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Abstract

Maccheroni, Marinacci, and Rustichini [17], in an Anscombe-Aumann framework, axiomatically char-

acterize preferences that are represented by the variational utility functional

vin—uw{ [edrew}  vier
where w is a utility function on outcomes and c is an index of uncertainty aversion. In this paper, for
a given variational preference, we study the class C of functions ¢ that represent V. Inter alia, we show
that this set is fully characterized by a minimal and a maximal element, ¢* and d*. The function c*,
also identified by Maccheroni, Marinacci, and Rustichini [17], fully characterizes the decision maker’s
attitude toward uncertainty, while the novel function d* characterizes the uncertainty perceived by the

decision maker.

1 Introduction

In this paper we study the functional structure of variational preferences, a class of binary relations introduced
by Maccheroni, Marinacci, and Rustichini [17] (henceforth, MMR). In an Anscombe and Aumann framework,
a binary relation 7~ over the set of acts F is a variational preference if and only if it admits the following

representation

V(f>=min{/u<f>dp+c<p>} VfeF, o

peEA
where u is an affine utility index, A is the set of probabilities, and ¢ : A — [0,00] is a grounded, lower
semicontinuous, and convex function. In other words, each variational preference is characterized by a pair

(u,c), where u is a utility index over consequences and ¢ is an index of uncertainty aversion.

For a given variational preference - and a given u, we study the set of all functions ¢ : A — [0, oo] which
are grounded, lower semicontinuous, convex, and such that the corresponding V', given by (1), represents 7.
We denote this set by C. MMR showed that if 7 also satisfies an unboundedness axiom, then the function
¢ in (1) is unique; that is, C is a singleton. Without such an axiom, C is no longer a singleton. Our analysis
sheds light on the structure of C when it contains more than one element. In Theorem 1 we show that C is
a convex set and a complete lattice. In particular, C admits a minimum and a maximum element, denoted
by ¢* and d*.

*We thank two anonymous referees for helpful comments and suggestions. Simone Cerreia-Vioglio and Fabio Maccheroni
gratefully acknowledge the financial support of MIUR (PRIN grant 20103S5RN3_ 005).



From a decision theoretic point of view, the function ¢* is the function identified by MMR, which captures
the decision maker’s uncertainty attitudes (see [17, Proposition 8]). The function d* is a novel object; we show
it characterizes the revealed unambiguous preference as defined by Ghirardato, Maccheroni, and Marinacci
[10].1

As a consequence of our main result, we show that each lower semicontinuous and convex function c
such that ¢* < ¢ < d* also satisfies (1), and thus represents 2= (Corollary 1). From a conceptual and formal
point of view, these observations suggest that variational representations of preferences are characterized by
a triple (u, ¢*,d*), which reduces to a pair (u,c) in the unbounded case, a case more thoroughly studied by
MMR.

2 Preliminaries

2.1 Decision Theoretic Set Up

We consider a nonempty set S of states of the world, an algebra 3 of subsets of S called events, and a set X
of consequences. We denote by F the set of all (simple) acts, that is, of ¥-measurable functions f: S — X
that take finitely many values.

Given any x € X, define z € F to be the constant act such that z(s) = x for all s € S. With the usual
slight abuse of notation, we thus identify X with the subset of constant acts in F.

We assume that X is a convex subset of a vector space. This is the case, for instance, if X is the set of
all lotteries on a set of outcomes, as in the classic setting of Anscombe and Aumann [1]. Using the linear
structure of X, we define a mixture operation over F as follows: For each f,g € F and « € [0, 1], the act
af + (1 —a)g € F is defined to be such that (af + (1 —a)g) (s) = af(s) + (1 —a)g(s) € X for all s € S.

We model a decision maker’s preferences on F by a binary relation 2Z. Given such a binary relation -,
> and ~ denote respectively the asymmetric and symmetric parts of 2-. Finally, we denote by Fi,; the set
of acts

{feF:ImyeXst.x>=f(s)=y VseS}.

2.2 Mathematical Preliminaries

We denote by By (X) the set of all real-valued 3-measurable simple functions, so that u(f) € By (%)
whenever v : X — R is affine and f € F. Given an interval K C R, we denote by By (X, K) the set of all
real-valued Y-measurable simple functions that take values in the interval K. Note that, if K = R, then
By (3,R) = By (%).

When By (X) is endowed with the supnorm, its norm dual can be identified with the set ba (X) of all
bounded finitely additive measures on (S,X). The set of probabilities in ba (X) is denoted by A; it is a
(weak™®) compact and convex subset of ba (X). The set A is endowed with the relative weak™ topology.

Given a function ¢ : A — [0, 00], we say that c is grounded if and only if minyea ¢(p) = 0. We denote
the effective domain of ¢ by

dome={peA:c(p) <oo}.

I This result is also based on an equivalence between Greenberg—Pierskalla differentials and Clarke’s differentials, established

in Theorem 2.



2.3 Variational Preferences

We consider three nested classes of preferences: Anscombe-Aumann expected utility preferences, Gilboa-
Schmeidler preferences, and variational preferences a la MMR. Before formally defining them, we provide
the axioms that characterize these preferences. For a thorough discussion of these assumptions, we refer the
interested reader to [1], [12], and [17].

