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Abstract

Maccheroni, Marinacci, and Rustichini [17], in an Anscombe-Aumann framework, axiomatically char-

acterize preferences that are represented by the variational utility functional

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
8f 2 F ;

where u is a utility function on outcomes and c is an index of uncertainty aversion. In this paper, for

a given variational preference, we study the class C of functions c that represent V . Inter alia, we show
that this set is fully characterized by a minimal and a maximal element, c? and d?. The function c?,

also identi�ed by Maccheroni, Marinacci, and Rustichini [17], fully characterizes the decision maker�s

attitude toward uncertainty, while the novel function d? characterizes the uncertainty perceived by the

decision maker.

1 Introduction

In this paper we study the functional structure of variational preferences, a class of binary relations introduced

by Maccheroni, Marinacci, and Rustichini [17] (henceforth, MMR). In an Anscombe and Aumann framework,

a binary relation % over the set of acts F is a variational preference if and only if it admits the following

representation

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
8f 2 F ; (1)

where u is an a¢ ne utility index, � is the set of probabilities, and c : � ! [0;1] is a grounded, lower
semicontinuous, and convex function. In other words, each variational preference is characterized by a pair

(u; c), where u is a utility index over consequences and c is an index of uncertainty aversion.

For a given variational preference % and a given u, we study the set of all functions c : �! [0;1] which
are grounded, lower semicontinuous, convex, and such that the corresponding V , given by (1), represents %.
We denote this set by C. MMR showed that if % also satis�es an unboundedness axiom, then the function

c in (1) is unique; that is, C is a singleton. Without such an axiom, C is no longer a singleton. Our analysis
sheds light on the structure of C when it contains more than one element. In Theorem 1 we show that C is
a convex set and a complete lattice. In particular, C admits a minimum and a maximum element, denoted

by c? and d?.

�We thank two anonymous referees for helpful comments and suggestions. Simone Cerreia-Vioglio and Fabio Maccheroni

gratefully acknowledge the �nancial support of MIUR (PRIN grant 20103S5RN3_005).
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From a decision theoretic point of view, the function c? is the function identi�ed by MMR, which captures

the decision maker�s uncertainty attitudes (see [17, Proposition 8]). The function d? is a novel object; we show

it characterizes the revealed unambiguous preference as de�ned by Ghirardato, Maccheroni, and Marinacci

[10].1

As a consequence of our main result, we show that each lower semicontinuous and convex function c

such that c? � c � d? also satis�es (1), and thus represents % (Corollary 1). From a conceptual and formal

point of view, these observations suggest that variational representations of preferences are characterized by

a triple (u; c?; d?), which reduces to a pair (u; c) in the unbounded case, a case more thoroughly studied by

MMR.

2 Preliminaries

2.1 Decision Theoretic Set Up

We consider a nonempty set S of states of the world, an algebra � of subsets of S called events, and a set X

of consequences. We denote by F the set of all (simple) acts, that is, of �-measurable functions f : S ! X

that take �nitely many values.

Given any x 2 X, de�ne x 2 F to be the constant act such that x(s) = x for all s 2 S. With the usual
slight abuse of notation, we thus identify X with the subset of constant acts in F .
We assume that X is a convex subset of a vector space. This is the case, for instance, if X is the set of

all lotteries on a set of outcomes, as in the classic setting of Anscombe and Aumann [1]. Using the linear

structure of X, we de�ne a mixture operation over F as follows: For each f; g 2 F and � 2 [0; 1], the act
�f + (1� �)g 2 F is de�ned to be such that (�f + (1� �)g) (s) = �f(s) + (1� �)g(s) 2 X for all s 2 S.
We model a decision maker�s preferences on F by a binary relation %. Given such a binary relation %,

� and � denote respectively the asymmetric and symmetric parts of %. Finally, we denote by Fint the set
of acts

ff 2 F : 9x; y 2 X s.t. x � f (s) � y 8s 2 Sg :

2.2 Mathematical Preliminaries

We denote by B0 (�) the set of all real-valued �-measurable simple functions, so that u (f) 2 B0 (�)

whenever u : X ! R is a¢ ne and f 2 F . Given an interval K � R, we denote by B0 (�;K) the set of all
real-valued �-measurable simple functions that take values in the interval K. Note that, if K = R, then
B0 (�;R) = B0 (�).

When B0 (�) is endowed with the supnorm, its norm dual can be identi�ed with the set ba (�) of all

bounded �nitely additive measures on (S;�). The set of probabilities in ba (�) is denoted by �; it is a

(weak�) compact and convex subset of ba (�). The set � is endowed with the relative weak� topology.

Given a function c : � ! [0;1], we say that c is grounded if and only if minp2� c (p) = 0. We denote
the e¤ective domain of c by

dom c = fp 2 � : c (p) <1g :
1This result is also based on an equivalence between Greenberg�Pierskalla di¤erentials and Clarke�s di¤erentials, established

in Theorem 2.
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2.3 Variational Preferences

We consider three nested classes of preferences: Anscombe-Aumann expected utility preferences, Gilboa-

Schmeidler preferences, and variational preferences a la MMR. Before formally de�ning them, we provide

the axioms that characterize these preferences. For a thorough discussion of these assumptions, we refer the

interested reader to [1], [12], and [17].

Axiom A. 1 (Weak Order) The binary relation % is nontrivial, complete, and transitive.

Axiom A. 2 (Monotonicity) If f; g 2 F and f(s) % g(s) for all s 2 S, then f % g.

