3 the main representation results, the proofs of which

are sketched in Section 6 and found in Appendix C. Section 4 discusses probabilistic sophis-

tication and revealed ambiguity for uncertainty averse preferences. Section 5 studies some

special classes of uncertainty averse preferences.

2 Preliminaries

2.1 Decision Theoretic Set Up

We consider a set S of states of the world, an algebra � of subsets of S called events, and a

set X of consequences. We denote by F the set of all the (simple) acts: functions f : S ! X

that are �-measurable and take on �nitely many values.

Given any x 2 X, de�ne x 2 F to be the constant act such that x(s) = x for all s 2 S.
With the usual slight abuse of notation, we thus identify X with the subset of the constant

acts in F . If f 2 F , x 2 X, and A 2 �, we denote by xAf 2 F the act yielding x if s 2 A
and f (s) if s =2 A.
We assume additionally that X is a convex subset of a vector space. For instance, this

is the case if X is the set of all the lotteries on a set of prizes, as it happens in the classic

setting of Anscombe and Aumann [3]. Using the linear structure of X we can de�ne in

the usual way, for every f; g 2 F and � 2 [0; 1], the act �f + (1 � �)g 2 F ; it yields
�f(s) + (1� �)g(s) 2 X for every s 2 S.
We model the decision maker�s preferences on F by a binary relation %. As usual, � and

� denote respectively the asymmetric and symmetric parts of %. For f 2 F , an element
xf 2 X is a certainty equivalent for f if f � xf .
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2.2 Mathematical Preliminaries

We denote byB0 (�) the set of all real-valued �-measurable simple functions �so that u (f) 2
B0 (�) whenever u : X ! R and f 2 F �and by B (�) the supnorm closure of B0 (�). If T is
a nonsingleton interval of the real line, setB0 (�; T ) = f 2 B0 (�) :  (s) 2 T for all s 2 Sg.
As well known, the dual space of B0 (�) (or equivalently of B (�)) can be identi�ed with

the set ba (�) of all bounded �nitely additive measures on (S;�). The set of probabilities

in ba (�) is denoted by � and is a weak* compact and convex subset of ba (�). Elements of

� are denoted by p or q. Finally, we denote by B (�) the Borel �-algebra generated by the
weak* topology on �.

When � is a �-algebra we denote by �� the set of all countably additive probabilities in

�. In particular, given q 2 ��, we denote by �� (q) the set of all probabilities in �� that

are absolutely continuous with respect to q; i.e., �� (q) = fp 2 �� : p� qg.

Functions of the form G : T��! (�1;1], where T is an interval of the real line, will
play a key role in the paper. We denote by G (T��) the class of these functions such that:

(i) G is quasiconvex on T��,

(ii) G (�; p) is increasing for all p 2 �,

(iii) infp2�G (t; p) = t for all t 2 T .

We denote by H (T��) the class of functions in G (T��) such that:

(iv) G is lower semicontinuous on T��,

(v) G (�; p) is extended-valued continuous on T for each p 2 �.9

Set domG (�; p) = ft 2 T : G (t; p) <1g and dom�G =
[
t2T
fp 2 � : G (t; p) <1g. We

denote by E (T��) the set of functions in H (T��) that satisfy the following stronger
version of (v):

(vi) G (�; p) is extended-valued uniformly equicontinuous on T w.r.t. p 2 �.10

9That is, limt!t0 G (t; p) = G (t0; p) 2 (�1;1] for all t0 2 T and p 2 �. For instance, G (t; p) = 1 for

all t 2 T is continuous in this sense.
10That is, for every " > 0 there is � > 0 such that t; t0 2 T and t � t0 + � imply G (t; p) � G (t0; p) + " for

all p 2 �.
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This amounts to say that the functions G (�; p) are either real valued or constant at 1
(that is, either domG (�; p) = T or domG (�; p) = ;) and, when real valued, the functions
G (�; p) are uniformly equicontinuous on T .

A function G : T��! (�1;1] is linearly continuous if the map

 7! inf
p2�

G

�Z
 dp; p

�
from B0 (�; T ) to [�1;1] is extended-valued continuous. Next we show that a function is
linearly continuous if it belongs to H (T��), something easily veri�ed with a routine real
analysis check.

Lemma 1 If G 2 H (T��), then it is linearly continuous.

3 Uncertainty Averse Preferences

3.1 Basic Axioms

Our analysis relies on the next three main behavioral assumptions on the preference %, which
formalize the requirements of completeness, transitivity, monotonicity, and convexity that

we discussed in the Introduction.

Axiom A. 1 (Weak Order) The binary relation % is nontrivial, complete, and transitive.

Axiom A. 2 (Monotonicity) If f; g 2 F and f(s) % g(s) for all s 2 S, then f % g.

Axiom A. 3 (Convexity) If f; g 2 F and � 2 (0; 1), f � g implies �f + (1� �) g % f .

These classic axioms are all falsi�able through choice behavior. In Axiom A.1, nontrivi-

ality means that f � g for some f; g 2 F . Axiom A.2 is a monotonicity assumption, which

requires that an act is preferred if, state by state, delivers a preferred outcome. Axiom

A.3 is the Uncertainty Aversion Axiom of Schmeidler [51], whose interpretation in terms of

negative attitude toward the presence of uncertainty dates back to Debreu [15].

De�nition 2 A binary relation % is an uncertainty averse preference if it satis�es A.1-A.3.

As argued in the Introduction, uncertainty averse preferences are the most fundamental

class of preferences that model decision making under uncertainty and exhibit a negative

attitude toward uncertainty.

The next assumption is peculiar to the Anscombe-Aumann setting and imposes a stan-

dard independence axiom on constant acts, that is, acts that only involve risk and no state

uncertainty.
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Axiom A. 4 (Risk Independence) If x; y; z 2 X and � 2 (0; 1),

x � y =) �x+ (1� �) z � �y + (1� �) z:

We now introduce some technical assumptions, which make possible the mathematical

derivation in our very general set up.

Axiom A. 5 (Continuity) If f; g; h 2 F , the sets f� 2 [0; 1] : �f + (1 � �)g % hg and
f� 2 [0; 1] : h % �f + (1� �)gg are closed.

Axiom A.5 is a standard continuity assumption, which along with Axioms A.1 and A.2

implies the existence of a certainty equivalent xf for each act f 2 F (see, e.g., [38, p. 1478]).
The next assumption requires that there are arbitrarily good and arbitrarily bad out-

comes. In the representation this implies that the utility function u : X ! R is onto; i.e.,
u (X) = R.

Axiom A. 6 (Unboundedness) For every x � y in X, there are z; z0 2 X such that

1

2
z +

1

2
y % x � y % 1

2
x+

1

2
z0:

For some results we use an additional continuity condition.

Axiom A. 7 (Uniform Continuity) For every z0 � z in X, there are y0 � y in X such

that

f; g 2 F and
1

2
f (s) +

1

2
y0 - 1

2
g (s) +

1

2
y 8s 2 S =) 1

2
xf +

1

2
z0 - 1

2
xg +

1

2
z: (8)

Together, Axioms A.5 and A.7 form a uniform continuity condition. Axiom A.5 implies

A.7 under minimal independence assumptions on acts and for this reason it is normally

enough to assume A.5 in derivations that maintain some form of independence.

We close with a standard monotone continuity condition, due to Arrow [4], which will

ensure in our representation results that only countably additive probabilities matter. In

applications this is a convenient property because countably additive probabilities are much

better behaved than probabilities that are merely �nitely additive (see [11] and [38] for more

on this).

Axiom A. 8 (Monotone Continuity) If f; g 2 F , x 2 X, fEngn2N 2 � with E1 � E2 �
::: and

T
n2NEn = ;, then f � g implies that there exists n0 2 N such that xEn0f � g:
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3.2 The Representation

We now derive our general representation (1) for uncertainty averse preferences. It relies

on Axioms A.1-A.5, that is, on the original axioms of Gilboa and Schmeidler (1989), with

the key exception of their independence assumption on uncertain acts, here replaced by the

much weaker Axiom A.4, which applies only to constant acts.

Theorem 3 Let % be a binary relation on F . The following conditions are equivalent:

(i) % is an uncertainty averse preference and satis�es Axioms A.4 and A.5;

(ii) there exists a nonconstant a¢ ne u : X ! R and a linearly continuous G : u (X)��!
(�1;1] that belongs to G (u (X)��) such that, for all f and g in F ,

f % g () inf
p2�

G

�Z
u (f) dp; p

�
� inf

p2�
G

�Z
u (g) dp; p

�
: (9)

The function u is cardinally unique and, given u, there is a (unique) minimal G? in

G (u (X)��) satisfying (9), given by

G? (t; p) = sup
f2F

�
u (xf ) :

Z
u (f) dp � t

�
8 (t; p) 2 u (X)��: (10)

Moreover, % has no worst consequence if and only if inf u (X) =2 u (X). In this case G?

is lower semicontinuous on u (X)��.11

Recall that xf is a certainty equivalent of act f . Hence, thanks to (10) the function G?

in Theorem 3 can be derived from behavioral data. In fact, once the utility function u is

elicited (by standard methods), the quantity

sup
f2F

�
u (xf ) :

Z
u (f) dp � t

�
is determined by the certainty equivalents xf of the acts such that

R
u (f) dp � t.

As a result, Theorem 3 guarantees that, given an uncertainty averse decision maker that

satis�es the Axioms A.4 and A.5, we can elicit the precise form of the representation

V (f) = inf
p2�

G?

�Z
u (f) dp; p

�
8f 2 F (11)

of his preference, by using purely behavioral (e.g., experimental) data.

11Recall that % has no worst consequence if for each x 2 X there is y 2 X such that x � y, and that lower
semicontinuity of G? implies that infp2�G?

�R
u (f) dp; p

�
= minp2�G

?
�R
u (f) dp; p

�
for all f 2 F .
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By Theorem 3, uncertainty averse preferences % that satisfy Axioms A.4 and A.5 are

characterized by pairs (u;G?), which we call uncertainty averse representations of %.12 Such
pairs have the following uniqueness property.

Proposition 4 Let (u;G) be an uncertainty averse representation of a preference %. Then�
�u; �G

�
is another uncertainty averse representation of % if and only if there exist � > 0 and

� 2 R such that �u = �u+� and �G (t; p) = �G (��1 (t� �) ; p)+� for all (t; p) 2 �u (X)��.

In Theorem 3 we establish the minimality, but not the uniqueness, of the index G.

The next important result shows that uniqueness holds when % satis�es A.6, that is, when
u (X) = R.

Theorem 5 Let % be an uncertainty averse preference that satis�es A.4-A.6. Then, G?

de�ned in (10) is the unique lower semicontinuous G 2 G (R��) for which (9) holds.

3.3 Comparative Attitudes

Based on Ghirardato and Marinacci [26], given two preferences %1 and %2, say that %1 is
more uncertainty averse than %2 if, for all f 2 F and x 2 X,

f %1 x =) f %2 x: (12)

In other words, %1 is more uncertainty averse than %2 if, whenever %1 is �bold enough�
to prefer an uncertain act f over a constant outcome x, then the same is true for %2.
Next we show that comparative uncertainty attitudes are determined by the functions

G. Here u1 � u2 means that there exist � > 0 and � 2 R such that u1 = �u2 + �.

Proposition 6 Given two preferences %1 and %2 with uncertainty averse representations
(u1; G1) and (u2; G2), the following conditions are equivalent:

(i) %1 is more uncertainty averse than %2,

(ii) u1 � u2 and G1 � G2 (provided u1 = u2).

Given that u1 � u2, the assumption u1 = u2 is just a common normalization of the

two utility indices. Therefore, Proposition 6 says that more uncertainty averse preference

12In other words, denoting by U (X) the set of all nonconstant a¢ ne functions from X to R, a pair
(u;G) 2 U (X)� G (u (X)��) is an uncertainty averse representation of % if G is linearly continuous, and

(9) and (10) hold.
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relations are characterized, up to a normalization, by pointwise smaller functions G. The

function G can thus be properly interpreted as an index of uncertainty aversion.

Notice that G1 � G2 implies dom�G2 � dom�G1. In view of what we will momentarily

show in Section 4.2, this means that higher uncertainty aversion entails larger sets of priors

that the decision makers deem relevant. More uncertainty averse decision makers can thus

be viewed as perceiving more model uncertainty.

We close by characterizing minimal and maximal uncertainty averse indexes. Assume

u (X) = R. Since infp2�G (t; p) = t, the maximally uncertainty averse index is given by

G (t; p) = t for all t 2 R and all p 2 �. Therefore, the preference functional

V (f) = min
p2�

Z
u (f) dp = min

s2S
u (f (s))

represents preferences that are maximally uncertainty averse.

Subjective expected utility preferences are, instead, minimally uncertainty averse. In

fact, suppose % is a subjective expected utility preference represented by V (f) =
R
u (f) dq,

for some q 2 �. Its uncertainty index is G (t; p) = t + �q (p) for all (t; p) 2 R��, where �q
denotes the indicator function

�q (p) =

(
0 p = q

1 p 6= q:

Suppose G0 2 G (R��) is such that G0 � G. To prove that % is minimally uncertainty

averse we need to show that G0 = G. We have G0 (t; p) = G (t; p) =1 for all t 2 R if p 6= q,

while t � G (t; q) � G0 (t; q) for all t 2 R. Then, G0 (t; q) = minp2�G0 (t; p) = t for all t 2 R,
and so t = G (t; q) = G0 (t; q) for all t 2 R. We conclude that G = G0, as desired.

3.4 More on Continuity

As we already observed, Axiom A.7 is a uniform continuity condition when added to Axiom

A.5. Since Axiom A.5 implies A.7 under minimal independence assumptions on acts, Ax-

iom A.7 is redundant in derivations that assume some form of independence (in fact, even

very weak forms of independence ensure the Lipschitzianity of the representing preference

functional).

In our independence-free setting, Axiom A.7 delivers an interesting version of the repre-

sentation, in which the index G belongs to E (T��) and thus features stronger (and easier
to check) continuity properties.

Theorem 7 Let % be a binary relation on F . The following conditions are equivalent:
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(i) % is uncertainty averse and satis�es Axioms A.4-A.7;

(ii) there exist an a¢ ne u : X ! R, with u (X) = R, and a G : R�� ! (�1;1] that
belongs to E (R��) such that, for all f and g in F ,

f % g () min
p2�

G

�Z
u (f) dp; p

�
� min

p2�
G

�Z
u (g) dp; p

�
: (13)

The function u is cardinally unique and, given u, the index G is unique and satis�es

G (t; p) = sup
f2F

�
u (xf ) :

Z
u (f) dp = t

�
8 (t; p) 2 R��: (14)

If, in addition, � is a �-algebra, then % satis�es Axiom A.8 if and only if there is q 2 ��

such that G (�; p) � 1 for all p =2 �� (q); in particular � can be replaced with �� (q) in (13).

Observe that, inter alia, we now have an equality sign in (14), something that simpli�es

the elicitation of G since less acts f have to be considered. Moreover, inspection of the proof

shows that A.1-A.6 su¢ ce to have this equality sign, and that � can be replaced with �� (q)

provided � is a �-algebra and % satis�es Axiom A.8.

4 The Role of Probabilities

As we observed in the Introduction, an essential insight provided by our representation results

is the connection between preferences and beliefs given by (9). To illustrate the explanatory

power of this connection, in this section we show how probabilistic sophistication and revealed

ambiguity can be related to the properties of G.

4.1 Probabilistic Sophistication

In this subsection we characterize uncertainty averse preferences that are probabilistically

sophisticated, an important property of preferences introduced by Machina and Schmeidler

[40] that some authors, notably Epstein [19], identify with ambiguity neutrality (or absence

of ambiguity altogether).

In particular, Theorem 8 will show that the properties of symmetry of the uncertainty

index that guarantee probabilistic sophistication in the special case of variational preferences

(see [38, Th. 14]) remarkably turn out to be necessary and su¢ cient for probabilistic sophis-

tication also for the much more general class of uncertainty averse preferences. This is also

surprising mathematically since we are moving from the realm of convex analysis, where the

theory of rearrangement invariant Banach spaces �key for the results of this section �was
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originally developed by Luxemburg [37] and Chong and Rice [12], to that of quasiconvex

analysis.

Given a countably additive probability q on the �-algebra �, a preference relation % is

probabilistically sophisticated (w.r.t. q) if, for f and g in F ,

q (s 2 S : f (s) = x) = q (s 2 S : g (s) = x) for all x 2 X ) f � g;

while % satis�es the stronger property of stochastic dominance (w.r.t. q) if, given f and g

in F ,
q (s 2 S : f (s) - x) � q (s 2 S : g (s) - x) for all x 2 X ) f % g:

As discussed at length in Machina and Schmeidler [40], these properties capture the fact

that in comparing acts the decision maker only cares about their distribution w.r.t. q. In

order to characterize these properties in terms of the dual representation (9) we need to

borrow some concepts from the theory of stochastic orders. Speci�cally, the convex order

%cx on �� (q) is de�ned by

p %cx p
0 i¤

Z
 

�
dp

dq

�
dq �

Z
 

�
dp0

dq

�
dq

for every convex function  on R. Importantly, the symmetric part �cx coincides with the

identical distribution of the densities w.r.t. q.

A function J : � ! (�1;1] is rearrangement invariant (w.r.t. q) if dom J � �� (q)

and, given p and p0 in �� (q),

p �cx p
0 ) J (p) = J (p0)

while it is Shur convex (w.r.t. q) if dom J � �� (q) and, given p and p0 in �� (q),

p %cx p
0 ) J (p) � J (p0) : (15)

Finally, we say that q in �� is adequate if either q is non-atomic or S is �nite and q is

uniform.

Theorem 8 Let % be an uncertainty averse preference that satis�es A.4-A.6, A.8, and let

(u;G) be an uncertainty averse representation of %. If q 2 �� is adequate, then the following

conditions are equivalent (w.r.t. q):

(i) % satis�es stochastic dominance;

(ii) % is probabilistically sophisticated;
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(iii) G (t; �) is rearrangement invariant for all t 2 R;

(iv) G (t; �) is Shur convex for all t 2 R;

Moreover, (iv) implies (i) even if q is not adequate.

The proof of Theorem 8 can be found in [8], which provides a general analysis of prob-

abilistic sophistication and uncertainty aversion. Here it is important to observe the equiv-

alence between properties (ii) and (iii), that is, between probabilistic sophistication and a

symmetry property of the index G. This shows that a suitable property of the index G

characterizes uncertainty averse preferences that are probabilistically sophisticated.

4.2 Revealed Ambiguity

Uncertainty averse preferences are, by de�nition, characterized by a preference for hedging.

Thus, in general, the preference f % g does not imply

�f + (1� �)h % �g + (1� �)h (16)

for all acts h and for all � in (0; 1], unless % is a subjective expected utility preference.

As argued by Ghirardato, Maccheroni, and Marinacci [25], when this implication holds it

means that the preference for f over g is �strong enough� to make uncertainty aversion

considerations of secondary importance.13 In this case, [25] says that f is unambiguously

preferred to g, written f %� g; formally,

f %� g () �f + (1� �)h % �g + (1� �)h 8� 2 (0; 1] ;8h 2 F :

Though [25] concentrates its analysis on preferences satisfying the Certainty Independence

Axiom of Gilboa and Schmeidler [29], the meaning of%� remains unchanged in our independence-
free setting. Moreover, it is easy to check that [25, Propositions 4 and 5] hold for any pref-

erence that satis�es A.1, A.2, A.4, and A.5 (as independently observed by Ghirardato and

Siniscalchi [27]). In particular, %� is well de�ned and admits a representation à la Bewley.

Proposition 9 Let % be an uncertainty averse preference that satis�es A.4 and A.5, and

(u;G) be an uncertainty averse representation of %. There exists a unique nonempty, closed,
and convex set C� in � such that

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C�: (17)

13See also the recent [28].
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The next important result shows that C� is, up to closure, the set of priors that the

decision maker deems relevant according to the representation (1), that is, the e¤ective

domain dom�G of the index G (these are the priors that the decision maker considers in

forming the ranking %).

Theorem 10 Let % be an uncertainty averse preference that satis�es A.4-A.6, and (u;G)

an uncertainty averse representation of %. Then, C� = cl (dom�G).

The equality C� = cl (dom�G) is an important consistency check for our analysis. For,

the set C� is derived and interpreted directly in terms of the preference %, without any use
of the representation (1). This equality is therefore conceptually remarkable and further

clari�es the interpretation of G as an uncertainty index.