Axiom A. 1 (Weak Order) The binary relation 7, is nontrivial, complete, and transitive.
Axiom A. 2 (Monotonicity) If f,g € F and f(s) 7 g(s) for all s € S, then f = g.

Axiom A. 3 (Continuity) If f,g,h € F, the sets {a € [0,1] : af + (1 — a)g Z h} and {a € [0,1] : b
af + (1 —a)g} are closed.

Axiom A. 4 (Independence) If f,g,h € F and a € (0,1),
frng=af+(1—-a)hZag+ (1—a)h.

Definition 1 A binary relation - on F is an Anscombe-Aumann expected utility preference if and only if

it satisfies Weak Order, Monotonicity, Continuity, and Independence.

By Anscombe and Aumann [1] (see also [17, Corollary 20]), 7 is an Anscombe-Aumann expected utility
preference if and only if there exist a nonconstant affine function v : X — R and a unique p € A such that
V : F — R, defined by

vin=[uthdr  vier,
represents -2
Gilboa-Schmeidler preferences differ from expected utility ones in terms of the Independence assumption.

In fact, Gilboa and Schmeidler [12] weaken the Independence assumption and replace it with the following

two postulates (see also [17, Lemma 1]):

Axiom A. 5 (C-Independence) If f,g € F, z,y € X, and o, 8 € (0,1],
af+(l-azZag+(l-a)r=pf+(1-PByzBg+(1-By.

Axiom A. 6 (Uncertainty Aversion) If f,g € F and a € (0,1), f ~ g impliesaf + (1 —a)g Z f.

Definition 2 A binary relation 7= on F is a Gilboa-Schmeidler preference if and only if it satisfies Weak

Order, Monotonicity, Continuity, C-Independence, and Uncertainty Aversion.

By Gilboa and Schmeidler [12] (see also [17, Proposition 19]), a binary relation - is a Gilboa-Schmeidler
preference if and only if there exist a nonconstant and affine function v : X — R and a unique closed and
convex set C' C A such that V : F — R, defined by

V(f):min/u(f)dp VfeF,

peC

represents .
Finally, Maccheroni, Marinacci, and Rustichini [17] consider binary relations 7~ on F that satisfy an even

weaker assumption of Independence.

2That is, f = g if and only if V (f) > V (g).



Axiom A. 7 (Weak C-Independence) If f,g€ F, z,y € X, and a € (0,1),
af+t(l-a)zrzag+(l-—a)z=af+(1—-a)yZag+ (1 —a)y.

Definition 3 A binary relation 77, on F is a variational preference if and only if it satisfies Weak Order,

Monotonicity, Continuity, Weak C-Independence, and Uncertainty Aversion.

By MMR [17, Theorem 3|, a binary relation 2 is a variational preference if and only if there exist a
nonconstant and affine function v : X — R and a grounded, lower semicontinuous, and convex function
¢: A — [0,00] such that V : F — R, defined by

vin—un{ [eha+em] e )

PEA

represents .
Given a binary relation - on F, we define 5* as the revealed unambiguous preference of Ghirardato,

Maccheroni, and Marinacci [10]:
frrg <= oaf+(Q—-a)hzsag+(1—-—a)h VYae(0,1],Yhe F.

By Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi [5], if 7 is a variational preference,

then there exists a unique closed and convex set C* such that

fZhg = /U(f)dPZ/U(g)dp Vp e C*.

The binary relation 77* is a Bewley preference (see Bewley [3]). Typically, 7~* is interpreted as including the
rankings for which the decision maker is sure, and the set C'* is interpreted as the uncertainty perceived by

the decision maker.

3 Results

In this section we consider a variational preference - represented by a function V defined as in (2). Given V
and u, the object of our study is the set C = C (V, u) defined as the set of all functions ¢ : A — [0, co] which
are grounded, lower semicontinuous, convex, and further satisfy (2). A notion that will play an important

role in what follows is the correspondence 7, : Fine = A, given by

m(f){peA:/u<f)dpz/u<g>dp — fzg} VF € F.

The set 7, (f) consists of the beliefs that rationalize the decision maker’s preferences at f. These sets of
local beliefs have been studied by Rigotti, Shannon, and Strzalecki [18] and by Hanany and Klibanoff [15].
In the next result, we show that C is a convex set and a complete lattice. In particular, C admits a
minimum and a maximum element, ¢* and d*. From a decision theoretic point of view, the function c¢* is
the function identified by MMR (see Remark 2 and Appendix B) and shown to capture the decision maker’s
uncertainty attitudes (see [17, Proposition 8]). On the other hand, the function d* is a novel object that
characterizes 7-*. Finally, point (v) shows that all functions ¢ € C coincide on the collection of local beliefs.
We conclude by computing d* when 7~ is a Gilboa-Schmeidler preference and when = is an Anscombe-

Aumann expected utility preference.