Axiom A. 3 (Continuity) If f; g; h 2 F , the sets f� 2 [0; 1] : �f + (1 � �)g % hg and f� 2 [0; 1] : h %
�f + (1� �)gg are closed.

Axiom A. 4 (Independence) If f; g; h 2 F and � 2 (0; 1),

f % g ) �f + (1� �)h % �g + (1� �)h:

De�nition 1 A binary relation % on F is an Anscombe-Aumann expected utility preference if and only if

it satis�es Weak Order, Monotonicity, Continuity, and Independence.

By Anscombe and Aumann [1] (see also [17, Corollary 20]), % is an Anscombe-Aumann expected utility
preference if and only if there exist a nonconstant a¢ ne function u : X ! R and a unique p 2 � such that

V : F ! R, de�ned by
V (f) =

Z
u (f) dp 8f 2 F ;

represents %.2

Gilboa-Schmeidler preferences di¤er from expected utility ones in terms of the Independence assumption.

In fact, Gilboa and Schmeidler [12] weaken the Independence assumption and replace it with the following

two postulates (see also [17, Lemma 1]):

Axiom A. 5 (C-Independence) If f; g 2 F , x; y 2 X, and �; � 2 (0; 1],

�f + (1� �)x % �g + (1� �)x) �f + (1� �)y % �g + (1� �)y:

Axiom A. 6 (Uncertainty Aversion) If f; g 2 F and � 2 (0; 1), f � g implies �f + (1� �) g % f .

De�nition 2 A binary relation % on F is a Gilboa-Schmeidler preference if and only if it satis�es Weak

Order, Monotonicity, Continuity, C-Independence, and Uncertainty Aversion.

By Gilboa and Schmeidler [12] (see also [17, Proposition 19]), a binary relation % is a Gilboa-Schmeidler
preference if and only if there exist a nonconstant and a¢ ne function u : X ! R and a unique closed and
convex set C � � such that V : F ! R, de�ned by

V (f) = min
p2C

Z
u (f) dp 8f 2 F ;

represents %.
Finally, Maccheroni, Marinacci, and Rustichini [17] consider binary relations % on F that satisfy an even

weaker assumption of Independence.

2That is, f % g if and only if V (f) � V (g).
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Axiom A. 7 (Weak C-Independence) If f; g 2 F , x; y 2 X, and � 2 (0; 1),

�f + (1� �)x % �g + (1� �)x) �f + (1� �)y % �g + (1� �)y:

De�nition 3 A binary relation % on F is a variational preference if and only if it satis�es Weak Order,

Monotonicity, Continuity, Weak C-Independence, and Uncertainty Aversion.

By MMR [17, Theorem 3], a binary relation % is a variational preference if and only if there exist a

nonconstant and a¢ ne function u : X ! R and a grounded, lower semicontinuous, and convex function

c : �! [0;1] such that V : F ! R, de�ned by

V (f) = min
p2�

�Z
u (f) dp+ c (p)

�
8f 2 F ; (2)

represents %.
Given a binary relation % on F , we de�ne %� as the revealed unambiguous preference of Ghirardato,

Maccheroni, and Marinacci [10]:

f %� g () �f + (1� �)h % �g + (1� �)h 8� 2 (0; 1] ;8h 2 F :

By Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi [5], if % is a variational preference,
then there exists a unique closed and convex set C� such that

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 C�:

The binary relation %� is a Bewley preference (see Bewley [3]). Typically, %� is interpreted as including the
rankings for which the decision maker is sure, and the set C� is interpreted as the uncertainty perceived by

the decision maker.

3 Results

In this section we consider a variational preference % represented by a function V de�ned as in (2). Given V
and u, the object of our study is the set C = C (V; u) de�ned as the set of all functions c : �! [0;1] which
are grounded, lower semicontinuous, convex, and further satisfy (2). A notion that will play an important

role in what follows is the correspondence �u : Fint � �, given by

�u (f) =

�
p 2 � :

Z
u (f) dp �

Z
u (g) dp =) f % g

�
8f 2 Fint:

The set �u (f) consists of the beliefs that rationalize the decision maker�s preferences at f . These sets of

local beliefs have been studied by Rigotti, Shannon, and Strzalecki [18] and by Hanany and Klibano¤ [15].

In the next result, we show that C is a convex set and a complete lattice. In particular, C admits a
minimum and a maximum element, c? and d?. From a decision theoretic point of view, the function c? is

the function identi�ed by MMR (see Remark 2 and Appendix B) and shown to capture the decision maker�s

uncertainty attitudes (see [17, Proposition 8]). On the other hand, the function d? is a novel object that

characterizes %�. Finally, point (v) shows that all functions c 2 C coincide on the collection of local beliefs.
We conclude by computing d? when % is a Gilboa-Schmeidler preference and when % is an Anscombe-

Aumann expected utility preference.

Theorem 1 Let % be a variational preference on F . The following statements are true:
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(i) There exist c?; d? 2 C such that
c? � c � d? 8c 2 C:

(ii) C is a convex set and a complete lattice.

(iii) If u (X) is unbounded, then C is a singleton and c? = d?.

(iv) cl (dom d?) = C�.