We conclude by providing a di¤erential characterization of C�. Beyond its intrinsic

interest, it connects unambiguous preferences with the families of beliefs commonly used

in the study of uncertainty averse preferences and their applications (see, e.g., Hanany and

Klibano¤ [30] and Rigotti, Shannon, and Strzalecki [45]). If u : X ! R and f 2 F , set

�u (f) =

�
p 2 � :

Z
u (f) dp �

Z
u (g) dp implies f % g

�
:

The set �u (f) consists of the beliefs that rationalize the preferences of the decision maker

at f .14 Mathematically, it is the normalized Greenberg-Pierskalla�s superdi¤erential at u (f)

of any functional I : B0 (�; u (X))! R such that f % g () I (u (f)) � I (u (g)).

Proposition 11 Let % be an uncertainty averse preference that satis�es A.4-A.6, and (u;G)
be an uncertainty averse representation of %. Then:

(i) �u (f) = arg infp2�G
�R

u (f) dp; p
�
for all f 2 F .

(ii) C� = cl

 
co

 [
f2F

�u (f)

!!
.

Up to closed convex closure, C� can thus be viewed as the collection of all beliefs that

�locally�rationalize the decision maker�s preferences.

14See [45, pag. 1169] for a similar interpretation of �u. More precisely, in their paper X is a set of

monetary payo¤s and the set of supporting beliefs is computed at f , while here X is generic and the set of

supporting beliefs is computed at u (f).
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5 Special Cases

Uncertainty averse preferences are a very general class of preferences and in this section we

present important special cases that can be obtained by suitably specifying the uncertainty

aversion index G.

5.1 Variational Preferences

We begin with the variational preferences of Maccheroni, Marinacci, and Rustichini [38]. A

pair (u; c) is a variational representation of a preference % if u : X ! R is an a¢ ne function
and c : � ! [0;1] is a lower semicontinuous convex function, with minp2� c (p) = 0, such
that

f % g () min
p2�

�Z
u (f) dp+ c (p)

�
� min

p2�

�Z
u (g) dp+ c (p)

�
(18)

for all f and g in F .
As shown by [38], a preference admits a variational representation if and only if it is an

uncertainty averse preference that satis�es both Axiom A.5 and the following weak indepen-

dence axiom, discussed in detail in [38].

Axiom A. 9 (Weak Certainty Independence) If f; g 2 F , x; y 2 X, and � 2 (0; 1),

�f + (1� �)x % �g + (1� �)x) �f + (1� �)y % �g + (1� �)y:

In this case, % is said to be a variational preference. A variational preference % satis�es
A.4 (which is implied by A.9) and, setting

G (t; p) = t+ c (p) ; (19)

the pair (u;G) clearly represents % in the sense of (9). More is actually true:

Proposition 12 Let u : X ! R be a¢ ne with u (X) = R. If (u; c) is a variational repre-
sentation of %, then, setting

G (t; p) = t+ c (p) 8 (t; p) 2 R�� (20)

the pair (u;G) is an (additively separable) uncertainty averse representation of %.
Conversely, if (u;G) is an additively separable uncertainty averse representation of %,

i.e.,

G (t; p) = 
 (t) + c (p) 8 (t; p) 2 R��

for some 
 : R ! R and c : � ! [0;1] with infp2� c (p) = 0, then 
 is the identity and

(u; c) is a variational representation of %.
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Variational representations are thus nothing but additively separable uncertainty averse

representations. Moreover, for variational preferences dom�G = dom c, and so C� =

cl (dom c) by Theorem 10.

5.2 Smooth Ambiguity Preferences

The smooth ambiguity preferences studied by Klibano¤, Marinacci, and Mukerji [34] provide

another example of uncertainty averse preferences. In this subsection we study the properties

of their uncertainty averse representation.

A triplet (u; �; �) is a smooth (ambiguity) representation of a preference % if u : X ! R
is an a¢ ne function, � : R! R is a strictly increasing function, and � is a countably additive
Borel probability measure on � such that

f % g ()
Z
�

�

�Z
S

u (f (s)) dp (s)

�
d� (p) �

Z
�

�

�Z
S

u (g (s)) dp (s)

�
d� (p) (21)

for all f; g 2 F .15

Throughout the paper we will consider the � concave case that, as mentioned in the Intro-

duction, corresponds to the case when the smooth representation (21) is uncertainty averse.

In order to establish the uncertainty averse representation of these smooth preferences, we

need to introduce a family of statistical distance functions.16

5.2.1 A Family of Statistical Distance Functions

Denote by �� (B (�) ; �) the set of all (second-order) countably additive Borel probability
measures on � that are absolutely continuous with respect to �. In particular, given a � 2
�� (B (�) ; �), denote by d�=d� the Radon-Nikodym derivative of � with respect to �. More-
over, �� : R! [�1;1) is the concave conjugate of �, given by �� (z) = infk2R fkz � � (k)g.

For all t 2 R, de�ne It (� k �) : �� (B (�) ; �)! [�1;1] by

It (� k �) = ��1
�
inf
k�0

�
kt�

Z
��
�
k
d�

d�

�
d�

��
� t: (22)

The function It (� k �) is a statistical distance on �� (B (�) ; �), as next we show.

15In richer settings (whose speci�cation is beyond the scope of this paper), Ergin and Gul [21], Klibano¤,

Marinacci, and Mukerji [34], Nau [43], and Seo [52] provide behavioral conditions that underlie the repre-

sentation (21). Observe that, when needed, � and ��1 denote the extended-valued continuous extentions of

� and ��1 from [�1;1] to [�1;1]. See (63) in Appendix B.
16See [36] for a thorough study of statistical distance functions. Because of their ancillary nature for our

analysis, for brevity we omit the proofs of the results on these functions given in Section 5.2.1. They are

available upon request.
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Proposition 13 For all t 2 R,

(i) It (� k �) = 0 and It (� k �) � 0 for all � 2 �� (B (�) ; �);

(ii) It (� k �) is quasiconvex;

(iii) It (� k �) is lower semicontinuous and coercive, i.e., the lower contour sets f� 2 �� (�) :

It (� k �) � cg are weakly compact in �� (B (�) ; �) for all c � 0.

Example 14 When � is the identity, i.e., � (t) = t for all t 2 R, then

It (� k �) =
(
0 if � = �

+1 else.

That is, It has a discrete form where all � 6= � are in�nitely distant from �. N

Example 15 The classic relative entropy R (� k �) is an example of function It. For, con-
sider � (t) = �e��t, with � > 0. Simple algebra based on Proposition 18 below shows that

It (� k �) =
1

�
R (� k �) 8t 2 R:

In particular, when � = 1 we get It (� k �) = R (� k �) for all t 2 R. Notice that in this
special case It does not depend on t. N

In a di¤erent context, this family of statistical distances has been considered in Mathe-

matical Finance by Frittelli [23] and Bellini and Frittelli [5]. There is an interesting relation

between the degree of concavity of � and the magnitude of the induced distance It.

Proposition 16 Suppose � is nontrivial. Then, given two strictly increasing and concave

functions �1; �2 : R! R, the following conditions are equivalent:

(i) �1 is more concave than �2;17

(ii) I1t (� k �) � I2t (� k �) for all � 2 �� (B (�)) and t 2 R.

In particular, �1 � �2 implies I1t = I2t . This means, inter alia, that in terms of I the

functions � are unique up to positive linear transformations, and can therefore be normalized.

We now introduce a class of functions for which it is relatively easy to compute It. Here

it is convenient to normalize � by setting � (0) = 0 and �0 (0) = 1.

17That is, there exists a strictly increasing and concave h : �2 (R)! R such that �1 = h � �2.
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De�nition 17 A normalized function � : R! R is order Orlicz if it is strictly increasing,
strictly concave, di¤erentiable, and there exists � > 1 such that k�0 (k) =� (k) � �= (�� 1)
for k < 0 small enough and k�0 (k) =� (k) � �= (�+ 1) for k > 0 large enough.

Order Orlicz functions are thus characterized by �tail� conditions on the elasticities

k�0 (k) =� (k) of �. The normalized negative exponential is an example of order Orlicz func-

tion.

Proposition 18 If � is order Orlicz, then

It (� k �) = ��1
�Z

(� �  )
�
k (�)

d�

d�

�
d�

�
� t 8t 2 R; � 2 domIt (� k �) (23)

where  = (�0)�1 and k (�) 2 (0;1) is the only solution to the equationZ
 

�
k
d�

d�

�
d� = t: (24)

In other words, when � is order Orlicz, the index It can be computed in two stages. First,

k (�) is determined via (24), and then it is used to determine It via (23). This procedure is

known (see [33]), our contribution is to identify a class of functions in which it works (see

also [50]).

5.2.2 Uncertainty Averse Representation

We can now state the announced representation. A piece of notation: p =
R
�
qd� (q) means

p (A) =

Z
�

q (A) d� (q) 8A 2 �. (25)

Theorem 19 Let u : X ! R be an a¢ ne function with u (X) = R, � : R ! R a strictly
increasing and concave function, and � a countably additive Borel probability measure on �.

The following conditions are equivalent:

(i) (u; �; �) is a smooth representation of %,

(ii) (u;G) is an uncertainty averse representation of %, where, for all (t; p) 2 R��,

G (t; p) = t+ min
�2�(p)

It (� k �) (26)

with

� (p) =

�
� 2 �� (B (�) ; �) : p =

Z
�

qd� (q)

�
under the convention G (�; p) � 1 when � (p) = ;.

The important part of Theorem 19 is (26), which provides an explicit formula for the

uncertainty aversion index G in the smooth case. We now discuss this formula, which leads

to a novel �prior uncertainty� interpretation of the smooth representation, illustrated by

Proposition 20. We �rst consider the key element � (p).
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Interpretation of � (p) The term � (p) has a very simple decision theoretic interpretation

in terms of the standard operation of reduction of compound lotteries (i.e., of averaging of

second-order probability measures, in our general setting). In fact, � (p) is nothing but the

set of all second-order probabilities � that are absolutely continuous with respect to � and

that have p as their reduced, �rst-order, probability measure on S. This is best understood

when the support of � is �nite, say supp� = fq1; :::; qng. In this case we can identify � with
a vector (�1; :::; �n) 2 �n, where �n denotes the simplex in Rn. Thus, �� (B (�) ; �) can be
identi�ed with �n, and so

� (p) =

(
� 2 �n : p (A) =

nX
i=1

qi (A) �i for all A 2 �
)

8p 2 �:

In other words, � (p) is the set of all possible weights � = (�1; :::; �n) 2 �n such that p can be

written as a convex combination of the probabilities qi in supp�. Hence, each � 2 � (p) can
be regarded as a second order probability that, through the standard reduction operation

(25) �i.e., p =
Pn

i=1 qi�i in this �nite support case �reduces to the �rst order probability p.

Summing up, � (p) is the set of all second order probabilities associated, via the reduction

operation (25), to each given �rst order probability. It is easy to see that to distinct p1
and p2 correspond disjoint sets of second order probabilities that reduce to them; that is,

� (p1) \ � (p1) = ; if p1 6= p2.

Prior Uncertainty As mentioned in the Introduction, in the smooth model the second

order probabilities are viewed as priors on the �rst order probabilities, which in turn describe

all possible probabilistic models that stochastically determine acts�outcomes.

The priors in � (p) enter formula (26) through their distance It (� k �) from the reference
prior �. In particular, the least among these distances �that is, min�2�(p) It (� k �) �is con-
sidered. This minimum can be viewed as the distance according to It between the reference

prior � and the set � (p) of the priors that reduce to p.18 Notice that, by (22), the function

� plays a key role in determining the distance It (� k �) for all �. In other words, here the
role of � is to induce a suitable distance of each prior � relative to the reference prior �.

The index G (t; p) in (26) is, up to a shift t, exactly the distance min�2�(p) It (� k �)
between the reference prior � and the set of priors � (p).

By (26), the uncertainty averse version of the smooth representation is, for all f 2 F ,
18In Probability Theory min�2�(p) It (� k �) is called the It distance of � from � (p). An element of � (p)

where the minimum is achieved is called the projection of � on � (p) (see Csiszar [13]).
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V (f) = ��1
�Z

�

�

�Z
S

u (f) dp

�
d� (p)

�
= min

p2�

�Z
S

u (f) dp+ min
�2�(p)

IR
S u(f)dp

(� k �)
�
:

(27)

This equality can be written in the following more interesting form.

Proposition 20 For each f 2 F ,

V (f) = min
�2��(B(�);�)

�Z
�

�Z
S

u (f) dq

�
d� (q) + IR

�(
R
S u(f)dq)d�(q)

(� k �)
�
: (28)

This result gives the prior uncertainty interpretation of the smooth model. In fact, recall

that without ambiguity the standard Bayesian model with a single prior � is given byZ
S

u (f) dp =

Z
�

�Z
S

u (f) dq

�
d� (q) : (29)

The left hand side (lhs, for short) is the reduced form of the model, while the rhs is the

�extensive� form. Under ambiguity, the decision maker has not enough information to

quantify his beliefs with a single prior over the models in �. With this �prior uncertainty,�

he is only able to specify a reference prior � on � that, for some reason, stands out among all

possible priors. In the rhs of (28) all other possible priors � in �� (B (�) ; �) are considered
via their expected utilities Z

S

u (f) dp =

Z
�

�Z
S

u (f) dq

�
d� (q) : (30)

Each prior � is then weighted through its distance

IR
�(
R
S u(f)dq)d�(q)

(� k �) (31)

from the reference prior �. In particular, the smaller this distance is, the more relevant the

prior � is. The weight is minimal when � = � and maximal when IR
�(
R
S u(f)dq)d�(q)

(� k �) =
1. In the latter case, the prior � is �too distant�from the reference prior �, and is therefore
not taken into account. For example, when � is the identity, then all priors � distinct from

� are dismissed for this reason (see Example 14), and (28) reduces to the classic Bayesian

equality (29).

Summing up, equality (28) thus shows that the smooth representation can be seen as a

generalization of the classic Bayesian equality (29) that takes into account prior uncertainty.

In fact, (28) considers all possible priors �, evaluated through their expected utilities (30)

and weighted through their distances (31) from the reference prior �. Proposition 20 thus

clari�es the prior uncertainty interpretation of the smooth representation, which is a novel

insight that our analysis, and in particular Theorem 19, delivers.

23



5.2.3 Revealed Ambiguity

By showing what form Theorem 10 takes in the smooth case, the next important result

con�rms a key intuition of the smooth representation, that is, that the support supp� of �

is the set of probabilistic models that the decision maker considers relevant.

Theorem 21 Let (u; �; �) be a smooth representation of %. If u (X) = R, � is concave,
and � admits support,19 then

C� = cl (dom�G) = cl (co (supp�))

provided at least one of the following conditions holds:

(i) � is bounded above;

(ii) limt!�1 �
0
� (t) =1.

Since a concave and strictly monotone function � is unbounded from below, condition

(i) suggests that, as t gets larger, utility losses carry more and more weight than utility

gains. On the other hand, condition (ii) is automatically satis�ed by order Orlicz functions.

Inspection of the proof shows that the concavity of � can be replaced by a weaker condition,

still in the spirit of loss aversion. Hence, the equality C� = cl (co (supp�)) holds more

generally even for some smooth representations that do not feature a concave �.

5.2.4 Exponential Case and Overlap

Consider the important exponential case � (t) = �e��t, which corresponds to constant am-
biguity aversion (see [34, p. 1866]). In this case we have the following version of Theorem

19, where It (�k�) reduces to the relative entropy R (�k�).

Corollary 22 Let u : X ! R be an a¢ ne function with u (X) = R, � > 0 a real number,
and � a countably additive Borel probability measure on �. The following conditions are

equivalent:

(i)
�
u;�e��(�); �

�
is a smooth representation of %,

(ii) (u;G) is an uncertainty averse representation of %, where

G (t; p) = t+
1

�
min
�2�(p)

R (� k �) 8 (t; p) 2 R��:

19See, e.g., [2, Ch. 12].
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(iii) (u; c) is a variational representation of %, where c (p) = 1
�
min�2�(p)R (� k �) for all

p 2 �.

Hence, here (27) and (28) become:

V (f) = �1
�
log

Z
�

e��
R
S u(f(s))dp(s)d� (p) = min

p2�

�Z
S

u (f (s)) dp (s) +
1

�
min
�2�(p)

R (� k �)
�

= min
�2��(B(�);�)

�Z
�

�Z
S

u (f) dq

�
d� (q) +

1

�
R (� k �)

�
:

Corollary 22 thus shows what we already observed in the Introduction: the exponential case

is thus both a smooth and a variational representation. Next we show that the exponential

case is also, basically, the extent to which these two representations overlap.

Theorem 23 Let u : X ! R be a¢ ne with u (X) = R and � : R ! R be a strictly

increasing and concave function. The triplet (u; �; �) represents a variational preference for

all countably additive Borel probability measures � on � if and only if � is CARA.

5.2.5 Quasi-Arithmetic Representation and Multiplier Preferences

We close this subsection by brie�y considering preferences % that correspond to an objective
function

V (f) = ��1
�Z

S

(� � u) (f) dq
�

8f 2 F (32)

where u : X ! R is an a¢ ne function, � : R ! R is a strictly increasing and continuous
function, and q 2 �� is a (countably additive) probability on S. We call (u; �; q) a quasi-

arithmetic representation of % and we refer the interested reader to Strzalecki [54] for a

recent discussion of this setting (see also [8] for some further properties of this setting).

When � is the negative exponential �e��t, the representation (32) takes the variational
form

V (f) = min
p2��(q)

�Z
S

u (f) dp+
1

�
R (p k q)

�
(33)

with the relative entropy ��1R (p k q) as cost function. This variational representation cor-
responds to the Hansen and Sargent multiplier preferences ([32] and [31]). In particular,

Strzalecki [54] provided behavioral conditions on variational preferences that characterize

(33).

When � is a general concave function, not necessarily exponential, the quasi-arithmetic

representation (32) is uncertainty averse but, in general, no longer variational. The next

result, based on the techniques that we just developed to represent smooth preferences,
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establishes the general uncertainty averse representation of (32), thus generalizing its varia-

tional representation (33) obtained for the � exponential case.20

Theorem 24 Let u : X ! R be an a¢ ne function with u (X) = R, � : R ! R a strictly
increasing and concave function, and q 2 �� a probability measure on S. The following

conditions are equivalent:

(i) (u; �; q) is a quasi-arithmetic representation of %,

(ii) (u;G) is an uncertainty averse representation of %, where for each t 2 R,

G (t; p) =

(
t+ It (p k q) if p 2 �� (q)

1 else.
(34)

In particular, � (t) � �e��t, with � > 0, if and only if It (p k q) = ��1R (p k q).

By (34), we thus have, for all f 2 F ,

��1
�Z

S

(� � u) (f) dq
�
= min

p2��(q)

�Z
u (f) dp+ IR u(f)dp (p k q)

�

which is the counterpart here of (28). In this case, C� = cl

 [
t2R

domIt (� k q)
!
.

We close with a result, �rst proved by Strzalecki [54], that parallels Theorem 23.

Proposition 25 Let u : X ! R be a¢ ne with u (X) = R and � : R ! R be a strictly

increasing and concave function. A triplet (u; �; q) represents a variational preference for all

probabilities q 2 �� if and only if � is CARA.

In other words, the multiplier representation (33) is basically the overlap between varia-

tional and quasi-arithmetic representations.

5.3 Homothetic Preferences

Proposition 12 showed that variational preferences correspond to additively separable un-

certainty indices. Next we study the multiplicatively separable case. A related model has

been studied by Chateauneuf and Faro [10], as we detail below.

Behaviorally, this case turns out to be characterized by the following weak independence

axiom with respect to a reference outcome x� (think for example of the agent endowment).

20We omit the proof of this result because it is essentially an elementary version of the more complicated

Theorem 19 and Corollary 22. Similarly, we omit the proof of Proposition 25, which is a simpler version of

that of Theorem 23.
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Axiom A. 10 (Homotheticity) If f; g 2 F and �; � 2 (0; 1],

�f + (1� �)x� % �g + (1� �)x� =) �f + (1� �)x� % �g + (1� �)x�:

Relative to Axiom A.9, here the weights � and � can di¤er, while the constant act x� is

�xed. Axioms A.9 and A.10 can thus be regarded as symmetric weakenings of the Certainty

Independence Axiom of Gilboa and Schmeidler [29] (see the discussion in [38, pp. 1454-

1455]). In particular, a preference satis�es the Certainty Independence Axiom if and only if

satis�es both Axioms A.9 and A.10.