Theorem 1 Let = be a variational preference on F. The following statements are true:



(i) There exist ¢*,d* € C such that

(i) C is a convex set and a complete lattice.
(i) If w(X) is unbounded, then C is a singleton and ¢* = d*.
(iv) cl(domd*) = C*.

(v) For each f € Fin, for each p € m, (f), and for each c € C,

¢ (p) =c(p)=d"(p).
In particular,

C* =co U m () ] - (3)
fEFint

Remark 1 In the unbounded case and for the more general class of uncertainty averse preferences, Cerreia-
Vioglio, Maccheroni, Marinacci, and Montrucchio [6, Proposition 11] show that the collection of all sets 7, (f)
characterizes 72*. Equation (3) in point (v) extends this finding for the class of variational preferences to the
bounded case. This fact could be proven in two ways: (a) by direct methods, as we do in Appendix B, (b)
by showing (loosely speaking) that the set of Greenberg-Pierskalla differentials 7, (f) coincides with the set
of normalized Clarke’s differentials (see our Theorem 2), and then invoking Ghirardato and Siniscalchi [11,
Theorem 2], who show that C* coincides with the closed convex hull of all normalized Clarke’s differentials.
Compared to [6, Proposition 11] the proof of (3) is rather different. In the proof of [6, Proposition 11], first
C* is shown to be equal to cl(dom ¢*) and then cl (dom ¢*) is shown to be equal to the closed convex hull
of Greenberg-Pierskalla differentials 7, (f). If u(X) # R, this strategy of proof does not work. In fact,
c* (p) < lengthu (X) for all p € A, see (4) below. Therefore, if u(X) is bounded, then cl(domc*) = A,
while, typically, both C* and the closed convex hull of local beliefs are different from A. For such a reason,

we need to prove the equality in (3) by direct methods (see also Proposition 3).?

Remark 2 Recall that ¢* : A — [0, 00] is such that

¢ o) =sw {ule) - [unar}  wea ()
feFr

where z¢ ~ f for all f € F (see [17, Theorem 3]). Fix u. By [17, Proposition 6], if v (X) =R, then ¢* is the

unique function in C representing 7~. Point (v) of Theorem 1 can be seen as an extension of this uniqueness

result. It shows that, even in the case u (X) is bounded, each function ¢ in C representing =~ coincides to ¢*

on the subdomain of local beliefs.

The next result confirms the intuition that the structure of a variational preference is summarized by the
functions ¢* and d* associated to its representation. In fact, given a function ¢ : A — [0, 00], it is enough to
check whether it is lower semicontinuous, convex, and such that ¢* < ¢ < d* to conclude that ¢ € C, that is,

that ¢ is also grounded and represents 7~ as in (2).

30n the other hand, the proof contained in this paper relies on a property of strong monotonicity that variational preferences

satisfy, but generic uncertainty averse preferences might not satisfy, namely,

f(s)=g(s) VseS = f»g.



Corollary 1 Let 7, be a variational preference on F and ¢ : A — [0,00] a lower semicontinuous and convex

function. The following statements are equivalent:
(i) & <c<d*;
(ii) ce€C.

The next results confirm that d* captures an important behavioral trait of the decision maker. Its
effective domain, aside from coinciding (up to closure) with the set of probabilities characterizing the revealed
unambiguous preference ~~*, is the smallest closed convex set over which any function ¢ € C can be restricted
to in (2).

Corollary 2 Let 7, be a variational preference on F. If ¢ € C, then C* is the smallest closed and convex
subset of A such that the min in (2) can be restricted to.

In particular, for each ¢ € C and for each f € F

v =min{ [+ e .
Corollary 3 If = is a Gilboa-Schmeidler preference on F, then d* = §o.*

Recall that if the interval w (X) is bounded, by (4), then ¢* (p) < lengthu (X) < oo for all p € A.
Therefore, unless C' = C* = A, we have that ¢* # d* and so ¢* # d¢.

Corollary 4 If 7 is an Anscombe-Aumann expected utility preference on F, then d* = .

Summing up, the triple (u,c*,d*) characterizes the representation of variational preferences. Under

unboundedness, the triple reduces to the pair (u,¢*). This latter case was the center of the analysis of [17].

A Nonsmooth Differentials

Recall that we denote by By () the set of all real-valued ¥-measurable simple functions and by ba () the
set of all bounded and finitely additive set functions. We endow the former set with the supnorm. Thus, the
latter set can be identified with the norm dual of By (). Recall also that we endow ba (¥) and any of its
subsets with the weak* topology. We denote by (-,-) : By (X) X ba (X) — R the dual pairing. The function
(-,-) is defined by

(¢,p) = /wdp Y (¢,p) € Bo (X) x ba (X).

In the sequel, with a small abuse of notation, given k € R, we denote by k both the real number and the
constant function on S that takes value k. Finally, we denote by K an interval of R such that 0 € int K.
Consider a functional I : By (X, K) — R and ¢ € By (3,int K). Define the

(i) Clarke upper (directional) derivative I° (1);-) : By (¥) — [—00, 0] at ¥ by:

I(p+t&) —I(p)

I° (1;€) = limsup
t

p—1

10

V¢ € By (X),

4Given D C A, recall that §p : A — [0,00] is such that §p (p) = 0 if p € D and §p (p) = oo otherwise.



