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Abstract
Starting with the seminal paper of Gilboa and Schmeidler [34] an analogy between the maxmin
approach of decision theory under Ambiguity and the minimax approach of Robust Statistics — e.g.,
Blum and Rosenblatt [10] — has been hinted at. The present paper formally clarifies this relation by

showing the conditions under which the two approaches are actually equivalent.

Prior distributions can nmever be quantified or elicited exactly (i.e., without error), especially in a finite

amount of time. Berger [6, p. 64]

1 Introduction

Since the seminal work of Gilboa and Schmeidler [34, p. 142] a relation between decision making under
ambiguity and robust statistics has been hinted at, and indeed immediate similarities are quite evident. At
the same time, a formal treatment of this topic and a complete characterization of the relation between the
two approaches is still missing. The object of this paper is to fill the gap, that is, relating ambiguity (also
called Knightian uncertainty or model uncertainty) to prior uncertainty.

Ambiguity refers to the case in which a decision maker does not have sufficient information to quantify
through a single probability distribution the stochastic nature of the problem he is facing. This uncertainty
is captured by using nonadditive probabilities — capacities — or sets of probability measures over the space
of states of the world (usually observations, in many economic applications).!

Prior uncertainty, in a parametric statistical model { Py}, g, refers to uncertainty about the prior y on
©. This is a classical problem in robust statistics, where uncertainty is again represented by capacities or

sets of priors over the space © of parameters.?

*We especially thank Rose-Anne Dana, Marcelo Moreira, Ben Polak, Kyoungwon Seo, Chris Shannon, and Piotr Zakrzewski,
as well as, an associate editor and two anonymous referees for helpful suggestions. The financial support of the European
Research Council (advanced grant, BRSCDP-TEA) is gratefully acknowledged.

TFirst presented with the title Model Uncertainty and Sufficient Events at RUD 2010. Most of the results contained in this
paper appeared in the presentation slides, posted in June 2010 and still available on the conference website.

IEarly classical references are Schmeidler [55], Bewley [8], and Gilboa and Schmeidler [34]. See Gilboa and Marinacci [33]
for a recent survey.

2In the words of Blum and Rosenblatt [10, p. 1671]: “Except in rare situations, information concerning the a priori
distribution of a parameter is likely to be incomplete. Hence the use of a Bayes rule on some sistematically produced choice
for an a priori distribution ... is difficult to justify ... In this note we investigate ... the case in which it is known only that
the distribution of the parameter is a member of some given family.” See also Randles and Hollander [51], Shafer [57], as well
as Berger [6] and [7].



Clearly, prior uncertainty can be reduced to ambiguity. Loosely, if v is a (prior) capacity on the space ©

of parameters, then
#()= [ Poyav 0 o)

defines a (predictive) capacity on the states of the world. Analogously, if T" is a set of priors on the space ©

of parameters, then
{n0= [ PeCauio): e 2

defines a set of (predictive) probability measures on the states of the world.

In this paper we address the converse problem. That is, we start from a decision theoretic framework of
ambiguity and we show under which conditions the decision problem admits a (suitably unique) rephrasing
in terms of prior uncertainty. In this way, we are able to provide an axiomatic and behaviorally falsifiable
foundation to the criteria used in robust statistics and to suggest the general form such criteria could take
(see Section 4.1.1 for a discussion of the specific case of robust estimation). We achieve this goal by merging
the decision theoretic assumptions that are by now established in the literature of choice under ambiguity
with some of the fundamental insights contained in Wald [62], Ellsberg [24], Nehring [48], and Gilboa,

Maccheroni, Marinacci, and Schmeidler [32].

We model ambiguity by using a generalized Anscombe-Aumann setting as in Gilboa, Maccheroni, Mari-
nacci, and Schmeidler [32]. We denote by € the space of states of the world and we consider it endowed
with a o-algebra F of events and a set P of probability measures on F. We call these probability measures
objectively rational beliefs. The elements of P represent the probabilistic beliefs on F that the decision maker
is able to justify on the basis of the available information. Incompleteness of information is then captured by
the nonsingleton nature of P. In particular, the class of objectively rational beliefs we study is a special case
of the one considered by Gilboa, Maccheroni, Marinacci, and Schmeidler [32]. In fact, we further require
that (Q, F,P) is a Dynkin space. This notion was introduced by Dynkin [22] and is discussed in full detail
in Sections 2.2 and 3.3. In Section 2.2, the formal definition is provided and some important examples of
Dynkin spaces are collected. In Section 3.3, we discuss the reasons why the Dynkin space setup is a natural
framework to carry on our analysis. Here we just sketch two examples of Dynkin spaces.?

First, if an Ellsberg’s three colors urn is given (see Example 1) it is natural to consider as P the set of all
probability measures that, conditional on the composition of the urn, coincide with the classical probability
assignments.? In this case, P is naturally interpreted as hard evidence since it refers to the possible physical
compositions of the urn. In other words, P is the set of all “objective” urn models.

Second, in a very different perspective, consider a coin which is tossed over and over again. Based
on subjective similarity considerations, the famous de Finetti’s argument imposes that only exchangeable
probability measures on the space of all sequences of tosses can be rationally justified. In this case, P consists
of those measures that assign the same probability to all finite sequences of the same length with the same
number of heads (and the same number of tails). In comparing this example with the previous one, it is
important to notice that here we are in the domain of subjective probability — without any obvious physical
counterpart. See Example 2 for details and extensions (standard Borel G-spaces and invariant probability

measures).

The decision maker’s behavior is described by a subjectively rational preference 7 on the set By (X) of all

3The two examples that follow were also suggested by Nehring [48, p. 1060] to justify the inclusion of beliefs among the
primitives of a decision problem. Many more examples can be found in Dynkin [22].

4That is, the set of probabilities that for every possible composition of the urn attribute to the extraction of a given color
the ratio between the number of balls with that color and the total number of balls.



acts, that is, simple and measurable mappings f from € to the convex set X of outcomes.” The preference
relation =~ represents the actual choices of the decision maker among acts. Our central assumption is that
choices are coherent with probabilistic information, and it is expressed by imposing consistency a la [32]
between objectively rational beliefs P and subjectively rational preference . Formally, the consistency

axiom requires that
fdP = / gdP for all P € P implies f 7~ g (3)
Q Q

where fQ fdP and fQ gdP belong to X and are the means of f and g under P, respectively. In other words, we
consider a decision problem in which information, for example based on physical (urns) or symmetry (coins)
considerations, restricts the decision maker’s conceivable beliefs to belong to P.5 If the decision maker could
confidently select P in P, he would be a standard Anscombe-Aumann expected utility maximizer. In this
perspective, the left hand side of condition (3) means that, no matter what the best estimate P is, if the
agent trusted it he would prefer f to g.” Consistency imposes that the decision maker’s subjective rationality

takes this fact into account, by declaring f preferred to g.

In a nutshell, our results show that when uncertainty is represented as above, if subjectively rational
preferences are consistent with objectively rational beliefs, then ambiguity is equivalent to prior uncertainty.
Next we discuss two of these results, which can be immediately recognized as the counterparts of the reduction
procedures described by (1) and (2).

As a consequence of Theorem 7, we have that if the decision maker is a Choquet expected utility maximizer

and his preferences are consistent, then 7~ is represented by

VU)[%n(LuU@MdPMOdMP)bwmfeBMX) (1)

where S (P) is the set of strong extreme points of P and v is a unique capacity over S (P). As discussed in
Section 2.2, the set S (P) can be seen as the set of pure models defined by P, while all the other elements
of P can be seen as mixture models. In particular, in the Ellsberg urn case mentioned above S (P) = P
describes all possible urn compositions, while in the de Finetti exchangeable case S (P) is the set of i.i.d.
models. In words, our decision maker is acting like a statistician who, starting from P, is able to identify
the pure models S (P), but is not able to exactly quantify a prior probability over them.

By Schmeidler [55], the preferences of this decision maker are also represented by

V() = [ @) dp() forall § € By (X)
Q
where p is a unique capacity over {2 (rather than over S (P)). Our result implies that
p(A):/ P(A)dv (P) forall Ae F
S(P)

that is, each (consistent) capacity p is a predictive capacity. In this way, Theorem 7 presents the ambiguity

counterpart of the reduction from priors to predictives described by (1).

5For the sake of precision, 7 is a nontrivial and continuous preorder which can be represented by a von Neumann-Morgenstern
utility v on X.

6In the words of Ellsberg [24, p. 661]: “Out of the set [A(Q)] of all possible distributions there remains a set [P] of
distributions that still seem ‘reasomable,” ... that his information — perceived as scanty, unreliable, ambiguous — does not
permit him confidently to rule out ... he might suspect [that his best estimate P among the elements of P] might vary almost

hourly with his mood,” quoted also by [31].
"Notice that [, fdP and [, gdP would be the certainty equivalents of f and g, respectively.



As a consequence of Theorem 8, we have that if the decision maker is a Bewley expected utility maximizer

and his preferences are consistent, then - is represented by

V(f) = [ / N ([ut@arw)du)

where T is a unique compact and convex set of priors over S (P); and again our decision maker is acting like

for all f € By (X) (5)

pel’

a statistician who is not able to exactly quantify a single prior probability.
By Bewley [8] and Gilboa, Maccheroni, Marinacci, and Schmeidler [32], the preferences of this decision

maker are also represented by
V(f):[/u(f(w))dm(w)} for all f € By (X)
Q meC

where C' is a unique compact and convex set of probability measures over 2 (rather than over S (P)). Our

results imply that for every m € C' there is a unique p € I" such that
m (A) :/ P(A)dpu(P) forall Ae F
S(P)

that is, each (consistent, compact, and convex) set of probability measures C' is a set of predictives. In this

way, Theorem 8 presents the ambiguity counterpart of the reduction from priors to predictives described by

(2)°

The above results are not peculiar to Choquet or Bewley expected utility preferences. The equivalence
between ambiguity and prior uncertainty is a general consequence of the consistency axiom in conjunction
with the structure of Dynkin space (see Section 3.3). For example, Theorem 4 delivers a similar result
for the variational preferences of Maccheroni, Marinacci, and Rustichini [46], and it is then generalized to
the uncertainty averse preferences of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [12] in the
subsequent Theorem 5. Moreover, the structure of Dynkin space and the consistency axiom allow us to
provide, in Theorem 6, an alternative axiomatic foundation for the smooth ambiguity preferences introduced
by Klibanoff, Marinacci, and Mukerji [43].

The relation between consistency and the recognition of symmetry /similarity patterns in the state space
(like in the de Finetti’s coin example) is characterized by our final result: Proposition 9. Finally, Section 6
reviews the related literature and in particular the relations between our results and the ones of Amarante
[3], Epstein and Seo [25], [26], and [27], Al-Najjar and De Castro [2] and [18], and Klibanoff, Mukerji, and
Seo [44].

2 Preliminaries

2.1 Decision Theory

Consider a set Q of states of the world, a separable (i.e., countably generated) o-algebra F of subsets of
Q2 called events, and a convex set X of consequences. We denote by By (X) = By (2, F, X) the set of all

(simple) acts: finite-valued functions f : Q — X which are F-measurable.

8Notice that, while the functional V in (4) is real valued, V : By (X) — R, the functional with the same name in (5) is R
valued, V' : By (X) — RI. This difference corresponds to the contrast between the completeness of Choquet expected utility
and the incompleteness of Bewley expected utility. On the one hand, this incompleteness delivers the purest framework possible:
the one in which attitudes toward ambiguity/prior uncertainty do not matter. On the other hand, the same incompleteness is
a weak point in the description of actual choices. Even if incomparability of two alternatives is naturally interpreted as choice
deferral, eventually a course of action will be taken. So, while the main role of Theorem 8 is to better exemplify the connection
between ambiguity and prior uncertainty, this theorem (the last in order of presentation) is an exception in that for all other
results we impose completeness of 7. A related result appears in De Castro and Al-Najjar [18] as discussed in Section 6.



Given any = € X, define z € By (X) to be the constant act such that z(w) = z for all w € Q. With this
slight abuse of notation, it is possible to identify X with the subset of the constant acts in By (X). If x € X,
A€ F,and f € By (X), we denote by zAf € By (X) the act taking value z if w € A and f (w) if w ¢ A.
For every f,g € By (X) and « € [0,1] the act af + (1 — a)g € By (X) yields af(w) + (1 — a)g(w) € X for
each w € Q.

We model the decision maker’s (subjectively rational) preferences on By (X) by a binary relation 7Z. As
usual, > and ~ denote the asymmetric and symmetric parts of Z. If f € By (X), an element z; € X is a
certainty equivalent of f if f ~ xy. Given a probability P on F and f € By (X), the mean fQ fdP of f

under P is
/QfdP: S P(f (@)

reX
Such integral is a well defined element of X since f is (measurable and) finite valued and X is convex.
In particular, notice that, if the decision maker is an Anscombe-Aumann expected utility maximizer with

beliefs represented by P, then fQ fdP is just the certainty equivalent of act f.

2.2 Probability Theory

Let A (2) = A (9, F) be the set of all finitely additive probabilities on F and A (2) = A7 (Q, F) be the set
of all probability measures on F. Both sets and any of their subsets are endowed with the weak* topology.

Definition 1 (Dynkin, 1978) Let P be a nonempty subset of A (). The triple (Q,F,P) is a Dynkin
space if and only if there exist a sub-o-algebra G C F, a set W € F, and a function
p: FxQ — [0,1]
(Aw) = p(4w)
such that:

(a) for each P € P and A € F, p(A,-) : Q — [0,1] is a version of the conditional probability of A given
G

(b) for each w € Q, p(-,w): F — [0,1] is a probability measure;
(c) PW)=1 for all PP and p(-,w) € P for allw € W.

Actually Dynkin considers a kernel w — p“ from Q to A% (2) the projections of which are conditional
probabilities given G of all elements of P. The approaches are seen to be equivalent by setting p* = p (-,w)
for all w € Q.

Remark 2 In the rest of the paper, if (Q, F,P) is a Dynkin space and we consider a sub-o-algebra G C F,
a set W € F, and a function p: F x Q — [0,1], we assume that G, W, and p are as in Definition 1.

If requirements (a) and (b) of Definition 1 are satisfied, we say that p is a common regular conditional
probability for P given G.'°

Example 0 (Risk and Uncertainty) The smallest possible P is a singleton {P}. Define G = {0, Q},
take W =Q and p (4A,w) = P (A) for all A € F and for all w € Q. In this case, (Q, F,{P})=(Q,F,P)isa
Dynkin space capturing absence of ambiguity.

The largest possible P is A% (). Define G = F, take W = Q and p (A,w) = §, (A4) for all A € F and
for all w € Q. In this case, (Q,F, A (Q)) = (2, F) is the Dynkin space capturing complete ambiguity, the

usual framework of decision making under uncertainty. O

9That is, p(A ,-) is G-measurable and P (AN B) = [ p(A,w)dP (w) for all B € G.
10Clearly, if P = {P} then this amounts to say that p is a regular conditional probability for P given G.



Example 1 (Ellsberg Urn) Consider an urn which contains 90 balls. 30 balls are red while the remaining
60 balls are either green or blue. A ball is drawn after an agent bets on its color. Taking Savage’s definition
of state of the world,'! the state space is Q = {(n,c) :n =0,1,...,60, ¢ =7r,g,b}. For w = (n,c) € Q, the
first component of w is the number of green balls in the urn, and the second is the color of the extracted
ball. Given the structure of the problem, there is not a natural “objective probability” on 2, but rather a
set P of “objective probabilities”. In particular, P is the set of probabilities of the form

0 n#m
38 n=mandc=r
P (n,6) = 5 n=mand c=g ©)
609’0’” n=mandc=2»

for all (n,c) € Q and m = 0,1, ...,60. Graphically, each of the above probabilities takes the following form:

r g b
0 0|0 0
1 0| o0 0

30 m 60—m
™ |90 | 90 90

60| 0 | O 0

Define G = o ({m} x {r,g,b} :m =0,1,...,60), W = Q, and p: 22 x Q — [0,1] by

p (A, (m,d)) = Z P, (n,c) VA € 22V (m,d) € Q.
(n,c)€A

Then (Q, 2, 79) is the Dynkin space describing the Ellsberg urn situation. O

Example 2 (G-spaces and Exchangeability) A triple ((Q,F),(G,7),a) is a standard Borel G-space
if and only if

1. (Q,F) is a standard Borel space,

2. (G,7) is a locally compact group satisfying the second axiom of countability,

3. a is a measurable function
a: GxOQ — QO

(myw) — 7w

such that:

o 7 (5w) = (msx)w for all m,3c € G and w € Q,

e cw = w for all w € 2, where € denotes the unit of G.