Theorem 26 Let % be an uncertainty averse preference that satis�es Axioms A.4-A.7 and

(u;G) be an uncertainty averse representation of % such that u (x�) = 0. The following

conditions are equivalent:

(i) % satis�es Axiom A.10;

(ii) there exist a nonempty, weak* closed, and convex subset C of � and two functions

c1; c2 : C ! [0;1], such that

(a) c1 is concave and upper semicontinuous, with 0 < infp2C c1 (p) � maxp2C c1 (p) =
1;

(b) c2 is convex and lower semicontinuous, with minp2C c2 (p) = 1;

(c) for all (t; p) 2 R��;

G (t; p) =

8>><>>:
t

c1(p)
if t � 0 and p 2 C

t
c2(p)

if t < 0 and p 2 C
1 if p 2 � n C;

(35)

(iii) there exist 
 : R! R+, with 
 (t) = 0, if and only if t = 0, and d1; d2 : �! (�1;1]
such that, for all (t; p) 2 R��;

G (t; p) =

(

 (t) d1 (p) if t � 0 and p 2 �

 (t) d2 (p) if t < 0 and p 2 �

with the convention 0 � 1 =1.

In this case, by (35), C� = C. Moreover, Theorem 26 implies the following representation

result.

Corollary 27 Let % be a binary relation on F . The following conditions are equivalent:
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(i) % is uncertainty averse and satis�es Axioms A.4-A.7, and A.10;

(ii) there exist an a¢ ne u : X ! R, with u (X) = R and u (x�) = 0, a nonempty, weak*
closed, and convex subset C of �, and two functions c1; c2 : C ! [0;1] as in points
(a) and (b) of Theorem 26 such that, for all f and g in F , f % g if and only if

min
p2C

 �R
u (f) dp

�+
c1 (p)

�
�R

u (f) dp
��

c2 (p)

!
� min

p2C

 �R
u (g) dp

�+
c1 (p)

�
�R

u (g) dp
��

c2 (p)

!
:

(36)

In this case, u is unique up to multiplication by a positive scalar, C, c1, and c2 are unique.

For example, if f (s) ; g (s) % x� for all s 2 S, then (36) becomes:

f % g () min
p2C

R
u (f) dp

c1 (p)
� min

p2C

R
u (g) dp

c1 (p)
:

This is the speci�cation studied by Chateauneuf and Faro [10], who assume the existence of

a worst outcome with respect to which A.10 holds.

We close with two remarks. First, we already observed that a preference satis�es the

Certainty Independence Axiom of Gilboa and Schmeidler [29] if and only if satis�es both

Axioms A.9 and A.10. This means that a preference is both variational and homothetic if

and only if is multiple priors. This can be seen also from the properties of the uncertainty

aversion indices. In fact, by (20) and (35), an index G is both variational and homothetic if:

t+ c (p) = t
c1(p)

if t � 0 and p 2 C
t+ c (p) = t

c2(p)
if t < 0 and p 2 C

t+ c (p) =1 if p 2 � n C:

It is easy to check that the unique solution is c (p) = 0 and c1 (p) = c2 (p) = 1 for all p 2 C,
and c (p) =1 if p =2 C. We thus get

f % g () min
p2C

Z
u (f) dp � min

p2C

Z
u (g) dp (37)

which is the multiple priors criterion. Notice that for �xed u and C, by Proposition 6, the

agent using criterion (37) is the most uncertainty averse of those using criterion (36).

Second, observe that in the proof of Corollary 27 we show that, when � is a �-algebra,

then % satis�es Axiom A.8 if and only if there is q 2 �� such that C � �� (q).
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6 Outline of the Main Proof

In this section we outline the arguments used in the proofs of Theorems 3 and 5, our main

representation results. Assume for convenience that S is �nite and take � = 2S. This makes

our setting �nite dimensional since the collection of acts F can be identi�ed with XS and

the utility pro�le u (f) of each act corresponds to the vector (u (f (s)))s2S of RS. We will
also assume the unboundedness Axiom A.6, which guarantees u (X) = R.
By the decision theoretic arguments of Lemmas 60, 61, and 63 in Appendix A (whose

proofs are una¤ected by the dimensionality of the setting), a preference % on XS satis�es

Axioms A.1-A.6 if and only if there exists an a¢ ne onto u : X ! R and a function I : RS ! R
normalized, monotone, quasiconcave, and continuous such that

f % g () I (u (f)) � I (u (g)) : (38)

Moreover, u is cardinally unique, and, given u, there is a unique normalized I that satis�es

(38).

Now, for any t in R and p in the probability simplex �, let B (t; p) =
�
v 2 RS : p � v � t

	
and G (t; p) = supv2B(t;p) I (v). The formal analogy with budget sets and indirect utilities

of consumer theory is evident. Clearly, t � t0 implies B (t; p) � B (t0; p) for all p, and

B (� (t; p) + (1� �) (t0; p0)) � B (t; p) [B (t0; p0) for all t; t0; p; p0 and all � 2 [0; 1]. Therefore
G (t; p) is increasing in the �rst variable and jointly quasiconvex.

For each v0 in RS and all p in �, v0 2 B (p � v0; p) which implies I (v0) � G (p � v0; p) and

I (v0) � inf
p2�

G (p � v0; p) :

On the other hand, continuity, quasiconcavity, and monotonicity of I imply that C =

fI > I (v0)g is an open convex set such that v0 =2 C = C + RS+. A Separating Hyper-

plane Theorem guarantees that there exists p0 2 � such that p0 � v0 < p0 � v for all v 2 C.

In particular, B (p0 � v0; p0) � Cc, that is, G (p0 � v0; p0) � I (v0). Hence,

I (v0) = min
p2�

G (p � v0; p) :

This, together with (38) delivers formula (9) and the cardinal uniqueness of u. To complete

the proof that G 2 G (R��) is enough to observe that I is normalized (that is, deci-
sion theoretically, that the decision maker is a von Neumann-Morgenstern expected utility

maximizer when only risk is involved).

Lower semicontinuity of G is proved in Lemma 32 of Appendix A. As to uniqueness, we

just sketch the main points of the proof. Let H be another lower semicontinuous element of

G (R��) such that
I (v) = min

p2�
H (p � v; p) (39)
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indeed, we should consider an element H such that (9) holds, but it is possible to reduce

this case to (39). Fix p0 2 � and t0 2 R, then

G (t0; p0) = sup
v2B(t0;p0)

I (v) = sup
v2B(t0;p0)

inf
p2�

H (p � v; p)

a nontrivial (see [7] for details) minimax argument allows to exchange the sup and the inf

delivering

G (t0; p0) = inf
p2�

sup
v2B(t0;p0)

H (p � v; p) : (40)

It remains to study the program

sup
v2B(t0;p0)

H (p � v; p) :

If p 6= p0, they generate di¤erent hyperplanes through 0, that is, there exists v0 2 RS such
that p0 � v0 = 0 and p � v0 6= 0. Call e the unit vector of RS, p0 � t0e = t0 and the straight line

f�v0 + t0e : � 2 Rg is included in B (t0; p0). Thus

sup
v2B(t0;p0)

H (p � v; p) � sup
�2R

H (�p � v0 + t0; p) = sup
t2R

H (t; p) =1

where the last equality follows from normalization of the elements of G (R��).
Else, if p = p0, since H is increasing in the �rst component, we have

sup
v2B(t0;p0)

H (p0 � v; p0) = H (t0; p0) :

In conclusion, supv2B(t0;p0)H (p � v; p) = H (t0; p0) if p = p0 and 1 otherwise. Hence,

inf
p2�

sup
v2B(t0;p0)

H (p � v; p) = H (t0; p0)

which together with (40) delivers G = H.

When u (X) � R, only the usual minimax inequality holds. Thus, equality in (40) is
replaced by minorization, and only the minimality of G follows.

It should be remarked that the main simplifying assumption here is not the �nite di-

mensionality of the setting (which only eliminates some functional analytic subtleties), but

rather the assumption u (X) = R, which also in the �nite dimensional case is hard to weaken.
To overcome this problem some extension techniques are used (see Theorem 37). Moreover,

the passage from the non topological assumptions of the preference axioms to the strong

continuity properties of I is also nontrivial and led us to study thoroughly the continuity

properties of monotone quasiconcave functions (see Section A.3 of Appendix A). A com-

plete duality for this class of functions is studied in [7] and is very di¤erent from the classical

Fenchel duality on which the results of [38] rest. This duality already proved its usefulness

in other applications such as risk management (see Cerreia-Vioglio, Maccheroni, Marinacci,

and Montrucchio [9]).
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7 A Game Theoretic Perspective

As mentioned in the Introduction, our setting admits a game against Nature interpretation,

where decision makers view themselves as playing a zero-sum game against (a malevolent)

Nature. Here f and p become, respectively, the strategies of the decision maker and of

Nature, and the interpretation of the axioms and of the results has to be suitably modi�ed.

Begin with the representation: by Theorem 3 for every uncertainty averse preference

there exists a (suitably unique) game against Nature

� (f; p) = G

�Z
u (f) dp; p

�
8 (f; p) 2 F ��

such that the agent behaves as if he were playing this game against Nature, and conversely

for every such game there is a unique corresponding uncertainty averse preference.

The structure of the game re�ects the existence of two sources of uncertainty in the

Anscombe-Aumann model (see also Strzalecki [54]):

�
R
u (f) dp captures the objective risk preferences of the agent (once Nature has chosen

p, the expected utility of f is what matters to the agent); notice that, for �xed p,

G (�; p) is an increasing transformation of the expected utility.

� G captures the presence of subjective uncertainty and has the standard properties of

convexity and continuity of a zero-sum game.

� The minimum �that is, the adoption of a maxmin strategy �captures the aversion of

the decision maker to such uncertainty.

In this perspective, the reason why in Axiom A.3 the decision maker prefers to randomize

among indi¤erent acts is because this makes more di¢ cult for Nature (which has no control

on the randomizing device) to reply.

In turn, the fact that Nature has no control on the randomizing device is captured in the

representation by the normalization of G, that is, by the fact that, for any constant act x,

V (x) = inf
p2�

G

�Z
u (x) dp; p

�
= inf

p2�
G (u (x) ; p) = u (x) :

This normalization is natural: given a decision maker�s act f , Nature can a¤ect the relative

likelihood of the act�s outcomes by choosing a probabilistic model p, unless f is constant, in

which case Nature has no power.

In a similar vein, if the decision maker %2 prefers an uncertain act f over a constant one
x whenever also %1 does, here this means that %2 is less worried than %1 about Nature�s

31



ability to impair his acts�outcomes. Accordingly, Proposition 6 on comparative uncertainty

aversion here says that %1 is more uncertainty averse than %2 if and only if u1 � u2 and

�1 � �2 (provided u1 = u2). In other words, relative to %2, the decision maker %1 behaves
as if he is believing to face a more powerful Nature, that is, a Nature that incurs in smaller

losses for her actions.

By Theorem 8, in this game theoretic perspective probabilistic sophistication corresponds

to a situation where for every move f of the agent the loss incurred by Nature in choosing

p is only determined by how much the masses dp (s) are scattered w.r.t the masses dq (s),

that is, by how much the reference probability is �warped.�For example, if q is uniform,

Nature losses will be independent of permutations of the states. In sum, the decision maker

is probabilistically sophisticated if and only if he thinks that also Nature is.

Finally, by Theorem 10, the set C� can be viewed as the closure of Nature�s conceivable

actions (for, she will never play an action inducing an in�nite loss). In particular,

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 dom�G

means that if f is unambiguously preferred to g, then, when regarded as strategies, f weakly

dominates g in the game. Similarly, Proposition 11 implies that �u (f) is the set of best

replies for Nature to act f .

A Quasiconcave Monotone Functionals

In this Appendix we report the properties of a duality notion for monotone quasiconcave

functionals on which the results of the paper rest. This topic is studied in detail in [7], to

which we refer the interested reader.21

Notation 28 In this section and in the next one we denote by X (resp., g : X ! [�1;1])
an ordered vector space (resp., an extended valued function).

This makes it easier to refer to [7]. See [37] and [2, Ch. 9] for all notions on ordered

vector spaces used here.

A.1 Preliminaries

A.1.1 Set Up

The Space and its Geometry
21The nontrivial proofs that we omit here can be found in [7].
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Assumption 1 (X; k�k ;�) is a normed Riesz space with order unit e and k�k is its supnorm,
i.e. kxk = inf f� 2 R : jxj � �eg for all x 2 X.

Recall that any norm on a normed Riesz space with order unit is equivalent to the

supnorm induced by the unit.

The most relevant example for this paper is the function space B0 (�), with order unit 1S.

B0 (�) also has the following important property: for every ideal J of B0 (�), the quotient

space B0 (�) =J is Archimedean. Normed Riesz spaces with this property are called hyper-

Archimedean, and every hyper-Archimedean space is actually Riesz isomorphic to suitable

space B0 (�) (see, e.g., [37, Thm. 37.7]).

If y; z 2 X, [y; z] is the order interval fx 2 X : y � x � zg. Notice that the closed unit
ball of X coincides with

[�e; e] = fx 2 X : �e � x � eg : (41)

Denoting byX+ and X� the positive and negative cones inX, then the positive and negative

unit balls are [�e; e] \ X+ = [0; e] and [�e; e] \ X� = [�e; 0]. A subset Y of X is lower

open (resp., upper open) if for all y 2 Y there exists " > 0 such that [y � "e; y] � Y (resp.,

[y; y + "e] � Y ). Clearly, open sets are lower and upper open (but, there are subsets of R2

which are lower and upper open, without being open).

For every x 2 X, set

ess sup (x) = inf f� 2 R : x � �eg and ess inf (x) = �ess sup (�x) :

By de�nition of supnorm, k�k = ess sup (j�j). For any interval T of the real line, set

X (T ) = fx 2 X : [ess inf (x) ; ess sup (x)] � Tg :

It is easy to check that X (T ) is convex, and either lower open (if and only if inf T =2 T )

or upper open (if and only if supT =2 T ) or it is an order interval ([(inf T ) e; (supT ) e]).

Moreover, it is open if and only if T is open. If X = B0 (�), then X (T ) = B0 (�; T ) is the

set of functions in B0 (�) whose range is contained in T .

We denote byX� the topological dual ofX. Elements ofX� are usually denoted by �, and

h�; xi, with x 2 X, denotes the duality pairing � (x). X�
+ the set of all positive functionals

in X�. Notice that, by (41), k�k = h�; ei for all � 2 X�
+. In particular the set

� =
�
� 2 X�

+ : k�k = 1
	

is (and weak* compact and) convex since it coincides with
�
� 2 X�

+ : h�; ei = 1
	
.

Assumption 2 � is equipped with the weak* topology.
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A subset C of X is evenly convex if it is the intersection of a family of open half spaces.22

Evenly convex sets are convex, and intersections of evenly convex sets are evenly convex. By

standard separation results, both open convex sets and closed convex sets are then evenly

convex. Moreover, for every interval T of R, X (T ) is evenly convex.

Functions

If Y � X, g : Y ! [�1;1], and a 2 [�1;1], we set fg � ag = fy 2 Y : g (y) � ag, the
sets fg > ag, fg � ag, and fg < ag are de�ned in the same way.
For functions g : X ! [�1;1], the relevant notion of e¤ective domain, dom (g) depends

on whether we consider the hypograph or the epigraph of g. In the former case we have

dom (g) = fg > �1g, while in the latter case we have dom (g) = fg <1g. For functions
g : X ! [�1;1) it is natural to consider hypographs, and so dom (g) = fg > �1g.
Symmetrically, we have dom (g) = fg <1g for functions g : X ! (�1;1]. In any other
case the de�nition of dom (g) will be explicitly given.

A function g : X ! [�1;1] is:

� monotone if x � y implies g (x) � g (y);

� evenly quasiconcave if the sets fg � �g are evenly convex for all � 2 R;

� evenly quasiconvex if the sets fg � �g are evenly convex for all � 2 R;

� positively homogeneous if g (�x) = �g (x) for all � > 0 and x 2 X;

� normalized if g (�e) = � for all � 2 R;

� translation invariant if g (x+ �e) = g (x) + � for all � 2 R.

Clearly, evenly quasiconcave functions are quasiconcave. Moreover, both lower and upper

semicontinuous quasiconcave functions on X are evenly quasiconcave.

Observe that when g is positively homogeneous on X, then g (0) = �g (0) for all � > 0,

so that either g (0) = �1 or g (0) = 0. In particular, g (0) = 0 if it is �nite.

If g is de�ned on a subset Y of X the above de�nitions remain unchanged with the

additional requirement that all the arguments of g (�) belong to Y .23

If fxng is a sequence in X, write xn % x (resp., xn & x) if it is increasing (resp.,

decreasing) and it converges to x in norm. A function g : Y ! R is:
22With the convention that such intersection is X if the family is empty. The notion of even convexity

and its basic properties are due to Fenchel [22].
23For example, positive homogeneity becomes: g (�x) = �g (x) for all � > 0 and x 2 X such that �x; x 2 Y .
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� left (sequentially) continuous at x 2 Y if fxng � Y and xn % x implies g (xn)! g (x);

� right (sequentially) continuous at x 2 Y if fxngn � Y and xn & x implies g (xn) !
g (x).

Upper (and Lower) Semicontinuous Envelopes

Given x 2 X, denote by Nx the set of all neighborhoods of x in X. Given a function

g : X ! [�1;1], its upper semicontinuous envelope g+ : X ! [�1;1] is de�ned by
g+ (x) = infU2Nx supy2U g (y) for all x 2 X (see [14, Ch. 3]); and hence�

g+ � �
	
=
\
�<�

fg > �g 8� 2 R: (42)

Moreover, g+ is the least upper semicontinuous function on X that pointwise dominates g.

Lemma 29 If g : X ! [�1;1] is monotone, then g+ is monotone and g+ (x) = infn g (xn)
for all x 2 X and every sequence xn such that xn ! x and xn > x for all n 2 N.24 Moreover,
g+ is quasiconcave provided g is.

Proof. Let x 2 X. For each n � 1, set Vn = [2x� xn; xn] = [x� en; x+ en], where

en = xn � x for all n 2 N. Belonging to the interior of X+, en is an order unit for all

n 2 N, and en ! 0. In particular, Vn 2 Nx for all n 2 N. Therefore, infU2Nx supy2U g (y) �
infn supy2Vn g (y). Moreover, since en ! 0, for each U 2 Nx there is nU 2 N such that

VnU � U ,25 and we also have supy2U g (y) � supy2VnU g (y) � infn supy2Vn g (y). Then

infU2Nx supy2U g (y) � infn supy2Vn g (y), and g
+ (x) = infn supy2Vn g (y). By monotonicity

of g, supy2Vn g (y) = g (xn) and g+ (x) = infn g (xn).

If z 2 X and x � z, then g (x+ n�1e) � g (z + n�1e) for all n 2 N, whence g+ (x) =
infn g (x+ n�1e) � infn g (z + n�1e) = g+ (z), thus g+ is monotone.

Finally, if g is quasiconcave, (42) implies that g+ as well is quasiconcave. �

Totally analogous results hold for lower semicontinuity: Given a function g : X !
[�1;1], its lower semicontinuous envelope g� : X ! [�1;1] is de�ned by g� (x) =
supU2Nx infy2U g (y) for all x 2 X; and hence fg� > �g =

[
�>�

fg > �g� for all � 2 R.

Moreover, g� is the greatest lower semicontinuous function onX that is pointwise dominated

by g.

24xn > x means that xn�x belongs to the interior of X+ (while xn 
 x means that xn � x and xn 6= x).
25There exists � > 0 such that [x� �e; x+ �e] � U , but en ! 0 implies that eventually �en; en � [��e; �e],

and [x� en; x+ en] � [x� �e; x+ �e] � U .
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Lemma 30 If g : X ! [�1;1] is monotone, then g� is monotone and g� (x) = supn g (xn)
for all x 2 X and every sequence xn such that xn ! x and x > xn for all n 2 N. Moreover,
g� is quasiconcave provided g is.

A.1.2 A Key Auxiliary Function

Let ; 6= Y � X and g : Y ! [�1;1]. Set

G� (t) = sup fg (x) : x 2 Y and h�; xi � tg

for all (t; �) 2 R��, with the usual convention sup ; = �1.
This function, plays a key role in what follows, it can take values on [�1;1]. Since, for

our analysis, the set where it can take on value 1 is more relevant than that where it takes

on value �1, throughout the appendix we set dom (G�) = fG� <1g.
The function G� is monotone, thus, denoting by G+� the upper semicontinuous envelope of

G�, by Lemma 29, G+� (t) = inf fG� (t
0) : t0 > tg. The next lemmas give some basic properties

of the function G� (the proofs, when omitted, can be found in [7]).