(ii) Clarke lower (directional) derivative I, (1;-) : By (3) — [—00,00] at ¥ by:
I(p+1§) —I(p)

I, (v; &) = liminf V¢ € By (2).
=1 t
t10
It is easy to check that
Lo (¥;€) < I° (¥;€) V¢ € By (E,int K) and V¢ € By (X). (5)

The Clarke differential 0°I (¢) at v is defined by

I () ={peba(X):Vpec By(X) (p,p) <I°(V;0)}.

At this level of generality, we can also define another notion of superdifferential:

Ogprl (V) ={peA:Vpe By (E,K) (p,p) <W,p) = I(p)<I(¥)}.

This notion of differential is common in Quasiconvex Analysis and it is due to Greenberg and Pierskalla [13].

If T is a normalized and concave niveloid,” then we can also define a third notion of superdifferential

ol () ={pe A:Vp € By (5, K) I(p)—1(¥)<(p,p)—(¥,p)}.

This is the standard notion of superdifferential which is common in Convex Analysis. The following lemma
can be found, for example, in Ghirardato, Maccheroni, and Marinacci [10] (see also Jahn [16, Chapter 3,
Section 5] and Clarke [8, Proposition 2.1.2]).

Lemma 1 Let K be an open interval. If I : By (X, K) — R is locally Lipschitz, then 0°I (1) is a nonempty,
convez, and compact subset of ba (X) at each ¢ € By (X, K) with

FI()={p€ba(X):VYo € Bo(X) (o,p) =1 (i)} (6)
In particular, if I is monotone, then 0°I (¢) C bay (X) for all ¢ € By (%, K).

Theorem 2 If I : By (3, K) — R is monotone, continuous, locally Lipschitz on By (X,int K), and quasi-
concave, then for each v € By (3, int K)

{Lrs02peorw) caorrw). ()
Moreover, if 0 ¢ 0°I (v), then equality holds in (7).

Proof. Fix 1) € By (X,int K). Consider p € ba (X) such that 0 # p € 9°I (¢). By Lemma 1 and since [ is
monotone, p = p/ ||p|| € A. Consider now ¢ € By (X, K). We prove three facts:

1. (p,p) < (¥,p) = I(p) < I(y). Define ¢ = (¢p — ¢, p). By assumption, we have that € > 0. Since
p € 0°I (¥), I° (Y;¢ — p) > (¢ — p,p) = € > 0. By definition of I° (1);% — @), we have that there exist
{tn}en € (0,00) and {g, },cn € Bo (¥) such that

I(cpn‘i’tn(q/]*@)) 71(()071) _)IO(
ln

V;h — )

5See [7] for a definition of niveloid. Recall that a normalized niveloid is such that
1. I(k)=kforall k € K;
2. I is monotone;

3. I(p+k)=1I(p)+kforall p€ Bo(%,K) and k € R such that ¢ + k € Bo (2, K).



where 0 < t,, — 0 and ¢,, — . It follows that for n large enough

t T2

Since [ is locally Lipschitz, we have that for n large enough

gg I(%ﬁtn(wz—w))—f(%) +I(%+tn(¢—e0));I(wnﬁn(wn—w))
Lputin (son:— o) = 1(p,) | Kllgyttn (w—@)t—n@n a2y = 0]
Luttn (soi— DI, Kitatv= ol :
< I(son+tn(907;n—s0))—f(¢n) PR =

This implies that for n large enough

I (pn +tn(0n, —9) — L (py)

€
> 2
tn 4 >0
We can finally conclude that for n large enough
I(pp +tn(pn =) > I(py,) . (8)

Define a, = (1+1t,)"" € (0,1) for all n € N. Note that ¢, = an (¢, + tn (¢, — ) + (1 — an) ¢ for

all n € N. Since I is quasiconcave and by (8), we have that for n large enough

I(py) =2 min{I (¢, +tn (= 9)) L(9)} = 1 ().
Since I is continuous, it follows that I () <lim, I (¢,) = I (¢).

2. {¢,p) = (¥,p) and ¢ € By (E,int K) = I(p) < I (). Since p # 0, there exists ¢ € By (X) such
that (¢, p) < 0. Define
1
Y=+ ﬁqﬁ vn € N.
Since ¢ € By (X, int K), note that {¢,}, .y eventually belongs to By (¥,int K). It is also immediate

to see that (p,,p) < (,p) for all n € N. By point 1 and since I is continuous, we have that
I(p) =lim, I (¢,) < I (¥).

3. {p,p) = (¥,p) and p € By (X,int K) = I (p) < I(3p). Define
‘Pn<11>90+11/) vn € N.
n n

Since ¢ € By (X%, K) and ¢ € By (X,int K), note that {¢,, },.y belongs to By (¥,int K'). Moreover,
we also have that (p,,,p) = (¢, p) for all n € N. By point 2 and since I is continuous, we have that

I(p) = limy, I () < I (¢).