(v) For each f 2 Fint, for each p 2 �u (f), and for each c 2 C,

c? (p) = c (p) = d? (p) :

In particular,

C� =
_
co

0@ [
f2Fint

�u (f)

1A : (3)

Remark 1 In the unbounded case and for the more general class of uncertainty averse preferences, Cerreia-
Vioglio, Maccheroni, Marinacci, and Montrucchio [6, Proposition 11] show that the collection of all sets �u (f)

characterizes %�. Equation (3) in point (v) extends this �nding for the class of variational preferences to the
bounded case. This fact could be proven in two ways: (a) by direct methods, as we do in Appendix B, (b)

by showing (loosely speaking) that the set of Greenberg-Pierskalla di¤erentials �u (f) coincides with the set

of normalized Clarke�s di¤erentials (see our Theorem 2), and then invoking Ghirardato and Siniscalchi [11,

Theorem 2], who show that C� coincides with the closed convex hull of all normalized Clarke�s di¤erentials.

Compared to [6, Proposition 11] the proof of (3) is rather di¤erent. In the proof of [6, Proposition 11], �rst

C� is shown to be equal to cl (dom c?) and then cl (dom c?) is shown to be equal to the closed convex hull

of Greenberg-Pierskalla di¤erentials �u (f) : If u (X) 6= R, this strategy of proof does not work. In fact,
c? (p) � lengthu (X) for all p 2 �, see (4) below. Therefore, if u (X) is bounded, then cl (dom c?) = �,

while, typically, both C� and the closed convex hull of local beliefs are di¤erent from �: For such a reason,

we need to prove the equality in (3) by direct methods (see also Proposition 3).3

Remark 2 Recall that c? : �! [0;1] is such that

c? (p) = sup
f2F

�
u (xf )�

Z
u (f) dp

�
8p 2 �; (4)

where xf � f for all f 2 F (see [17, Theorem 3]). Fix u. By [17, Proposition 6], if u (X) = R, then c? is the
unique function in C representing %. Point (v) of Theorem 1 can be seen as an extension of this uniqueness

result. It shows that, even in the case u (X) is bounded, each function c in C representing % coincides to c?

on the subdomain of local beliefs.

The next result con�rms the intuition that the structure of a variational preference is summarized by the

functions c? and d? associated to its representation. In fact, given a function c : �! [0;1], it is enough to
check whether it is lower semicontinuous, convex, and such that c? � c � d? to conclude that c 2 C, that is,
that c is also grounded and represents % as in (2).

3On the other hand, the proof contained in this paper relies on a property of strong monotonicity that variational preferences

satisfy, but generic uncertainty averse preferences might not satisfy, namely,

f (s) � g (s) 8s 2 S =) f � g:
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Corollary 1 Let % be a variational preference on F and c : �! [0;1] a lower semicontinuous and convex
function. The following statements are equivalent:

(i) c? � c � d?;

(ii) c 2 C.

The next results con�rm that d? captures an important behavioral trait of the decision maker. Its

e¤ective domain, aside from coinciding (up to closure) with the set of probabilities characterizing the revealed

unambiguous preference %�, is the smallest closed convex set over which any function c 2 C can be restricted
to in (2).

Corollary 2 Let % be a variational preference on F . If c 2 C, then C� is the smallest closed and convex
subset of � such that the min in (2) can be restricted to.

In particular, for each c 2 C and for each f 2 F

V (f) = min
p2C�

�Z
u (f) dp+ c (p)

�
:

Corollary 3 If % is a Gilboa-Schmeidler preference on F , then d? = �C .4

Recall that if the interval u (X) is bounded, by (4), then c? (p) � lengthu (X) < 1 for all p 2 �.

Therefore, unless C = C� = �, we have that c? 6= d? and so c? 6= �C .

Corollary 4 If % is an Anscombe-Aumann expected utility preference on F , then d? = �fpg.

Summing up, the triple (u; c?; d?) characterizes the representation of variational preferences. Under

unboundedness, the triple reduces to the pair (u; c?). This latter case was the center of the analysis of [17].

A Nonsmooth Di¤erentials

Recall that we denote by B0 (�) the set of all real-valued �-measurable simple functions and by ba (�) the

set of all bounded and �nitely additive set functions. We endow the former set with the supnorm. Thus, the

latter set can be identi�ed with the norm dual of B0 (�). Recall also that we endow ba (�) and any of its

subsets with the weak* topology. We denote by h�; �i : B0 (�) � ba (�) ! R the dual pairing. The function
h�; �i is de�ned by

h'; pi =
Z
'dp 8 ('; p) 2 B0 (�)� ba (�) :

In the sequel, with a small abuse of notation, given k 2 R, we denote by k both the real number and the
constant function on S that takes value k. Finally, we denote by K an interval of R such that 0 2 intK.
Consider a functional I : B0 (�;K)! R and  2 B0 (�; intK). De�ne the

(i) Clarke upper (directional) derivative I� ( ; �) : B0 (�)! [�1;1] at  by:

I� ( ; �) = lim sup
'! 
t#0

I ('+ t�)� I (')
t

8� 2 B0 (�) ;

4Given D � �, recall that �D : �! [0;1] is such that �D (p) = 0 if p 2 D and �D (p) =1 otherwise.
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(ii) Clarke lower (directional) derivative I� ( ; �) : B0 (�)! [�1;1] at  by:

I� ( ; �) = lim inf
'! 
t#0

I ('+ t�)� I (')
t

8� 2 B0 (�) :

It is easy to check that

I� ( ; �) � I� ( ; �) 8 2 B0 (�; intK) and 8� 2 B0 (�) : (5)

The Clarke di¤erential @�I ( ) at  is de�ned by

@�I ( ) = fp 2 ba (�) : 8' 2 B0 (�) h'; pi � I� ( ;')g :

At this level of generality, we can also de�ne another notion of superdi¤erential:

@GP I ( ) = fp 2 � : 8' 2 B0 (�;K) h'; pi � h ; pi =) I (') � I ( )g :

This notion of di¤erential is common in Quasiconvex Analysis and it is due to Greenberg and Pierskalla [13].