Lemma 31 For any function g : Y ! [�1;1], the map (t; �) 7! G� (t) is quasiconvex over

R��. Moreover, limt!1G� (t) = sup�2� supt2RG� (t) = supx2Y g (x) for all � 2 �.

Lemma 32 Let Y be lower open and g : Y ! [�1;1] be monotone and lower semicontin-
uous. Then, the map (t; �) 7! G� (t) is lower semicontinuous on R��.

Proof. Let � 2 R and
�
�t; ��
�
2 R � � be such that G�� (�t) > �. We want to show that

G� (t) > � for all (t; �) in a suitable neighborhood of
�
�t; ��
�
.

Since supy2Y :h��;yi��t g (y) > �, there is y0 2 Y such that


��; y0

�
� �t and g (y0) > �. Since

Y is lower open, eventually the sequence yn = y0 � n�1e belongs to Y and yn % y0. As g

is lower semicontinuous, there exists �n 2 N such that y�n 2 Y and g (y�n) > �. Moreover,

��; y�n

�
=


��; y0

�
� �n�1



��; e
�
� �t� � for � = �n�1.

The set U =
�
� 2 � : h�; y�ni <



��; y�n

�
+ �=2

	
is open in the induced weak* topology of

�, and for all (t; �) 2 (�t� �=2;1) � U we have h�; y�ni �


��; y�n

�
+ �=2 � �t � � + �=2 =

�t� �=2 < t. Hence, G� (t) = supy2Y :h�;yi�t g (y) � g (y�n) > �, as wanted. �

Remark 33 In particular, for all � 2 �, the map t 7! G� (t) is lower semicontinuous and

monotone, therefore it is left continuous.

In the next Lemmas we assume Y = X.
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Lemma 34 If g : X ! [�1;1] is monotone, then G� (t) = sup fg (x) : x 2 X and h�; xi = tg
for all (t; �) 2 R��.

Lemma 35 Let h : X ! [�1;1], ' : h (X) ! [�1;1] be extended-valued continuous
and monotone, and g = ' � h. Then, G� (t) = ' (H� (t)) for all (t; �) 2 R��.

A.2 General Representation

A.2.1 A Theorem of de Finetti and its Extension

The next result shows that a function g can be recovered from the scalar function G� (t) as

long as g is quasiconcave. Here we only consider the monotone case, and we refer the reader

to [7] for a general version and for a proof. An early version of this result can be found

in de Finetti [16, p. 178], while a closely related general formulation can be found in [44,

Theorem 2.6]. Notice that versions of this result play an important role in microeconomic

duality theory (see, e.g., Diewert [18]).

Theorem 36 A function g : X ! [�1;+1] is evenly quasiconcave and monotone if and
only if

g (x) = inf
�2�

G� (h�; xi) 8x 2 X: (43)

Moreover, if g is lower semicontinuous, then the in�mum in (43) is attained, while if g is

upper semicontinuous, then G� can be replaced with G+� .

The next result considers the representation (43) for a monotone function de�ned on a

subset Y .

Theorem 37 Let g : Y ! R be a quasiconcave and monotone function de�ned on a convex
subset Y of X. Then,

g (y) = inf
�2�

G� (h�; yi) 8y 2 Y (44)

provided at least one of the following conditions hold:

(i) g is lower semicontinuous and Y is lower open;

(ii) g is upper semicontinuous and Y is either upper open or it is an order interval.

Moreover, under condition (i) the in�mum is attained.
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Proof. (i) Suppose that g is lower semicontinuous and that Y is lower open. We want to

prove (44) with min in place of inf. The function ĝ : X ! [�1;1] de�ned by

ĝ (x) = sup fg (y) : Y 3 y � xg (45)

is the minimal monotone extension of g to X (with the usual convention sup ; = �1).
Assume �rst that Y is open. Since fx 2 X : ĝ (x) > tg = fy 2 Y : g (y) > tg + X+ for

all t 2 R, the function ĝ is quasiconcave and lower semicontinuous. By Theorem 36, ĝ (x) =
min�2� Ĝ� (h�; xi) for all x 2 X. Hence, given y 2 Y , there is �y 2 � such that ĝ (y) =

Ĝ�y (h�y; yi) � G�y (h�y; yi) � g (y) = ĝ (y). Hence, g (y) = min�2�G� (h�; yi).
If Y is only lower open, consider the lower semicontinuous envelope ĝ� of ĝ, simply

denoted by ~g. Since ĝ is monotone and quasiconcave so is ~g (see Lemma 30). More-

over, ~g extends g. In fact, for all y 2 Y , ~g (y) = supn ĝ (y � n�1e) = limn ĝ (y � n�1e) =

limn g (y � n�1e) since eventually y � n�1e 2 Y , and, by monotonicity and lower semiconti-
nuity of g on Y , g (y) � limn g (y � n�1e) � g (y). By proceeding as in the �rst part of the

proof, we can then prove that (44) holds.26

(ii) Suppose that g is upper semicontinuous and that Y is either upper open or it is an

order interval [w; z]. Consider the function ĝ : X ! [�1;1] de�ned in (45). From point

(i) we know that ĝ is the minimal monotone extension of g to X, and that ĝ is quasiconcave.

By Lemma 29, its upper semicontinuous envelope ĝ+ is monotone and quasiconcave too.

Denote it by �g. Next we show that �g extends g.

� If Y is upper open. Let y 2 Y , then �g (y) = infn ĝ (y + n�1e) = limn ĝ (y + n�1e) =

limn g (y + n�1e) since eventually y+n�1e 2 Y , and, by monotonicity and lower semi-
continuity of g on Y , g (y) � limn g (y + n�1e) � g (y).

� If Y = [w; z], for some w; z 2 X. We show that ĝ is upper semicontinuous on X, then
ĝ = ĝ+ = �g, and �g extends g, since ĝ does. Let x 2 X+ + w. For all y 2 Y such

that y � x, then y � x ^ z � x and w � y � x ^ z � z imply that x ^ z 2 Y and

g (y) � g (x ^ z), thus g (y) � g (x ^ z) � ĝ (x). Since this is true for all y 2 Y such that
y � x, then ĝ (x) = sup fg (y) : Y 3 y � xg � g (x ^ z) � ĝ (x); but the choice of x was

arbitrary, hence ĝ (x) = g (x ^ z) for all x 2 X+ + w. If xn; x 2 X+ + w and xn ! x,

then xn ^ z ! x ^ z and lim supn ĝ (xn) = lim supn g (xn ^ z) � g (x ^ z) = ĝ (x).

This shows that ĝ is upper semicontinuous on the closed set X+ + w. Together with

ĝ (x) = �1 for all x =2 X+ + w, this shows that ĝ is upper semicontinuous on X.

26By Theorem 36, ~g (x) = min�2� ~G� (h�; xi), for all x 2 X. Hence, given y 2 Y , there is �y 2 � such that

~g (y) = ~G�y (h�y; yi) � G�y (h�y; yi) � g (y) = ~g (y). Hence, g (y) = min�2�G� (h�; yi).
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For all (t; �) 2 R��, G� (t) = sup fg (x) : x 2 Y; h�; xi � tg = sup f�g (x) : x 2 Y; h�; xi � tg
� sup f�g (x) : x 2 X; h�; xi � tg = �G� (t). By Theorem 36, for all y 2 Y , g (y) = �g (y)

= inf�2� �G� (h�; yi) � inf�2�G� (h�; yi) � g (y), as desired. �

Corollary 38 Let g : X (T ) ! R be quasiconcave and monotone. If g is continuous, then
g (x) = inf�2�G� (h�; xi) for all x 2 X (T ). In particular, the in�mum are attained if T is

lower open.

A.2.2 Concavity

The next two corollaries of Theorem 36, proved in [7], give some characterizations of con-

cavity. Here g� : X� ! [�1;1] denotes the classic (concave) Fenchel conjugate of g, given
by g� (�) = infx2X fh�; xi � g (x)g for all � 2 X�.

Corollary 39 Let g : X ! R be evenly quasiconcave and monotone. The following facts

are equivalent:

(i) g is concave;

(ii) G� is concave for each � 2 �;

(iii) G� (t) = inf�2R+ f�t� g� (��)g for each (t; �) 2 R��.

In particular, dom (G�) 2 f;;Rg for all � 2 �.

Next we consider normalized functions.

Corollary 40 Let g : X ! [�1;1] be monotone and evenly quasiconcave. g is normalized
if and only if inf�2�G� (t) = t for all t 2 R. Moreover, the following properties are equivalent:

(i) g is concave and normalized;

(ii) g is translation invariant and g (0) = 0;

(iii) G� (t) = t� g� (�) for each t 2 R and � 2 �.
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A.2.3 Topological Representation

Next we give a topological version of Theorem 36. Also in this case we only consider the

monotone case, and we refer to [7] for the general case and for a proof.

Theorem 41 A function g : X ! R is uniformly continuous, quasiconcave, and monotone
if and only if g (x) = min�2�G� (h�; xi) for all x 2 X, dom (G�) 2 f;;Rg for all � 2 �, and
fG�g�2�:dom(G�)=R are uniformly equicontinuous.

27

A.2.4 Uniqueness

Theorem 5 is based on the following result, proved in [7].

Lemma 42 Suppose g : X ! [�1;1] and G : R � � ! [�1;1] satisfy the following
conditions:

(i) limt!1G (t; �) = limt!1G (t; �
0) for all �; �0 2 �;

(ii) G (�; �) is increasing for each � 2 �;

(iii) G is lower semicontinuous and quasiconvex on R��;

(iv) g (x) = inf�2�G (h�; xi ; �) for all x 2 X.

Then, G (t; �) = supx2X:h�;xi�t g (x) = G� (t) for all (t; �) 2 R��:

Remark 43 Since � 7! G (h�; xi ; �) is lower semicontinuous, the inf in (iv) is attained.

A.2.5 Positively Homogeneous Functionals

As proved in [7], Theorem 41 takes a special form for positively homogeneous and quasicon-

cave functionals such that g (x) 6= 0 for some x 2 X+. Begin with a lemma.

Lemma 44 Let e� be a nonempty, closed, and convex subset of �, c1 : e�! (0;1) concave
and upper semicontinuous, and c2 : e�! (0;1] convex and lower semicontinuous. Let

G (t; �) =

8>><>>:
t

c1(�)
if t � 0 and � 2 e�

t
c2(�)

if t � 0 and � 2 e�
1 if � 2 � n e�

27That is, for every " > 0 there is � > 0 such that jt� t0j � � implies jG� (t)�G� (t0)j � ", for all t; t0 2 R
and all � 2 � such that dom (G�) = R.
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and

g (x) = inf
�2�

G (h�; xi ; �) 8x 2 X: (46)

Then g is �nite, monotone, upper semicontinuous, positively homogeneous, quasiconcave and

g (x) = min
�2e�

�
h�; xi+

c1 (�)
� h�; xi

�

c2 (�)

�
8x 2 X: (47)

Moreover:

� G� (t) = G (t; �) for all (t; �) 2 R��;

� if e� is a nonempty, closed, and convex subset of �, d1 : e� ! (0;1) is concave and
upper semicontinuous, d2 : e�! (0;1] is convex and lower semicontinuous, and

g (x) = min
�2e�

�
h�; xi+

d1 (�)
� h�; xi

�

d2 (�)

�
8x 2 X (48)

then
�e�; d1; d2� = �e�; c1; c2�;

� g is non-negative and concave on e�� =
n
x 2 X : h�; xi � 0 for all � 2 e�o;

� g concave on X if and only if c1 (�) � c2 (�) for all � 2 e�.
We can now state the announced version of Theorem 41.

Theorem 45 Let g : X ! R be such that g (x) 6= 0 for some x 2 X+. Then g is monotone,

quasiconcave, uniformly continuous, and positively homogeneous if and only if

g (x) = min
�2�

G� (h�; xi) 8x 2 X (49)

and there exist a nonempty, closed, and convex subset e� of �, c1 : e� ! (0;1) concave
and upper semicontinuous with inf�2e� c1 (�) > 0, and c2 : e� ! (0;1] convex and lower
semicontinuous, such that

G� (t) =

8>><>>:
t

c1(�)
if t � 0 and � 2 e�

t
c2(�)

if t � 0 and � 2 e�
1 if � 2 � n e�: (50)

Moreover, g is normalized if and only if max�2e� c1 (�) = min�2e� c2 (�) = 1.
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A.3 Continuity of Monotone Functionals

A.3.1 Lower and Upper Continuity

Lemma 46 Let Y be lower open and convex. For a monotone function g : Y ! R the

following conditions are equivalent:

(i) g is left continuous;

(ii) g is lower semicontinuous;

(iii) for any c 2 R and x; y 2 Y , the set f� 2 [0; 1] : g (�x+ (1� �) y) � cg is closed;

(iv) for any c 2 R and x; y 2 Y with y � x and g (x) > c, there is � 2 (0; 1) such that
g (�x+ (1� �) y) > c.

Proof. (i) implies (ii). Let c 2 R, S (g; c) = fx 2 Y : g (x) � cg. We want to show

that, fxngn2N � S (g; c) and xn ! x 2 Y imply x 2 S (g; c). There is "0 > 0 such that

x � "e 2 Y for all " 2 [0; "0]. Let "m > 0 be such that f"mgm2N 2 [0; "0] and "m # 0.
Then x � "me 2 Y for all m 2 N. Since xn ! x, for all m 2 N there is nm 2 N such

that x� "me � xnm and monotonicity implies g (x� "me) � g (xnm) � c, and left continuity

guarantees g (x) = limm g (x� "me) � c. (This implication does not require convexity.)

(ii) implies (iii). Let c 2 R and x; y 2 Y . Since Y is convex, �x + (1� �) y 2 Y for all

� 2 [0; 1]. Let f�ngn2N � [0; 1] be such that �n ! �0 and g (�nx+ (1� �n) y) � c. Then

�nx+(1� �n) y 2 S (g; c) and �nx+(1� �n) y ! �0x+(1� �0) y 2 Y , lower semicontinuity
implies �0x+(1� �0) y 2 S (g; c) (i.e. g (�0x+ (1� �0) y) � c). (This implication does not

require lower openness.)

(iii) implies (iv). Let c 2 R and x; y 2 Y (with y � x) and g (x) > c. Assume, per contra,

g (�x+ (1� �) y) � c for all � 2 (0; 1). By (iii) the setA = f� 2 [0; 1] : g (�x+ (1� �) y) � cg
is closed, thus (0; 1) � A implies [0; 1] = A and (for � = 1) we have g (x) � c, which is

absurd. (This implication does not require lower openness.)

(iv) implies (i). Let xn % x0 in Y . Monotonicity guarantees g (xn) " c � g (x0). Assume,

per contra, g (x0) > c. By (iv), for each y 2 Y with y � x0, there is �y 2 (0; 1) such

that g ((1� �y)x0 + �yy) > c. Take "0 > 0 such that x0 � "0e 2 Y . Set y = x0 � "0e

and notice that Y 3 (1� �y)x0 + �yy = x0 � �yx0 + �yx0 � �y"0e = x0 � �y"0e. Since

xn ! x0, there is �n 2 N such that xn � x0 � �y"e = (1� �y)x0 + �yy for all n � �n and

g (xn) � g ((1� �y)x0 + �yy) > c, which is absurd. �

If X is hyper-Archimedean, and Y is replaced by a (non-necessarily lower open) set of

the form X (T ) the above results still hold; more indeed is true:
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Proposition 47 Let X be hyper-Archimedean. For a monotone function g : X (T ) !
R, conditions (i)-(iv) of Lemma 46 are equivalent. Moreover, lower semicontinuity is also
equivalent to the following conditions:

(v) for any k 2 T , c 2 R and x 2 X (T ), the set f� 2 [0; 1] : g (�x+ (1� �) ke) � cg is
closed;

(vi) for any k 2 T , c 2 R and x 2 X (T ) with g (x) > c, there is � 2 (0; 1) such that
g (�x+ (1� �) ke) > c.

(vii) for any k 2 T , c 2 R and x 2 X (T ) with ke � x and g (x) > c, there is � 2 (0; 1)
such that g (�x+ (1� �) ke) > c.

Lemma 48 Let X be hyper-Archimedean. If xn; x0 2 X (T ), xn ! x0, and ess inf (x0) =

inf T , then for all � 2 (0; 1) there is �n = �n� 2 N such that xn � �x0 + (1� �) (inf T ) e for

all n � �n.

Proof. Wlog, X = B0 (S;�) and e = 1S. The condition ess inf (x0) = inf T implies

inf T 2 T .
Let inf T = 0. There exists a partition fA0; A1; :::; Amg of S in � and 0 = �0 < �1 <

::: < �m such that x0 =
Pm

i=0 �i1Ai. Take " = mini=1;:::;m �i � ��i > 0. Since xn ! x0 there

exists �n 2 N such that
x0 � "e � xn � x0 + "e 8n � �n:

In particular, for all n � �n, if s 2 A0, �x0 (s) = 0 � xn (s), else there is i 2 f1; :::;mg such
that s 2 Ai and

xn (s) � x0 (s)� " � �i + ��i � �i = ��i = �x0 (s)

and xn � �x0, as wanted.

Let inf T = t, then xn� te; x0� te 2 X (T � t), xn� te! x0� te, and ess inf (x0 � te) =

ess inf (x0)� t = 0 = inf (T � t). By what we have just shown, for all � 2 (0; 1) there exists
�n 2 N such that xn � te � � (x0 � te) + (1� �) (inf T � t) e = �x0 + (1� �) (inf T ) e � te

and xn � �x0 + (1� �) (inf T ) e for all n � �n. �

Proof of Proposition 47. If T is lower open, then X (T ) is lower open too, and Lemma

46 delivers the equivalence of (i)-(iv). Assume t = inf T 2 T .

(i) implies (ii). Let c 2 R, S (g; c) = fx 2 X (T ) : g (x) � cg. We want to show that,
fxngn2N � S (g; c) and xn ! x 2 X (T ) imply x 2 S (g; c). Let "m > 0 be such that

"m # 0 and set ym = (x� "me) _ te for all m 2 N. fymgm2N � X (T ) and ym % x. In
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fact, T 3 t � ess inf ((x� "me) _ te) � ess sup (((x� "me) _ te)) = ess sup ((x� "me)) _ t �
ess sup (x) 2 T , moreover, (x� "me) � (x� "m+1e) implies (x� "me) � (x� "m+1e) _ te
and (x� "me)_te � (x� "m+1e)_te, thus ym is increasing and x�"me � (x� "me)_te � x

implies ym ! x. Since xn ! x, for all m 2 N there is nm 2 N such that x� "me � xnm and

xnm 2 X (T ) implies te � xnm, whence ym � xnm and g (ym) � g (xnm) � c, left continuity

guarantees g (x) = limm g (ym) � c.28

(ii) implies (iii) and (iii) implies (iv) are proved in exactly the same way as in Lemma

46.

(iv) implies (i). Let xn % x0 in X (T ). Monotonicity guarantees g (xn) " c � g (x0).

Assume, per contra, g (x0) > c. By (iv), for each y 2 X (T ) with y � x0, there is �y 2 (0; 1)
such that g ((1� �y)x0 + �yy) > c. If ess inf (x0) > inf T , there is "0 > 0 such that x0�"0e 2
X (T ). Set y = x0�"0e and notice thatX (T ) 3 (1� �y)x0+�yy = x0��yx0+�yx0��y"0e =
x0� �y"0e. Since xn ! x0, there is �n 2 N such that xn � x0� �y"e = (1� �y)x0 + �yy for

all n � �n and g (xn) � g ((1� �y)x0 + �yy) > c, which is absurd.

Else if ess inf (x0) = inf T = t. Set y = te, by Lemma 48, there is �n = �n�y 2 N such that
xn � �yx0+(1� �) y for all n � �n, and g (xn) � g ((1� �y)x0 + �yy) > c, which is absurd.

We have shown that (i) ) (ii) ) (iii) ) (iv) ) (i).

Clearly (iii) implies (v), the proof of (v) implies (vi) is almost identical to the one of (iii)

implies (iv), and obviously, (vi) implies (vii). It only remains to show that (vii) implies (i),

which is almost identical to (iv) ) (i):

(vii) implies (i). Let xn % x0 in X (T ). Monotonicity guarantees g (xn) " c � g (x0).

Assume, per contra, g (x0) > c. By (vii), for each k 2 T with ke � x0, there is �k 2 (0; 1) such
that g ((1� �k)x0 + �kke) > c. If ess inf (x0) > inf T , choose k 2 T such that ess inf (x0) >
k > inf T , and set " = ess inf (x0)�k > 0. Then x0�"e 2 X (T ) and x0��k"e 2 X (T ) too.
In fact, inf T < k = ess inf (x0)� " = ess inf (x0 � "e) � ess sup (x0 � "e) � ess sup (x0) 2 T .
Therefore there is �n 2 N such that xn � x0 � �k"e = x0 � �kess inf (x0) e + �kke �
x0��kx0+�kke = (1� �k)x0+�kke for all n � �n and g (xn) � g ((1� �k)x0 + �kke) > c,

which is absurd.