By points 1, 2, and 3, we proved that, if ¢ € By (X, K) is such that (¢, D) < (3, p), then I () < I ().
Thus, p/ [l = 7 € dpl (), proving (7).

Suppose 0 ¢ 0°I (¢). Let p € Ogpl (). If £ € kerp = {¢ € By (X) : (p,p) = 0}, then we have that
(Y +t&,p) < (¢,p) for all t > 0. Since p € dgpI (), this implies that I (¢ +¢£) < I (v) for all ¢ > 0. By
definition of I, (¢; &), it follows that I, (¢;&) < 0. By the Hahn-Banach Theorem, there exists a continuous



linear functional p : By () — R such that (£, p) > I, (¢;€) for all £ € By (2) and (£,p) = 0 for all £ € ker p.
In particular, we have that ker p C ker p. By Lemma 1, we can conclude that p € 9°I (¢). By Lemma 1 and
since 0 ¢ 9°I (¢) and I is monotone, it follows that 0 # p > 0. By the Fundamental Theorem of Duality
(see [2, Theorem 5.91]) and since ker p C kerp and 0 # p > 0, there exists a > 0 such that p = ap. We can
conclude that « = ||p|| and p = p/ ||p||, proving the equality in (7) when 0 ¢ 9°T (¢). |

Lemma 2 Let I : By (X, K) — R be a normalized and concave niveloid. If J : By (X) — R is a normalized
and concave niveloid which extends I, then for each v € By (3, int K)

Iapl (V) = OarJ (V).
Proof. Fix ¢ € By (X,int K). Consider p € dgpJ (¢). Tt follows that for each ¢ € By (%)

(pp) <(p) = J(p)<J ().
Since J extends I, we have that for each ¢ € By (X, K)

(pop) <(p) = I(p)=J(0) <J W) =1(¥),

proving that p € dgpl (). On the other hand, consider p € dgpl (v). By contradiction, assume that
p & OapJ (¢). It follows that there exists ¢ € By () such that

(&) < (¥,p) and J(p)>J(¥).

Since 1 € By (X, int K), there exists A € (0,1) such that Ap + (1 — X\) ¢ € By (3, int K). It is immediate to
check that (Ap + (1 — X)), p) < (¢, p). Since J is concave and extends I, we also have that

TP+ 1 =NY) =T Ao+ (1 =N) > A (@) + 1 =N J () >J W) =1(),
a contradiction with p € dgpI (). n
Corollary 5 If I : By (3, K) — R is a normalized and concave niveloid, then
0°I (1) = I () = dgpl () Vo € By (S, int K).

Proof. Since I is a niveloid, I is monotone and Lipschitz continuous. Fix ¢ € By (X, int K). It is immediate
to see that OI (¢) C 9°I (). Next, we show that dgpl (v) C 0I (¢). Consider p € dgpl (v). By 7,
Theorem 5], there exists J : By (X) — R which extends I and is a normalized and concave niveloid. By
Lemma 2, it follows that p € dgpJ (¢). Consider ¢ € By (X, K). Define k = (¢, p) — (p,p). It follows
that (¢ + k,p) < (¢,p). Since p € dgpJ (v), this implies that J (¢ + k) < J (). Since J is a niveloid that

extends I, we can conclude that

I(p)=I(W)+k=J(p)+k—=J@)=J(p+k)—J(¥) <0,

that is, I (¢) — I (¢) < —k = {@,p) — (3, p). Since ¢ was arbitrarily chosen in By (X, K), it follows that
p €0I(¢).
We can conclude that
dapl (¥) € OI () C O°I (¢). (9)
Next, consider p € 9°I (¢)). By Lemma 1, p > 0 and since I is a normalized and concave niveloid, then
1=1I°(y;1) > (1,p) > I, (¢;1) = 1, proving that (1,p) = 1. It follows that 0 # p € A and ||p| = 1. This
implies that {H%II :0#peo°l (d))} = 0°I (¢p) and 0 ¢ 0°I (). By Theorem 2, we can also conclude that

oI (1) = {H;' 0#pe 6°I<w)} — dorl (1), (10)
Since 1 was arbitrarily chosen and by (9), the statement follows. |



B Proofs

Next we study a normalized and concave niveloid I : By (X, K) — R. We denote by 5 an element in int K.
Note that the constant function 8 belongs to By (X, int K).

Proposition 1 Let I : By (X, K) — R be a normalized niveloid. I is concave if and only if there exists a

grounded, lower semicontinuous, and convex function c: A — [0, 00] such that
I(p) =min{(¢.p) +c(p)} Vo€ Bo(%K). (11)
Moreover, there exists a minimal function ¢* : A — [0, 00], defined by

c(p)= sup {I(p)—{(o,p)} Vp € A,
@EB(Z,K)

which is grounded, lower semicontinuous, convez, and satisfies (11).