If I is a normalized and concave niveloid,5 then we can also de�ne a third notion of superdi¤erential

@I ( ) = fp 2 � : 8' 2 B0 (�;K) I (')� I ( ) � h'; pi � h ; pig :

This is the standard notion of superdi¤erential which is common in Convex Analysis. The following lemma

can be found, for example, in Ghirardato, Maccheroni, and Marinacci [10] (see also Jahn [16, Chapter 3,

Section 5] and Clarke [8, Proposition 2.1.2]).

Lemma 1 Let K be an open interval. If I : B0 (�;K)! R is locally Lipschitz, then @�I ( ) is a nonempty,
convex, and compact subset of ba (�) at each  2 B0 (�;K) with

@�I ( ) = fp 2 ba (�) : 8' 2 B0 (�) h'; pi � I� ( ;')g : (6)

In particular, if I is monotone, then @�I ( ) � ba+ (�) for all  2 B0 (�;K).

Theorem 2 If I : B0 (�;K) ! R is monotone, continuous, locally Lipschitz on B0 (�; intK), and quasi-

concave, then for each  2 B0 (�; intK)�
p

kpk : 0 6= p 2 @�I ( )
�
� @GP I ( ) : (7)

Moreover, if 0 =2 @�I ( ), then equality holds in (7).

Proof. Fix  2 B0 (�; intK). Consider p 2 ba (�) such that 0 6= p 2 @�I ( ). By Lemma 1 and since I is
monotone, �p = p= kpk 2 �. Consider now ' 2 B0 (�;K). We prove three facts:

1. h'; �pi < h ; �pi =) I (') � I ( ). De�ne " = h � '; pi. By assumption, we have that " > 0. Since

p 2 @�I ( ), I� ( ; � ') � h � '; pi = " > 0. By de�nition of I� ( ; � '), we have that there exist
ftngn2N � (0;1) and f'ngn2N � B0 (�) such that

I ('n + tn ( � '))� I ('n)
tn

! I� ( ; � ')

5See [7] for a de�nition of niveloid. Recall that a normalized niveloid is such that

1. I (k) = k for all k 2 K;

2. I is monotone;

3. I ('+ k) = I (') + k for all ' 2 B0 (�;K) and k 2 R such that '+ k 2 B0 (�;K).
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where 0 < tn ! 0 and 'n !  . It follows that for n large enough

I ('n + tn ( � '))� I ('n)
tn

� "

2
:

Since I is locally Lipschitz, we have that for n large enough

"

2
� I ('n + tn ('n � '))� I ('n)

tn
+
I ('n + tn ( � '))� I ('n + tn ('n � '))

tn

� I ('n + tn ('n � '))� I ('n)
tn

+
K k'n + tn ( � ')� 'n � tn ('n � ')k

tn

� I ('n + tn ('n � '))� I ('n)
tn

+
K ktn ( � 'n)k

tn

� I ('n + tn ('n � '))� I ('n)
tn

+K k � 'nk :

This implies that for n large enough

I ('n + tn ('n � '))� I ('n)
tn

� "

4
> 0:

We can �nally conclude that for n large enough

I ('n + tn ('n � ')) > I ('n) : (8)

De�ne �n = (1 + tn)
�1 2 (0; 1) for all n 2 N. Note that 'n = �n ('n + tn ('n � ')) + (1� �n)' for

all n 2 N. Since I is quasiconcave and by (8), we have that for n large enough

I ('n) � min fI ('n + tn ('n � ')) ; I (')g = I (') :

Since I is continuous, it follows that I (') � limn I ('n) = I ( ).

2. h'; �pi = h ; �pi and ' 2 B0 (�; intK) =) I (') � I ( ). Since p 6= 0, there exists � 2 B0 (�) such

that h�; �pi < 0. De�ne
'n = '+

1

n
� 8n 2 N:

Since ' 2 B0 (�; intK), note that f'ngn2N eventually belongs to B0 (�; intK). It is also immediate
to see that h'n; �pi < h ; �pi for all n 2 N. By point 1 and since I is continuous, we have that

I (') = limn I ('n) � I ( ).

3. h'; �pi = h ; �pi and ' 62 B0 (�; intK) =) I (') � I ( ). De�ne

'n =

�
1� 1

n

�
'+

1

n
 8n 2 N:

Since ' 2 B0 (�;K) and  2 B0 (�; intK), note that f'ngn2N belongs to B0 (�; intK). Moreover,
we also have that h'n; �pi = h ; �pi for all n 2 N. By point 2 and since I is continuous, we have that
I (') = limn I ('n) � I ( ).

By points 1, 2, and 3, we proved that, if ' 2 B0 (�;K) is such that h'; �pi � h ; �pi, then I (') � I ( ).

Thus, p= kpk = �p 2 @GP I ( ), proving (7).