In this case, P € A7 (Q) is an invariant measure if and only if P (x~'A) = P (A) for all 7 € G and for
all A€ F. An element B € F is an invariant set if and only if 1B = B for all 7 € G.!2

HThat is, a state of the world is “a description of the world, leaving no relevant aspect undescribed.”

12Clearly, if G isa subgroup of G, the corresponding families of invariant measures and invariant sets are larger.



Using the results of Varadarajan [60], Dynkin [22], and Becker and Kechris [5], if we denote by P the set
of all invariant probability measures, then any standard Borel G-space generates a Dynkin space (2, F,P)
where G is the g-algebra of all invariant events.

The framework of the celebrated de Finetti Exchangeability Theorem is a particular standard Borel G-
space. In this case, Q = {0, I}N, F is the o-algebra generated by all cylinders, G is the group of all finite
permutations of N, 7 is the discrete topology, and for each w = {w,}, .y € © and 7™ € G, the measurable

action is such that 7w = {wﬂ(n)} Moreover, the invariant probability measures coincide with the

neN’
exchangeable ones.

Finally, the definitions of invariant measure and invariant set naturally apply to the case in which a single
measurable transformation T : Q — Q' sometimes called a shift, is considered. Also in this case, denoting

by P the invariant probability measures and by G the invariant events, (Q, F,P) is a Dynkin space. O

We endow the set A (Q) with the natural o-algebra
A=c(P—P(A):AcF),
that is, the smallest o-algebra that makes the projections

(1a,)y: A(Q,F) — R
P — P(A)

measurable for all A € F. Any nonempty subset P of A (Q) is endowed with the inherited o-algebra
Ap = ANP. For all p € A? (P) = A? (P, Ap), the barycenter fi of u is the set function defined by

[L(A):/PP(A)du(P) VA€ F.

It is easy to see that f is a well defined probability measure on F, that is, i € A% (£2).

Definition 3 Let ) # P C A° (). An element P of P is a strong extreme point if and only if the only
probability measure i on P such that P is the barycenter of p is 0p, S (P) denotes the set of all strong

extreme points of P.

Clearly, strong extreme points are extreme points in the sense of convex analysis. The converse is not in
general true, even if this is the case in our examples.'? Indeed, notice that if P = { P} then S (P) = {P}. If
P =A% (Q,F) then S(P) = {0w},cq- For the Ellsberg urn, we have that

30 m

) )
90 tm) T gglm

60 —
P =S(P) :{ ,gHTma(m}b) :m:0,1,...,60}.

Thus, each element of S (P) is a classic “objective urn model”. Finally, for a Standard Borel G-space, we
have that
S(P)={Pe€P:P(B)=0or1 for each invariant set B} .

Thus, S (P) is the set of all ergodic measures. This implies that, in the special exchangeable case, S (P) =
{Po}yeio,1)> where, for each 6 € [0,1], Py on each cylinder {witi_; = {wipx{wa}x .. x{w, } x{0,1}x{0,1} x....
is defined by

Py ({witis,) =67 (1 - 0)"™
and j = wy +wa +... +wy,. That is, S (P) is the set of all independent and identically distributed probability
measures. Again, each element of S (P) is a classic “objective coin model”.

This suggests the interpretation of the elements of S (P) as the “pure models” corresponding to a Dynkin
space (Q, F,P).

13Rather than all the transformations w — 7w induced by the elements 7 of G.
14Gee Appendix B for more details on extreme points and strong extreme points.



3 Subjective Rationality and Consistency

3.1 Subjective Rationality

Here we collect some behavioral assumptions on the preference - that formalize the concept of subjective
rationality discussed in the introduction.

The first two of them are maintained throughout the paper (unless explicitly stated otherwise). The
other is a version of the monotone continuity axiom of Villegas [61] and Arrow [4] which, as in [61] and [4],
will be invoked to refine finite additivity into countable additivity. We will not expand on them since they

are all well known in the literature.

The usual rationality requirement of most of microeconomics is that preferences are complete, transitive,

nontrivial, and continuous. Formally:

Basic Conditions: The relation = is complete, transitive, nontrivial, and such that the sets {a € [0,1] :
af+(1—a)gzh} and {a €[0,1] : h Z af + (1 — a)g} are closed in [0,1] for all f,g,h € By (X).

The Anscombe-Aumann framework where X is usually interpreted as a set of simple lotteries (random
outcomes) over a set of prizes Z (deterministic outcomes) and the fact that the decision maker we are

modelling uses all the available probabilistic information justify the following assumption:

Risk Independence: If z,y,z € X and « € (0,1), then
zny & arx+(1l—-a)zzay+(1—a)z.

Risk Independence allows some degree of separation between risk and ambiguity by imposing a standard
independence axiom on constant acts, that is, acts that only involve risk and no state uncertainty. Together
with the Basic Conditions it amounts to require the existence of an affine utility function v : X — R
representing the decision maker’s preferences over X.1%:16 Virtually all classes of preferences under ambiguity
studied in the literature and framed in the Anscombe-Aumann setting share these two assumptions. The main
exception is Bewley’s model which restricts completeness to constant acts, while extending independence to
the whole By (X), see Section 4.4 for details.

Finally, monotone continuity requires that vanishing perturbations of acts cannot affect strict preference.

Monotone Continuity: If f = gin By (X), x € X, and E,, | 0 in F, then xENf = g and f = zENg for
some N € N.

3.2 Consistency

The core assumption of our work is the Consistency axiom of [32] which connects the family of objectively

rational beliefs P to the decision maker’s subjectively rational preference 7Z.

Consistency: If f,g € By (X), then

/fdPi/gdP VPeP = fzy. (7)
Q Q

15To remain with Ellsberg [24, p. 661]: “Let us suppose that an individual must choose among a certain set of actions, to
whose possible consequences we can assign ‘von Neumann-Morgenstern utilities’.”
16Indeed, a much weaker independence axiom on constant acts is necessary and sufficient for the existence of such a function

u, see [40], we opted for the strong form above to facilitate the comparison with the Bewley case discussed below.



Recall that, the maintained Basic Conditions and Risk Independence imply the existence of an affine
utility function u : X — R representing the decision maker’s preferences over X. Together with the linearity

of means, this implies that Consistency amounts to require that

/u(f)sz/u(g)dP VPEeP = [rg (8)
Q Q

The objectively rational estimates of our decision maker about the realizations of {2 belongs to P, but he is
unsure which one is the best estimate.!” Nonetheless, the Lh.s. of (8) reveals that, irrespective of the best
estimate, f would be preferred to g. Consistency requires that f is preferred to g even if the best estimate
is unknown.

From a different perspective, Consistency means that the decision maker chooses act f over act g, if f
dominates g in the game in which he chooses an act in By (X) and Nature chooses a probability in P.

We next discuss Consistency for two important specifications of the space X of consequences.

Example 3 (Lotteries) In the original Anscombe-Aumann setting, X is the set of all simple lotteries

over a set Z of prizes, that is,

X = {x 1 Z —[0,1] : x () # 0 for finitely many z’s in Z and Zaz(z) = 1} .
zeZ
Consider an act f € By (X) and a probability measure P € P. Under P, act f induces a two stage lottery.
First an event {f = x} occurs, with probability P ({w € Q: f (w) = x}), and then a prize z is paid to the
decision maker with probability x (z). In this setting, [, fdP is the (one stage) lottery obtained by reducing
the previous compound lottery. In fact, y = fQ fdP is the element of X defined by

y(2) = ZP({W €EQ:f(w)y=z}Ha(z) VzeZ
reX
Consistency amounts to impose that: whenever the lottery induced by f under P is preferred to the one
induced by ¢g under P for all P € P, then f must be preferred to g. O

Example 4 (Monetary Outcomes) Another important example is the one in which consequences are
quantities of one given good, say money. That is, X = R. In this case, fQ fdP is the usual expectation of
act f and the meaning of Consistency is clear (provided the decision maker preferences are monotone in the

amount of good he consumes). O

It is not hard to show that Consistency implies the classical Monotonicity axiom, another fundamental

rationality tenet in decision making under uncertainty.'®
Monotonicity: If f,g € By (X), then f(w) 75 g (w) for all w € Q implies f 7~ g.

Actually, Consistency coincides with Monotonicity when P = A (Q, F). Finally, observe that preferences
that satisfy the Basic Conditions, Risk Independence, and Monotonicity are such that for each act f in By (X)

there exists a certainty equivalent z; in X.

"Moving to Ellsberg [24, p. 662]: “In this state of mind, searching for additional grounds for choice, he may try new

criteria, ask new questions. For any of the probability distributions in the ‘reasonably possible’ set [P], he can compute an

expected value for each of his actions ...
18Under the maintained hypotheses that - satisfies the Basic Conditions and Risk Independence. See also Lemma 28.



3.3 Dynkin Spaces and Consistency

These two concepts are the pillars over which our analysis rests. In this section we discuss them in more
detail.

In the theory of choice under uncertainty, ambiguity is described as “lack of information” that prevents
the agent from forming a unique probabilistic model of the world (see Gilboa and Marinacci [33] for a
discussion). The Dynkin space structure allows to formally describe this “missing information” through the
sub-c-algebra G of F. In fact, by definition of Dynkin space, all the probability measures in P share a
common regular conditional probability p given G.

This interpretation is made possible by the observation that, given a Dynkin space (§2, F, P), the corre-
sponding sub-c-algebra G of F is determined in an essentially unique way by P. Uniqueness is proved in
[22, Theorem 3.2] which also shows how G becomes smaller as S (P) gets larger. It is important to observe
that the same theorem, together with our Theorem 12, allows to check whether a given triple (2, F,P) is a
Dynkin space.'’

Another conceptually relevant feature of Dynkin spaces is that, by [22, Theorem 3.1],

S(P)C{p” :we}

that is, the elements of S (P) are updates of the elements of P after receiving information G. Conversely,
the event
{weQ:p*eS(P)}

is almost certain for all elements of P, that is, the updates of P after receiving information G are almost
surely elements of S (P). This corroborates the interpretation of the set S (P) of strong extreme points of
P as the set of pure models and of G as representing the relevant probabilistic information. Indeed, if the
“missing information” were available, the agent would form, by updating, a single probabilistic model of the
world belonging (almost surely) to S (P).

Summing up, starting from a Dynkin space structure it is possible (for the modeler) to elicit the missing

information that generates ambiguity and the corresponding pure models.
On the other hand, under the Basic Conditions and Risk Independence, Consistency is equivalent to
fdPi/gdP YPES(P) = frg. (9)
Q Q

In light of the above discussion, (9) has the following interpretation: S (P) is the set of (objectively rational)
models of our decision maker about the realizations of €2, but lack of information prevents him from trusting
a single prior over these models.?’ Nonetheless, the L.h.s. of (9) reveals that, irrespective of the prior, f
would perform at least as well as g; in this perspective, Consistency requires that f is preferred to g even if
information is incomplete. As observed in Section 4.1.1, this version of Consistency is tightly related to the
as good as relation of statistical decision theory.

On the technical side, the Basic Conditions and Risk Independence, allow to affinely map each act

f: Q9 - X
w = f(w)
9Notice that G does not need to be given: rather it is derived from P, as shown by [22, Theorem 3.2]. On the other hand,

our Theorem 12 allows to check the existence of a common regular conditional probability for P given G.
20«0n the one hand, one does frequently have a good idea as to the range of [the parameter], and as to which values in

this range are more or less likely. On the other hand, such information cannot be expected to be either sufficiently precise or
sufficiently reliable to justify complete trust in the Bayes approach.” As Hodges and Lehman [41, p. 396] put it.
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to a bounded function
(w(f),): SP) — R
P — fQ u(f)dP

while Consistency, in its equivalent form (9), guarantees that any numerical representation V (f) of - only
depends on (u (f),-), that is,
V() =1(u(f),)

Moreover, not only the functional I:B (S (P) ,Ag(p)) — R is well defined, but it inherits all the linearity

properties of V. Also the converse is true since the mapping f — (u(f),-) is affine.?!

The preference
representation exercises of the next section consist in characterizing the form of I starting from behavioral

assumptions on 7.

4 Robust Preferences

This section contains our main representation results. We first discuss some recent models, then we consider
the Choquet and Bewley cases discussed in the Introduction. The interpretation of our results in terms of
prior uncertainty is fully discussed only for the first class of preferences we consider, analogous considerations
apply to the others. The differences between the various classes pertain to the qualitative reaction to

ambiguity /prior uncertainty.

4.1 Variational Preferences

The class of variational preferences was introduced by Maccheroni, Marinacci, and Rustichini [46] and it
encompasses the Maxmin expected utility preferences of Gilboa and Schmeidler [34] as well as the Multiplier
preferences of Hansen and Sargent [39], later axiomatized by Strzalecki [59]. Variational preferences are

characterized by the following extra key assumptions:

Uncertainty Aversion: If f,g € By (X) and o € (0,1), then f ~ g implies af + (1 —a)g = f.

Weak Certainty Independence: If f,g € By (X), z,y € X, and a € (0,1), then
af+(l-a)zzag+(l—a)z = af+(1l-a)yzag+(1—a)y.

The Uncertainty Aversion axiom, introduced by Schmeidler [55] and sometimes called Ambiguity Aver-
sion, is a central axiom of the literature on decision making under ambiguity, and it can be seen as a
preference for hedging against ambiguity. See [12] for a detailed discussion.

On the other hand, Weak Certainty Independence is in between Risk Independence (which requires
stability of the preference w.r.t. mixing between constant acts only) and full blown Independence (which
requires stability of the preference w.r.t. mixing between all acts). In this respect, notice that, for each
f € By(X), z,y € X, and o € (0,1), the graphs of af + (1 — a)z and af + (1 — a)y are congruent up
to a translation, that is, convex combinations with different constants (and fixed weights) do not affect the
variability of consequences in different states. See [46] for a detailed discussion and Grant and Polak [36] for
an insightful interpretation in terms of constant absolute uncertainty aversion.

We further assume that there are either arbitrarily good or arbitrarily bad outcomes. For example, this
is automatically satisfied when X contains the set of simple lotteries over R (see Example 3) and the decision

maker is risk averse (or risk neutral, or risk loving).

1B (S8 (P), As(p)) is the space of all bounded and measurable functions on §(P). See the appendix for details on the
construction of I and its properties.
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1 1 1 1
Unboundedness: For all x > y in X there exists z € X that satisfies either y > ix—i— 52 or iy—i— 52 - T.

Both in the original representation result of [46] and in the following one, this assumption implies that
the utility function v : X — R is unbounded, which in turn delivers uniqueness of the representation. We

are ready to state our first representation result.

Theorem 4 Let (0, F,P) be a Dynkin space and let - be a binary relation on By (X). The following

conditions are equivalent:

(i) 7, satisfies the Basic Conditions, Consistency, Uncertainty Aversion, Weak Certainty Independence,
and Unboundedness;

(ii) there exist an unbounded affine function u : X — R and a grounded lower semicontinuous convez
function v : A (S (P)) — [0,00] such that the functional defined by

V(f)= min { /S(P)(/Q u(f(w))dP(w))du(P)Jrv(u)} VieBy(X)  (10)

HEAS(P))
represents .
Moreover,

1. w s cardinally unique and, given u, 7y 1S unique;

2. = satisfies Monotone Continuity if and only if
V(1) =00 VugA?(S(P)).