Proof. For a proof see Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini [7]. |

Given I, define as C = C(I) the class of functions ¢ : A — [0,00] such that ¢ is grounded, lower
semicontinuous, convex, and represents I as in (11). By Proposition 1, if I is a normalized and concave
niveloid, then C is nonempty. Given ¢ € [0,00]® and 1) € By (2, K), we define M, () by

M. (¢) ={peA: ({Y,p)+c(p) =T ()}
If ¢ € C, then M. (¢) # 0 for all ¢ € By (X, int K).

Proposition 2 Let I : By (X, K) — R be a normalized and concave niveloid. If ¢ € C, then M. (¢) =
Oapl (¥) for allyp € By (X,int K). In particular, argminc = M, (8) = dapl (8), that is,

c¢(p) =0 if and only if p € OgpI (B).

Proof. Pick ¢ in C. Define J. : By (X) — R by J. (¢) = miny,ea {{p,p) + c(p)} for all ¢ € By (X). It is
immediate to verify that the concave conjugate of J., J* : ba (X) — [—00,0), is such that J* (p) = —c(p)
if pe A and J (p) = —oo otherwise. Pick ¥ in By (X, int K). By [4, Proposition 4.4.1], Corollary 5, and
Lemma 2, it follows that

M. (¢) =0J. (w) = OapJe (w) = dgpl ("/)) ) (12)
proving the main statement. Finally, consider the case v = 5. By (12), we have that M. (8) = dgpI (B).

Next, consider p € argminec, that is, since ¢ is grounded, consider p € A such that c¢(p) = 0. It follows
that I(8) =8 = (8,p) = (B,p) + ¢(p), proving that p € M. (8). On the other hand, if p € M. (5), then

B=1I(B)=(8,p)+c(p) =L+ c(p), proving that ¢(p) =0 and p € argminc. [ |

Remark 3 By Proposition 2, we can conclude that if ¢ € C, then for each ) € By (X, int K) the set Ogpl (v)
is nonempty since ) # M. (v) = dgpl (V).

Theorem 3 Let I : By (X, K) — R be a normalized and concave niveloid. The following statements are

true:

1. C is a complete lattice.

2. There exist ¢*,d* € C such that ¢* < c < d* forallceC.
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3. If ¢ is lower semicontinuous, convex, and such that ¢* < ¢ < d*, then c € C.

4. C is a convex set.

5. cl(domd*) = co U dapl ()
$€Bo(Z,int K)

6. For each v € By (X,int K), for each p € Ogpl (v), and for each c € C
¢*(p)=c(p)=d" (p).

Proof. Given I, consider C. By Proposition 1, it follows that C # 0.

1. Consider a nonempty subset {c,} . C C. Define d : A — [0, oc] by

d(p) = Sup ¢ (p)  VYpeA. (13)

Step 1: d is lower semicontinuous and convet.

Proof of the Step. By (13) and since each element ¢ in C is lower semicontinuous and convex, the statement
follows (see [2, Lemma 2.41] and [14, Lemma 4.26]). O

Step 2: For each v € By (3, int K) we have that My (v) = dgpl (¢) # 0. In particular, d is grounded.

Proof of the Step. Consider p € dgpI (¢). By Proposition 2, we have that (1, p) + ¢ (p) = I () for all ¢ € C.
In particular, ¢, (p) = I (¢) — (¢, p) for all ¥ € T". Since d is defined as the pointwise supremum over {07}761“
we can conclude that d (p) = I (¢) — (¢, p), that is, (¢,p) + d(p) = I (), proving that p € My (v)). Since

{cy}, cr is nonempty, consider c5 € {cy} Consider p € My (v). Since c5 represents I as in (11) and by

yel
construction of d, it follows that

L) ={.p) +d(p) = (¥,p) +¢5 () 2 min {(¥,p) +¢5 (p)} =1 (¥),

proving that p € M._ (). By Proposition 2, this implies that p € dgpI (¥). From the previous part of
the proof, it follows that My (8) = dgpl (8) # 0. Since I is normalized, if p € My (8), then 5 = I(8) =
(B,P) +d(p) = B+ d(p), that is, d (p) = 0, proving that d is grounded. O

Step 3: I(p) = minpea {{@,p) +d(p)} for all ¢ € By (X, K), that is, d satisfies (11).

Proof of the Step. Consider ¢ € By (X,int K). Since {cy} . is nonempty, consider c5 € {cy} cp. By

definition of d, it follows that (¢,p) + c¢5 (p) < (¢,p) +d(p) for all p € A. By Step 2, we have that there
exists p € My (), that is, I (¢) = (¢, D) + d (p). We can conclude that

min {(,p) +d(p)} < (. p) +d(p) =1 (¢) = min{{¢.p) + c5 (p)} < min{{p,p) +d(p)},

proving that I coincides to Jy on By (X, int K). Since both functionals are Lipschitz continuous on By (%, K),

the statement follows. O

Step 4: C is a complete lattice, that is, given a nonempty subset {ca},c 4 € C there exists ¢ and d such that
6<ca<d VYacA

where ¢ is the greatest lower bound for {ca},c4 in C and d is the least upper bound for {ca}tuca in C.
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Proof of the Step. Define é,d : A — [0, ] by

¢(p) = sup d (p) and ci(p) = sup ¢, (p) Vp € A.
c'e{ceC:VacA c<cy} acA
In the first case, we have that {c,} . ={ce€C:Vae Ac<ca} > ¢ and é = d where d is defined as in
(13). In the second case, we have that {cy} . = {ca},eq and d = d where d is again defined as in (13). In
light of these observations and Steps 1-3, we have that both ¢ and d are elements of C. By construction, it
is immediate to see that ¢ < ¢, < d for all @ € A and ¢ is the greatest lower bound for {Ca}aeA in C and d

is the least upper bound for {cs}, 4 in C. O
Step 4 proves point 1 of the statement.