Suppose 0 =2 @�I ( ). Let �p 2 @GP I ( ). If � 2 ker �p = f' 2 B0 (�) : h'; �pi = 0g, then we have that
h + t�; �pi � h ; �pi for all t � 0. Since �p 2 @GP I ( ), this implies that I ( + t�) � I ( ) for all t � 0. By
de�nition of I� ( ; �), it follows that I� ( ; �) � 0. By the Hahn-Banach Theorem, there exists a continuous

8



linear functional p : B0 (�)! R such that h�; pi � I� ( ; �) for all � 2 B0 (�) and h�; pi = 0 for all � 2 ker �p.
In particular, we have that ker �p � ker p. By Lemma 1, we can conclude that p 2 @�I ( ). By Lemma 1 and
since 0 =2 @�I ( ) and I is monotone, it follows that 0 6= p � 0. By the Fundamental Theorem of Duality

(see [2, Theorem 5.91]) and since ker �p � ker p and 0 6= p � 0, there exists � > 0 such that p = ��p. We can

conclude that � = kpk and �p = p= kpk, proving the equality in (7) when 0 =2 @�I ( ). �

Lemma 2 Let I : B0 (�;K)! R be a normalized and concave niveloid. If J : B0 (�)! R is a normalized
and concave niveloid which extends I, then for each  2 B0 (�; intK)

@GP I ( ) = @GPJ ( ) :

Proof. Fix  2 B0 (�; intK). Consider p 2 @GPJ ( ). It follows that for each ' 2 B0 (�)

h'; pi � h ; pi =) J (') � J ( ) :

Since J extends I, we have that for each ' 2 B0 (�;K)

h'; pi � h ; pi =) I (') = J (') � J ( ) = I ( ) ;

proving that p 2 @GP I ( ). On the other hand, consider p 2 @GP I ( ). By contradiction, assume that

p 62 @GPJ ( ). It follows that there exists �' 2 B0 (�) such that

h�'; pi � h ; pi and J (�') > J ( ) :

Since  2 B0 (�; intK), there exists � 2 (0; 1) such that ��'+ (1� �) 2 B0 (�; intK). It is immediate to
check that h��'+ (1� �) ; pi � h ; pi. Since J is concave and extends I, we also have that

I (��'+ (1� �) ) = J (��'+ (1� �) ) � �J (�') + (1� �) J ( ) > J ( ) = I ( ) ;

a contradiction with p 2 @GP I ( ). �

Corollary 5 If I : B0 (�;K)! R is a normalized and concave niveloid, then

@�I ( ) = @I ( ) = @GP I ( ) 8 2 B0 (�; intK) :

Proof. Since I is a niveloid, I is monotone and Lipschitz continuous. Fix  2 B0 (�; intK). It is immediate
to see that @I ( ) � @�I ( ). Next, we show that @GP I ( ) � @I ( ). Consider p 2 @GP I ( ). By [7,

Theorem 5], there exists J : B0 (�) ! R which extends I and is a normalized and concave niveloid. By

Lemma 2, it follows that p 2 @GPJ ( ). Consider ' 2 B0 (�;K). De�ne k = h ; pi � h'; pi. It follows
that h'+ k; pi � h ; pi. Since p 2 @GPJ ( ), this implies that J ('+ k) � J ( ). Since J is a niveloid that

extends I, we can conclude that

I (')� I ( ) + k = J (') + k � J ( ) = J ('+ k)� J ( ) � 0;

that is, I (') � I ( ) � �k = h'; pi � h ; pi. Since ' was arbitrarily chosen in B0 (�;K), it follows that
p 2 @I ( ).
We can conclude that

@GP I ( ) � @I ( ) � @�I ( ) : (9)

Next, consider p 2 @�I ( ). By Lemma 1, p � 0 and since I is a normalized and concave niveloid, then

1 = I� ( ; 1) � h1; pi � I� ( ; 1) = 1, proving that h1; pi = 1. It follows that 0 6= p 2 � and kpk = 1. This
implies that

n
p
kpk : 0 6= p 2 @�I ( )

o
= @�I ( ) and 0 62 @�I ( ). By Theorem 2, we can also conclude that

@�I ( ) =

�
p

kpk : 0 6= p 2 @�I ( )
�
= @GP I ( ) : (10)

Since  was arbitrarily chosen and by (9), the statement follows. �
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B Proofs

Next we study a normalized and concave niveloid I : B0 (�;K) ! R. We denote by � an element in intK.
Note that the constant function � belongs to B0 (�; intK).

Proposition 1 Let I : B0 (�;K) ! R be a normalized niveloid. I is concave if and only if there exists a
grounded, lower semicontinuous, and convex function c : �! [0;1] such that

I (') = min
p2�

fh'; pi+ c (p)g 8' 2 B0 (�;K) : (11)

Moreover, there exists a minimal function c? : �! [0;1], de�ned by

c? (p) = sup
'2B0(�;K)

fI (')� h'; pig 8p 2 �;

which is grounded, lower semicontinuous, convex, and satis�es (11).

Proof. For a proof see Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini [7]. �
Given I, de�ne as C = C (I) the class of functions c : � ! [0;1] such that c is grounded, lower

semicontinuous, convex, and represents I as in (11). By Proposition 1, if I is a normalized and concave

niveloid, then C is nonempty. Given c 2 [0;1]� and  2 B0 (�;K), we de�ne Mc ( ) by

Mc ( ) = fp 2 � : h ; pi+ c (p) = I ( )g :

If c 2 C, then Mc ( ) 6= ; for all  2 B0 (�; intK).