The interpretation of Theorem 4 in terms of prior uncertainty is quite straightforward: starting from the
set P of objectively rational beliefs, our decision maker identifies the pure models S (P) and considers all
the possible priors over the models, the elements of A (S (P)).

If, as it is the case in Bayesian statistics, he is able to identify a single prior A € A% (S (P)), he simply

evaluates each act according to its expected utility

vin= [ ([utenare)ne) )
S(P) Q
which is the counterpart of the celebrated de Finetti Exchangeability Theorem, and corresponds to select

0 nw=A
v (1) = (12)
00 wFEA

in representation (10). In other words, all priors u, except A, are excluded and given the highest possible
penalty v (i) = 00.%?

When, as it happens in robust Bayesian statistics (see Berger [6]) there is some degree of uncertainty about
the prior A, the decision maker can consider a (compact and convex) neighborhood T of A, for example an
e-contamination neighborhood (like in the insightful Hodges and Lehmann [41]) or a neighborhood relative to
some convex statistical distance. Then, uncertainty aversion induces him to consider the minimum expected

utility over I'. This leads to the evaluation

pnel

v =nip [ N ([utr@nare)ar (13)

221n terms of behavioral assumptions this amounts to add Independence (see Section 4.4) and Monotone Continuity.
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and corresponds to select

0 perl
¥y (n) = (14)
00 wél
in representation (10). In other words, all priors pu, except those in T', are excluded and given the highest

possible penalty ~ (u) = o0.23

In estimation problems this corresponds to the I'-minimax approach, as
detailed in the next section.

In the same robustness perspective, the decision maker can choose a convex statistical distance, say the
relative entropy R (/|)\), and penalize alternative priors proportionally to their distance from A\.2* This

corresponds to select
7 () o R (p]|A)

in representation (10).25

Summing up, the robust approach here is incarnated by maxminimization of expected utility over prior
probabilities where the soft constraint is given by the penalty function 7, which thus captures the degree
of confidence of the decision maker on the various priors. In the next section we show how this approach
generalizes robust estimation procedures.

4.1.1 ~-Minimax Estimation

Given a Dynkin space (2, F, P), the common regular conditional probability p can be viewed as an unknown
parameter (taking value p“ in state w). Next we consider the statistical problem of estimating p, when the
the outcome of an experiment is available. Specifically, assume data are generated by a random variable ¢
taking values in the sample space N = {1,2,...,n}, that is, the experiment outcome determines to what cell
A; ={w € Q: 1 (w) =1} of the partition {t =4},_, , the true state belongs. We refer to Shao [58] for the
basic elements of statistical decision theory.

An estimator (or decision rule) is just a function T : N — A () that associates an estimate T (i) to
each observation i. Denote by L (P, Q) the loss incurred in estimating P by @. For each T' € A° (Q)N, the
state-contingent loss implied by the choice of decision rule T"is fr : Q — R defined by

fr(w)=L*,T((Ww))) Ywel. (15)

According to a common practice, denoting by 7 the set of available estimators, we assume that fr (w) >
—K > —ocoforall T € 7 and w € (), and that fr is bounded and measurable.

If the utility of loss £ is —£,%% the set of optimal estimators for a statistician who selects decision rules
according to (10) is

T = arg;lél;ueg(lggp)) {/5(7:) (/Q —fr(w)dpP (w)> dp (P) + (u)}

—arg jnf max { / . ( | Lo ew)ap <w>) dy (P) — 4 m)} .

But, for each P € S(P), L(P,T(¢(-))) takes value L (P,T (i)) on A; and hence it belongs to By (R);
moreover, by [22, Theorem 3.1], P ({w € Q : p* = P}) = 1. Then,

/QL(pw,T(L(w)))dP(w):/L(P,T(L(w)))dP(w) VP € S(P) (16)

Q

23In terms of behavioral assumptions this amounts to add Certainty Independence (see Gilboa and Schmeidler [34]).

24Recall that R (u||\) = fS(’P) %‘log (Z—‘A‘) dX if p is countably additive and absolutely continuous with respect to A and
R (p]|A) = oo otherwise.

25n terms of behavioral assumptions this amounts to add the assumptions of Theorem 6 (see [12]).

26Notice that our representation results can be extended from Bp (R) to the space of all bounded and measurable functions.
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and

T gl mas { / . ([reraenire)ar - (u)} .

Recalling that the risk of a decision rule T is defined by

Rr(P)=) L(P,T@&)P({t=1})

iEN
we conclude
T* =arg inf max Ry (P)du (P) — . 17
gTeTueA(S(P)){ S(P) v (P)du(P) 7(M)} (7

This is a very general selection criterion of an optimal robust decision rule (see Berger [6, Section 3.2]). In
fact:

the Bayes risk principle corresponds to v as defined in (12);

the I'-minimaz principle corresponds to 7 as defined in (14);

the classical (Waldean) minimaz principle corresponds to - identically equal to 0;

e the I'-minimax regret principle corresponds to the case in which v is the lower semicontinuous and

convex hull 7** of
infrer fS(P) Ry (P)du (P) pel

00 pel

under the (innocuous) normalization of L that guarantees inf,cpr (1) = 0.

7 (p) =

In light of the last point, notice that an estimator T is said to be e-robust if and only if

LeA(S(P) {/3(79) Br (P)du(P) =7 ('u)} =c

that is, if the certain equivalent loss of fr (for the variational preferences with v = r**) is smaller than
€. The interpretation is very compelling: an estimator is e-robust if the utility degradation induced by the
inability of exactly quantifying the prior is smaller than .27

Summing up, Theorem 4 provides an axiomatic foundation of robust estimation procedures and suggests
a new general definition through (17).

Finally, recall that an estimator T} is said to be as good as an estimator T% if and only if Ry, (P) < Ry, (P)
for all P € §(P), by (15) and (16) this is equivalent to

/lesz/fTZdP \V/PGS(,P)
Q Q

By (9), it follows that Consistency requires that if T; is as good as Ts, then fr, is preferred to fr, (T4 is
chosen when 77 and T3 are available to the statistician).

2"Notice that the normalization inf,er 7 () = 0 amounts to set the utility of the optimal estimator at the most favourable
prior equal to 0.
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4.1.2 Uncertainty Averse Preferences

The robust representation discussed for variational preferences admits an extension that only relies on
Uncertainty Aversion, but requires a strengthening of the unboundedness assumption. The new requirement

is that there are arbitrarily good and arbitrarily bad outcomes. Formally:

1 1 1 1
Full Unboundedness: For all x >~y in X there exist w,z € X that satisfy y > §m+§w and §y+ 3% > T.

In the representation this assumption implies that the utility function u : X — R is onto (i.e., u (X) = R)
which again delivers the uniqueness of the representation.

In order to state the main result, we have to introduce some notions related to quasiconcave duality.

We define £ (R x A (S (P))) to be the class of functions G : R x A (S (P)) — (—o0, 0] such that
e (G is quasiconvex and lower semicontinuous;

e G (-, p) is increasing for all u € A (S (P));

o t=min,ecasp)) G (t, 1) for all t € R.

Given a function G € L (R x A (S (P))), we say that G is linearly continuous if and only if the functional
I: By (R) — R defined by

I(e)=  min G </5(7>) (/Qw(w) ar (W)) dp (P) w) Vi € By (R)

is continuous.

Theorem 5 Let (Q,F,P) be a Dynkin space and let ¥, be a binary relation on By (X). The following

conditions are equivalent:

(i) 7= satisfies the Basic Conditions, Consistency, Uncertainty Aversion, Risk Independence, and Full

Unboundedness;

(ii) there exist an onto affine function u : X — R and a linearly continuous function G in L (R x A (S (P)))
such that the functional defined by

VU= _min G ( [, ([nt@nape) ) anep) 7u> VeB(X) (g

represents 7.

Moreover,

1. u is cardinally unique and, given u, G is unique;

2. 7 satisfies Monotone Continuity if and only if

G(t,p) =00 V(t,p) ¢RxAT(S(P)).

Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [12] show that the functions G in £ (R x A (S (P)))
can be interpreted as games against Nature, thus Theorem 5 can be seen as providing the basis for a very
general maxmin approach to robust statistical decision theory.2® Moreover, in line with the results con-

tained in [12], it can be shown that G captures the comparative ambiguity /prior uncertainty attitudes of

the decision maker.

28 As Huber and Ronchetti [42, p. 17] write “.. as we defined robustness to mean insensitivity with regard to small deviations
from the assumptions, any quantitative measure of robustness must somehow be concerned with the mazimum degradation of
performance possible for an e-deviation from the assumptions. An optimally robust procedure then minimizes this maximum

degradation and hence will be a minimax procedure of some kind.”
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4.2 Smooth Ambiguity Preferences

The structure of Dynkin space and the axiom of Consistency allow us to provide a possible axiomatic

foundation of the smooth ambiguity preference model proposed by Klibanoff, Marinacci, Mukerji [43].2%:30

Theorem 6 Let (0, F,P) be a Dynkin space and let - be a binary relation on By (X). The following

conditions are equivalent:

(i) 7 satisfies the Basic Conditions, Consistency, Risk Independence, Monotone Continuity, and its re-
striction to G-measurable acts satisfies P1-P6 of Savage [53];

(ii) there exist a nonconstant affine function v : X — R, a strictly increasing and continuous function
¢:u(X)— R, and a nonatomic p € A% (S (P)) such that the functional defined by

vin=[ o [utr@ire)anr) vren) (19)
S(P) Q
represents 7.
Moreover,
1. u is cardinally unique, | is unique, and, given u, ¢ is cardinally unique;

2. ¢ is concave if and only if 77 satisfies Uncertainty Aversion.

Notice that, in the perspective of this paper, standard expected utility (11) corresponds to the case in
which ¢ is the identity. Thus, if we interpret [, u (f (w))dP (w) as the payoff associated by the decision
maker to act f if the pure model P is true, this means that he his neutral to model risk (that is the risk
involved by the fact that only the prior u over pure models is known to him). Theorem 6, corresponds to
a decision maker who, being able to form a single prior, is not neutral to model risk, but has an attitude
towards it that is captured by the curvature of ¢ (as exemplified by point 2. of the statement).

Also, observe that in the original version of [43], the outer integral (w.r.t. ) in (19) is over the entire set
A7 (Q). The restriction to S (P) is natural given our interpretation of S (P) in terms of pure models and,
mathematically, corresponds to constraining the support of p in [43].

Moreover, notice that the choice of P1-P6 to obtain Savagian expected utility on G-measurable acts can
be replaced by any equivalent axiomatization (we opted for P1-P6 just for historical reasons and obviously
some of them are redundant given the Basic Conditions, e.g. P1 and P5). In particular, when P = A% (Q2)
as in Example 0, G = F and second order expected utility preferences as in Neilson [49] and Grant, Polak,
and Strzalecki [30] are obtained.

4.3 Choquet Expected Utility Preferences

We now turn our attention to Schmeidler’s Choquet expected utility: the first behavioral model that ad-
dressed Ellsberg’s critique.
Recall that two acts f and g are said to be comonotonic if and only if f (w) > f (v) and g (v) > g (w) for

no w,v € Q.

Comonotonic Independence: If f,g,h € By (X) are pairwise comonotonic and « € (0,1), then

f=g9g = af+(1l—a)h>ag+(1—a)h. (20)

29Related models have been proposed by Nau [47], Chew and Sagi [16], Ergin and Gul [28], and Seo [56].
30Notice that our environment is richer than the original one given the presence of the set P in the primitives.
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Theorem 7 Let (0, F,P) be a Dynkin space and let - be a binary relation on By (X). The following

conditions are equivalent:

(i) - satisfies the Basic Conditions, Consistency, and Comonotonic Independence on G-measurable acts;

(ii) there exist a nonconstant affine function v : X — R and a capacity v on Ag(py such that the functional
defined by

vin= [ ([ruenire)ae) viesw 1)
represents 7.
Moreover,

1. w is cardinally unique and v is unique;
2. v is convex if and only if 7= satisfies Uncertainty Aversion;

3. v is continuous if and only if 7~ satisfies Monotone Continuity.

Here prior uncertainty is captured by the lack of additivity of the “prior” capacity, exactly like in Shafer
[67]. A weakening of the axioms allows to obtain a more general representation where model-contingent

payoffs [, u(f (w)) dP (w) are weighted by a function ¢ as in Theorem 6.7

As discussed in Section 6, Choquet integrals over sets of probability measures have been studied also by

Giraud [35] and Amarante [3], and the perspective of the latter is similar to ours.

4.4 Bewley Expected Utility Preferences

In this section, we consider another classical model of ambiguity, which was proposed by Bewley in the same
years in which Schmeidler was refining Choquet expected utility.

The main difference with the rest of the paper is that in Bewley’s view ambiguity can be seen as a
source of incompleteness of the preference ~. In terms of behavior, this can be revealed by the decision of
postponing the choice between some pairs of alternatives (which are thus incomparable, due to lack or poor
quality of information).?? In robust statistics this is the Doogian “black box” approach as vividly described
by Berger [7, Section 2].

For sake of brevity, in this section, we will say that - satisfies the Weak Basic Conditions if and only if
it satisfies the Basic Conditions where the assumption of completeness on By (X) is replaced by the weaker
assumption of completeness on X. Moreover, we will say that it satisfies Binary Monotone Continuity if and
only if it satisfies Monotone Continuity when f and g are constant acts. At the same time, Risk Independence

is replaced by the full blown independence axiom.

Independence: If f,g,h € By (X) and a € (0,1), then

frmg & af+(l—-a)hmag+(1—a)h.

Theorem 8 Let (Q,F,P) be a Dynkin space and let ¥, be a binary relation on By (X). The following

conditions are equivalent:

31This is actually one of the objects of the authors’ current research.
328ee, for example, Danan and Ziegelmeyer [17] and Kopylov [45].
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(i) 7 satisfies the Weak Basic Conditions, Consistency, Independence, and Binary Monotone Continuity;
(ii) there exist a nonconstant affine function u : X — R and a nonempty, compact, and convexr set I of

A% (S (P)) such that for each f and g in By (X)

rroef ([utr@nare)aur = [ . ([eo@ar@)awe e
forall peT.

Moreover, u is cardinally unique and I' is unique.

We are in the purest multiple priors setting, the one in which the incompleteness of information generates
incompleteness of the preference, which in turn is reflected by the impossibility of pinning down a single

prior probability on S (P).

5 Consistency and Unambiguous Symmetry

The role of Consistency is to connect (probabilistic) information and choice behavior. In some special cases,
information naturally comes in the form of symmetry /similarity considerations about the state space, and
Consistency follows from the recognition of the implied patterns.>® In this case, it is natural to consider
a standard Borel G-space as in Example 2 and the revealed unambiguous preference 7Z* introduced by
Ghirardato, Maccheroni, Marinacci [29], that is,

fr'g © af+(l-a)hzag+(l—a)h VYael0,1],Vh € By (X).

It is immediate to see that =—* is derived from the primitive 7. Specifically, it is the part of = which is not
affected by hedging considerations.
The subjective recognition on part of the decision maker of the symmetry of £ with respect to the action

of a group G is modelled by the next axiom.

Unambiguous Symmetry: If f € By (X) and © € G, then fom ~* f.

We are ready to state the last result of the paper.

Proposition 9 Let (2, F),(G,7),a) be a standard Borel G-space, P be the set of invariant probability
measures, and ¥, be a binary relation on By (X). If 7 satisfies the Basic Conditions, Risk Independence,
and =* satisfies Binary Monotone Continuity, then the following statements are equivalent:

(i) 7 satisfies Consistency;
(i) 7o satisfies Monotonicity and Unambiguous Symmetry.

In other words, in this particular setup, Consistency incorporates subjective similarity assessments into

the preferences.

6 Related Literature

Our interest in the topic of this paper was inspired by Epstein and Seo [25] and De Castro and Al-Najjar
[18], while our perspective is closer to Amarante [3] and, to some extent, to Giraud [35]. At the same time,
the independent work of Klibanoff, Mukerji, and Seo [44] shares some of our insights. For this reason, next

we discuss these works.