Else if ess inf (x0) = inf T = t. Set k = t, by Lemma 48, there is �n = �n�k 2 N such that
xn � �kx0 + (1� �k) ke for all n � �n, and g (xn) � g ((1� �k)x0 + �kke) > c, which is

absurd. �
28Notice that we did not use the hyper-archimedean assumption. Therefore a monotone function g :

X (T ) ! R is left continuous if and only if it is lower semicontinuous. (For the �if� part, observe that

xn ! x in X (T ) and xn � xn+1 for all n 2 N imply xn � x for all n 2 N. Monotonicity of g implies
g (xn) " c � g (x) and lower semicontinuity delivers c = limn g (xn) � g (x).
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Very similar results hold for upper semicontinuity: just observe that g (x) from X (T ) to

R is lower semicontinuous and monotone if and only if �g (�x) from X (�T ) to R is upper
semicontinuous and monotone.

A.3.2 Uniform Continuity and Lipschitzianity

Proposition 49 For a monotone g : X (T )! R the following properties are equivalent:

(i) g is uniformly continuous on X (T );

(ii) for every " > 0 there is � 2 (0; supT � inf T ) such that

g (x+ �e) � g (x) + " (51)

for all x 2 X (T ) with x+ �e 2 X (T ).

Notice that if T is bounded and � > supT � inf T , then (iii) is vacuously satis�ed since
there is no x 2 X (T ) such that x+ �e 2 X (T ).

Proof. (i) implies (ii). Fix " > 0 and let �0 > 0 be such that kx� yk � �0 implies

jg (x)� g (y)j � ". Set � = 2�1min f�0; supT � inf Tg. If x; x+�e 2 X (T ), then g (x+ �e)�
g (x) � jg (x+ �e)� g (x)j � ".

(ii) implies (i). Fix " > 0 and let � 2 (0; supT � inf T ) be such that g (x+ �e) � g (x)+"

for all x 2 X (T ) such that x + �e 2 X (T ). Notice that if x and x � �e belong to X (T ),

then (x� �e) and (x� �e) + �e 2 X (T ). Thus, g (x) = g ((x� �e) + �e) � g (x� �e) + "

and g (x� �e) � g (x)� ". Let x; y 2 X (T ) be such that kx� yk � �. Then

x� �e � y � x+ �e: (52)

Moreover:

Claim. There exist t; � 2 T such that t+ � � � and te � x; y � �e.

Proof of the Claim. Set t0 = ess inf (x ^ y) = ess inf (x) ^ ess inf (y) 2 T and � 0 =

ess sup (x _ y) = ess sup (x) _ ess sup (y) 2 T . Clearly t0 � � 0 and t0e � x; y � � 0e. If

� 0 � t0 � � set t = t0 and � = � 0. Otherwise, consider the following cases: (i) if T is

unbounded above, set t = t0 and � = � 0 + �; (ii) if T is unbounded below, set t = t0 � � and

� = � 0; (iii) if T is bounded consider two sequences t0n and �
0
n in T such t01 = t0, � 01 = � 0,

t0n # inf T , � 0n " supT . For all n � 1, t0ne � x; y � � 0ne and �
0
n � t0n ! supT � inf T > �.

Hence there is �n 2 N such that � 0�n � t0�n > �; set t = t0�n and � = � 0�n. �
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Since

t � ess inf ((x� �e) _ te) � ess sup ((x� �e) _ te) � ess sup (x) � �

t � ess inf (x) � ess inf ((x+ �e) ^ �e) � ess sup ((x+ �e) ^ �e) � �

t � ess inf (x) � ess inf (x _ (t+ �) e) � ess sup (x _ (t+ �) e) = ess sup (x) _ (t+ �) � �

t � ess inf (x) ^ (� � �) = ess inf (x ^ (� � �) e) � ess sup (x ^ (� � �) e) � ess sup (x) � �

then (x� �e) _ te; (x+ �e) ^ �e, x _ (t+ �) e, x ^ (� � �) e 2 X (T ), as well as

(x _ (t+ �) e)��e = (x� �e)_te 2 X (T ) and (x ^ (� � �) e)+�e = (x+ �e)^�e 2 X (T ) :
(53)

From (52) we have (x� �e) _ te � y � (x+ �e) ^ �e. By monotonicity, (53), and the
choice of �, g (x)� " � g ((x _ (t+ �) e))� " � g ((x _ (t+ �) e)� �e) = g ((x� �e) _ te) �
g (y) � g ((x+ �e) ^ �e) = g ((x ^ (� � �) e) + �e) � g ((x ^ (� � �) e)) + " � g (x) + ", and

so g (x)� " � g (y) � g (x) + ", as desired. �

A similar argument, can be used to prove the following variation:

Proposition 50 A monotone g : X (T ) �! R is `-Lipschitz on X (T ) if and only if

g (x+ �e) � g (x) + `� for all x 2 X (T ) and all � > 0 such that x+ �e 2 X (T ).

A.3.3 Linear Continuity

Lemma 51 If G 2 G (T ��), then g (x) = inf�2�G (h�; xi ; �) for all x 2 X (T ) is �nite,

(evenly) quasiconcave, monotone, normalized, and G (t; �) � G� (t) for all (t; �) 2 T ��.

Proof. We only assume G : T�� ! (�1;1] is increasing in the �rst component and
infp2�G (t; p) = t for all t 2 T .
We �rst prove monotonicity: if x � y, then h�; xi � h�; yi for all � 2 �, and monotonicity

of G (�; �) implies that G (h�; xi ; �) � G (h�; yi ; �), and hence g (x) � g (y).

As to normalization: g (te) = inf�2�G (h�; tei ; �) = inf�2�G (t; �) = t for all t 2 T .
Finiteness follows from monotonicity and normalization, in fact, for all x 2 X (T ),

ess inf (x) e � x � ess sup (x) e implies ess inf (x) � g (x) � ess sup (x).
Next we show (even) quasiconcavity: Let � 2 R. As observed, X (T ) is evenly quasicon-

vex, thus the set

L = X (T ) \
\

(�;b)2��R:[�>b]�fy2X(T ):g(y)�ag

[� > b]

is evenly quasiconvex and contains fy 2 X (T ) : g (y) � ag.
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Let �x =2 fy 2 X (T ) : g (y) � ag. Then, either �x =2 X (T ) and so �x =2 L; or �x 2 X (T )

and a > g (�x) = inf�2�G (h�; �xi ; �), then there is �� 2 � such that G
�

��; �x
�
; ��
�
< a,

and g (y) � G
�

��; y
�
; ��
�
� G

�

��; �x
�
; ��
�
< a for all y 2 X (T ) such that �� (y) � �� (�x),

that is
�
y 2 X (T ) : �� (y) � �� (�x)

	
� fy 2 X (T ) : g (y) < ag and fy 2 X (T ) : g (y) � ag ��

y 2 X (T ) : �� (y) > �� (�x)
	
�
�
�� > �� (�x)

�
. Thus�

��; �� (�x)
�
2 �� R :

�
�� > �� (�x)

�
� fy 2 X (T ) : g (y) � ag :

But, �x =2
�
�� > �� (�x)

�
, and so �x =2 L. Therefore, L is contained fy 2 X (T ) : g (y) � ag, and

the two sets coincide.

Moreover, for all
�
�t; ��
�
2 T � �, and all y 2 X (T ) such that



��; y
�
� �t, then g (y) =

inf�2�G (h�; yi ; �) � G
�

��; y
�
; ��
�
� G

�
�t; ��
�
. Therefore, G�� (�t) = supy2X(T ):h��;yi��t g (y) �

G
�
�t; ��
�
. �

Lemma 52 If G 2 H (T ��), then g : X (T )! R de�ned by g (x) = inf�2�G (h�; xi ; �) is
continuous and the inf is attained for all x 2 X (T ).

Proof. The proof is divided into several claims that are used in di¤erent parts of the paper.

Let G : T �� ! [�1;1] be lower semicontinuous. De�ne � : X (T ) �� ! [�1;1]
by � (x; �) = G (h�; xi ; �) for all (x; �) 2 X (T )��.
Claim 1. � is lower semicontinuous on X (T )��.
Proof of Claim 1. Consider a net f(x�; ��)g in X (T ) � � such that (x�; ��) ! (x; �) 2
X (T )��. This is equivalent to x� ! x and �� ! �. It follows that h��; x�i ! h�; xi. In fact,
jh��; x�i � h�; xij � jh��; x�i � h��; xij+jh��; xi � h�; xij = jh��; x� � xij+jh��; xi � h�; xij �
k��k kx� � xk+ jh��; xi � h�; xij = kx� � xk+ jh��; xi � h�; xij ! 0. Since G is lower semi-

continuous, it then follows that lim inf
�

� (x�; ��) = lim inf
�

G (h��; x�i ; ��) � G (h�; xi ; �) =
� (x; �), as wanted. �
In particular, � (x; �) : � ! [�1;1] is lower semicontinuous on � for all x 2 X (T ),

thus

g (x) = inf
�2�

� (x; �) = min
�2�

� (x; �) = min
�2�

G (h�; xi ; �) (54)

that is the inf is attained.

Claim 2. g is lower semicontinuous on X (T ).

Proof of Claim 2. Consider a sequence fxng in X (T ) such that xn ! x 2 X (T ). Then,
there exists a subsequence fxnkg such that lim infn g (xn) = limk g (xnk). Furthermore, by

(54), for each k there exists �nk 2 � such that g (xnk) = � (xnk ; �nk). Since � is compact,

there exists a subnet
�
�nk�

	
such that �nk� ! �� 2 �. By Claim 1, lim infn g (xn) =

limk g (xnk) = lim� g
�
xnk�

�
= lim� �

�
xnk� ; �nk�

�
� �

�
x; ��
�
� min�2� � (x; �) = g (x), as

wanted. �
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Now assume G 2 H (T ��), since G (�; �) is extended-valued continuous on T for each
� 2 �, then it is upper semicontinuous on T for each � 2 �. Therefore � (�; �) : X (T ) !
[�1;1] is upper semicontinuous on X (T ) for all � 2 �,29 �nally g (�) = inf�2� � (�; �) is
upper semicontinuous too. �

Lemma 53 If G 2 E (T ��), then g (x) = inf�2�G (h�; xi ; �) for all x 2 X (T ) is uni-

formly continuous.

Proof. By de�nition, given " > 0, there is � > 0 such that jG (t; �)�G (t0; �)j � " for all

� 2 � with dom (G (�; �)) = T , and all t; t0 2 R with jt� t0j � �.

Take x; y 2 X (T ) such that kx� yk � �. Since g (x) 2 R (see Lemma 51), there is

�x 2 � such that g (x) � G (h�x; xi ; �x) � ", and it must be the case that dom (G (�; �x)) =
T . Moreover, since kx� yk � �, then jh�x; xi � h�x; yij � k�xk kx� yk � �. By uniform

equicontinuity jG (h�x; xi ; �x)�G (h�x; yi ; �x)j � ", and soG (h�x; yi ; �x)�G (h�x; xi ; �x) � "

thus g (x) � G (h�x; xi ; �x)� " � G (h�x; yi ; �x)� 2" � inf�2�G (h�; yi ; �)� 2" = g (y)� 2".
Exchanging the roles of x and y, we get jg (x)� g (y)j � 2" for all x; y 2 X (T ) such that

kx� yk � �, and so g is uniformly continuous. �

A.3.4 Monotone Continuity on Function Spaces

Theorem 54 Let � be a �-algebra, and I : B0 (�)! R be such that

I (') = inf
p2�

G

�Z
'dp; p

�
(55)

where G : R�� ! (�1;1] is jointly lower semicontinuous, grounded,30 and increasing in
the �rst component. The following conditions are equivalent:

(i) I is monotone continuous (i.e., I ('n) " I (') if 'n " ');

(ii) if ';  2 B0 (�), k 2 R, and � 3 En # ;, then I ( ) > I (') implies that there exists

n 2 N such that I
�
k1En +  1Ecn

�
> I (');

(iii) G (�; p) � 1 for all p =2 ��;

(iv) there is q 2 �� such that fp 2 � : G (t; p) � �g is a weakly compact subset of �� (q)

for all t; � 2 R.

(v) there is q 2 �� such that G (�; p) � 1 for all p =2 �� (q);

29Let � 2 �, if fxng in X (T ) and xn ! x 2 X (T ), then h�; xni ! h�; xi and lim supnG (h�; xni ; �) �
G (h�; xi ; �).
30That is, such that infp2�G (t; p) = t for all t 2 R.
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Proof. We will use the following claim.

Claim. Let P be a subset of �. The following statements are equivalent:

(a) G (�; p) � 1 for all p =2 P ;

(b)
[
t;�2R

fp 2 � : G (t; p) � �g � P ;

(c)
1[

m;n=1

fp 2 � : G (m; p) � ng � P .

Proof of the Claim. If there exists �p =2 P such that �p 2
[
t;�2R

fp 2 � : G (t; p) � �g, then

G (�t; �p) � �� for some �t; �� 2 R and G (�; �p) 6� 1. That is not (b) implies not (a), and (a)
implies (b).

Clearly (b) implies (c).

If there exists �p =2 P such that G (�; �p) 6� 1, then there is �t 2 R such that G (�t; �p) <1,
therefore there is �n 2 N such that G (�t; �p) � �n and, by monotonicity of G (�; �p), for all �m � �t,

G ( �m; �p) � �n, thus exists �p =2 P such that �p 2
1[

m;n=1

fp 2 � : G (m; p) � ng. That is not (a)

implies not (c), and (c) implies (a). �
(i) implies (ii). Suppose �rst that k � min . Set  n = k1En +  1Ecn, then  n "  

and I ( n) " I ( ). Therefore there is n0 such that I ( n0) > I ('). If k > min , then

k1En +  1Ecn � (min ) 1En +  1Ecn, but there is n0 such that I
�
(min ) 1En0 +  1Ecn0

�
>

I ('), by monotonicity I
�
k1En0 +  1Ecn0

�
� I

�
(min ) 1En0 +  1Ecn0

�
> I (').

(ii) implies (iii). By the Claim, it is enough to show that fp 2 � : G (t; p) � �g � ��

for all t and � in R. Let En # ; and r 2 fp 2 � : G (t; p) � �g. Set ' � � and  � � with

� > �_0. For each k > 0 there is nk � 1 such that � = I (') < I
�
�k1Enk + �1Ecnk

�
.31 Thus,

since �k1Enk + �1Ecnk � �k1En + �1Ecn for all n � nk, it follows � < I
�
�k1En + �1Ecn

�
=

infp2�G
�

p;�k1En + �1Ecn

�
; p
�
for all n � nk. If



r;�k1En + �1Ecn

�
� t for some n � nk,

monotonicity of G (�; r) implies infp2�G
�

p;�k1En + �1Ecn

�
; p
�
� G

�

r;�k1En + �1Ecn

�
; r
�

� G (t; r) � �, which is absurd. Conclude that


r;�k1En + �1Ecn

�
> t for all n � nk hence

r (En) < k�1 (� � t) and so limn r (En) � k�1 (� � t) for each k > 0, �nally limn r (En) = 0,

i.e., r 2 ��.

(iii) implies (iv). By (iii) and the Claim, fp 2 � : G (t; p) � �g � �� for all t; � 2 R,
moreover it is weak* compact (by lower semicontinuity of G), and so, being included in ��,

weakly compact (e.g., [24, Prop. 2.13]). Then, for all m;n 2 N, there is q(n;m) 2 �� such

31The �rst equality descends from the normalization of I that corresponds to the groundedness of G.
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that p� q(n;m) whenever p 2 � and G (m; p) � n. Given an enumeration h : N�N! N of

N� N, set q =
P

(n;m)2N�N 2
�h(n;m)q(n;m). Then,

1[
m;n=1

fp 2 � : G (m; p) � ng � �� (q). Let

t; � 2 R, and choose m < t and n � �, then G (t; p) � � and monotonicity of G (�; p) implies
G (m; p) � G (t; p) � � � n, that is fp 2 � : G (t; p) � �g � fp 2 � : G (m; p) � ng �
�� (q).

(iv) implies (v) descends immediately from the claim.

(v) implies (i). Let 'n " '0. For each n � 0, de�ne 
n : � ! (�1;+1] by 
n (p) =
G
�R

'ndp; p
�
. Each 
n is weak* lower semicontinuous, and the sequence f
ng is increasing.

Moreover, 
n pointwise converges to 
0, i.e., 
n " 
0. For, if p 2 �� (q), then
R
'ndp "

R
'0dp

by the Levi Monotone Converge Theorem (notice that '1 is bounded below), and so, since

G (�; p) is lower semicontinuous and increasing on R, limnG
�R

'ndp; p
�
= G

�R
'0dp; p

�
. If

p =2 �� (q), then 
n (p) =1 for all n 2 N.
We conclude that 
n pointwise converges (and so, by [14, Rem. 5.5], �-converges) to 
0.

By [14, Thm. 7.4], minp2� 
n (p)! minp2� 
0 (p), that is I ('n)! I ('0), and monotonicity

of I delivers: I ('n) " I ('0). �

B Integrals which are Concave Functionals

Let � : R ! R be an increasing and concave function. Motivated by the study of smooth
preferences, we are interested in the concave functionals g : X ! R given by

g (x) =

Z
�

� (h�; xi) d� (�) 8x 2 X (56)

where � is a countably additive Borel probability measure on the simplex �, i.e. � 2
�� (B (�)).
To study the functional (56) we need some notation: ca (B (�)) is the set of all countably

additive elements of ba (B (�)), ca+ (B (�)) = ca (B (�)) \ ba+ (B (�)) is its positive cone.
Moreover, ba (B (�) ; �) = f� 2 ba (B (�)) : B 2 B (�) and � (B) = 0 implies � (B) = 0g is
(isometrically isomorphic to, e.g., [55, Ch. IV.9]) the dual of L1 (�) = L1 (�;B (�) ; �)
and ca (B (�) ; �) = ca (B (�)) \ ba (B (�) ; �) is (isometrically isomorphic to) L1 (�) (via
the Radon-Nikodym derivative � 7! d�=d�).

Consider the mapping A : X ! L1 (�) de�ned by Ax = h�; xi for all x 2 X. A is well

de�ned since h�; xi is a¢ ne and continuous on the compact set�, then it belongs to L1 (�). A
is linear, in fact, for all x; y 2 X and � 2 R, A (�x+ y) (�) = h�; �x+ yi = � h�; xi+h�; yi =
� (Ax) (�) + (Ay) (�) = (�Ax+ Ay) (�) for all � 2 �, hence A (�x+ y) = �Ax + Ay. A

is bounded, in fact, jAx (�)j = jh�; xij � k�k kxk = kxk for all � 2 � and x 2 X, thus
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kAxkL1(�) � 1 kxk for all x 2 X, and kjAjk � 1. Then A is continuous, and obviously

positive.

Its adjoint is A� : ba (B (�) ; �) ! X� is de�ned, for all � 2 ba (B (�) ; �) by A�� = �A,

that is

hA��; xi = h�; Axi =
Z
�

Axd� =

Z
�

h�; xi d� (�) 8x 2 X: (57)

A� is continuous and A�� is denoted by
R
�
�d� (�) in view of (57).

Moreover, A� is obviously positive, and it preserves the norm between the positive cones

ba+ (B (�)) and X�
+. In fact, if � 2 ba+ (B (�) ; �), then k�kba(B(�);�) = � (�) =

R
�
1d� =R

�
h�; ei d� (�) = hA��; ei = kA��kX�.

For � 2 X�
+, set � (�) = (A

�)�1 (�) \ ca+ (B (�) ; �) = f� 2 ca+ (B (�) ; �) : A�� = �g =�
� 2 ca+ (B (�) ; �) :

R
�
�d� (�) = �

	
. � (�) is a (possibly empty) closed and convex (hence

weakly closed) subset of ca+ (B (�) ; �) and � (�) = � (e) for all � 2 � (�).32 In particular,
if � 2 �, then � (�) =

�
� 2 �� (�) :

R
�
�d� (�) = �

	
. Finally, in this case, for all k > 0,

� (k�) = k� (�), and the same is true for k = 0 if � (�) 6= ;, while � (k�) = f0g 6= k� (�) = ;
if k = 0 and � (�) = ;. In fact,

� if k > 0, then 
 2 ca+ (B (�) ; �) and A�
 = �, implies k
 2 ca+ (B (�) ; �) and
A�k
 = k�, that is k� (�) � � (k�), conversely, if � 2 ca+ (B (�) ; �) and A�� = k�,

then 
 = k�1� 2 ca+ (B (�) ; �) and A�
 = A�k�1� = k�1A�� = �, and � = k
, that

is � (k�) � k� (�);

� if k = 0, then � 2 ca+ (B (�) ; �) and A�� = 0 imply k�kba(B(�);�) = kA��kX� = 0 and

� = 0, that is � (k�) = f0g, while k� (�) = f0g if � (�) 6= ; and k� (�) = ; if � (�) = ;.