Proposition 2 Let I : B0 (�;K) ! R be a normalized and concave niveloid. If c 2 C, then Mc ( ) =

@GP I ( ) for all  2 B0 (�; intK). In particular, argmin c =Mc (�) = @GP I (�), that is,

c (p) = 0 if and only if p 2 @GP I (�) :

Proof. Pick c in C. De�ne Jc : B0 (�) ! R by Jc (') = minp2� fh'; pi+ c (p)g for all ' 2 B0 (�). It is

immediate to verify that the concave conjugate of Jc, J�c : ba (�) ! [�1;1), is such that J�c (p) = �c (p)
if p 2 � and J�c (p) = �1 otherwise. Pick  in B0 (�; intK). By [4, Proposition 4.4.1], Corollary 5, and

Lemma 2, it follows that

Mc ( ) = @Jc ( ) = @GPJc ( ) = @GP I ( ) ; (12)

proving the main statement. Finally, consider the case  = �. By (12), we have that Mc (�) = @GP I (�).

Next, consider p 2 argmin c, that is, since c is grounded, consider p 2 � such that c (p) = 0. It follows

that I (�) = � = h�; pi = h�; pi + c (p), proving that p 2 Mc (�). On the other hand, if p 2 Mc (�), then

� = I (�) = h�; pi+ c (p) = � + c (p), proving that c (p) = 0 and p 2 argmin c. �

Remark 3 By Proposition 2, we can conclude that if c 2 C, then for each  2 B0 (�; intK) the set @GP I ( )
is nonempty since ; 6=Mc ( ) = @GP I ( ).

Theorem 3 Let I : B0 (�;K) ! R be a normalized and concave niveloid. The following statements are

true:

1. C is a complete lattice.

2. There exist c?; d? 2 C such that c? � c � d? for all c 2 C.

10



3. If c is lower semicontinuous, convex, and such that c? � c � d?, then c 2 C.

4. C is a convex set.

5. cl (dom d?) =
_
co

0@ [
 2B0(�;intK)

@GP I ( )

1A.
6. For each  2 B0 (�; intK), for each p 2 @GP I ( ), and for each c 2 C

c? (p) = c (p) = d? (p) :

Proof. Given I, consider C. By Proposition 1, it follows that C 6= ;.

1. Consider a nonempty subset fc
g
2� � C. De�ne d : �! [0;1] by

d (p) = sup

2�

c
 (p) 8p 2 �: (13)

Step 1: d is lower semicontinuous and convex.

Proof of the Step. By (13) and since each element c in C is lower semicontinuous and convex, the statement
follows (see [2, Lemma 2.41] and [14, Lemma 4.26]). �
Step 2: For each  2 B0 (�; intK) we have that Md ( ) = @GP I ( ) 6= ;. In particular, d is grounded.

Proof of the Step. Consider �p 2 @GP I ( ). By Proposition 2, we have that h ; �pi+ c (�p) = I ( ) for all c 2 C.
In particular, c
 (�p) = I ( )�h ; �pi for all 
 2 �. Since d is de�ned as the pointwise supremum over fc
g
2�,
we can conclude that d (�p) = I ( ) � h ; �pi, that is, h ; �pi + d (�p) = I ( ), proving that �p 2 Md ( ). Since

fc
g
2� is nonempty, consider c�
 2 fc
g
2�. Consider �p 2 Md ( ). Since c�
 represents I as in (11) and by

construction of d, it follows that

I ( ) = h ; �pi+ d (�p) � h ; �pi+ c�
 (�p) � min
p2�

fh ; pi+ c�
 (p)g = I ( ) ;

proving that �p 2 Mc�
 ( ). By Proposition 2, this implies that �p 2 @GP I ( ). From the previous part of

the proof, it follows that Md (�) = @GP I (�) 6= ;. Since I is normalized, if �p 2 Md (�), then � = I (�) =

h�; �pi+ d (�p) = � + d (�p), that is, d (�p) = 0, proving that d is grounded. �
Step 3: I (') = minp2� fh'; pi+ d (p)g for all ' 2 B0 (�;K), that is, d satis�es (11).

Proof of the Step. Consider ' 2 B0 (�; intK). Since fc
g
2� is nonempty, consider c�
 2 fc
g
2�. By
de�nition of d, it follows that h'; pi + c�
 (p) � h'; pi + d (p) for all p 2 �. By Step 2, we have that there
exists �p 2Md ('), that is, I (') = h'; �pi+ d (�p). We can conclude that

min
p2�

fh'; pi+ d (p)g � h'; �pi+ d (�p) = I (') = min
p2�

fh'; pi+ c�
 (p)g � min
p2�

fh'; pi+ d (p)g ;

proving that I coincides to Jd on B0 (�; intK). Since both functionals are Lipschitz continuous on B0 (�;K),

the statement follows. �
Step 4: C is a complete lattice, that is, given a nonempty subset fc�g�2A � C there exists ĉ and d̂ such that

ĉ � c� � d̂ 8� 2 A

where ĉ is the greatest lower bound for fc�g�2A in C and d̂ is the least upper bound for fc�g�2A in C.
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Proof of the Step. De�ne ĉ; d̂ : �! [0;1] by

ĉ (p) = sup
c02fc2C:8�2A c�c�g

c0 (p) and d̂ (p) = sup
�2A

c� (p) 8p 2 �:

In the �rst case, we have that fc
g
2� = fc 2 C : 8� 2 A c � c�g 3 c? and ĉ = d where d is de�ned as in

(13). In the second case, we have that fc
g
2� = fc�g�2A and d̂ = d where d is again de�ned as in (13). In

light of these observations and Steps 1-3, we have that both ĉ and d̂ are elements of C. By construction, it
is immediate to see that ĉ � c� � d̂ for all � 2 A and ĉ is the greatest lower bound for fc�g�2A in C and d̂
is the least upper bound for fc�g�2A in C. �
Step 4 proves point 1 of the statement.