33See the discussion of Epstein and Seo [25], De Castro and Al-Najjar [18], and Klibanoff, Mukerji, and Seo [44] in Section 6.
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Amarante Our Choquet expected utility representation is similar to the one of Amarante [3] who considers
preferences over acts that satisfy the assumptions of Ghirardato, Maccheroni, and Marinacci [29]. He shows
that these preferences admit a representation as in (21) with S (P) replaced by the set C of probabilities
representing the revealed unambiguous preference —* of the decision maker. Thus Amarante interprets the
preferences of [29] as robust Bayesian in a fully subjective way.

On the conceptual side, our view allows for probabilistic information, so that in general C is included in
the closed convex hull of P (see the discussion in [32]), and thus the elements of C are in general mixture
models rather than pure models. The technical downside of this fact is that uniqueness of the representation
(that is, of the prior capacity v) is irremediably lost. However, the special case in which (Q, F,C) is a Dynkin
space (see Rumbos [52]) presents the natural compromise between Amarante’s perspective and ours. In this

instance, representation (21) becomes
vin= [ ([uwiare)a ) vres ).
se) \Ja

That is, a unique nonadditive prior over purely subjective (pure) models is obtained.?* Relatedly, in Giraud

[35], pairs of acts and hypothetical information are compared and the representation

P29 & [ ([ureare)a” ez /. ([ aww)aw

is obtained. The fact of allowing objective information is what makes this paper close to ours. On the other
hand, the preference setting is quite different in that Giraud considers preferences on By (X) x PBo, where

PBo is the class of all finite sets of (nonatomic) probability measures on €.

Epstein and Seo In [25], the framework is the exchangeable one discussed in Example 2. In this frame-
work, their Theorem 3.2 corresponds to the maxmin special case of our variational representation (10). This
result is obtained under strong exchangeability which is slightly weaker than our Unambiguous Symmetry
(see Section 7 of [44]).

Their Theorem 5.2, and especially its version for belief functions, developed in Epstein and Seo [26] as

Theorem 4.1, is almost perfectly complementary to our Theorem 7. In fact, they obtain
v(A)= [ o< (A)du(o)
Bel(S)

that is, the belief function v on @ = 5 x § X ... is an additive average (u is a probability measure) of i.i.d.

belief functions §°°, while (in the exchangeable framework for belief functions) our Theorem 7 delivers
via)= [ o= ase)
7(8)

that is, the belief function v on Q@ = S x S X ... is a nonadditive average (5 is a belief function) of i.i.d.
probability measures 6°°. In other words, their agent perceives experiments as being indistinguishable (but
not necessarily identical) and is neutral to prior uncertainty, our agent thinks the experiments are identical,
but she is averse to prior uncertainty. In light of their findings, the intersection of the two representations
is the celebrated de Finetti Theorem, corresponding to the case in which v is an exchangeable probability.
Interestingly, Section 6 of [26] considers the prediction counterpart of our Section 4.1.1 when robustness
about likelihoods, rather than priors, is considered.

Finally, the recent Epstein and Seo [27] completes the picture by taking an approach which allows
robustness of prior and likelihood together: admitting, in the belief function version, a (prior) belief function

w on (likelihood) belief functions 6.

34We thank an anonymous referee for suggesting this view on our model.
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De Castro and Al-Najjar Here, we discuss the relation of our work with De Castro and Al-Najjar [18]
and the more recent Al-Najjar and De Castro [2]. We first introduce their contributions and then describe

the relationship with the present paper.

In De Castro and Al-Najjar [18] the framework is again a special case of the standard Borel G-space
setting discussed in Example 2.3° Like in [25], the transformations in G are interpreted as capturing similarity
patterns.

In [18] they show that, denoting by { Py}, the set of all ergodic measures, there exists a parameterization

¥ : 0 — O of the state space such that for each (subjectively rational) preference =~ satisfying

fom+ ...+ fom,
n

¥ for all f € By (X), n€N, mp,..,mp € G (23)

then
f = g if and only if / fdPy = / gdPy (24)
Q Q

for all acts f and g. That is, recognition of similarity — as captured by (23) — allows to reduce the complexity
of comparisons. In fact, while f and g are F-measurable acts, fQ fdPg and fQ gdPy are acts measurable

113

with respect to the invariant o-algebra. “... In words, the integrals with respect to the parameters [the r.h.s.

b2

of Equation (24)] are sufficient summary of how 7 ranks all acts ...” as they write in [2]. Building on this
result, in the exchangeable framework, [18] obtain Bewley expected utility preferences with an underlying

set C' consisting of exchangeable probabilities (hence mixtures of i.i.d. models).

In the second part of the subsequent [2],3¢ they assume that there exists a parameterization ¥ :  — ©
of the state space such that (24) holds. This assumption allows to relate the original preference 7~ on
state-based acts h : w — h (w) with a derived relation 2/, that they call aggregator, on the corresponding
parameter-based acts H : 0 +— fﬂ hdPyg-1(6)) = fﬂ hdPy by setting

Fr G&L / fdPy = / gdPy (25)
Q Q

for all acts f and g. Definition (25) together with (24), which is now considered to be an axiom that the
preference 77 must satisfy, allows them to obtain a parametric version of uncertainty averse preferences a
la Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [12] and a parametric version of second order

subjective expected utility o la Neilson [49] and Strzalecki [59], by making the corresponding assumptions

on the aggregator =’

Two observations clarify the structural relationship and the main differences between the results in De
Castro and Al-Najjar [18] and ours. First, denoting by P the set of all invariant probability measures of a
standard Borel G-space, the triple (€2, F,P) is a Dynkin space and S (P) coincides with the set {Fp}, o of
all ergodic measures (see Example 2). Second, using (24), it can be shown that, in the exchangeable and in
the shift frameworks, the Invariance axiom (23) implies our Consistency axiom (7).

Looking at the relationship between representations, their foundation of Bewley expected utility with an

underlying set C' consisting of exchangeable probabilities is a special case of our Theorem 8.

Differently from [18], where (24) follows from the Invariance axiom (23), in the second part of [2], the
existence of a parameterization ¢ : ) — © is assumed, and especially the Parameterizability condition (24)
becomes the crucial axiom that the preference - must satisfy. This observation is important to understand
the two main differences between Al-Najjar and De Castro [2] and the present paper.

358pecifically the exchangeable and the shift frameworks discussed at the end of the example.
36 The first part subsumes [18] and generalizes its results.
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First, as a behavioral condition, Consistency (7) can be shown to be weaker than Parameterizability
(24), and it may be argued to be more compelling.?” This implies that falsifying Consistency is easier than

falsifying Parameterizability. Specifically, falsifying our (7) consists in checking whether the relation

fkpgfi:e&/fdPﬁ/gdeoraHPGP (26)
Q Q

is a subrelation of the subjectively rational preference =; that is, checking whether f =p g implies f = g.
On the other hand, falsifying their (24) consists checking whether the relation

Frggded / FdPy = / 9dPy (27)
Q Q

coincides with the subjectively rational preference Z; that is, checking whether f =y ¢ is equivalent to
f 7= g. In this respect, notice that, while the integrals fQ fdP and fQ gdP in (26) are just elements of X,
the integrals [, fdPy and [, gdPy in (27) are acts, w — [, fdPy(.) and w — [, gdPy(,) for all w € Q.

The other implication of the different strength of Consistency and Parameterizability is that the derivation
of our representation results becomes more delicate and the proofs highly nontrivial.

Second, although some of the functional forms we study are also studied by [2], the key conceptual and
formal differences lie in the kind of axiomatic foundations provided. Consider, for example, our general

uncertainty aversion case

V= _min G < [ (fruenare ) a (Pm) (29)

and the corresponding

vin=min 6([([utreine)do.n) (29)
of [2].

The purpose of our paper is to show how general classes of preferences under ambiguity — like the
uncertainty averse ones — admit an equivalent and unique representation in terms of prior uncertainty —
like (28). In the example, the goal of our exercise consists in providing an axiomatic foundation to (28) by
making the weakest possible assumptions on the primitive preference - on By (X).

In [2], the approach is the opposite. For Al-Najjar and De Castro it is “more convenient to introduce
assumptions regarding how the decision maker treats parameter-uncertainty directly on acts defined in
terms of parameters.” These acts are functions from the parameter space © to the consequence set X. In
this perspective, they start from prior uncertainty (parameter-uncertainty to be precise) and “construct
a preference on the underlying state space.” For example, in the uncertainty aversion case, they directly
assume the axioms of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [12] on the relation 27’

between parameter-based acts. These axioms deliver a representation V of =’ of the form

V(F)= min G(/@U(F(@))du(@),u>

HEA(O)

which translates into representation (29) of 7~ by means of the very definition (25) of =’ and Parameteriz-

ability. As explained above, our approach is conceptually opposite (and technically very different).

37Indeed also the primitives (the data) are different: a set P of objectively rational beliefs, in our case, a parameterization ¥,

in theirs.
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Klibanoff, Mukerji, and Seo In [44], they maintain the exchangeable framework of Epstein and Seo [25].
Their objective is to obtain a behavioral definition of relevant (i.i.d.) models and to study their properties.

In so doing, they characterize preferences that admit a representation of the form

V)=V <(/Qu(f)d9°°>gee>

where © is the relevant family of measures on A (S). Their derivation relies on a symmetry condition that
they show to be equivalent to our Unambiguous Symmetry in the exchangeable case. Finally, under additional
behavioral assumptions, they characterize the case in which V describes the a-maxmin expected utility model
and the one in which V describes the smooth ambiguity preference model. The latter characterization is the

counterpart in their setting of our Theorem 6.

This paper From an objective rationality point of view, all of the above papers (with the exception of
Giraud [35]) restrict the agent’s probabilistic reasoning to symmetry considerations (reflected by the standard
Borel G-space structure). In this paper, any kind of information that can be captured by a Dynkin space
(Q,F,P) can be consistently included in the decision process. For example, this allows to easily include
Ellsberg urns as shown by Example 1. Beyond the relevance in the ambiguity literature of Ellsberg type
paradoxes, urn settings are important since they allow to design experiments that make our Consistency

axiom easily testable (the first experiment of this kind appears in Eliaz and Ortoleva [23]).

A Common Regular Conditional Probabilities

In this section, we consider (£2, F), a measurable space, and G a sub-o-field of F. As usual, A? (2, F) is the
set of all probability measures on F. We denote by B (£2) the set of all bounded functions from 2 to R and
by B (2, F) the set of all bounded and F-measurable functions. Both spaces are endowed with the supnorm.
Given an element P € A° (Q, F), we denote by £ (Q, F, P) the set of all F-measurable and P-integrable
functions from Q to R. Finally, if P € A° (2, F) then we denote by Pg the restriction of P to G. Notice
that Pg € A7 (Q2,G).

Let P be an element of A% (Q,F), G a sub-o-field of F, and f an element of £ (Q, F, P). By [9, Ch. 6],
there exists g € £ (Q, G, Pg) such that

/fdP:/gdPg VG €G.
G G

Any such g is called a version of the conditional expected value of f given G. The set of all these functions
g is denoted by Ep [f|G]. Ep [f|G] forms an equivalence class of £! (2, G, Pg) with respect to the Pg-a.s.
equality. If f = 14 for some A € F then Ep [f|G] is denoted by P [A|G] and any of its elements is called a
version of the conditional probability of A given G.

Definition 10 Let P be an element of A (2, F) and G a sub-o-field of F. A regular conditional probability
(r.c.p.) for P given G is a function p : F x Q@ — [0,1] such that

e for each A € F, p(A,-): Q — [0,1] is a version of the conditional probability of A given G (that is,
p(4,-) € P[A|G]);

o for cachw € Q, p(,w): F —[0,1] is a probability measure (that is, p* =p(-,w) € A7 (Q, F)).

The measurable space (Q, F) is a standard Borel space if and only if it is isomorphic to a measurable
space (I,Borel (I)) for some Borel set I of a Polish space. That is, there exists a bimeasurable bijection
v: (Q,F)— (I,Borel (I)).
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Theorem 11 ([37, Ch. 6]) Let P be an element of A (Q,F) and G a sub-o-field of F. If (Q,F) is a

standard Borel space then there exists a regular conditional probability for P given G.

Theorem 12 Let (Q,F) be a standard Borel space and G a sub-o-field of F. The following statements are
equivalent for P C A% (Q, F):

(i) Npep Ep [fIG] # 0 for all f € B(Q,F).
(i) Npep PIAIG] # 0 for all A€ F.

(#ii) The elements of P admit a common regular conditional probability given G.
In this case, if p and p' are two common reqular conditional probabilities for P given G then
p(hw)=p (hw)  P-as,
that is, {w € Q:p(,w)=p' (,w)} €Gand P{w e Q:p(,w)=p' (,w)}) =1 for all P € P.

Proof. Clearly, (i) implies (ii).

(ii) implies (iii). We proceed by steps.
Step 1: For each A € F and for each ga € (\pep P [A|G] we have that (g4 V 0) A1 € (\pep P[AIG].
Proof of the Step.

For each A € F let g be an element of (\p.p P [A|G]. It follows that g} € Npep P [A|G]. Indeed, for
each P € P we have that
/ gadPg = P(ANG) >0  YGeg.
€]

Thus, we have that Pg ({w € Q: ga (w) < 0}) =0 and g4 = g4 Pg-a.s., that is P-a.s., hence g4 V0 =g} €
P[A|G]. Without loss of generality, we can assume that g4 (w) > 0 for all w € Q. Next, we show that
ga N1 € Npep P[A|G]. Indeed, for each P € P

/gAdszp(AﬂG)SP(G)Z/lgdPg VG € gG.
G G

Thus, we have that Pg ({w € Q:ga (w) >1}) =0 and g4 = ga A1 Pg-a.s., that is P-a.s., hence g4 A 1 €
P[A|G]. O
In light of Step 1, for each A € F fix an element g4 € (\pcp P [A]G] such that ga (w) € [0,1] for all
w e N Given gy € Npep P0IG] and go € Npep P[QG], define Ny = {w e Q: gy (w) # 0} and Ny =
(weQ: o) # 1.
Step 2: Given i € {0,1}, we have that P (N;) =0 for all P € P.
Proof of the Step.
By the choice of gy and §q, we have that 1 > gg, gy > 0. Since gy € P [0|G] = Ep [0|G] for all P € P,

we have that

/g@dpg —0 VGeg.
G

This implies that gy = 0 Pg-a.s., that is P-a.s., for all P € P. It follows that P (Ny) =0 for all P € P.
Since go € P [Q|G] = Ep [1q|G] for all P € P, we have that

/ dePg =1 VG e g.
G
This implies that o = 1 Pg-a.s., that is P-a.s., for all P € P. It follows that P (N;) =0 for all P P. O
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By [37, Corollary 3.4 and Theorem 4.3] and since (€, F) is a standard Borel space, there exists an at
most countable field A generating F such that every finitely additive probability on A extends (uniquely)
to a probability measure on F. Since A x A is at most countable, let {(A4,, By)},., be the collection of all
disjoint pairs of elements of A and set

={weQ:ga,up, (W) #ga, W) +gn, (W)}  Yn>2

Step 3: P (N,) =0 for all P € P and for all n > 2.
Proof of the Step.

By contradiction, assume that there exists a P € P and n > 2 such that P (N,) > 0. Since ga,up, €
P[A, U B,|g], for each G € G we have that

/ ga,uB,dPg =P ((A,UB,)NG)=P((A,NG)U (B, NG))
G
:P(AnﬂG)-i-P(BnﬂG):/gAndPg—l—/andPg
G G
~ [ (@4, +dm)aps,
G

which implies that ga, + g, € P[A, U B,|G]. Thus, we have that ja, + §p, = Ga,up, Pg-a.s., that is
P-a.s., which contradicts P (V,,) > 0. O

Let U = (U2, N»)“. By Step 2 and Step 3, it follows that U € G and P (U) = 1 for all P € P. Moreover,
we have that for each w € U:

ga (w) €10,1] VA€ A,
9o (@) =0,
gsz(w):1
Gau (W) = ga (W) + B (w) VA, B € A such that AN B =.