2. Since C is a complete lattice, it follows that there exist a minimum and a maximum element. By
Proposition 1, the minimum element is ¢*. By the proof of point 1, the maximum element d* : A — [0, c0]
is defined by

d*(p) =supc(p)  YpeAS
ceC

3. Consider a lower semicontinuous and convex function ¢ : A — [0,00] such that ¢* < ¢ < d*. By
Proposition 2 and since ¢*,d* € C, we have that ¢* (p) = 0 = d* (p) if and only if p € 9gpI (). Since
dapI (B) # 0, consider p € dgpI (B). It follows that 0 = ¢* (p) < c(p) < d* (p) = 0, that is, c is grounded.
Finally, observe that for each ¢ € By (X, K) we have that

I(p) = min {(p,p) + " (P)} < min {{p,p) + ¢ (p)} < min{{p,p) +d" (p)} = I (¢),

proving that ¢ satisfies (11), that is, ¢ € C.

4. Consider ¢1,co € C and fix A € (0,1). Define ¢y = Acp + (1 — A) co. The convex linear combination of
lower semicontinuous and convex functions is lower semicontinuous and convex (see Clarke [9, Propositions
2.13 and 2.20]). Finally, by point 2, we have that ¢* < ¢1,co < d*. This implies that ¢* < ¢y < d*. By point
3, we can conclude that cy € C.

5. Fix ¢ € By (%,int K). By Proposition 2, recall that My« () = 9gpl (v) for all ¥ € By (X, int K).
Define D as

D = co U derl@)

$EBy(,int K)
Define also d : A — [0,00] by d(p) = d*(p) if p € D and d(p) = oo if p ¢ D. In other words, d(p) =
sup {d* (p),0p (p)} for all p € A. Tt is immediate to check that d is grounded, lower semicontinuous, convex,
and such that d > d*. On the other hand, by definition, we have that My (¢) 2 dgpl (p) # (. Tt follows that
I(p) = minyea {{p,p) +d(p)}. Since ¢ was chosen to be generic, we have that I = J; on By (3, int K),
that is, d satisfies (11) on By (%,int K).” Since both I and J, are Lipschitz continuous on By (X, K), we
have that I = J; on By (X, K), that is, d satisfies (11) on By (%, K), thus d € C. By construction of d*,
we can conclude that d < d*, thus, d = d*. In turn, this yields domd* C D. Since D is closed, we have
that cl(domd*) C D. In order to derive the opposite inclusion, observe that My« (¥) C domd* for all
1 € By (X, int K). By Proposition 2, we can conclude that

U derl(v)= J M (®) Cdoma*.
YEBo(S,int K) YEBo(S,int K)
6d* can also be obtained as the Fenchel-Moreau biconjugate of the function ¢* + §g where R = U Oapl (V).

YEBo(S,int K)
"Recall that Jg is such that Jg4 (¢) = minpea {{(¢,p) +d(p)} for all ¢ € By (2).
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Since d* is convex, dom d* is convex. This implies that

co U Oapl (¢) | € domd*.
$EBo(Z,int K)

By taking the closure, we obtain that D C cl (dom d*), proving the statement.

6. Consider ¢ € By (X,int K), p € 9gpl (¢), and ¢ € C. By point 2, we have that ¢*,d* € C and
¢* < ¢ < d*. By Proposition 2, we also have that M. (¢) = dgpl () = Mg~ (¢). Tt follows that

(,p) +c*(p) =T () = (P,p) +d* (p).

Since ¢* < ¢ < d*, this implies that
¢ (p)=c(p)=d" (p).
Since 1, p, and ¢ were arbitrarily chosen, the statement follows. |

Before proving the results of Section 3, we need some extra notation and an extra ancillary fact. Given
a normalized niveloid I : By (¥, K) — R, we define =° to be the binary relation on By (X, K) such that

e =T+ (1=A)d) 2 T(Ap+(1-X)¢) VA€ (0,1],V¢ € By (%, K). (14)
By [5], it follows that »=° is an affine (conic) preorder (see also [10, Appendix A]). Given I, define

D = ¢o U dapl ()

Y€ By (Z,int K)

Proposition 3 If I : By (X, K) — R is a normalized and concave niveloid, then

pF°Y = /@dPZ/%/Jdp VpeD.