2. Since C is a complete lattice, it follows that there exist a minimum and a maximum element. By

Proposition 1, the minimum element is c?. By the proof of point 1, the maximum element d? : � ! [0;1]
is de�ned by

d? (p) = sup
c2C

c (p) 8p 2 �:6

3. Consider a lower semicontinuous and convex function c : � ! [0;1] such that c? � c � d?. By

Proposition 2 and since c?; d? 2 C, we have that c? (p) = 0 = d? (p) if and only if p 2 @GP I (�). Since

@GP I (�) 6= ;, consider �p 2 @GP I (�). It follows that 0 = c? (�p) � c (�p) � d? (�p) = 0, that is, c is grounded.

Finally, observe that for each ' 2 B0 (�;K) we have that

I (') = min
p2�

fh'; pi+ c? (p)g � min
p2�

fh'; pi+ c (p)g � min
p2�

fh'; pi+ d? (p)g = I (') ;

proving that c satis�es (11), that is, c 2 C.

4. Consider c1; c2 2 C and �x � 2 (0; 1). De�ne c� = �c1 + (1� �) c2. The convex linear combination of
lower semicontinuous and convex functions is lower semicontinuous and convex (see Clarke [9, Propositions

2.13 and 2.20]). Finally, by point 2, we have that c? � c1; c2 � d?. This implies that c? � c� � d?. By point

3, we can conclude that c� 2 C.

5. Fix ' 2 B0 (�; intK). By Proposition 2, recall that Md? ( ) = @GP I ( ) for all  2 B0 (�; intK).

De�ne D as

D =
_
co

0@ [
 2B0(�;intK)

@GP I ( )

1A :

De�ne also d : � ! [0;1] by d (p) = d? (p) if p 2 D and d (p) = 1 if p 62 D. In other words, d (p) =

sup fd? (p) ; �D (p)g for all p 2 �. It is immediate to check that d is grounded, lower semicontinuous, convex,
and such that d � d?. On the other hand, by de�nition, we have thatMd (') � @GP I (') 6= ;. It follows that
I (') = minp2� fh'; pi+ d (p)g. Since ' was chosen to be generic, we have that I = Jd on B0 (�; intK),

that is, d satis�es (11) on B0 (�; intK).7 Since both I and Jd are Lipschitz continuous on B0 (�;K), we

have that I = Jd on B0 (�;K), that is, d satis�es (11) on B0 (�;K), thus d 2 C. By construction of d?,
we can conclude that d � d?, thus, d = d?. In turn, this yields dom d? � D. Since D is closed, we have

that cl (dom d?) � D. In order to derive the opposite inclusion, observe that Md? ( ) � dom d? for all

 2 B0 (�; intK). By Proposition 2, we can conclude that[
 2B0(�;intK)

@GP I ( ) =
[

 2B0(�;intK)

Md? ( ) � dom d?:

6d? can also be obtained as the Fenchel-Moreau biconjugate of the function c? + �R where R =
[

 2B0(�;intK)
@GP I ( ).

7Recall that Jd is such that Jd (') = minp2� fh'; pi+ d (p)g for all ' 2 B0 (�).
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Since d? is convex, dom d? is convex. This implies that

co

0@ [
 2B0(�;intK)

@GP I ( )

1A � dom d?:

By taking the closure, we obtain that D � cl (dom d?), proving the statement.

6. Consider  2 B0 (�; intK), p 2 @GP I ( ), and c 2 C. By point 2, we have that c?; d? 2 C and
c? � c � d?. By Proposition 2, we also have that Mc? ( ) = @GP I ( ) =Md? ( ). It follows that

h ; pi+ c? (p) = I ( ) = h ; pi+ d? (p) :

Since c? � c � d?, this implies that

c? (p) = c (p) = d? (p) :

Since  , p, and c were arbitrarily chosen, the statement follows. �
Before proving the results of Section 3, we need some extra notation and an extra ancillary fact. Given

a normalized niveloid I : B0 (�;K)! R, we de�ne <� to be the binary relation on B0 (�;K) such that

' <�  () I (�'+ (1� �)�) � I (� + (1� �)�) 8� 2 (0; 1] ;8� 2 B0 (�;K) : (14)

By [5], it follows that <� is an a¢ ne (conic) preorder (see also [10, Appendix A]). Given I, de�ne

D =
_
co

0@ [
 2B0(�;intK)

@GP I ( )

1A :

Proposition 3 If I : B0 (�;K)! R is a normalized and concave niveloid, then

' <�  ()
Z
'dp �

Z
 dp 8p 2 D:

Proof. We proceed by steps.