That is, for each w € U the mapping A — G4 (w) is a finitely additive probability measure on A. Let @ be
a fixed element of P and set for each A € A and w €

Jaw) fwelU

g(A’“):{ Q(A) ifweUe

Forall Pe P, g: Ax Q —[0,1] is a function such that:
- for each A € A, §(4,-) is G-measurable and g (A,-) = ga (-) Pg-a.s., that is, §(4,-) € P[A|G];
- for each w € Q, §(-,w) : A — [0,1] is a finitely additive probability measure on .A.

For each w € Q denote by § (-,w) the unique probability measure that extends g (-,w) from A to F.
Step 4: The mapping (A,w) — §(A,w) is a reqular conditional probability for all P € P given G.
Proof of the Step.
Since F is a standard Borel Space and by [37, Corollary 3.4 and Theorem 4.3], § is well defined.?® Let
={AeF:§(A,-) e P[A|G]}. By construction, notice that:

- foreach Ae A, §(Aw)=g(A,w) forallwe Qand §(4,)=g(4, ) € P[A|G);

38Gince (9, F) is standard, §(-,w) is a countably additive probability measure on A for each w € Q. By the Caratheodory
theorem (see, e.g., [9, Theorem 3.3 and Theorem 11.2]), it extends uniquely to F =c (A).
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- for each w € Q, §(-,w) : F — [0, 1] is a probability measure on F.

This implies that A € M. Consider {A,}, .y € M and A, " A (resp., \,). Since F is a o-algebra and

§ (+,w) is a measure for all w € 2, we have that A € F and § (A,,w) /" §(A,w) (resp., \) for all w € Q. Tt
follows that g (A,,-) /" G(A,-) (resp., \). Since g is bounded, we thus obtain that g (4,-) € £ (2, G, Pg).

By the Monotone Convergence Theorem, we conclude that for each G € G,

/g(A,-)dPg: lim [ §(An,-)dPg = lim P(A,NG)=P(ANG).
G

n—oo G n—oo
That is, we obtain that §(A4,-) € P[A|G]. By the Monotone Class Lemma (see, e.g., [9, Theorem 3.4]) and
since M is a monotone class containing A, it follows that M D o (A) = F. O
Step 4 proves the implication.

(iii) implies (i). Let p : F x @ — [0,1] be a common regular conditional probability for all the elements
P of P given G. Then, for each P € P we have that:

- for each A€ F, p(A,-) € P[A|G];
- for each w € Q, p¥ € A7 (Q, F).
Define
*: B(Q,F) — B(9,09)
f = I
where f* (w) = fQ fdp® for all w € Q and for all f € B (£, F). In the rest of the proof, we prove that such

a mapping is well defined, linear, (Lipschitz) continuous, and such that f* € Ep[f|G] for all f € B (Q,F)
and for all P € P.

Claim: The mapping * : B (Q,F) — B (Q) is linear and continuous.
Proof of the Claim.

We first observe that the mapping * : B (Q,F) — B (Q2) is well defined and linear. Indeed,
el =| [ fae| <l e,

Moreover, for each «, 8 € R and for each f,g € B (2, F), we have that af + g € B (Q, F) and

(af + Bg)* (w) = /Q (af + Bg)dp* = a /Q fap® 1 B /Q gdp® = af* @) + 89" (0)  VweQ,

that is, (af + B9)" = af* + Bg*. Second, if {fatneny € B(Q,F) and f € B (S, F) are such that f, — f
(where the convergence is uniform) then
/ fdp” —/ fndp®
Q Q

It follows that f* — f*, proving that * : B (2, F) — B () is Lipschitz continuous. O

Fix P € P. We next show that f* € Ep [f|G] forall f € B(Q,F). Let V. ={f € B(Q,F): f* € Ep[f|G]}.
Since the mapping * : B (Q, F) — B (Q) is linear, if f,g € V and a, 5 € R then

[f (W) = fi (W) =

<||fn — fll Yw € Q.

(af + B9)" = af* + Bg" € aEp|[f|G] + BEP [9G] C Ep [af + Bg|d].

This implies that V is a vector subspace of B (2, F). Similarly, since * : B (2, F) — B (£2) is continuous, if
{fatnen €V and f, — f then {f}},cn € B(Q,G) converges to f*. It follows that f* € B (£2,G) and that

/f*dP:lim £rdP = lim fndP:/ fdP VG eg.
G n G n G G
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This implies that f* € Ep [f|G] and that V is closed. Finally, observe that if A € F and f = 14 then for
each w €

(@) = (1) (@) = /Q Ladp® = p(A,w),

that is, f* = p(A,-) € P[A|G] = Ep [14|G]. We can conclude that V' contains all the indicator functions of
elements of F. Since V is a vector subspace of B (2, F), this implies that By (2, F) CV C B(Q,F). Since
V is closed, it follows that V = B (2, F).

Since P in P was arbitrarily chosen, it follows that f* € (\pcp Ep [f|G] for all f € B (Q,F). Moreover,
notice that * : B (2, F) — B (Q) is a linear and (Lipschitz) continuous operator and we can restrict its target
space to B (2, G).

Finally, we prove P-a.s. uniqueness of the common regular conditional probability for P given G. Since

(Q, F) is a standard Borel space there exists an at most countable algebra, A = {A,} 9 generating F.

3
neN?
Let p and p’ be two common regular conditional probabilities for P given G. Fix P € P. By assumption,

for each n € N we have that p (A,,-) and p’ (A,, ) are elements of P [A,|G]. It follows that
Uy,={weQ:p(4,,w)=p (A,,w)} € G and P (U,) = 1.
This implies that U = (,cyUn € G and P (U) = 1. We can conclude that
U={we:p(An,w)=p (4,,w), VneN}
—fweRip(Aw) =5 (Aw), VAcA)
—{weplwa=r (WL}
={weQ:p(,w) =p (~w)}

where the last equality follows by Dynkin lemma (see, e.g., [9, Theorem 3.3]) given that F = o (A). The

proof is complete since P in P was arbitrarily chosen. |

Remark 13 Notice that:

o The implications (i) implies (ii) and (iii) implies (i) hold for any measurable space. The standardness
assumption is used only in proving (ii) implies (iii). On the other hand, the uniqueness part of the

statement just requires that F is countably generated.

e Under (iii), the operator * : B(Q,F) — B(Q,G), defined for each f € B(Q,F) by

/ fdp® Yw € Q,
is well defined, linear, continuous, and such that:

- (1a)" =p(A,-) € Npep PIAIG] for all A € F;
- [* € Npep Er[fIG] for all f € B(Q,F).

e For a singleton set P = {P}, point (i) of Theorem 12 is trivially satisfied. Thus, Theorem 12 yields
Theorem 11 as a corollary. Moreover, the proof of (iii) implies (i) shows that if p is a regular conditional
probability for P given G then for each f € B(Q,F) the function f*, defined by

= [ i veen,

s a version of the conditional expected value of f given G. Theorem 12 also shows P-a.s. uniqueness

of the regular conditional probability for P given G.

39In particular, A is a m-class.
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B Dynkin Spaces

In this section, we maintain the notation and terminology introduced in the previous one. We denote by
ba (Q, F) the space of bounded and finitely additive set functions from F to R. We consider ba (02, F)

endowed with the weak™ sigma algebra,

AI)H,(Q,.’F) = J(<f7> : f € B(QV‘F))a

and each of its subsets with the induced sigma algebra. It is well known that ba (Q, F) is isometrically
isomorphic to the norm dual, B (Q, F)", of B (€, F). We endow ba (2, F) with the weak* topology and each

of its subsets with the relative (weak*) topology.

Fact 1 Let (2, F) be a measurable space. Apa.7) =0 ((1a,-): A € F) and for each C C ba (2, F)

Ac = Ay NC=0 (e f€BOLF)) = ((La e : A F).

If C is a norm bounded subset of ba (2, F) and p is a finitely additive probability on C, that is on Agc,
then the barycenter fi of 1 is the functional defined for each f € B (Q,F) by

ﬂ<f>=/c<f,m>du<m>.

Notice that & is well defined. Indeed, since C is norm bounded, the mapping m — (f, m) is bounded and
Ac measurable. Moreover, let us define i : F — R to be such that fi (A) = 1 (14) for all A € F. Then, we
have the following

Fact 2 Let (2, F) be a measurable space, C a norm bounded subset of ba (Q, F), and p : Ac — [0,1] a finitely
additive probability. Then, ji € ba (Q,F) and ji € B (Q, F)". Moreover, we have that

/C<f7m>du(m)=ﬂ(f)= [ rii vfeB@.F).

For this reason, we will just, equivalently, say that f is the barycenter of ;1 and we will denote it by fi. By
the Hahn-Banach Theorem, fi always belongs to the closed convex hull of C in ba (2, F).*® Conversely, the
closed convex hull of C consists exactly of all barycenters of all finitely additive probabilities on C. Indeed, if
m € ¢o” (C) then there exists a net {mq},c 4 of convex combinations of elements of C that converges to m.
That is, there exists a net {fia},c 4 of simple probability measures on C such that {fia},. 4 converges to m
and i, = mg for all & € A. Since the set of finitely additive probabilities on C is a compact set, it follows
that there exists a subnet {,u% }BeB of {fta }4ec 4 Which converges to p. It is immediate to check that i = m.

As a consequence of the Monotone Convergence Theorem, we have the following fact:
Fact 3 If P C A% (Q,F) and pn € A7 (P, Ap) then i € A7 (Q, F).
Definition 14 A subset P of A (2, F) is measure convex if and only if i € P for all p € A7 (P, Ap).

Measure convex subsets of A (Q, F) are convex.*! Conversely, by the Hahn-Banach Theorem, compact

convex subsets of A% (€, F) are measure convex. On the other hand, A% (Q, F) is measure convex without

401f i ¢ ©o* (C) then there would exist f € B(Q,F), @ € R, and € > 0 such that (f,i) < a < a+e < (f,m’) for all
m' € ©* (€). This would imply that (f, ) = [, (f,m)du(m) > o +e > (f, ), a contradiction.
411n fact, for each P1, P € P and each « € [0, 1],

(@dm + (1—a)or,) (A) = /P (1a, ) d (adp, +(1—a)dp,)

:a/ (1a, ) dop, +(1fa)/ (La, ) dop,
P P

—aP (A +(1—a) Py (A) VYAEF.
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being necessarily compact. Finally, the intersection of measure convex sets is measure convex. These last
two facts allow to naturally define the measure convex hull mco (P) of any P C A% (§2, F), that is, mco (P)
is the intersection of all measure convex subsets of A% (Q, F) that further contain P. From the previous
discussion, it follows that

co (P) Cmco(P) Cco" (P)NAT (Q,F).
Definition 15 Let P C A% (Q,F). An element P of P is:

1. an extreme point of P if and only if for each P', P" € P and o € (0,1) such that P = aP'+(1 — a) P”
we have that P' = P = P". £ = £(P) denotes the set of all extreme points of P;

2. a strong extreme point of P if and only if the only probability measure p on P such that P is the
barycenter of p is 0p. S = S (P) denotes the set of all strong extreme points of P.

Clearly, strong extreme points are extreme points. The two notions coincide when P is measure convex
and (Q, F,P) is a Dynkin space. We here recall the definition of Dynkin space.

Definition 16 (Dynkin, 1978) Let P be a nonempty subset of A (Q,F) where (2, F) is a separable
measurable space. (2, F, P) is a Dynkin space if and only if there exists a sub-o-algebra G C F, a set
W e F, and a function
p: FxQ — [0,1]
(A,w) — p(Aw)
such that:

(a) for each P € P and A€ F, p(A,-): Q—[0,1] is a version of the conditional probability of A given G;
(b) for each w € Q, p(-,w): F — [0,1] is a probability measure;

(¢) PW)=1 forallP€P and p(-,w) € P for allw e W.

Given P C A (Q, F) and a sub-o-algebra G C F, we denote
A% (Q,G,P)={Q € A7 (2,G): Q(B)=0if P(B) =0 for all P € P}.
Theorem 17 ([22, Theorem 3.1]) Let (2, F,P) be a Dynkin space. Then:
1. S(P)={PeP:P(G)=1{0,1}}.
2. S (P) is measurable, that is, S (P) € Ap.
3. For each P € P there exists a unique measure up concentrated on S (P) such that P = fip.

4. If P is measure convex then the restriction map P — Pg from P to A° (Q,G,P) is affine, bijective,
and S (P) =& (P).

If p is a common regular conditional probability for P given G then
pp () =P ({weQ:p” €T}, (30)
for allT" € Ap. Moreover,
SP)={PeP:P{weQ:p*=P}) =1}, (31)

particularly, S (P) is a subset of {p“},,cq-
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We next present a characterization of the measure convex hull of a set P. Before proving it, we present

some ancillary notions and facts.

Proposition 18 Let (2, F,P) be a Dynkin space. Then:

weo ) = { [ pw)dQ@) Qe a” (.67

={Re A (), F,P):pisarcp. given G for R}
~ {fign Q€ A7 (0,6,7))

(e A7 (S(P) Asie)}

— (e A% (P, Ap)}.

Moreover,

1. The restriction map R — Rg from mco (P) to A% (Q,G,P) is an affine bijection. The inverse image
of Q € A7 (Q,G,P) is figw .

2. The map Q — pow from A% (,G,P) to A (S (P) ,As('p)) is an affine bijection. The inverse image
of X is Ag.

3. mco (P) is closed in A% (Q, F) with respect to the relative weak* topology.

Before proving this result, we make few observations. Consider a Dynkin space (Q, F,P). It is not hard
to check that the mapping w +— p“ is G — Aa-(q,7) measurable. Since (£, F,P) is a Dynkin space, let
W € F be such that P (W) =1 for all P € P and p* € P for all w € W. Then, the map

pw W —P

is G N W-Ap measurable. In fact, if I' € Ap then there is IT € Aa-(q ) such that I' = IINP. This implies
that

{weQ:p?ell}eG={weW:pYclland p* e P ={weW:p* cll} ={weQ:p? cll}nWeGnNW
;»{wewzpfwer}:{weW:pweHnP}eng
We denote
AT (W,GNW,P)={Q € A (W,GNW):Q (BAW)=0if Begand P(B)=0 for all P € P}.
For all Q € A% (W,GNW,P) set g = Qo (piw>71,that is,
(M) =QUweW:p” €T} VT e Ap. (32)

Notice that if P € P then Pgnw € A% (W,GNW,P). In this case, we might just write pp rather than
KPgnw and, by (32), we have that

pup (L) =P{weW:p* €T} vI' e Ap.

Notice that {w € Q:p¥ €T} ={w e W:p* e T}U{w € W€ : p* € T'} might not belong to F. Nevertheless,
since {weW:p* €Tt eGNW C Fand P(W¢) =0 for all P € P, {w € Q:p¥ € '} must belong to the
P completion of F for all P € P. Thus, we can write

pp M) =P{weW:p*eT})=P({weQ:p” eT}) VP e P,VI' € Ap.
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In other words, (30) holds modulo completion. Clearly, for each @ € A% (W,GNW,P) we have that
pg € A7 (P, Ap). On the other hand for each f € B (Q,F), since (f,-) € B(P, Ap) and by the change of
variable formula (see, e.g., [9, Theorem 16.13]), we have that

po (= [ (fddig= [ (f)emae= [ (fraQw) = [ £ i = [ 1w dow @),

(33)
where Qw (B) = Q (BNW) for all B € G.

Fact 4 The map w : A (W,GNW,P) — A% (Q,G,P) such that Q — Qw is an affine bijection. We denote
its inverse by W 1 A% (Q,G,P) — A° (W, GNW,P), that is, Q — Q" .

Since f* € Npep Ep [f]G] and by (33), if P € P then

/ £ (W) dPgrw (w / £ (W) dPs (w / FWdPw) YfeB(QF). (34)
It follows that ip = P. Moreover, if f € B (£, G) then

PweQ:f(w)#f*(w)}) =0 VPeP.