Theorem 55 The functional (56) is �nite, concave, continuous and monotone on X. Its

conjugate is g� (�) = sup
nR

�
��
�
d�
d�
(�)
�
d� (�) : � 2 � (�)

o
for all � 2 X�, with the conven-

tion g� (�) = �1 if � (�) = ;. Moreover, for all (t; �) 2 R��,

G� (t) =

8<: inf
n
infk�0

h
tk �

R
�
��
�
k d�
d�
(�)
�
d� (�)

i
: � 2 � (�)

o
if � (�) 6= ;

supk2R � (k) if � (�) = ;:

Proof. The properties of the functional g may be easily obtained directly but we shall get

them frommore general results. Our starting point is the functional I� (u) =
R
�
� (u (�)) d� (�)

de�ned for u 2 L1 (�). This is a normal concave integral, studied by [47] and [48].
32(A�)

�1
(�) is closed in ba (B (�) ; �) since A� is continuous, while ca+ (B (�) ; �) is closed in ca (B (�) ; �)

which is a complete subspace of ba (B (�) ; �). Moreover, for all � 2 � (�), � � 0 and A�� = �, hence

� (�) = hA��; ei = � (e).
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By [48, Corollary 2A], I� is �nite, concave, and continuous; monotonicity immediately

descends from that of �. Moreover, the conjugate I�� : ba (B (�) ; �) ! [�1;1) of I� is
given by

I�� (�) = I�� (u
�) =

Z
�

�� (u� (�)) d� (�) (58)

if there exists u� 2 L1 (�) such that � (u) =
R
�
u (�)u� (�) d� (�) for all u 2 L1 (�), while

I�� (�) = �1 otherwise. By the Radon-Nikodym Theorem, the condition �there exists

u� 2 L1 (�) such that � (u) =
R
�
u (�)u� (�) d� (�) for all u 2 L1 (�)� amounts to ��

is countably additive� and in this case u� = d�=d� is unique (as an equivalence class).33

Therefore,

I�� (�) =

8<:
R
�
��
�
d�
d�
(�)
�
d� (�) if � is countably additive

�1 otherwise:
(59)

Consider the bounded linear operator A : x 7! h�; xi that we studied above. Clearly g = I��A
or, according to standard convex analysis notation g = I�A. In particular, g is �nite, concave,

continuous, and monotone.

Since I� is �nite and continuous on L1 (�), [48, Theorem 3] guarantees that g� =

(I�A)
� = A�I�� where A

� is the adjoint of A, and A�I�� is de�ned, for all � 2 X�, by

A�I�� (�) = sup
�
I�� (�) : � 2 ba (B (�) ; �) ; A�� = �

	
: (60)

Moreover, the sup is attained if f� 2 ba (B (�) ; �) : A�� = �g 6= ;.
But, I� is monotone, therefore I�� (�) = �1 for all � =2 ba+ (B (�) ; �). Then (60) implies

g� (�) = sup
�
I�� (�) : � 2 ba+ (B (�) ; �) ; A�� = �

	
: (61)

By (59), I�� (�) = �1 for all � =2 ca (B (�) ; �). Then (61) amounts to g� (�) = supfI�� (�) :
� 2 ca+ (B (�) ; �) ; A�� = �g = supfI�� (�) : � 2 � (�)g and (59) again delivers g� (�) =
A�I�� (�) = sup

nR
�
��
�
d�
d�
(�)
�
d� (�) : � 2 � (�)

o
. By Corollary 39, G� (t) = infk�0 fkt� g� (k�)g =

infk�0

n
tk � sup

nR
�
��
�
d�
d�

�
d� : � 2 � (k�)

oo
for each (t; �) 2 R��, thus, if � (�) 6= ;, it

follows that

G� (t) = inf
k�0

�
tk � sup

�Z
�

��
�
d (k
)

d�
(�)

�
d� (�) : 
 2 � (�)

��
= inf


2��(�):
R
� �d
(�)=�

inf
k�0

�
tk �

Z
�

��
�
k
d


d�
(�)

�
d� (�)

�
33In fact, if � is countably additive, it is enough to set u� = d�=d� to obtain u� 2 L1 (�) and � (u) =R
�
u (�) d� (�) =

R
�
u (�)u� (�) d� (�) for all u 2 L1 (�). Conversely, if there exists u� 2 L1 (�) such

that � (u) =
R
�
u (�)u� (�) d� (�) for all u 2 L1 (�), then � (B) =

R
B
u� (�) d� (�) for all B 2 B (�), which

implies � is countably additive and u� = d�=d�.
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else, if � (�) = ;, sup
nR

�
��
�
d�
d�

�
d� : � 2 � (k�)

o
= sup

nR
�
��
�
d(k
)
d�

�
d� : 
 2 � (�)

o
=

�1 if k > 0, while sup
nR

�
��
�
d�
d�
(�)
�
d� (�) : � 2 � (k�)

o
= �� (0) = infk2R f�� (k)g =

� supk2R � (k) if k = 0, andG� (t) = infk�0

n
tk � sup

nR
�
��
�
d�
d�
(�)
�
d� (�) : � 2 � (k�)

oo
=

supk2R � (k), which concludes the proof. �

B.1 Normalized Smooth Preferences Functionals

In this subsection we assume that � is strictly increasing (and concave from R to R), and
consider the normalized version

g (x) = ��1
�Z

�

� (h�; xi) d� (�)
�

(62)

of (56). First observe that � (R) is an open half line (�1; a), with a = supk2R � (k). Then

��1 can be extended to an extended-valued continuous and monotone function from [�1;1]
to [�1;1] by setting

d��1 (t) =
8>><>>:
1 if t � a

��1 (t) if a > t > �1
�1 if t = �1

(63)

this extension is simply denoted ��1. Application of Theorem 55 and Lemma 35 delivers,

for all (t; �) 2 R��,

G� (t) =

8<: ��1
�
inf
n
infk�0

h
tk �

R
�
��
�
k d�
d�
(�)
�
d� (�)

i
: � 2 � (�)

o�
if � (�) 6= ;

��1 (supk2R � (k)) =1 if � (�) = ;

that is

G� (t) = ��1
�
inf

�
inf
k�0

�
tk �

Z
�

��
�
k
d�

d�
(�)

�
d� (�)

�
: � 2 � (�)

��
(64)

with the usual convention inf ; =1.

Lemma 56 For a twice di¤erentiable � : R! R with �0 > 0 and �00 < 0, the following facts
are equivalent:

(i) J� (�) = � (��1 (�) + �) is concave on � (R) for all � � 0;

(ii) ��0=�00 is weakly decreasing.

In this case � is said to be DARA.

Proposition 57 If the scalar functions J� (r) = � [��1 (r) + �] are concave on � (R) for all
� � 0, then (62) is 1-Lipschitz.

53



Proof. By the Jensen Inequality, we have J�
�R
�
� (h�; xi) d� (�)

�
�
R
�
J� (� (h�; xi)) d� (�)

which implies g (x) + � � g (x+ �e) for all � � 0. Proposition 50 delivers 1-Lipschitzianity.
�

Proposition 58 The functional (62) is translation invariant for all � 2 �� (B (�)) if and
only if � is CARA.

Proof. We only prove the �only if,�the converse being trivial. If g is translation invariant for

all � 2 �� (B (�)), then ��1
�R
�
� (h�; x+ �ei) d� (�)

�
= ��1

�R
�
� (h�; xi) d� (�)

�
+� for all

x 2 X, � 2 R, � 2 �� (B (�)). In particular choosing �1 6= �2 in � and the probability mea-

sure � = (1=2) ��1+(1=2) ��2 , we have �
�1
�
�(h�1;xi+�)+�(h�2;xi+�)

2

�
= ��1

�
�(h�1;xi)+�(h�2;xi)

2

�
+�.

The linear map x 7! (h�1; xi ; h�2; xi) from X into R2 is onto, because �1 and �2 are linearly
independent, therefore ��1

�
�(t+�)+�(r+�)

2

�
= ��1

�
�(t)+�(r)

2

�
+ � for all t; r; � 2 R. By [17,

p. 28] � is CARA. �

Next we further study the CARA case.

Proposition 59 The functional g : X ! R given by

g (x) = �1
�
log

Z
�

e��h�;xid� (�)

with � > 0, is translation invariant and, for every (t; �) 2 R��,

g� (�) = �1
�
inf fR (� k �) : � 2 � (�)g (65)

G� (t) = t+
1

�
inf fR (� k �) : � 2 � (�)g :

Proof. We �rst consider the case � = 1. In view of Theorem 55, let � (t) = �e�t and
consider the functional ~g (x) =

R
�
� (h�; xi) d� (�) =

R
�
�e�h�;xid� (�). Clearly � is concave,

increasing, and

�� (r) = � � (r) =

8>><>>:
r � r log r if r > 0

0 if r = 0

�1 if r < 0:

Simple computation shows that, for all � 2 �� (�) and t 2 R

inf
k�0

�
tk �

Z
�

��
�
k
d�

d�
(�)

�
d� (�)

�
= �e�te�R(�k�):

As a consequence, in view of Theorem 55, for all (t; �) 2 R��,

~G� (t) =

(
inf
�
�e�te�R(�k�) : � 2 � (�)

	
if � (�) 6= ;

supk2R�e�k if � (�) = ;

=

(
�e�t sup

�
e�R(�k�) : � 2 � (�)

	
if � (�) 6= ;

0 if � (�) = ;:
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Moreover, g (x) = � log
R
�
e�h�;xi� (d�) = � log (�~g (x)), but r 7! � log (�r) is monotone

and extended-valued continuous from [�1; 0] to [�1;1]. Therefore, if � (�) is not empty,
G� (t) = � log

�
e�t sup

�
e�R(�k�) : � 2 � (�)

	�
= t � sup

�
log e�R(�k�) : � 2 � (�)

	
= t +

inf fR (� k �) : � 2 � (�)g, while, if � (�) is empty, then G� (t) = � log (0) = 1 = t +

inf fR (� k �) : � 2 � (�)g. Monotonicity, translation invariance, concavity, and �niteness of
g are easily shown. The conjugate of g can then be calculated by (iii) of Corollary 40, thus

for all � 2 �, g� (�) = �G� (0) = � inf fR (� k �) : � 2 � (�)g.
Finally, if � 6= 1, write �g to emphasize the dependence on � with 1g = g. Clearly,

�g (x) = ��1g (�x), therefore (�g)
� = 1

�
g� and �G� can be calculated by (iii) of Corollary 40.

�

C Proofs

Proof of Lemma 1. It is a direct consequence of Lemma 52. �

Lemma 60 If % satis�es A.1 and A.5. Then, % satis�es A.3 if and only if f; g; h 2 F ,
f % h, g % h, and � 2 (0; 1) imply �f + (1� �) g % h.

Proof. We prove the �only if�part, the converse being trivial. Suppose A.3 holds. Since %
satis�es A.1, to prove the result it is enough to show that f � g implies �f + (1� �) g % g

for all � 2 (0; 1). Suppose, per contra, that there exist f � g and
_
� 2 (0; 1) such that

_
�f +

�
1�

_
�
�
g � g. Then

_
� 2 f� 2 [0; 1] : g % �f + (1� �) gg 6= ;. By A.5, this set

is compact. We can therefore set � = max (f� 2 [0; 1] : g % �f + (1� �) gg) and f� =

�f + (1� �) g.

Claim. f� � g.

Proof of the Claim. We have � 2 f� 2 [0; 1] : g % �f + (1� �) gg and � < 1. In

fact, if � = 1 then g % f , a contradiction. Now suppose f� � g, that is, g � f�. The

set f� 2 [0; 1] : g � �f + (1� �) gg is open since it is the complement of the closed set
f� 2 [0; 1] : �f + (1� �) g % gg. Hence, there is an open neighborhood V in [0; 1] contain-

ing � and contained in f� 2 [0; 1] : g � �f + (1� �) gg. Since � < 1, we can then pick a

point �0 > � in V so that g � �0f + (1� �0) g, which contradicts the maximality of �. We

conclude that f� � g and this completes the proof of the Claim. �
By the Claim, we can apply A.3 to f� and g. Hence, �f�+(1� �) g % g for all � 2 (0; 1),

and 0 < �� < � implies ��1
_
� 2 (0; 1). Thus g -

_
�
�
(�f + (1� �) g)+

�
1�

_
�
�

�
g =

_
�f +

_
�
�
g�

_
�g + g �

_
�
�
g =

_
�f +

�
1�

_
�
�
g � g, a contradiction. We conclude that �f + (1� �) g % g

for all � 2 (0; 1), as desired. �
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Lemma 61 A binary relation % on F satis�es Axiom A.1-A.5 if and only if there exists a

nonconstant a¢ ne function u : X ! R and a function I : B0 (�; u (X)) ! R normalized,
monotone, quasiconcave, and continuous such that

f % g () I (u (f)) � I (u (g)) : (66)

Moreover, u is cardinally unique, and, given u, there is a unique normalized I : B0 (�; u (X))!
R that satis�es (66).

Proof. We only prove the su¢ ciency of the axioms, the converse being routine. The

existence of a nonconstant a¢ ne u and a normalized and monotone I satisfying (66) can

be derived using the same technique of [38, Lemma 28], where for the existence of u we

use Axiom A.4 in place of the stronger Weak Certainty Independence Axiom of [38]. In

particular, B0 (�; u (X)) = fu (f) : f 2 Fg.
By Lemma 60, % is a convex preference, and so I is quasiconcave. Continuity follows

from A.5 and Proposition 47.

Finally, cardinal uniqueness of u is a standard result (u is a¢ ne and represents % on

X). Suppose that, given u, the normalized functionals I1 and I2 satisfy (66). For all

' = u (f) 2 B0 (�; u (X)), let xf 2 X be such that f � xf , then I1 (') = I1 (u (f)) =

I1 (u (xf )) = u (xf ) = I2 (u (xf )) = I2 (u (f)) = I2 ('), so I1 = I2. �

Lemma 62 Let %, I, and u be like in Lemma 61. The following facts are equivalent:

(i) % satis�es A.7.

(ii) For every z; z0 2 X, with z0 � z, there are y0 � y such that, for all f; g 2 F

1

2
f (s) +

1

2
y0 � 1

2
g (s) +

1

2
y 8s 2 S =) 1

2
xf +

1

2
z0 - 1

2
xg +

1

2
z: (67)

(iii) I is uniformly continuous.

Proof. Clearly (i) ) (ii). Next we show that (ii) ) (iii). Let " > 0 and choose z; z0 2 X

such that u (z)� u (z0) � " and 0 < u (z)� u (z0) < supu (X)� inf u (X). Let y; y0 2 X be

such that (67) is satis�ed and set � = u (y)� u (y0).

Notice that � 2 (0; supu (X)� inf u (X)). Clearly � > 0, moreover, taking f = y and

g = y0 we have 1
2
f (s) + 1

2
y0 = 1

2
y + 1

2
y0 � 1

2
y0 + 1

2
y = 1

2
g (s) + 1

2
y for all s 2 S, hence

1
2
y + 1

2
z0 = 1

2
xf +

1
2
z0 - 1

2
xg +

1
2
z = 1

2
y0 + 1

2
z, Then 1

2
u (y) + 1

2
u (z0) � 1

2
u (y0) + 1

2
u (z) and

� = u (y)� u (y0) � u (z)� u (z0) < supu (X)� inf u (X).
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Let ' 2 B0 (�; u (X)) be such that ' + � 2 B0 (�; u (X)), and g; f 2 F be such that

' = u (g) and ' + � = u (f). Then u (f (s)) = ' (s) + � = u (g (s)) + u (y) � u (y0) for

all s 2 S, u
�
1
2
f (s) + 1

2
y0
�
= 1

2
u (f (s)) + 1

2
u (y0) = 1

2
u (g (s)) + 1

2
u (y) � 1

2
u (y0) + 1

2
u (y0) =

u
�
1
2
g (s) + 1

2
y
�
and hence 1

2
xf +

1
2
z0 - 1

2
xg +

1
2
z, that is 1

2
u (xf ) +

1
2
u (z0) � 1

2
u (xg) +

1
2
u (z)

and I ('+ �) = I (u (f)) = u (xf ) � u (xg) + (u (z)� u (z0)) � I (u (g)) + " = I (') + ".

Hence, by Proposition 49, I is uniformly continuous.

We conclude by showing that (iii) ) (i). Assume I is uniformly continuous. For all

z; z0 2 X, with z0 � z, choose � > 0 such that jI (')� I ( )j � u (z) � u (z0) for all

';  2 B0 (�; u (X)) such that k'�  k � �. Take y0 � y such that u (y)� u (y0) < �. Then

for all f; g 2 F such that 1
2
f (s) + 1

2
y0 - 1

2
g (s) + 1

2
y for all s 2 S, it must be the case that

u (f (s)) � u (g (s)) + u (y)� u (y0) 8s 2 S: (68)

Set ' = u (f),  = u (g), � = u (y), t = u (y0), �0 = � � t 2 (0; �), " = u (z) � u (z0),

k = max fmax';max ; �g 2 u (X). Notice that:

� ' � ( + �0) ^ k. This follows from (68) and the de�nition of k.

� ( + �0) ^ k 2 B0 (�; u (X)). In fact, ' � ( + �0) ^ k � k.

� ( + �0)^k = ( ^ (k � �0))+ �0 and  ^ (k � �0) 2 B0 (�; u (X)). In fact, k � k� �0 =
k � � + t � � � � + t = t.

Therefore I (u (f)) = I (') � I (( + �0) ^ k) = I (( ^ (k � �0)) + �0), but it clearly

holds k(( ^ (k � �0)) + �0)� ( ^ (k � �0))k = �0 � � and uniform continuity guarantees

I (( ^ (k � �0)) + �0) � I ( ^ (k � �0)) + " � I ( ) + " = I (u (g)) + u (z) � u (z0), hence

I (u (f)) � I (u (g)) + u (z) � u (z0) and u (xf ) � u (xg) � u (z) � u (z0) which amounts to
1
2
xf +

1
2
z0 - 1

2
xg +

1
2
z, as wanted. �

Lemma 63 Let % be a binary relation on X represented by an a¢ ne function u : X ! R.
u (X) = R if and only if % satis�es A.6.

Proof of Theorem 3. Suppose (i) holds, i.e., % satis�es Axioms A.1-A.5. By Lemma 61,
there exists a nonconstant a¢ ne function u : X ! R and a function I : B0 (�; u (X)) ! R
normalized, monotone, quasiconcave, and continuous such that f % g () I (u (f)) �
I (u (g)). By Corollary 38, I (') = infp2�Gp (hp; 'i) for all ' 2 B0 (�; u (X)), i.e. I (u (f)) =
infp2�Gp

�R
u (f) dp

�
for all f 2 F , whereGp (t) = sup fI (') : ' 2 B0 (�; u (X)) ; hp; 'i � tg

for all (t; p) 2 u (X)��.34

34Indeed Gp (t) is de�ned for all (t; p) 2 R��, but notice that hp; 'i 2 u (X) for all ' 2 B0 (�; u (X)).
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Lemma 31 implies that the map (t; p) 7! Gp (t) is quasiconvex on u (X)��. Monotonicity
of Gp (�) is obvious. Moreover, for all t 2 u (X), t = I (t) = infp2�Gp (hp; ti) = infp2�Gp (t).

Therefore, G? : u (X)��! (�1;1] de�ned by G? (t; p) = Gp (t) is well de�ned (the above

equation rules out the value �1), belongs to G (u (X)��), is linearly continuous because
of continuity of I, and (9) holds. This proves (ii).

Conversely, suppose (ii) holds. Since G 2 G (u (X)��), then, by Lemma 51,

I (') = inf
p2�

G (hp; 'i ; p) 8' 2 B0 (�; u (X)) (69)

is �nite, (evenly) quasiconcave, monotone, normalized. Linear continuity of G implies con-

tinuity of I, and (9) amounts to

f % g () I (u (f)) � I (u (g)) : (70)

Lemma 61 guarantees that % satis�es A.1-A.5, i.e., (i) holds.