Step 1: Let '1; '2 2 B0 (�; intK). (i) implies (ii), (ii) implies (iii), and (iii) implies (iv) where
(i) '1 <� '2;
(ii) For each � 2 B0 (�; intK) and for each � 2 (0; 1]

I (�'1 + (1� �)�) � I (�'2 + (1� �)�) ;

(iii) For each � 2 B0 (�; intK) and for each � 2 (0; 1] there exists ��;� > 0 such that for each �0 2 (0; ��;�)

I
�
�'1 + (1� �)�+ �0

�
> I (�'2 + (1� �)�) ;

(iv) For each  2 B0 (�; intK) and for each p 2 @GP I ( )

h'1; pi � h'2; pi :

Proof of the Step. (i) implies (ii). It follows by the de�nition of <�.
(ii) implies (iii). Consider � 2 B0 (�; intK) and � 2 (0; 1]. Since '1; '2; � 2 B0 (�; intK), it follows

that �'1 + (1� �)�; �'2 + (1� �)� 2 B0 (�; intK). This implies that there exists ��;� > 0 such that

�'1 + (1� �)�+ �0 2 B0 (�; intK) for all �0 2 (0; ��;�). Since (ii) holds and I is a normalized niveloid, we
have that

I
�
�'1 + (1� �)�+ �0

�
= I (�'1 + (1� �)�) + �0 > I (�'2 + (1� �)�) ;
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proving the statement.

(iii) implies (iv). Consider now  2 B0 (�; intK) and p 2 @GP I ( ). Since  2 B0 (�; intK), there exists
� 2 B0 (�; intK) and � 2 (0; 1) such that  = �'2 + (1� �)�. By de�nition of @GP I ( ), we have that for
each  0 2 B0 (�;K)

I
�
 0
�
> I ( ) =)



 0; p

�
> h ; pi :

Since I
�
�'1 + (1� �)�+ �0

�
> I (�'2 + (1� �)�) = I ( ) for all �0 2 (0; ��;�), it follows that


�'1 + (1� �)�+ �0; p
�
> h ; pi = h�'2 + (1� �)�; pi 8�0 2 (0; ��;�) :

Since � 2 (0; 1), it follows that h'1; pi � h'2; pi. �
Step 2: Let '1; '2 2 B0 (�;K). '1 <� '2 only if h'1; pi � h'2; pi for all p 2 D.
Proof of the Step. Consider � 2 intK. It follows that 12'1+

1
2�;

1
2'2+

1
2� 2 B0 (�; intK) and

1
2'1+

1
2� <�

1
2'2 +

1
2�. By Step 1, we have that

1

2
h'1; pi+

1

2
� =

�
1

2
'1 +

1

2
�; p

�
�
�
1

2
'2 +

1

2
�; p

�
=
1

2
h'2; pi+

1

2
� 8p 2

[
 2B0(�;intK)

@GP I ( ) :

It follows that h'1; pi � h'2; pi for all p 2 D, proving the statement. �
Step 3: Let '1; '2 2 B0 (�;K). If h'1; pi � h'2; pi for all p 2 D, then '1 <� '2.
Proof of the Step. By point 5 of Theorem 3, we have that D = cl (dom d?). First, observe that

I ( ) = min
p2�

fh ; pi+ d? (p)g = min
p2D

fh ; pi+ d? (p)g 8 2 B0 (�;K) : (15)

Consider � 2 B0 (�;K) and � 2 (0; 1]. If h'1; pi � h'2; pi for all p 2 D, then h�'1 + (1� �)�; pi �
h�'2 + (1� �)�; pi for all p 2 D. It follows that

h�'1 + (1� �)�; pi+ d? (p) � h�'2 + (1� �)�; pi+ d? (p) 8p 2 D:

By (15), it follows that I (�'1 + (1� �)�) � I (�'2 + (1� �)�). Since � and � were arbitrarily chosen, it
follows that '1 <� '2. �
By Steps 2 and 3, it follows that '1 <� '2 if and only if h'1; pi � h'2; pi for all p 2 D, proving the

statement. �
Proof of Theorem 1 and Corollary 1. By [17, Lemma 28 and Theorem 3] and since % is a variational

preference, there exist a nonconstant a¢ ne function u : X ! R and a normalized and concave niveloid

I : B0 (�; u (X))! R such that
f % g () I (u (f)) � I (u (g)) :

Note that the function V : F ! R, in (2), is V = I � u. Without loss of generality, we can assume that 0 2
intu (X). It is immediate to verify that C (V; u) = C (I), u (Fint) = B0 (�; intu (X)), �u (f) = @GP I (u (f))

for all f 2 Fint. Thus, points (i), (ii), and the �rst part of (v) follow from points 2, 4, 1, and 6 of Theorem

3. Point (iii) follows from [17, Proposition 6]. Next, observe that f %� g if and only if u (f) <� u (g). By
point 5 of Theorem 3 and Proposition 3, it follows that

f %� g ()
Z
u (f) dp �

Z
u (g) dp 8p 2 cl (dom d?) ;

proving that C� = cl (dom d?) and point (iv) of Theorem 1. Thus, the second part of point (v) follows from

point 5 of Theorem 3. Corollary 1 follows from points 2 and 3 of Theorem 3. �
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Proof of Corollary 3 and Corollary 4. We retain the notation of the proof of Theorem 1. By [12], if

% is a Gilboa-Schmeidler preference, then there exists a closed and convex set C � � such that I can be

chosen to be

I (') = min
p2C

Z
'dp 8' 2 B0 (�; u (X)) :

This implies that �C 2 C. By Theorem 1, we have that �C � d?. At the same time, @GP I (�) = C. By

Proposition 2, this implies that d? (p) = 0 for all p 2 C. Thus, we can conclude that d? � �C , that is,

d? = �C . Since Anscombe-Aumann expected utility preferences are a particular case of Gilboa-Schmeidler

preferences with C = fpg, Corollary 4 also follows. �
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