This implies that f = f* Q-a.s. for all Q € A (Q,G,P). Thus, we can conclude that if f € B(Q,G) then
for each Q € A7 (Q,G,P)

[ #iQ= [ rig=[ £a@" —nqw (f). (33)
Q Q w
Proposition 19 Let Q € A% (2,G,P). The following statements are true:
1. figw € A7 (Q,F,P). Moreover, figw € P if P is measure convex;
2. figw (A) = [op(A,w)dQ (w) for all A€ F;
(ﬂQw)g =Q and (ﬂQW)ng =Q";
p is a regular conditional probability for figw ;

5. pow (S(P)) =1;

o

+~

6. [ py)w = WPgrw =: pp for all P €P.

Proof. 1. Since pgw € A” (P, Ap) and by Fact 3, igw € A7 (Q, F) and jigw € P if P is measure convex.
Finally, observe that for each A € F such that P (A) =0 for all P € P,

fiow (A) = /P P (A) djgw (P) = /P Odugw (P) =0,
proving that igw € A (Q,F,P).

2. For each A € F, by (33) and Remark 13,

%MMLOmMWwA@NWW@%ML@MWWW@/MAMWW)

Q
3. For each B € G, by (35),

mm=émw=%wm,

proving the first part of the statement. Moreover, by point 1. and the previous part of the proof,

((gQw)W)W (B) = figw (BAW) = figw (B) =Q(B)  VBE€G.
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By Fact 4,we have that (ﬂQw)ng = QW if and only if ((ﬂQw)gmw)W = . Then, the statement follows.
4. Since p(A,-)1p(-) € B(R,G) for all A € F and B € G, we have that

fiqw (AQB):/

| PANB) dugr (p):/

P

([ pawar @) dugw ()
B
- /P (A, )15 (), P dpgw (P) = figw (p(A,) 15 (1))
Thus, by (35) and point 3., it follows that
figw (AN B) = figw (p(4,) 15 () = / p(Aw) 15 (@) dQ ()

- 4050,

proving that p (A4,-) € figw [A|G].

5. Set Q = figw. Since (,F,P) is a Dynkin space, we have that there exists a countable family
{H,},cn € F generating 7. Without loss of generality, we can assume that {H,}, .\ is a 7-class. Fix an
arbitrary n € N. For each @ € W, we have that p* € P and

| o) = (1)) i @) = [ (p (Hyv) = [ p(H) d5? <w>)2 a® <w>2
= [ el @ @ = ( [ o e @)
= [ P i @) =17 (1,
= (p(Ha ) @) =9 () = (p (o, )?) (@) = p (o)
By point 4. and since p (Hy.,) is G-measurable, (p (H,. -)2)* 2 (Hy, ) € By [p(Ha, ) [G]. Tt follows that

[ ) ) @) =0 e ew.

By point 1., Q (W) = 1. By Dynkin Lemma and since n was arbitrarily chosen and {H,,},y is a countable

m-class, this implies that

1:Q({azeW:p@({weﬁzp(Hmw):P )
=Q{wew:p”({weQ:ip(,w) =p"}) =1})

By Theorem 17, we can conclude that
1:@({@6W:pw({w69:p‘*’:pw}) :1}):@({@6W:p5’68(73)}).

Next, since S (P) € Ap and Py 8GN W-Ap measurable, observe that {& € W :p® € S(P)} e GNW. By
point 4., ngW = (ﬂQw)ng = QW this implies that

pgw (S(P)=QY ({oeW:p? e SP)}) =Q({meW:p” € S(P)}) =1,

proving the statement.
6. Notice that if P € P then for each B € G we have that

P(B) =P (BNW) = (Pgaw)w (B),
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that is, (Pgrw)y = Po, (Pg)W = Pgnw. By definition of pp, this implies that

HpgyW = HPgaw = HP;

proving the statement. |

Proof of Proposition 18. Point 2. of Proposition 19 shows that
{[ptw1d0@): Qe s ©.6,7)] = {ngw s @€ 4 (@.6.7)}. (36)

Set C={Re A (Q,F,P):pisar.c.p. for R given G}.
Step 1: C is measure convex and P C C.
Proof of the Step.

Since (€2, F,P) is a Dynkin space, it is immediate to see that P C C. Let p € A% (C, Ac). Since
CCA’(Q,F,P),if Ac Fand P(A) =0 for all P € P then

ﬁ(A)=AR(A)du(R):/COdu(R):0
and 1 € A% (2, F,P). Moreover, for each A € F and B € G,
pans = [ruanmaw = [ ([ paware)ar)
- /C (A, )1 (), Ry (R) = (o (A, ) 15 ()
— [ 218 di= [ p(4,) dio,
Q

B
that is, p (A, ) € @ [A|G]. Summing up, i € A% (2, F,P)and pisar.c.p. for i given G, for all x € A7 (C, A¢),
proving that i € C and that C is a measure convex set. g
Step 2: C = {pr(~,w) dQ (w) : Q € A° (Q,Q,P)}.
Proof of the Step.

Let R € C and let p be the r.c.p. for R given G (for R and P). By assumption, we have that R €
A% (Q,F,P) and that for each A € F

R(A) = R(ANQ) = /Q p(A,w) dRg () (37)

where, clearly, Rg € A (Q,G,P). This implies that R € { [,p(-,w)dQ (w) : Q € A” (2, G,P)}.
Viceversa, let R = [, p(-,w) dQ (w) for some Q € A? (,G,P). By point 2. of Proposition 19, we have
that
R(A) = /Qp(A,w)dQ (W) = fgw (A)  VAEeF.

By point 1. of Proposition 19, we have that R = figw € A7 (Q,F,P). By point 4. of Proposition 19, we
can conclude that p is a regular conditional probability for it, proving that R € C. O

Hence, by Proposition 19, we can conclude that
P = {iigpgyw : PP} C {jigw : Q € A” (2,6, P)}
~{ [ pewaew:Qe s @07} =c={gv e a7 (2.6.7))
C{i:ne A (S(P). Aswp))} C{ii: pe A7 (P, Ap)} C meo (P)
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where the first equality follows by (34), the first inclusion is immediate since Pg € A% (2,G,P) for all P € P,
the second equality follows by (36), the third equality follows by Step 2, the second inclusion follows by point
5. of Proposition 19, the third inclusion is obvious, and the last inclusion follows by the definition of mco (P).

Finally, by Step 1 we have that C is measure convex and it contains P. Given the previous chain of
inclusions and equalities and since P C C, this implies that

mco (P) CC = {/ZQW Q€ A”(Q,Q,P)} = {/Qp(-,w)dQ(w):QeA” (Q,g,’P)} =C
C{a:pneA?(S(P),Asip))} ={i:pc A7 (P, Ap)} C meo(P),

proving the first part of the proposition.

1. Consider the restriction map R — Rg from mco (P) = C to A% (2,G,P). Clearly, this mapping is well
defined and affine. Injectivity follows from the marginal-conditional decomposition (37). Indeed, if R, R € C
then

Rg = Rg i/P(Aa')ng:/p(Aw)ng, VAeF
Q Q
= R(A)=R(A) VAeF.

Finally, by point 3. of Proposition 19, for each @ € A (Q,G,P), (ﬁQw)g = (@ and by the first part of the
theorem figw € mco (P).

2. By point 5. of Proposition 19, for each @ € A7 (Q,G,P), pow = Q" o pﬁﬁl, is a measure on P
such that pow (S(P)) = 1. Since S(P) € Ap, without loss of generality, we can assume that pgw €
A7 (8(P),As(p)), by considering BQW|Apns(p) - By Fact 4, for each @, Qe A’ (Q,G,P) and a € [0, 1], we

A\ W ~
have that (aQ +(1-a) Q) =aQ" + (1 —a) QY. Then, it follows that for each I' € Asp)

w
A —1
Blaarawayr 0 = (aQ+(1-0)Q) " (v (D))

= aQ" (pj (1)) + (1= ) QY (pyy (D)

— apgw () + (1 — ) gy ().
that is, @ — pgw is affine. Injectivity follows from point 3. of Proposition 19. Indeed, for each Q,0 €
A (Q,G,P),

pow = tigw = Q = (igw), = (ﬂ@w)g =Q.
Finally, if A € A7 (S(P), As(p)) then A\ € mco(P). By the initial part of the proof and point 1., A €
A7 (Q,F,P) and Q = Ag € A7 (2,G,P) and A = figw. It follows that for each ' € Ag(p)
T AW [ _ _
Hisgyr @ = (o)™ (b3 @) = Q" (ot (D)

—sigw (vt (1) =2 (vt @) = |

T (b (1)) ax(P)

:/ 15 (P)dA (P) = A(T),
S(P)

that is, A = u(;\g)w. We prove the last equality below. Indeed, we will show that P (p‘_wl, (I‘)) = 1p (P) for
all P € S(P).
If P in S (P) belongs to I' then

1=PH{we:p*=P})=P({weW:p*=P})
gP({weW:pWer})zp(p‘;;(r))g1.
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If P in S (P) does not belong to T" then {w e W :p¥ € '} C {w € W : p~ # P} and

0=P{weQ:p*#P})=P({weW:p*#P})
> P({weW:p* eT}) =P (py (T)) 20,

as wanted.
3. Let R € A7 (Q, F) be such that there exists a net { R}, , in mco (P) such that

li£n<f,Ra>=(f,R> VfeB(Q,F).
It is immediate to see that R € A% (2, F,P). Moreover, for each A € F and B € G,
R(ANB) = liénRa (AN B) = lién/ﬂp(A,) 15 () dR,
=lim (p(4,)1p (), Ra) = (p(A,) 15 (), R)

:/pMJthR
Q

that is, p is a r.c.p. given G for R. By the initial part of the proof, it follows that R € mco (P). [ |

With the symbol «, we denote affine bijections. In light of Proposition 18, we can conclude that

mco (P) = A7 (Qa gv P) — A7 (S (P) 7-’43(77))
r ’_> g ~ HFirg)™ (38)
A — Ag — A
P>P — Py — wp

and we just write pup for pp yw if R € mco (P).*2 By (38):

Corollary 20 For each R € mco(P), jir = R and pg is the unique element of A7 (S (P), Asp)) having

R as its barycenter.

C Quasiconcave Duality Theory

In this appendix, we present the basic notions of quasiconcave duality theory. We denote by (S,X) a
measurable space. In particular, (S,%) will be either (2, F) or (S(P), Asp)). We denote by By (S,%)
and B (S,3), respectively, the set of all simple and measurable real valued functions on S and the set of
all bounded and measurable functions on S. We denote by £ (R x A(S,3)) the class of functions G :
R x A (S,%) — (=00, 0] such that

42Tndeed, for each B € G,
R(B)=R(BNW)=(Rgnw)w (B),

that is, (Rgnw )y = Rg, (Rg)W = Rgnw, and ,u(Rg)W = lRgny - In other words, for each I' € Ap
H(rgyw (1) = Rorw (bl (1) = R({w e W :p® €T}).

Moreover, {w € Q:p¥ €T} = {weW :p¥ €T} U {w e W°:p¥ € T'}, might not belong to F, but it must belong to the R
completion of F for all R € mco(P) ({w e W:p¥ €T} e GNW C F, P(W¢) =0 for all P € P, and R € A (Q,F,P)). Thus

we can write
ug (T) = H(rg)™ M=R{weW:p* T} =R{weQ:p” e€l'}), VRemco(P),I' € Ap.

In other words, modulo completion pr (I') = R({w € Q: p¥ € T'}).
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- (G is quasiconvex and lower semicontinuous;
- G (-, P) is increasing for all P € A (S, X);
-t =minpea(s,x) G (¢, P) for all t € R.
We denote by domaG the set {P € A(S,%) : G (¢, P) < oo for some t € R}.

Theorem 21 Let Y be either By (S,%) or B(S,X). A functional I :' Y — R is normalized, monotone,
lower semicontinuous, and quasiconcave if and only if there exists a unique function G € L (R x A (S, X))
such that

1 = i dP, P Y.
()=, min_ 6 ([eirr)  vpe (39)

Moreover,

1. G(t,P)=sup{I(¢): [qpdP <t and oY} ={I(p): [¢odP <t and ¢ € By(S,%)} for all (t, P)
inRxA(SX).

2. I is inner continuous on By (S,X) if and only if

G(t,P)=c0 VY(,P)ZRxA’(S,Y).

3. I is translation invariant if and only if there exists a convex and lower semicontinuous function c :
A(S,X) — [0,00] such that

Pe%ég,E)C(P) =0and G(t,P)=t+c(P) V(t,P) e Rx A(S,%).
Proof. We start by observing that Y, in both cases, is an M-space with unit. By [13, Theorem 3 and Lemma
20] and since I is real valued, if 7 : Y — R is a normalized, monotone, lower semicontinuous, quasiconcave,
real valued functional then there exists a unique function G : R x A (S, 3) — (—o0, 00] such that
- G (-, P) is increasing for all P € A (S, Y);
-limy oo G (¢, P) = limy_oo G (¢, P') for all P, P € A(S,X);
- (G is quasiconvex and lower semicontinuous;
-t =minpep(q,F) G (t, P) for all t € R;
- I () =minpeao,r) G (o ¢dP, P) forall p € Y.

Moreover, GG satisfies the equation in 1. This proves necessity. Viceversa, consider G € L (R x A (S, X))
and a functional I : Y — [—00, o0] such that (39) holds. Notice that the condition ¢t = minpea(o,7) G (t, P)
for all ¢ € R implies that lim; . G (t, P) = 0o = limy—,o, G (¢, P’) for all P, P’ € A(S,X). By [13, Theorem
3] and the proof of [13, Lemma 20], we have that I is a normalized, monotone, lower semicontinuous, and
quasiconcave functional. In particular, I is real valued.

1. It follows from [13, Theorem 3].
2. Tt follows from [12, Theorem 54].
3. It follows from [13, Theorem 9]. |

D Dynkin Functionals

If S is a nonempty set then we say that a subset £ C B(S) is a Stone vector lattice if and only if £ is
a vector subspace of B (9), a lattice,’® and 1g € £. We endow £ with the supnorm. Given a sequence

{én} ey and an element £ in B (S), we write §, — £ if and only if {{,}, .y converges uniformly to £. On

43That is, for each £1,&2 € £ we have that & V €2,61 Aéa € L.
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the other hand, we write that &, T & (resp., &, | §) if and only if &,11 > &, (resp., & > &pq1) for alln € N
and lim,, &, (s) = £ (s) for all s € S. Given a function ¢ € B (2, F), we denote by (¢,-) spy = (¥,) the
functional on S (P) such that P — (p, P) gp) = J ¢dP for all P € S(P). Sometimes, with a small abuse
of notation, we denote by (p, ) the functional P such that P — [ pdP for all P € P. It will be clear from

the context what is the domain for the functional (i, -).

Lemma 22 Let (2, F, P) be a Dynkin space. The sets

Lo ={(¥, ) sp) : ¥ € Bo (2,9}

and L={{,)5p ¥ € BILG)} = {(¢" Vim0 € B} = {9 )is(p) 0 € B, F)}
are Stone vector lattices in B (S (P) ,As(p)). Moreover, Lqg is supnorm dense in L.

Proof. The chain of equalities contained in the statement follows from the fact that for each ¢ € B (Q2, F)
we have that (¢*,-)5p) = (#,")|s(p), moreover, ¢* is an element of B(£2,§G) for each ¢ € B(f,F) and
B (€, G) is contained in B (9, F). Since By (2,G) and B (2, G) are vector spaces, it is immediate to see that
Ly and L are vector spaces as well.

For each ¢ € B (Q,G),

|<¢,P>|‘/szdP‘S/QzDIdPSIIwII VP S (P).