Assume (i), or (ii), holds and v : X ! R is nonconstant a¢ ne, H 2 G (v (X)��), for all
f and g in F ,

f % g () inf
p2�

H

�Z
v (f) dp; p

�
� inf

p2�
H

�Z
v (g) dp; p

�
: (71)

Notice that we are not requiring that H be linearly continuous. De�ne

J (') = inf
p2�

H (hp; 'i ; p) 8' 2 B0 (�; v (X)) : (72)

Since H 2 G (v (X)��), then, by Lemma 51, J is �nite, (evenly) quasiconcave, monotone,
normalized,

H (t; p) � sup fJ (') : ' 2 B0 (�; v (X)) and hp; 'i � tg 8 (t; p) 2 v (X)�� (73)

and (71) amounts to

f % g () J (v (f)) � J (v (g)) : (74)

Since J is normalized, by (74), v represents % on X, then it is cardinally equivalent to

u. Assume v = u, then (70), (74), and Lemma 61 guarantee that J = I (in particular H

is linearly continuous too). By (73), for all (t; p) 2 u (X) � �, H (t; p) � supfI (') : ' 2
B0 (�; u (X)) and hp; 'i � tg = Gp (t). Since I is �nite, normalized, monotone, quasiconcave,

and continuous, we can proceed verbatim like in the proof that (i) implies (ii) (starting from

�By Corollary 38...�) to show that G? : u (X)�� ! (�1;1] de�ned by G? (t; p) = Gp (t)

is well de�ned, belongs to G (u (X)��), is linearly continuous, and

f % g () inf
p2�

G?

�Z
u (f) dp; p

�
� inf

p2�
G?

�Z
u (g) dp; p

�
: (75)
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Thus (u;G?) represents % in the sense of (ii) and G? is the minimal element of G (u (X)��)
with this property. Moreover, for all (t; p) 2 u (X) � �, supf2F

�
u (xf ) :

R
u (f) dp � t

	
=

supf2F
�
I (u (f)) :

R
u (f) dp � t

	
= sup fI (') : ' 2 B0 (�; u (X)) and hp; 'i � tg = Gp (t) =

G? (t; p).

Finally, it is easy to check that % has no worst consequence if and only if inf u (X) 62
u (X). In this case, B0 (�; u (X)) is lower open. By Lemma 32, the map (t; p) 7! Gp (t) is

lower semicontinuous on u (X)��, thus p 7! Gp (hp; 'i) is lower semicontinuous on �, and
the in�ma in (75) are attained. �

Proof of Proposition 4. Let (u;G) be an uncertainty averse representation of a preference

%. If
�
�u; �G

�
is another uncertainty averse representation of %, then by standard uniqueness

results, there exist � > 0 and � 2 R such that �u = �u+�. By (10), for all (t; p) 2 �u (X)��,

�G (t; p) = sup
f2F

�
�u (xf ) :

Z
�u (f) dp � t

�
= sup

f2F

�
�u (xf ) + � : �

Z
u (f) dp+ � � t

�
= � sup

f2F

�
u (xf ) :

Z
u (f) dp � t� �

�

�
+ � = �G

�
t� �

�
; p

�
+ �

as desired. The converse is a simple veri�cation. �

Proof of Theorem 5. Let % be uncertainty averse and satisfy Axioms A.4-A.6. Assume

u : X ! R is a¢ ne, G 2 G (u (X)��) is lower semicontinuous, and, for all f and g in F ,
(9) holds. Then, by A.6, u (X) = R (see Lemma 63). Set I (') = infp2�G (hp; 'i ; p) for all
' 2 B0 (�). Since G 2 G (R��), then, by Lemma 51, I is �nite, (evenly) quasiconcave,
monotone, normalized, and (9) amounts to f % g () I (u (f)) � I (u (g)) for all f and

g in F . Since G 2 G (R��) is lower semicontinuous, then it satis�es the assumptions of
Lemma 42, and G (t; p) = sup'2B0(�):hp;'i�t I (') = supf2F :hp;u(f)i�t I (u (f)) for all (t; p) 2
R � �. But, since I is normalized and I (u (�)) represents %, then I (u (f)) = u (xf ) for

all f 2 F (notice that the existence of xf is guaranteed by A.1, A.2, and A.5), therefore

G (t; p) = supf2F :hp;u(f)i�t I (u (f)) = supf2F
�
u (xf ) :

R
u (f) dp � t

	
for all (t; p) 2 R � �.

This proves that that (10) holds, and G = G?. �

Proof of Proposition 6. By standard results ([25, Corollary B.3]), (i) implies that u1 � u2.

Wlog, u1 = u2 = u. By (12), for all f 2 F and x 2 X, f �1 x implies f %2 x, and
so x2f �2 f %2 x1f (where f �i x

i
f 2 X, for i = 1; 2). Hence, u

�
x2f
�
� u

�
x1f
�
for all

f 2 F . By (10), for all (t; p) 2 u (X) � �, G1 (t; p) = supf2F
�
u
�
x1f
�
:
R
u (f) dp � t

	
�

supf2F
�
u
�
x2f
�
:
R
u (f) dp � t

	
= G2 (t; p), and so G1 � G2.

Conversely, assume wlog u1 = u2 = u. Then, for all f 2 F and x 2 X, f %1
x implies infp2�G1

�R
u (f) dp; p

�
� infp2�G1

�R
u (x) dp; p

�
= u (x), but G1 � G2 im-
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plies infp2�G2
�R

u (f) dp; p
�
� infp2�G1

�R
u (f) dp; p

�
� u (x) = infp2�G2

�R
u (x) dp; p

�
,

which delivers f %2 x. �

Proof of Theorem 7. Suppose % satis�es Axioms A.1-A.6. By Lemma 61, there ex-

ists a nonconstant a¢ ne function u : X ! R and a function I : B0 (�; u (X)) ! R
normalized, monotone, quasiconcave, and continuous such that f % g () I (u (f)) �
I (u (g)). Moreover, by Lemma 63, u (X) = R. Then B0 (�; u (X)) = B0 (�). Set Gp (t) =

sup fI (') : ' 2 B0 (�) and hp; 'i � tg for all (t; p) 2 R��. Theorem 36 guarantees that

I (') = minp2�Gp (hp; 'i) for all ' 2 B0 (�). In particular, I (u (f)) = minp2�Gp

�R
u (f) dp

�
for all f 2 F , and (13) holds. Lemmas 31 and 32 guarantee that the map (t; p) 7! Gp (t) is

quasiconvex and lower semicontinuous on R ��. Monotonicity of Gp (�) is obvious. More-
over, for all t 2 R, t = I (t) = minp2�Gp (hp; ti) = minp2�Gp (t). Therefore, G? : R�� !
(�1;1] de�ned by G? (t; p) = Gp (t) is well de�ned, lower semicontinuous, and it belongs

to G (R��). Since I is continuous, G? is linearly continuous. By Theorem 5, (u;G?) is an

uncertainty averse representation of %.
If % also satis�es Axiom A.7, that is (i) holds, by Lemma 62, I is uniformly continuous.

Then, by Theorem 41, dom (Gp) 2 f;;Rg for all p 2 �, and fGpgp2�:dom(Gp)=R are uniformly
equicontinuous, implying G 2 E (R��) and hence (ii).
Conversely, suppose G 2 G (R��) is lower semicontinuous and linearly continuous and

u is a¢ ne and onto. Since G 2 G (R��), then, by Lemma 51,

I (') = inf
p2�

G (hp; 'i ; p) 8' 2 B0 (�) (76)

is �nite, (evenly) quasiconcave, monotone, normalized, and (13) amounts to

f % g () I (u (f)) � I (u (g)) : (77)

Since G is linearly continuous, I is continuous, thus, by Lemma 61, % satis�es A.1-A.5.

Since u is a¢ ne, u (X) = R, and u represents % on X, then Lemma 63 guarantees that %
satis�es A.6. By Theorem 5, (u;G) is an uncertainty averse representation of %.
If G 2 E (R��), that is (ii) holds, then G satis�es the previous properties. Hence,

% satis�es A.1-A.6. Further, by Lemma 53, G 2 E (R��) implies that I is uniformly
continuous, thus, by Lemma 62, % satis�es A.7 too. This proves (i).
From this point until the end of the proof we (only) assume % satis�es Axioms A.1-A.6

and denote: by (u;G) an uncertainty averse representation, and by I the functional de�ned

in (76).

By Theorem 3, u is cardinally unique, by de�nition of uncertainty averse representation,

for all (t; p) 2 R��, G (t; p) = supf2F
�
u (xf ) :

R
u (f) dp � t

	
= supfI (') : ' 2 B0 (�) and
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hp; 'i � tg = sup fI (') : ' 2 B0 (�) and hp; 'i = tg = supf2F
�
I (u (f)) :

R
u (f) dp = t

	
=

supf2F
�
u (xf ) :

R
u (f) dp = t

	
, where the central equality descends from Lemma 34. This

proves that, given u, G is unique and that (14) holds.

Finally, assume � is a �-algebra. If % satis�es Axiom A.8, assume ';  2 B0 (�), k 2 R,
� 3 En # ;, and I ( ) > I ('). Choose f; g 2 F and x 2 X such that ' = u (g),

 = u (f), and k = u (x), then f � g and there exists n 2 N such that xEnf � g,

that is I
�
k1En +  1Ecn

�
= I

�
u (x) 1En + u (f) 1Ecn

�
= I (u (xEnf)) > I (u (g)) = I ('). By

Theorem 54, there is q 2 �� such that G (�; p) � 1 for all p =2 �� (q), thus the minima

in (13) are attained in �� (q). Conversely, if there is q 2 �� such that G (�; p) � 1 for

all p =2 �� (q), by Theorem 54, for all ';  2 B0 (�), k 2 R, � 3 En # ;, I ( ) > I (')

implies that there exists n 2 N such that I
�
k1En +  1Ecn

�
> I ('). Let f � g in F ,

x 2 X, and � 3 En # ;, then ' = u (g) ;  = u (f) 2 B0 (�), k = u (x) 2 R, and I ( ) =
I (u (f)) > I (u (g)) = I ('). Then there exists n 2 N such that I

�
k1En +  1Ecn

�
> I ('),

but I
�
k1En +  1Ecn

�
= I

�
u (x) 1En + u (f) 1Ecn

�
= I (u (xEnf)) and I (') = I (u (g)), thus

I (u (xEnf)) > I (u (g)) and xEnf � g. In conclusion, A.8 holds. �

Proof of Theorem 10. First notice that dom�G is convex. If q =2 C�, there exist '0 2
B0 (�), r 2 R and " > 0 such that

R
'0dq < r < r + " <

R
'0dp for all p 2 C�. Replacing

'0 with '0 � r allows to assume r = 0. In this case, for each x 2 X and t 2 R there is
n 2 N such that

R
n'0dq < t and

R
n'0dp > u (x) for all p 2 C�. Taking g 2 F such

that u (g) = n'0,
R
u (g) dq < t and g %� x. Therefore g 2

�
f 2 F :

R
u (f) dq � t

	
and

u (xg) � u (x), since g %� x implies g % x.

Summing up: If q =2 C�, for each x 2 X and t 2 R there is g 2 F such that g 2�
f 2 F :

R
u (f) dq � t

	
and u (xg) � u (x), that is G (t; q) =1. Then (C�)c � (dom�G)

c,

that is dom�G � C�, and cl (dom�G) � C�, since C� is closed.

Conversely, let D = dom�G, and ';  2 B0 (�). Then choosing f; g 2 F such that

' = u (f) and  = u (g),Z
'dq �

Z
 dq 8q 2 D

)
Z
u (�f + (1� �)h) dq �

Z
u (�g + (1� �)h) dq 8q 2 D;� 2 [0; 1] ; h 2 F

) min
q2�

G

�Z
u (�f + (1� �)h) dq; q

�
� min

q2�
G

�Z
u (�g + (1� �)h) dq; q

�
8� 2 (0; 1] ; h 2 F

) �f + (1� �)h % �g + (1� �)h 8� 2 (0; 1] ; h 2 F

)
Z
'dp �

Z
 dp 8p 2 C� :

[25, Prop. A.1] implies C� � cl (co (dom�G)) = cl (dom�G). �
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Proof of Proposition 11. (i). For the proof of point (i), we will not need A.6. De-

�ne I : B0 (�; u (X)) ! R by I (') = infp2�G
�R

'dp; p
�
for all ' 2 B0 (�; u (X)). I

is monotone, quasiconcave, continuous on B0 (�; u (X)) and can be naturally extended to

B0 (�) by putting I ( ) = �1 if  =2 B0 (�; u (X)).
Notice thatG (t; p) = supf2F

�
I (u (f)) :

R
u (f) dp � t

	
= sup'2B0(�)

�
I (') :

R
'dp � t

	
.

Moreover, dom I = B0 (�; u (X)), and, for all '0 2 dom I, the normalized Greenberg-

Pierskalla superdi¤erential of I at '0 is @?I ('0) = f� 2 ba (�) : [I > I ('0)] � [� > � ('0)]g.
Now let f0 2 F and set '0 = u (f0). Simple algebra delivers

@?I (u (f0)) \� =
�
p 2 � : f � f0 implies

Z
u (f) dp >

Z
u (f0) dp

�
=

�
p 2 � :

Z
u (f) dp �

Z
u (f0) dp implies f0 % f

�
= �u (f0) :

Next we show that arg infp2�G
�R

u (f0) dp; p
�
= @?I (u (f0)) \�.

�) If p0 2 arg infp2�G
�R

u (f0) dp; p
�
, then p0 2 � and we have I ('0) = G

�R
'0dp0; p0

�
=

sup'2B0(�)
�
I (') :

R
'dp0 �

R
'0dp0

	
, that is

I ('0) � I (') for all ' 2 B0 (�) s.t.
Z
'dp0 �

Z
'0dp0�

' 2 B0 (�) :
Z
'dp0 �

Z
'0dp0

�
� [' 2 B0 (�) : I (') � I ('0)]

[' 2 B0 (�) : I (') > I ('0)] �
�
' 2 B0 (�) :

Z
'dp0 >

Z
'0dp0

�
thus p0 2 @?I (u (f0)).
�) If p0 2 @?I (u (f0)) \�, then p0 2 � and [I � I ('0)] �

�
p0 �

R
'0dp0

�
thus

inf
p2�

G

�Z
'0dp; p

�
= I ('0) = sup

'2B0(�)

�
I (') :

Z
'dp0 �

Z
'0dp0

�
= G

�Z
'0dp0; p0

�
as wanted.

(ii). Consider the binary relation %�� de�ned by

f %�� g if and only if
Z
u (f) dp �

Z
u (g) dp 8p 2

[
f 02F

�u (f
0) : (78)

If f %�� g then
R
u (�f + (1� �)h) dp �

R
u (�g + (1� �)h) dp for all � 2 (0; 1], h 2 F , and

p 2
[
f 02F

�u (f
0). Taking, for each � 2 (0; 1] and for each h 2 F , �p = �p�;h 2 �u (�f + (1� �)h)

it follows that

I (u (�f + (1� �)h)) = G

�Z
u (�f + (1� �)h) d�p; �p

�
� G

�Z
u (�g + (1� �)h) d�p; �p

�
� I (u (�g + (1� �)h)) :
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Thus, f %�� g implies that f %� g. By [25, Proposition A.1.], it then follows that

C� � cl

 
co

 [
f 02F

�u (f
0)

!!
. Conversely, if p 2

[
f2F

�u (f), then there is fp 2 F such

that R 3 I (u (fp)) = G
�R

u (fp) dp; p
�
, thus p 2 dom�G. Hence, cl

 
co

 [
f2F

�u (f)

!!
�

cl (dom�G) = C�. �

Proof of Proposition 12. If (u; c) is a variational representation of %, it is routine to
check that (u;G) is a representation in the sense of (9). Moreover, since u (X) = R, then
Theorem 5 guarantees that (u;G) is an uncertainty averse representation.

Conversely, if (u;G) is an uncertainty averse representation of %, and there exist 
 :
R ! R and c : � ! [0;1] with infp2� c (p) = 0, such that G (t; p) = 
 (t) + c (p) for all

(t; p) 2 R � �, then for all t 2 R, t = infp2� [
 (t) + c (p)] = 
 (t) + infp2� c (p) = 
 (t).

Hence, 
 is the identity. Moreover, if p� ! p in �, then (0; p�)! (0; p) in R�� and lower

semicontinuity of G delivers lim inf� c (p�) = lim inf�G (0; p�) � G (0; p) = c (p), thus c is

lower semicontinuous.

Finally the quasiconvexity of G implies that c is convex. In fact, let p1 and p2 in dom (c)

and � 2 (0; 1). Pick t2; t1 2 R so that c (p1)�c (p2) = t2� t1, namely, t1+c (p1) = t2+c (p2).

As G : (t; p) ! t + c (p) is quasiconvex, then �t1 + (1� �) t2 + c (�p1 + (1� �) p2) �
max ft1 + c (p1) ; t2 + c (p2)g = t2 + c (p2), hence c (�p1 + (1� �) p2) � c (p2) + t2 � �t1 �
(1� �) t2 = c (p2) + t2 � �t1 � t2 + �t2 = c (p2) + � (t2 � t1) = c (p2) + � (c (p1)� c (p2)) =

�c (p1) + (1� �) c (p2), as wanted. �

Proof of Theorem 19. Assume (21) holds. Set

J (') =

Z
�

� (hp; 'i) d� (p) 2 � (R) 8' 2 B0 (�) : (79)

By Theorem 55, J is �nite, concave, continuous and monotone on X. Therefore the func-

tional

I = ��1 � J (80)

is well de�ned, quasiconcave, continuous, monotone, and normalized. Moreover, by (21),

f % g if and only if I (u (f)) � I (u (g)). Thus % satis�es Axioms A.1-A.5 and its uncertainty
averse representation (u;G) corresponding to u satis�es, for all (t; p) 2 R � �, G (t; p) =
supf2F

�
u (xf ) :

R
u (f) dp � t

	
= supf2F :hp;u(f)i�t I (u (f)) = sup'2B0(�):hp;'i�t I ('), by (64),

sup'2B0(�):hp;'i�t I (') = ��1
�
inf
n
infk�0

h
tk �

R
�
��
�
k d�
d�
(q)
�
d� (q)

i
: � 2 � (p)

o�
and � (p) =
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�
� 2 �� (B (�) ; �) : p =

R
�
qd� (q)

	
; by de�nition of It (� k �),

��1
�
inf

�
inf
k�0

�
tk �

Z
�

��
�
k
d�

d�
(q)

�
d� (q)

�
: � 2 � (p)

��
= inf

�2�(p)
��1

�
inf
k�0

�
tk �

Z
�

��
�
k
d�

d�
(q)

�
d� (q)

��
= inf

�2�(p)
fIt (� k �) + tg

= t+ inf
�2�(p)

It (� k �)

and the in�mum is attained since � (p) is weakly closed and It (� k �) has weakly compact
sublevel sets. That is G (t; p) = t+min�2�(p) It (� k �) for all (t; p) 2 R��.
Conversely, assume (u;G) is an uncertainty averse representation of %, where

G (t; p) = t+ min
�2�(p)

It (� k �) (81)

for all (t; p) 2 R��, with � (p) =
�
� 2 �� (B (�) ; �) : p =

R
�
qd� (q)

	
, under the conven-

tion G (�; p) � 1 when � (p) = ;. Then, for all (t; p) 2 R��,

G (t; p) = ��1
�
inf

�2�(p)

�
inf
k�0

�
kt�

Z
�

��
�
k
d�

d�

�
d�

���
and de�ning J and I like in (79) and (80), it descends from (64) that, for all (t; p) 2 R��,
G (t; p) = sup'2B0(�):hp;'i�t I ('). Since I is �nite, quasiconcave, continuous, monotone, and

normalized, by Theorem 36,

I (') = inf
p2�

G (hp; 'i ; p) = min
p2�

G (hp; 'i ; p) 8' 2 B0 (�) : (82)

Since (u;G) is an uncertainty averse representation of %, then, for all f and g in F ,

f % g () inf
p2�

G

�Z
u (f) dp; p

�
� inf

p2�
G

�Z
u (g) dp; p

�
() min

p2�
G

�Z
u (f) dp; p

�
� min

p2�
G

�Z
u (g) dp; p

�
() I (u (f)) � I (u (g))() � (I (u (f))) � � (I (u (g)))

()
Z
�

�

�Z
S

u (f (s)) dp (s)

�
d� (p) �

Z
�

�

�Z
S

u (g (s)) dp (s)

�
d� (p)

as wanted. Finally notice that (81) and (82) imply (27). �

Proof of Proposition 20. First observe that, for each p 2 �,

� (p) =

�
� 2 �� (B (�) ; �) :

Z
S

'dp =

Z
�

�Z
S

'dq

�
d� (q) 8' 2 B0 (�)

�
:
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Moreover, f� (p)gp2�:�(p) 6=; coincides with the family of equivalence classes of the equivalence
relation R on �� (B (�) ; �) de�ned by

�R� 0 ,
Z
�

qd� (q) =

Z
�

qd� 0 (q) :

In fact, if � (p) 6= ;, there is �p 2 �� (B (�) ; �) such that
R
�
qd�p (q) = p, thus

[�p] =

�
� 2 �� (B (�) ; �) :

Z
�

qd� (q) = p

�
= � (p) :

Conversely, for each � 0 2 �� (B (�) ; �), it is easy to show that p0 =
R
�
qd� 0 (q) 2 �, thus

[� 0] =

�
� 2 �� (B (�) ; �) :

Z
�

qd� (q) = p0
�
= � (p0)

and � (p0) 3 � 0 is not empty.
Finally, for each f 2 F ,

��1
�Z

�

�

�Z
S

u (f) dp

�
d� (p)

�
= min

p2�:�(p) 6=;

�Z
S

u (f) dp+ min
�02�(p)

IR
S u(f)dp

(� 0 k �)
�

= min
�2��(B(�);�)

�Z
�

�Z
S

u (f) dq

�
d� (q) + min

�02[�]
IR

�(
R
S u(f)dq)d�(q)

(� 0 k �)
�

= min
�2��(B(�);�)

�Z
�

�Z
S

u (f) dq

�
d� (q) + IR

�(
R
S u(f)dq)d�(q)

(� k �)
�

as wanted. �

Proof of Theorem 21. C� = cl (dom�G) follows from Theorem 10. Next, we show that

C� = cl (co (supp�)) under the following weaker assumption on �: for each � 2 (0; 1] and
for each a; b > 0 there exists n 2 N such that � (0) > �� (�an) + (1� �)� (bn).