Proof. We proceed by steps.
Step 1: Let @q,p9 € Bo (Z,int K). (i) implies (ii), (ii) implies (iii), and (iii) implies (iv) where
(i) o1 7° py;
(i) For each ¢ € By (3,int K) and for each A € (0, 1]
TApr+ (1 =X)8) =21 (Apy+ (1= A) )
(iii) For each ¢ € By (%,int K) and for each X € (0,1] there exists 5.4 > 0 such that for each §' € (0,8x.4)
Ty +(1=XN)¢+6) >IT(Apy+(1—N)9);

(iv) For each v € By (X,int K) and for each p € dgpl ()
(p1,0) = (02, p) -

Proof of the Step. (i) implies (ii). It follows by the definition of =°.

(ii) implies (iii). Consider ¢ € By (3,int K) and A € (0,1]. Since ¢, p,,¢ € By (X,int K), it follows
that Ap; + (1 =), Aoy + (1 —A) ¢ € By (X,int K). This implies that there exists 64 > 0 such that
App+(1=XN)¢+0 € By (%,int K) for all §' € (0,05 ,4). Since (ii) holds and I is a normalized niveloid, we
have that

[ +(1=No+0) =T+ (1= N6+ > (hgy+ (1= ) ),
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proving the statement.

(iii) implies (iv). Consider now 9 € By (X, int K) and p € dgp! (¢). Since ¢ € By (X, int K), there exists
¢ € By (%,int K) and A € (0,1) such that ©» = Apy + (1 — A) ¢. By definition of dgpI (1)), we have that for
each ¢’ € By (3, K)

1) >1(W) = (¥.p)>¥,p).

Since I (Apy + (1= X) ¢ +6") > T (Apy + (1= X)) =1(¢) for all § € (0,0x,4), it follows that

(Aor +(L=X) o +38p) > (,p) = Aoy + (1= N)d,p) V' €(0,050)-

Since A € (0,1), it follows that {(p,,p) > (v, p). .
Step 2: Let ¢,y € By (3, K). @1 =° @y only if {¢1,p) > {@y,p) for all p € D.

Proof of the Step. Consider § € int K. It follows that %gpl + %6, %@2 + %ﬁ € By (%,int K) and %901 + %5 50
29, + 3. By Step 1, we have that

1 1 1 1 1 1 1 1

2<%01ap>+25=<2901+57p> Z<2@2+257P>:2<¢2,p>+2ﬁ Vp e U daprl (V).
$EBo(,int K)

It follows that (pq,p) > (p,,p) for all p € D, proving the statement. O

Step 3: Let o1, € Bo (X, K). If {¢1,p) > (@2, p) for all p € D, then o, =° ¢,.

Proof of the Step. By point 5 of Theorem 3, we have that D = cl (dom d*). First, observe that
I(¢) = min{(4,p) +d* (p)} = min {(¢,p) +d" (p)} ~ VY € By (5, K). (15)
pEA peED

Consider ¢ € By (X, K) and A € (0,1]. If (p1,p) > {(ps,p) for all p € D, then (Ap; + (1 —X) ¢,p) >
(Apy + (1 = A) ¢, p) for all p € D. It follows that

A1+ (=N g,p)+d*(p) 2 Apo + (1 =N &,p) +d"(p)  YpeD.

By (15), it follows that I (Ap; + (1 —=X) @) > I (Apy + (1 — X) @). Since ¢ and A were arbitrarily chosen, it
follows that ¢, =° ©,. O

By Steps 2 and 3, it follows that ¢, =° ¢, if and only if {(py,p) > {(py,p) for all p € D, proving the
statement. |
Proof of Theorem 1 and Corollary 1. By [17, Lemma 28 and Theorem 3] and since - is a variational
preference, there exist a nonconstant affine function v : X — R and a normalized and concave niveloid
I:By(2,u(X))— R such that

fZg = I(u(f) =1(u(g).

Note that the function V : F — R, in (2), is V = I o u. Without loss of generality, we can assume that 0 €
intu (X). It is immediate to verify that C (V,u) = C(I), u(Fin) = Bo (Z,int u (X)), my, (f) = dapI (u (f))
for all f € Fint. Thus, points (i), (ii), and the first part of (v) follow from points 2, 4, 1, and 6 of Theorem
3. Point (iii) follows from [17, Proposition 6]. Next, observe that f z=* g if and only if u (f) =° u(g). By
point 5 of Theorem 3 and Proposition 3, it follows that

frrg e /u(f)dpz/u(g)dp Wp € cl (dom d*),

proving that C* = cl (dom d*) and point (iv) of Theorem 1. Thus, the second part of point (v) follows from
point 5 of Theorem 3. Corollary 1 follows from points 2 and 3 of Theorem 3. |
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Proof of Corollary 3 and Corollary 4. We retain the notation of the proof of Theorem 1. By [12], if
7 is a Gilboa-Schmeidler preference, then there exists a closed and convex set C' C A such that I can be

chosen to be
Io)=min [ wdp Vo€ Ba(S.u(X)).
peC

This implies that d¢ € C. By Theorem 1, we have that o < d*. At the same time, dgpl (8) = C. By
Proposition 2, this implies that d* (p) = 0 for all p € C. Thus, we can conclude that d* < ¢, that is,
d* = d¢. Since Anscombe-Aumann expected utility preferences are a particular case of Gilboa-Schmeidler

preferences with C' = {p}, Corollary 4 also follows. |
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