This implies that Ly and L are vector subspaces of B (S (P) ,Ag(p)). Moreover, since ¢ = 1lq belongs to
By (£2,G), we have that 15(py belongs to Lo and L.
Finally, consider (41, ), (¢a,-) € Lo with 11,99 € By (2,G). Recall that P € S (P) if and only if P € P
. - h h h
and P (G) = {0,1}. Then, there exist a partition {E;},_; C G and two sets {a}}jzl , {a?}jzl C R such
that

h h
P = Za;lEj and Yy = Za?lEj.
j=1 j=1

Notice that for each P € S(P) there exists a unique Ej, such that P(E;,.) = 1. This implies that
Jo idP = o, for i € {1,2} and for all P € S (P). Therefore, it follows that

(11, ) V (a2, ) (P) = (1, P) V (¢, P) = o, V o, = /Q (1 Vap2) dP = (Y1 V 92, P) (40)

for all P € S(P). Since 11 V 92 € By (2, G), it follows that (¢1,-) V (g, ) € Lo. If (11,-), (e, ) € L with
P1,12 € B(Q,G) then there exist two sequences, {1/}1’”}7161\1 and {77[]27”}7161\1’ in By (2, G), such that 1; , — ¥
for i € {1,2}. Therefore, by (40) and the continuity of the lattice operations (that is, 11, V 2, — 91 V1)2)
it follows that

({1, ) V (2,)) (P) = (1, P) V {2, P) = lim ({10, P) V (2,0, P)) (41)
= lm (Y1, V P20, P) = (Y1 V 03, P)

for all P € S(P). Since ¥1 V 1y € B(Q,G), it follows that (11,) V (¢9,-) € L. By the same argument,
(11, ) A (2,-) € Lg (resp., L). Thus, Ly and L are Stone vector lattices.

Finally, since By (2, G) is supnorm dense in B (£, G), if (¢,-) € L with ¢ € B (Q,G) then there exists a
sequence {¢n,},cy € Bo (2, G) such that v, — 9. It follows that for each n € N and for each P € S (P)

(¢, P) = (¥n, P)| = (¢ = ¥n, P)| < |9 — |-

36



This implies that suppegp) |(¥, P) — (¢, P)| < [t — ¢on|| — 0. By definition of Lo, we have that {(tn, )}, ey
is a sequence in Lg, proving that Lg is supnorm dense in L. |

By similar arguments, we obtain the following lemma:

Lemma 23 Let (2, F,P) be a Dynkin space. The set
Loo = {<¢7'>|s(7>) :p € By (QJ:)}

is a vector subspace of B (S (P) ,Ag(p)) and 1g¢py € Loo. Moreover, Log is supnorm dense in L.

Lemma 24 Let (Q,F,P) be a Dynkin space.
(a) If &1,& € Lo are such that & > & then there exist p1 and o in By (2,G) such that p1 > o and
& (P)=(pi,P) VP eS(P),Vie{l,2}. (42)
In particular, if & = 0 then we can take w2 = 0.

(b) Given {n},en € Lo and § € L, if &, | € (resp., 1) then there exist a sequence {¢n},cy € Bo (22,G)

and ¢ € B(9,G) such that ¢, | ¢ (resp., T) and & = {p,-) and &, = {¢n,-) for alln € N.
(c) If £ € LT then there exists ¢ € BT (Q,G) such that & = (p,-).

(d) If &1,&2 € L are such that & > & then there exist v1 and o in B (Q,G) such that 1 > p2 and
& (P) = {pi, P) VP eS(P),vie{l,2}. (43)
(e) Given{n},cy € Land& € L, &y | € (resp., T) if and only if there exist a sequence {¢n}, oy € B (9, G)
and ¢ € B(92,G) such that ¢, | ¢ (resp., T) and & = (p,-) and &, = {¢n,-) for alln € N.
(f) L=B(S(P), Asw))-
(9) If o € B(2,G) andv: R — R is continuous then v o (p,-) = (v 0 p,-).

(h) Given & and & in L, & and & are comonotonic if and only if there exist 1 and @2 in B (2, G) that
are comonotonic and such that (43) holds. In particular, & and & are in Lo if and only if 1 and ps
can be chosen to be in By (2,G).

(i) If A€ G then (14,-) € By (S(P), As(p)). In particular, Ly C By (S (P), Asp))-
(1) If C € As(p) then there exists A € G such that (14,-) = 1¢. In particular, By (S (P), Asp)) C Lo.
(m) Lo = By (S(P), Asp))-

(n) Given {Cp}, oy € Aspy, Cn | 0 if and only if there exists a sequence {E,}
and 1¢, = (1g,, ) for alln € N.

nen © G such that B, | 0

Proof. (a) Consider &;1,&; € Lg such that & (P) > & (P) for all P € S (P). Moreover, let ¢, 15 € By (2,G)
be such that

&= (i) Vie{l2}.
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Then, there exist a partition {£; }?zl C G and two sets {o; };'1:1 AB; }?zl C R such that

h h
P = Zale_,- and s = Zﬁlej-
=1

Jj=1

Set J = {j=1,...,h: P(E;) #0 for some P € P}, E = J;c; Ej, and ¢; = ¢;1p for i € {1,2}. It is
immediate to see that (@;,-) = (;,-) = & fori € {1,2}.** For each w € € there exists a unique j € {1,...,h}

such that w € E;. We have two cases:

1. j € J. By definition of J, there exists P; € P such that P; (E;) > 0. By Theorem 17, it follows that

0<P(E) = | o, P Bz, (P)

where P (E;) € {0,1} for all P € S (P). This implies that there exists R; in S (P) such that R, (E;) =
1. It follows that R; (Ey) = 0 if k # j. Finally, we have that

e1(w) = (o1, Rj) =& (B)) 2 & () = (p2, Rj) = 2 (w) -
2. j¢ J. Then, 1g (w) =0 and ¢1 (w) =0 >0 = @2 (w).
Summing up, (p;, ) =& for i € {1,2} and ¢; > @o.

(b) Consider {&,}, . € Lo and & € L such that &, | £&. Moreover, assume that £ > 0. By definition of Lg

neN =
and L, it follows that there exist {1y, },,cy € Bo (22,G) and ¢ € B (Q,§G) such that £ = (¢, ) and &, = (n, -)
for all n € N. By point (a), without loss of generality, we can assume that 1,, > 0 for all n € N. Then,
define the sequence {pn}, oy by

=i > .
On égbw_o Vn €N

Notice that {¢,},cn € Bo(Q,G) and ¢, | ¢ = inf, ¢, = inf, 1, where ¢ is well defined, it belongs to
B(Q,G), and ¢ > 0. By (41), each element P in S (P) induces a lattice homomorphism on B (£, G). It
follows that

(¢n, P) = <’%I<1f ¢k7P> = égf (Y, P) = ér<1f & (P) =&, (P) = (¢, P) vYPeS(P),VneN.
By the Dominated Convergence Theorem, this implies that
E(P) =1lim&, (P) = lim (3, P) = lim (¢, P) = (p, P) VP eS(P).

Consider {£,},,cny € Lo and £ € L such that &, | {. There exists a constant k& € R such that &, + klgp) |
§ + klspy = 0. Since Lo and L are Stone vector lattices and by the previous part of the proof, there
exist a sequence {9}, .y € Bo(,G) and ¢ € B(Q,§G) such that ¢, | 1) where { + klg(p) = (¥,-) and
§n + klsipy = (¥n,-) for all n € N. If we set ¢ = 1 — klg and ¢, = 9, — klg for all n € N then the
statement follows. Analogous considerations hold for the increasing case.

(c¢) Consider £ > 0 in L. By definition, there exists ¢ € B (£2,G) such that £ = (¢,-). It follows that
there exists a sequence {9, },,cy € Bo (22, G) such that v, | ¥. Define {&,},cn by & = (¥n,-) for all n € N.
By the Dominated Convergence Theorem, &, | £ > 0. By point (a) and since &, > 0 for all n € N, there
exists {’Jjn}neN C By (2,G) such that &, = <z/;n7> and v, > 0 for all n € N. Then, define the sequence

{#ntnen bY i
cpn:ggf Y >0 Vn € N.

44Notice that if £&3 = 0 then 12 can be chosen to be equal to 0. In turn, this implies that @2 = 0.
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Notice that {¢n},cy € Bo (,G) and ¢, | ¢ = inf, ¢, = inf, ¥, where ¢ is well defined, it belongs to
B(£,G), and ¢ > 0. By the same arguments used to prove point (b), it follows that £ = (¢, -), proving the
statement.

(d) Let &1,& € L be such that £, > &. Then, & = &+ (£ — &). By point (¢), there exists ¢ in BT (2, G)
such that & — & = (¢, -). Consider ¢ € B(Q,G) such that & = (¢,-). It follows that & = (p + ¢, -) and
clearly o + 1 > .

(e) We first prove necessity. Consider {{,}, .y € L and § € L such that &, | {. Moreover, assume
that £ > 0. By definition of L, it follows that there exist {1y}, .y € B(2,G) and ¢ € B (Q,G) such that
&= (,) and &, = (¢, ) for all n € N. By point (c), without loss of generality, we can assume that v,, > 0
for all n € N. Define the sequence {¢y}, oy by

wn:ggwkzo Vn € N.

Notice that {¢n},cy € B(Q,G) and ¢, | ¢ = inf, ¢, = inf, ¥, where ¢ is well defined, it belongs to
B(Q,G), and ¢ > 0. By (41), each element P in S (P) induces a lattice homomorphism on B (£,G). It
follows that

(pn, P) = <’i2f wk,P> = ér<1f (Y, P) = ér<1f &k (P) =&, (P) = (¢n, P) VP e S(P),Vn eN.
By the Dominated Convergence Theorem, this implies that
&(P) =1lim&, (P) = lim (3, P) = lim (¢, P) = (p, P) VP e S(P).

Consider {&,},,cy € L and £ € L such that &, | £ There exists a constant k € R such that &, + klsp) |
§+klsepy > 0. Since L is a Stone vector lattice and by the previous part of the proof, there exist a sequence
{¥n}neny € B(Q,G) and ¢ € B (Q,G) such that v, | ¥ and £+ klgepy = (¢,-) and &, +klgpy = (¥n, -) for
all n € N. If we set ¢ = ¢ — klq and ¢, = ¥, — klq for all n € N then the statement follows. Analogous
considerations hold for the increasing case.

Sufficiency follows by the Dominated Convergence Theorem.

(f) By Lemma 22, L is a Stone vector lattice in B (S (P) ,Ag(p)) and Ag(p) is the o-algebra generated
by L. By using point (e), we show that L is closed under bounded monotone convergence. Let {£,}, .y be
a bounded sequence in L such that &, |. Define £ € B (S (P) ,AS(']))) to be the pointwise limit of {£,},,cy-
Since {{,},,cy is bounded and converging, it follows that & is well defined. Next, we show that § € L.
Assume that £ > 0. By definition of L, it follows that there exists a sequence {t,,}, .y € B (€2,G) such that
&n = (U, ) for all n € N. By point (c), without loss of generality, we can assume that 1,, > 0 for all n € N.
by

Define now the sequence {¢n}, oy

wn=ggawk20 Vn € N.
Notice that {¢n},cy € B(Q,G) and ¢, | ¢ = inf, ¢, = inf, ¥, where ¢ is well defined, it belongs to

B(Q,G), and ¢ > 0. By (41), each element P in S(P) induces a lattice homomorphism on B (,G). It
follows that

(o, P) = <gggwk7P> = inf (Y. P) = jof & (P) = £ (P) = (¥, P) VP €S(P).VneN.

inf
k<n

Next, by the Dominated Convergence Theorem, observe that

£ (P) =lim&, (P) = lim (i, P) = lim (9, P) = (¢, P)  YPE€S(P).
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Thus, £ = (p,-) € L.

In general, if £ 7 0 then there exists a constant k£ € R such that &, + klsp) | § + klsep) > 0. Since
L is a Stone vector lattice, {gn + k'ls(p)}neN C L*. By the previous part of the proof, it follows that
£+ klsipy € L™, proving that £ € L. This shows that L is closed under bounded monotone (from above)
pointwise convergence. A similar argument shows that L is closed under bounded monotone from below

pointwise convergence. By [20, Theorem 22.3], we have that
{€€B(S(P),Asp)) :£€L}=L2B(S(P),0(L))=B(S(P),Asp)) .

By Lemma 22, the statement follows.

h
(8) Let ¢ = Y a;la, € By(Q,G) where {o;}) | € R and {4;}"_| is a partition of Q in §. Each
j=1
P € §(P) is {0,1}-valued on G. Therefore, for each P € S (P) there exists a unique A;, in G such that
P (A,;.) =1. This implies that

v((p, P)) =v(ajp) ={vop, P) VP eS(P),

proving the statement for ¢ € By (©2,G). If ¢ € B (€, G) then there exists a sequence {¢,, }, y that converges
uniformly to ¢. Since v is continuous, it follows that the sequence {v o ¢, }, . converges uniformly to v o ¢.

Since v is continuous and by the previous part of the proof, it follows that
v ({p, P)) = limv ({¢n, P)) =lim (v o ¢,, P) = {vop, P) VP eS(P),
n n
proving the statement.

(h) Consider & and & in L and assume they are comonotonic. By [21, Proposition 4.5], there exist two
monotone and continuous functions v, ve : R — R such that&; = v; (§1 + &) for @ € {1,2}. By definition of
L, there exists ¢ € B (€, G) such that & + &2 = (¢, ). Define ¢; = v; o p for i € {1,2}. Since v; and v, are
monotone and continuous and by [21, Proposition 4.5], it follows that ¢; and 2 are comonotonic elements
of B(Q,G). By point (g), it follows that

§i (P) = vi (61 +&2) (P)) = vi ({¢, P)) = (viop, P) = (¢, P) VP €S(P),Vie{l,2}.

Finally, observe that if £&; and & were elements of Ly then ¢ could be chosen to be an element of By (2,G)
and so v; 0 ¢ = @; € By (R, G) for i € {1,2}. Viceversa, if ¢1 and @2 are comonotonic elements of B (£2,G)
then there exist two monotone and continuous functions vy,v2 : R — R such thatp; = v; (¢1 + ¢2) for
i € {1,2}. Consider &; = (y;,-) for i € {1,2}. By point (g), it follows that

§i (P) = (i, P) = (vio (o1 + p2), P) = vi ({p1 + 92, P)) = vi (&1 +&2) (P)) VP eS(P),Vie{l,2}.

By [21, Proposition 4.5], it follows that & = (¢1,) and {3 = (2, ) are comonotonic. By definition of Ly,
observe that if ¢; and ¢ were elements of By (2, G) then & and & would be elements of L.

(i) Let A € G. Since P € S(P) if and only if P(A) € {0,1} for all A € G, it follows that (14,-) is a
{0, 1}-valued function. Since (14,-) € Lo, (14,-) is As(p)-measurable, proving the statement. In particular,
if o € By (Q,G) then ¢ = Z?:l a;14; where {Ozj}?zl C R and {Aj}?zl is a partition of © in G. In other
words, ¢ is a linear combination of G-measurable indicator functions. Thus, (p, ) = Z?Zl o <1Aj7~> is a

linear combination of Ag(p)-measurable indicator functions. That is, Lo C By (3 (P) ,As(p)).
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(1) Consider C € Ag(py. By point (f), 1¢ € L. By definition, there exists ¢ € B(Q,G) such that
(,-) = 1¢. Without loss of generality, we can assume that 0 < ¢ < 1.%> Then, there exists a sequence
{¥n}nen € Bo(2,G) such that v, T ¢ uniformly and 0 < 1, < ¢ for all n € N. Define &, = (¢,,,-) for
all n € N. It follows that 0 < &, T 1¢ uniformly. By construction, for each n € N there exist a partition
{En’j}?;l of Qin G and a set {an,j}?L C R such that

B
Y = E anjle, ;-
j=1

For each n € N set J,, = {j=1,...;h, : P(Epn;) #0 for some P € P}, E = (), cyUjey, Enj, and set
©n = Yplp. Notice that 0 < ¢, < ¢, < ¥ < 1 and &, = (p,,) for all n € N. Moreover, we have that
{entnen € Bo(2,G), ¢n T ¢ = ¥lp € B(,G), and (¢,-) = (1,-) = 1¢.*® Finally, we show that ¢ is
{0, 1}-valued, that is, ¢ = 14 for some A € G. By contradiction, assume that there exists @ € §2 such that
¢ (@) =ae€(0,1). Since ¢, T @, there exist € > 0 and ny € N such that 1—¢ > ¢,, (@) > € for all n > ny. By
construction, it follows that for each n > ny there exists P, € S (P) such that (¢, P,) = ¢, (@) € (¢,1 —¢).
Since &,, converges uniformly to 1¢, there exists ny € N such that [, (P) — 1¢ (P)| < § for all n > ny and
all P € §(P). We can conclude that for each n > max {ny,na2}:

o If P, € Cthen § > (&, (P) — 1| =1—&, (Py) =1~ {(¢n, P), that is, (¢,, P,) > 1—5;

o If P, ¢ C then § > [&, (Pn)| = & (Pn) = (@n, Pa), that is, (pn, Pr) < 5,

a contradiction, since (¢, P,) = ¢p, (@) € (g,1 —¢) for all n > max {n1,n2}. Finally, since Ly is a vector
space and indicator functions of Agp) belong to Ly, it follows that By (S (P), Aspy) C Lo.