Since � (supp�) = 1, then % is represented by

V (f) = ��1
�Z

supp�

�

�Z
u (f) dp

�
d�

�
8f 2 F : (83)

Consider the binary relation %�� de�ned by

f %�� g if and only if
Z
u (f) dp �

Z
u (g) dp 8p 2 supp�: (84)

Then, using (84) and (83), it is immediate to check that f %�� g implies f %� g. By [25,
Proposition A.1.], it follows C� � cl (co (supp�)).
Viceversa, suppose that cl (co (supp�)) nC� 6= ;. Then, since C� is closed and convex, it

cannot be the case that supp� � C�. Now, let �p 2 supp�nC�. Then, there exists  2 B0 (�)
and a > 0 such that Z

 d�p < �a < 0 < a �
Z
 dp 8p 2 C�: (85)
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Let O =
�
p 2 � :

R
 dp < �a

	
. O is weak* open and contains �p, thus O \ supp� 6= ; and

� = � (O) > 0. Since u (X) = R, de�ne ffngn2N � F to be such that u (fn) = n . Set

b = maxp2�
R
u (f1) dp. Notice that (85) implies that b > 0 and supp2O

R
u (f1) dp � �a.

Then, for all n 2 N,Z
�

�Z
u (fn) dp

�
d� =

Z
O

�

�Z
u (fn) dp

�
d�+

Z
Oc
�

�Z
u (fn) dp

�
d�

�
Z
O

� (�na) d�+
Z
Oc
� (nb) d� = � (�na)�+ (1� �)� (nb) :

The assumptions on � guarantee that there exists �n 2 N such that � (��na)�+(1� �)� (�nb) <

� (0). Take x 2 X such that u (x) = 0, then ��1
�R

�
�R

u (f�n) dp
�
d�
�
< 0 implies f�n � x.

But, (85) implies f�n %� x, hence f�n % x, a contradiction. �

Proof of Corollary 22. Set � (t) = �e��t, then ��1 (t) = ���1 log (�t), and

��1
�Z

�

� (hp; 'i) d� (p)
�
= �1

�
log

Z
�

e��hp;'id� (p)

for all ' 2 B0 (�); call this functional I ('). Let (t; p) 2 R��. By (64),

sup
'2B0(�):hp;'i�t

I (') = ��1
�
inf

�
inf
k�0

�
tk �

Z
�

��
�
k
d�

d�

�
d�

�
: � 2 � (p)

��
while by Proposition 59, sup'2B0(�):hp;'i�t I (') = t + 1

�
inf fR (� k �) : � 2 � (p)g. Theorem

19 delivers the equivalence between (i) and (ii), while Proposition 12 that between (ii) and

(iii).35 �

Proof of Theorem 23. By Proposition 58, the functional I (') = ��1
�R
�
� (hp; 'i) d� (p)

�
for all ' 2 B0 (�), is translation invariant for all � 2 �� (B (�)) if and only if � is CARA.
Next we show that for each given � 2 �� (B (�)), (u; �; �) represents a variational

preference if and only if I is translation invariant.

Assume (u; �; �) represents a variational preference with variational representation (v; c).

As observed in the proof of Theorem 19, I is well de�ned, quasiconcave, continuous, monotone,

normalized, and f % g if and only if I (u (f)) � I (u (g)). But, by de�nition of vari-

ational representation, the functional �I (') = minp2� (hp; 'i+ c (p)) for all ' 2 B0 (�),

(which is concave, continuous, monotone, normalized, and translation invariant) is such

that f % g if and only if �I (v (f)) � �I (v (g)). But then, there are � > 0 and � 2 R
such that u = �v + �, and (u; �c) is a variational representation of %. Then the functional
~I (') = minp2� (hp; 'i+ �c (p)) for all ' 2 B0 (�), (which is concave, continuous, monotone,
35Notice that � 2 �

�R
�
qd� (q)

�
, hence infp2�

�
��1 inf fR (
 k �) : 
 2 � (p)g

�
= 0.
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normalized, and translation invariant) is such that f % g if and only if ~I (u (f)) � ~I (u (g)).

By Lemma 61, I = ~I and I is translation invariant.

Conversely, if I is translation invariant, consider the preference% represented by (u; �; �).
I is well de�ned, quasiconcave, continuous, monotone, normalized, and

f % g ()
Z
�

�

�Z
S

u (f) dp

�
d� (p) �

Z
�

�

�Z
S

u (g) dp

�
d� (p)() I (u (f)) � I (u (g)) :

It is easy to check that % satis�es Axiom A.9 (on top of Axioms A.1-A.6), thus it is a

variational preference. �

Proof of Theorem 26. By Theorem 3, G is lower semicontinuous. Set, for all ' 2 B0 (�),
I (') = minp2�G

�R
'dp; p

�
. Since (u;G) is a representation, I : B0 (�)! R is normalized

and f % g () I (u (f)) � I (u (g)). By Lemmas 61 and 62, I : B0 (�) ! R is normalized,
monotone, quasiconcave, and uniformly continuous. Moreover, for all (t; p) 2 R��,

G (t; p) = sup
f2F

�
u (xf ) :

Z
u (f) dp � t

�
= sup

f2F :hp;u(f)i�t
I (u (f)) = sup

'2B0(�):hp;'i�t
I (') : (86)

(i) implies (ii). For all f 2 F and � 2 (0; 1), A.10 implies that

f � xf =) �f + (1� �)x� � �xf + (1� �)x� (87)

thus,36 for all � = u (f) 2 B0 (�), I (��) = I (�u (f) + (1� �)u (x�)) = I (u (�f + (1� �)x�))

= I (u (�xf + (1� �)x�)) = u (�xf + (1� �)x�) = �u (xf ) + (1� �)u (x�) = �u (xf ) =

�I (u (f)) = �I (�). If � > 1 we then have I (�) = I (��1��) = ��1I (��), and we conclude

that I : B0 (�)! R is positively homogeneous. By Theorem 45, this implies (ii).

(ii) implies (iii). Let (t; p) 2 R��, by (ii)

G (t; p) =

8>><>>:
t

c1(p)
if t � 0 and p 2 C

t
c2(p)

if t < 0 and p 2 C
1 if p 2 � n C

=

8>>>>><>>>>>:

t
c1(p)

= jtj 1
c1(p)

if t � 0 and p 2 C
1 = t�1 = jtj �1 if t � 0 and p 2 � n C
t

c2(p)
= (�t)�

�
� 1
c2(p)

�
= jtj �

�
� 1
c2(p)

�
if t < 0 and p 2 C

1 = �t�1 = jtj �1 if t < 0 and p 2 � n C:

It su¢ ces to set 
 (t) = jtj for all t 2 R,

d1 (p) =

(
1

c1(p)
if p 2 C

1 if p 2 � n C
and d2 (p) =

(
� 1
c2(p)

if p 2 C
1 if p 2 � n C

36Notice that condition (87) is weaker than A.10, and it is su¢ cient to drive the result.
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to obtain (iii).

(iii) implies (i). If t > 0, then 
 (t) > 0 and, since G 2 G (R��), t = infp2�G (t; p) =
infp2� 
 (t) d1 (p) = 
 (t) infp2� d1 (p). Thus infp2� d1 (p) = a 2 (0;1), and 
 (t) = a�1t.

Analogously, if t < 0, then 
 (t) > 0, and t = infp2�G (t; p) = infp2� 
 (t) d2 (p) =


 (t) infp2� d2 (p), hence infp2� d2 (p) = �b, with b 2 (0;1), and 
 (t) = �b�1t. Thus,
for all (t; p) 2 R��;

G (t; p) =

(

 (t) d1 (p) if t � 0 and p 2 �

 (t) d2 (p) if t < 0 and p 2 �

=

(
td1(p)

a
if t � 0 and p 2 �

td2(p)�b if t < 0 and p 2 �

and G (�t; p) = �G (t; p) for all (t; p) 2 R�� and � > 0. In turn, this implies I is positively
homogeneous. Together with u (x�) = 0, this allows to show that % satis�es Axiom A.10.�

Proof of Corollary 27. (i) implies (ii). Immediately descends from Theorem 26.

(ii) implies (i). Let, for all (t; p) 2 R��,

G (t; p) =

8>><>>:
t

c1(p)
if t � 0 and p 2 C

t
c2(p)

if t < 0 and p 2 C
1 if p 2 � n C

and I (') = infp2�G (hp; 'i ; p) for all ' 2 B0 (�). By Lemma 44, I is �nite, monotone,

upper semicontinuous, positively homogeneous, quasiconcave

I (') = min
p2C

�
hp; 'i+

c1 (p)
� hp; 'i

�

c2 (p)

�
= min

p2�
G (hp; 'i ; p) 8' 2 B0 (�) (88)

and

sup
 2B0(�):hp; i�t

I ( ) = G (t; p) 8 (t; p) 2 R��: (89)

Moreover, by (89) and Theorem 45, I is monotone, quasiconcave, uniformly continuous,

positively homogeneous, and normalized. While, by (36) and (88), for all f and g in F ,
f % g if and only if I (u (f)) � I (u (g)). By Lemmas 61, 62, and 63, % satis�es Axioms

A.4-A.7, and it is easy to show that positive homogeneity guarantees that also A.10 holds.

In this case, by (89) and Theorem 41, (u;G) is a representation of % in the sense of

Theorem 7. If � is a �-algebra, then % satis�es Axiom A.8 if and only if there is q 2 ��

such that G (�; p) � 1 for all p =2 �� (q), that is if and only if there is q 2 �� such that

C � �� (q).

Finally, if v : X ! R is a¢ ne and onto, with v (x�) = 0, D is a nonempty, closed,

and convex subset of �, and d1; d2 : D ! [0;1] are functions such that the �rst concave
and upper semicontinuous, with 0 < infp2D d1 (p) � maxp2D d1 (p) = 1, the second convex
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and lower semicontinuous, with minp2D d2 (p) = 1, and for all f and g in F , f % g if and

only if minp2D

�
(
R
v(f)dp)

+

d1(p)
� (

R
v(f)dp)

�

d2(p)

�
� minp2D

�
(
R
v(g)dp)

+

d1(p)
� (

R
v(g)dp)

�

d2(p)

�
. Then u and v

represent % on X, therefore there is � > 0 such that v = �u. Thus

f % g () min
p2D

 �R
u (f) dp

�+
d1 (p)

�
�R

u (f) dp
��

d2 (p)

!
� min

p2D

 �R
u (g) dp

�+
d1 (p)

�
�R

u (g) dp
��

d2 (p)

!
:

(90)

Set J (') = minp2D
�
hp;'i+
d1(p)

� hp;'i�
d2(p)

�
for all ' 2 B0 (�). It can be shown, as we did in the

proof that (ii) implies (i), that J is monotone, quasiconcave, uniformly continuous, positively

homogeneous, and normalized, moreover, by (90), for all f and g in F , f % g if and only if

J (u (f)) � J (u (g)). By Lemma 61, I = J and, by Lemma 44, (C; c1; c2) = (D; d1; d2). �

References

[1] J. Aczel, Lectures on functional equations and their applications, Academic Press, New

York, 1966.

[2] C. D. Aliprantis and K. C. Border, In�nite dimensional analysis, 3rd ed., Springer

Verlag, Berlin, 2006.

[3] F. J. Anscombe and R. J. Aumann, A de�nition of subjective probability, Annals of

Mathematical Statistics, 34, 199�205, 1963.

[4] K. Arrow, Essays in the theory of risk-bearing, North-Holland, Amsterdam, 1970.

[5] F. Bellini and M. Frittelli, On the existence of minimax martingale measures, Mathe-

matical Finance, 12, 1�21, 2002.

[6] T. Bewley, Knightian decision theory: part I, Decisions in Economics and Finance, 25,

79�110, 2002.

[7] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Complete quasi-

concave monotone duality, Carlo Alberto WP 80, 2008.

[8] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Probabilistic

sophistication and uncertainty aversion, mimeo, 2009.

[9] S. Cerreia-Vioglio, F. Maccheroni, M. Marinacci, and L. Montrucchio, Risk measures:

Rationality and diversi�cation, Carlo Alberto WP 100, 2008.

[10] A. Chateauneuf and J. H. Faro, Ambiguity through con�dence functions, mimeo, 2006.

69



[11] A. Chateauneuf, F. Maccheroni, M. Marinacci and J.-M. Tallon, Monotone continuous

multiple priors, Economic Theory, 26, 973�982, 2005.

[12] K. M. Chong and N. M. Rice, Equimeasurable rearrangements of functions, Queens

Papers in Pure and Applied Mathematics, 28, 1971.

[13] I. Csiszar, I-divergence geometry of probability distributions and minimization prob-

lems, Annals of Probability, 3, 146�158, 1975.

[14] G. Dal Maso, An introduction to �-convergence, Birkhäuser, Boston, 1993.

[15] G. Debreu, Theory of value, Yale University Press, 1959.

[16] B. de Finetti, Sulle strati�cazioni convesse, Annali di Matematica Pura e Applicata, 30,

173�183, 1949.

[17] B. de Finetti, Sul concetto di media, Giornale dell�Istituto Italiano degli Attuari, 2,

369�396, 1931.

[18] W. E. Diewert, Duality approaches to microeconomic theory, in Handbook of Mathe-

matical Economics, (K. J. Arrow and M. D. Intriligator, eds.), 4th edition, v. 2, pp.

535�599, Elsevier, Amsterdam, 1993.

[19] L. G. Epstein, A de�nition of uncertainty aversion, Review of Economic Studies, 66,

579�608, 1999.

[20] L. G. Epstein and M. Schneider, Recursive multiple-priors, Journal of Economic Theory,

113, 1�31, 2003.

[21] H. Ergin and F. Gul, A subjective theory of compound lotteries, mimeo, 2004.

[22] W. Fenchel, A remark on convex sets and polarity, Meddelanden Lunds Universitets

Matematiska Seminarium, 82�89, 1952.

[23] M. Frittelli, Introduction to a theory of value coherent with the no-arbitrage principle,

Finance and Stochastics, 4, 275�297, 2000.

[24] P. Gänssler, Compactness and sequential compactness in spaces of measures, Zeitschrift

für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 17, 124�146, 1971.

[25] P. Ghirardato, F. Maccheroni, and M. Marinacci, Di¤erentiating ambiguity and ambi-

guity attitude, Journal of Economic Theory, 118, 133�173, 2004.

70



[26] P. Ghirardato and M. Marinacci, Ambiguity made precise: a comparative foundation,

Journal of Economic Theory, 102, 251�289, 2002.

[27] P. Ghirardato and M. Siniscalchi, MoUSe: Monotonic, uncertainty-sensitive preferences,

personal communication, 2009.

[28] I. Gilboa, F. Maccheroni, M. Marinacci, and D. Schmeidler, Objective and subjective

rationality in a multiple prior model, mimeo, 2008.

[29] I. Gilboa and D. Schmeidler, Maxmin expected utility with a non-unique prior, Journal

of Mathematical Economics, 18, 141�153, 1989.

[30] E. Hanany and P. Klibano¤, Updating ambiguity averse preferences, mimeo, 2007.

[31] L. P. Hansen, Beliefs, doubts, and learning: valuing macroeconomic risk, American

Economic Review, 97, 1�30, 2007.

[32] L. P. Hansen and T. Sargent, Robust control and model uncertainty, American Eco-

nomic Review, 91, 60�66, 2001.

[33] I. Karatzas, J. P. Lehoczky, S. E. Shreve, and G. L. Xu, Martingale and duality meth-

ods for utility maximization in an incomplete market, SIAM Journal on Control and

Optimization, 29, 702�730, 1991.

[34] P. Klibano¤, M. Marinacci, and S. Mukerji, A smooth model of decision making under

ambiguity, Econometrica, 73, 1849�1892, 2005.

[35] M. A. Krasnosel�sii and Y. B. Ruticjii, Convex functions and Orlicz spaces, Gordon and

Breach Science Publishers, New York, 1961.

[36] F. Liese and I. Vajda, Convex statistical distances, Teubner, Leipzig, 1987.

[37] W. A. J. Luxemburg and A. C. Zaanen, Riesz spaces, vol. I, North-Holland, Amsterdam,

1971.

[38] F. Maccheroni, M. Marinacci, and A. Rustichini, Ambiguity aversion, robustness, and

the variational representation of preferences, Econometrica, 74, 1447�1498, 2006.

[39] F. Maccheroni, M. Marinacci, and A. Rustichini, Dynamic variational preferences, Jour-

nal of Economic Theory, 128, 4�44, 2006.

[40] M. J. Machina and D. Schmeidler, A more robust de�nition of subjective probability,

Econometrica, 60, 745�780, 1992.

71



[41] M. Marinacci and L. Montrucchio, Introduction to the mathematics of ambiguity, in

Uncertainty in Economic Theory, (I. Gilboa, ed.), Routledge, New York, 2004.

[42] M. Marinacci and L. Montrucchio, On concavity and supermodularity, Journal of Math-

ematical Analysis and Applications, 344, 642�654, 2008.

[43] R. Nau, Uncertainty aversion with second-order utilities and probabilities, Management

Science, 52, 136�145, 2004.

[44] J-P. Penot and M. Volle, On quasi-convex duality, Mathematics of Operations Research,

15, 597�625, 1990.

[45] L. Rigotti, C. Shannon, and T. Strzalecki, Subjective beliefs and ex-ante trade, Econo-

metrica, 76, 1167�1190, 2008.

[46] R. T. Rockafellar, Convex analysis, Princeton University Press, Princeton, 1970.

[47] R. T. Rockafellar, Integrals which are convex functionals, Paci�c Journal of Mathemat-

ics, 24, 525�539, 1968.

[48] R. T. Rockafellar, Integrals which are convex functionals, II, Paci�c Journal of Mathe-

matics, 39, 439�469, 1971.

[49] L. J. Savage, The foundations of statistics, Wiley, New York, 1954.

[50] W. Schachermayer, Optimal Investment in incomplete markets when wealth may be-

come negative, Annals of Applied Probability, 11, 694�734, 2001.

[51] D. Schmeidler, Subjective probability and expected utility without additivity, Econo-

metrica, 57, 571�587, 1989.

[52] K. Seo, Ambiguity and second-order belief, Econometrica, forthcoming.

[53] M. Siniscalchi, Dynamic choice under ambiguity, mimeo, 2006.

[54] T. Strzalecki, Axiomatic foundations of multiplier preferences, mimeo, 2007.

[55] K. Yosida, Functional analysis, Springer, New York, 1980.

[56] A. C. Zaanen, Riesz spaces II, North-Holland, Amsterdam, 1983.

72