(m) By points (i) and (1), the statement clearly follows.

45Consider v € B(Q,G) such that (1,-) = 1¢. By assumption, we have that (¢, P) € [0,1] for all P € S(P). Define
Ei={weQ:¢(w)>1} and B = {w € Q: ¢ (w) <0}. It is immediate to see that E1, E2 € G. By contradiction, assume
that there exists P € S(P) such that P (E1) # 0. Recall that P(G) = {0,1} for all P € S(P). It follows that P (E1) = 1.
Notice that

Elzu{weﬂzw(w)zwi}

n

and
1
{wEQmﬁ(w)Zl-{-f}Gg vn € N.
n
Since P € S (P), it follows that there exists @ such that

P({weﬂzlp(w)zlJr%}):l.

We could then conclude that 1 > <7,Z), ]5> > 1+ % > 1, a contradiction. A similar argument shows that P (E2) = 0 for all
P € S(P). It is then immediate to see that if we define ¢ = Ylgenpg then 0 < 1 < 1 and
(¥,-) =1c.

40In fact, £ € G and E¢ =, cn (UjEJn Enyj>c =UnenUjg, En,j- It follows that for each n € N and each P € P,

P (( U En,j) ) =P ( U EH,J) =Y P(En;) =0.
JE€In JEJIn J¢Jn

Thus, P (E€) =0 for all P € P.
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(n) We first prove necessity. Consider {Cy}, oy € As(p) such that C,, | . By point (1), it follows that

there exists a sequence {B,,}, .y € G such that 1o, = (1p,,-) for all n € N. Define {¢,,}, .y by

ZDn:gISlilBkZO Vn € N.

Notice that {1y}, cy is a decreasing sequence. Furthermore, 1, is {0, 1}-valued for all n € N and v, | ¢ =
inf,, ¢, = inf,, 1p,. It is immediate to see that ¢ is well defined, {0, 1}-valued, and G-measurable. By (41),
each element P in S (P) induces a lattice homomorphism on B (£2,G). Since C,, | 0, it follows that

(thn, P) = <22£13k,P> = inf (Ip,, P) = inf 1o, (P) = 1o, (P) VP ES(P),¥neN.

Next, by the Dominated Convergence Theorem and since C,, | ), observe that
0 =lim1e, (P) = lim (¢, P) = (¢, P) VP eS(P). (44)

Since ¥ € B(£,G) and 1 is {0, 1}-valued, there exists a set E € G such that ¢» = 1. By (44), it follows
that P (E) =0 for all P € S(P). Define {¢,}, cny by ©n = ¥nlge for all n € N. It follows that

1o, (P) = ($, P) = (pn, P) VP ES(P),¥neN, (45)

Since {¢, },,c is a decreasing sequence of G-measurable and {0, 1}-valued functions, it follows that {¢n}, oy
is a decreasing sequence of G-measurable and {0, 1}-valued functions. Moreover, we have that ¢,, | ¥1g. = 0.
Since each ¢, is G-measurable and {0, 1}-valued for all n € N, for each n € N there exists a set F,, € G such
that ¢, = 1g,. By (45), it follows that 1¢, = (1g,,-) for all n € N. Since ¢, | 0, it follows that E,, | 0,
proving necessity.

Sufficiency follows by the Dominated Convergence Theorem. |

Proposition 25 Let (2, F,P) be a Dynkin space. I : B(2,G) — R is a normalized functional such that
/ p1dP > / p2dP VP EP = 1I(p1) =1 (p2) (46)
Q Q

if and only if there exists a normalized and monotone functional I:L—R such that
I(e)=1((p,")) Ve B(Q0). (47)
Moreover, I is unique and
(1) I is translation invariant if and only if I is translation invariant;
(2)
(3)
(4)

(5) I is supermodular if and only if I is supermodular;

~c

is lower/upper semicontinuous if and only if I is lower/upper semicontinuous;

~c

is concave if and only if I is concave;

~c

s quasiconcave if and only if I is quasiconcave;

(6) I is comonotonic additive if and only if I is comonotonic additive;

(7) If I is quasiconcave and lower semicontinuous, I is inner continuous on Lg if and only if I is inner
continuous on By (Q,G);

(8) I is inner/outer continuous if and only if I is inner/outer continuous.
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Proof.
In order to prove the main statement, we proceed by steps. We start by proving necessity. Define
I: L — R to be such that for each & € L

I(€) =1(yp) where o € B(Q,G) and £ (P) = / @dP for all P € S(P). (48)
Q
Step 1: Let @1, € B(Q,G).
/golsz/gpgdP VP eP
Q Q
< wlsz/wzdP VP € S (P)
Q Q

& [ ¢dP > / p2d P VP € mco (P)
Q Q

Proof of the Step.

Consider ¢1, 2 € B(Q,G). Since S (P) C P, it is immediate to see that if [, p1dP > [, @2dP for all
P e P then [, 1dP > [, p2dP for all P € S(P). Consider p1, s € B(Q,G). If ¢1 and ¢, are such that

/ o1dP > / p2dP VP ES(P)
Q Q
then for each p € A7 (S(P), As(p))
ple = [ (e Phan(P)= [ GnP)dn(P) = n(ea). (49)
S(P) S(P)
By Proposition 18, we have that mco (P) = {ii: p € A (S (P) ;As(p)) }- By (49), this implies that

/ ©1dP > / w2dP VP € mco(P).
Q Q

Finally, since P C mco (P), it is immediate to see that if fQ p1dP > fQ p2dP for all P € mco(P) then
Jo1dP > [, p2dP for all P € P, proving the statement. O

Step 2: [ is well defined.
Proof of the Step.
Consider £ € L and assume that there exist o1 and o in B (€2, G) such that

/901dP=§(P)=/g02dP VP eS(P).
Q Q

By Step 1, this implies that
[ir=ep)= [ pir  vpep.
Q Q

By (46), it follows that I (¢1) = I (p2), proving the statement. O
Step 3: I is monotone.
Proof of the Step.
Consider @1, ps € B(£,G) such that ¢ > 9. Since P C A (Q, F), this implies that

/<p1dpz/<p2dp VP e P.
Q Q

By (46), it follows that I (¢1) > I (p2). 0

43



Step 4: I is monotone.
Proof of the Step.

Consider &1, &> € L such that & > &. By point (d) of Lemma 24, there exist 1, p2 € B (€, G) such that
p1 > @2 and
& (P) = / odP VP ES(P),Vie{1,2).
Q

By definition of I and since I is monotone, this implies that I (&) = I (p1) > I (¢2) = I (&), proving the

statement. U
Step 5: I is normalized.
Proof of the Step.
Consider k € R. Then, it follows that kls¢p) = (klg,-). By definition of I and since I is normalized,

I (klsipy) = I (klg) = k.

Since k was arbitrarily chosen, the statement follows. O

Step 6: If I is a normalized and monotone functional on L such that (47) holds then I is a normalized
functional on B (2,G). Moreover, if ¢1,p2 € B(Q,G) then

/ ordP > / o2dP NP EP = I(p1) > 1 (p2). (50)
Q Q

Proof of the Step.
Fix k € R. By (47) and since [ is normalized, it follows that

I(klo) = I ((kla,") = I (klspy) = k.

Since k was arbitrarily chosen, it follows that I is normalized. Next, consider ¢1,p2 € B (€, G) such that
Jo©1dP > [, 2dP for all P € P. It follows that [, p1dP > [, p2dP for all P € S(P). Define & = (¢;, )
for i € {1,2}. Tt is immediate to see that &,& € L and & > &. By (47) and since I is monotone, it follows
that

I(p1) =1((p1,) =1(&)>1(&)=1({p2,")) =1(g2),
proving that I satisfies (50). O
Step 7: Iis unique.
Proof of the Step.
Assume that there exist two functionals over L, I, and fg, such that

v v

L ({p,) =1(p) =12 ((p,")) Vo€ B(Q,0).

Consider £ € L. By definition of L, there exists ¢ € B (€2, G) such that £ = (g, ). It follows that

v

LEO=L{p)=T() =L ) =5 Ve,

proving the statement. O

Steps 1 to 6 prove the main statement. Step 7 proves the uniqueness of I.

(1) I is translation invariant if and only if I is translation invariant.

Proof.
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We first prove sufficiency. Fix £ € L and k € R. Consider ¢ € B (€, G) such that £ = (¢, ). It follows
that (£ + klsp)) (P) = [, (¢ + klq)dP for all P € S(P). By (47) and since I is translation invariant, we
have that

I(E+klsopy) =1(p+klo)=1(p)+k=1(¢)+k

Since ¢ and k were arbitrarily chosen, sufficiency follows. Viceversa, fix ¢ € B (,G) and k € R. Define
§ € Lby&=(p,-). It follows that £ + klgip) = (¢ + klq,-). By (47) and since [ is translation invariant,
we have that
I(p+kla)=1(E+klsp)) =1(&)+k=1I(p) +k

Since ¢ and k were arbitrarily chosen, necessity follows.

(2) I is lower/upper semicontinuous if and only if I is lower/upper semicontinuous.

Proof.

We first prove a claim.

Claim: If T is lower (resp., upper) semicontinuous then the set {a € [0,1] :f(a& +(1-a)é) < c}
(resp., {a €[0,1]: Iu(ozﬁl +(1-a)é) > c}) 1s closed for all £1,& € L and ¢ € R.

Proof of the Claim.

Fix £€1,& € L and ¢ € R. Set

Lesgse = {a€[0.1]: (a1 + (1 - ) &) < cf

and Ug, ¢, = {a €0,1]: I (& +(1—)&) > c} .
By point (f) of Lemma 24, we have that L = B (S (P) ,AS('p)). This implies that i(a§1 + (1 —a)&) is well
defined for all & € [0,1]. If L¢, ¢, ¢ (resp., Ug, ¢,,c) is empty then L¢, ¢, . (vesp., Ug, ¢, .c) is closed. Otherwise,
consider {a, }, oy C Le, gy,c (tesp., {an}, ey € Us, ¢,,c) such that a,, — a. Define @1, 02 € B(2,G) to be
such that & = (¢;,-) for ¢ € {1,2}. It follows that

anét + (1 —an) & = (anpr + (1 — ay) p2, ) VneN

and a; + (1 —a) & = (apr + (1 — a) g2, ) .
It is immediate to see that the sequence {a, 1 + (1 — ay,) Y2}, oy converges uniformly to gy + (1 — a) po.
By (47) and since [ is lower (resp., upper) semicontinuous on B (2, G), this implies that
[ati +(1—a)&) =T (a1 + (1 —a)ps) < lim inf I (a1 + (1 = an) @2)
= liminff(an§1 +(l—ay)é&) <c

(resp.,

T(ag+ (1 - )&) = I (ap + (1 - @) g2) > limsup T (aupr + (1 - ) ¢2)

= limsupf(an§1 +(1—an)é) > o),

proving that Lg, ¢, ¢ (resp., Ug, ¢,,c) is closed. Since &1, &2, and ¢ were arbitrarily chosen, the statement
follows. O

We now prove sufficiency. By the previous claim, if I is lower (resp., upper) semicontinuous then the
set Le, g,.c (vesp., Ug ¢,.c) is closed for all &1,€s € L and ¢ € R. By [12, Lemma 46] and since L =
B (S (P) ,As('p)) and I is monotone, this implies that I is lower (resp., upper) semicontinuous. Viceversa,
consider {¢n},cny € B(2,G) and ¢ € B (2, G) such that ¢, — ¢. Define { € L and {&,}, .y € L such that
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€= {(p,-) and &, = (pn,-) for all n € N. It is immediate to see that &, — &. By (47) and since I is lower
(resp., upper) semicontinuous, this implies that

I(p)=1(&) <liminf I (&,) = liminf I (¢,)

(resp.,

I(p)=1(&) >limsupl (&) =limsupI (,)),

proving necessity.
(3) I is concave if and only if I is concave.
Proof.

We first prove sufficiency. Pick &;,&; € L and a € (0,1). By assumption, there exist ¢1,p2 € B (22,G)
such that & = (p;,-) for i € {1,2}. It follows that a&; + (1 — )& = (w1 + (1 — a) p2,-). By (47) and
since [ is concave, we have that

Ia& +(1—a)&) =1 (apr+(1—a)ps) >al (p1)+(1—a)I(ps) =al (&) +(1—a)l(&),

proving that I is concave. Viceversa, pick o1, ps € B (©,G) and « € (0,1). Define & = (yp;,-) for i € {1,2}.
It follows that o) 4 (1 — @) & = (a1 + (1 — @) @a,-). By (47) and since I is concave, we have that

IHapr + (1= a)2) =T (ati + (1 =)&) > al (&) + (1 —a) [ (&) = al (p1) + (1 — ) I (),
proving that [ is concave.
(4) I is quasiconcave if and only if I is quasiconcave.

Proof.

We first prove sufficiency. Pick &;,&; € L and a € (0,1). By assumption, there exist ¢1,p2 € B (2,G)
such that & = (p;,-) for i € {1,2}. Tt follows that a&; + (1 — )& = (a1 + (1 — @) p2,-). By (47) and
since [ is quasiconcave, we have that

I(a& +(1—a)&) =1 (apr + (1 — a)p2) >min{I (p1),1 (p2)} = min{j(ﬁl)aj(ﬁz)} 7

proving that I is quasiconcave. Viceversa, pick v1,02 € B(Q,G) and a € (0,1). Define & = (p;,-) for
i€ {1,2}. Tt follows that a&, + (1 — a)& = (aps + (1 — a) s, ). By (47) and since I is quasiconcave, we
have that

I(ag+(1=a)2) = I (agi + (1 - a) &) = min {1 (&) 1 (&) | = min{ (¢1) . (¢2)},
proving that I is quasiconcave.
(5) Iis supermodular if and only if I is supermodular.
Proof.

We first prove sufficiency. Pick &;,& € L. By assumption, there exist ¢1,¢902 € B(€Q,G) such that
& = (pi,-) for i € {1,2}. By (41), each element P in S (P) induces a lattice homomorphism on B (2, G). It
follows that & V &2 = (@1 V @9, -) and that & A & = (p1 A w2, ). By (47) and since I is supermodular, we
have that

IEVE)+T(ENE) =T (o1 Vo) +1 (o1 Ap2) > 1 (1) +1(pa) =1 (&) +1(&),

proving that I is supermodular. Viceversa, pick ©1, 2 € B(Q,G). Define & = (p;,-) for i € {1,2}. By the
same argument used before, it follows that & V& = (p1 V p2,-) and that & A& = (1 A @2, ). By (47) and
since I is supermodular, we have that

IV +1(p1Ape) =T(EVEa)+T(ENE)2T(&)+1(&)=1(p1)+1(p2),
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proving that I is supermodular.
(6) I is comonotonic additive if and only if I is comonotonic additive;
Proof of the Step.

We first prove sufficiency. Consider £;,&s € L comonotonic. By point (h) of Lemma 24, there exist
©1, 2 € B(Q,G) such that ¢q and ¢y are comonotonic and & = (p;,-) for ¢ = 1,2. It is immediate to see
that & + & = (p1 + v2, ). By (47) and since I is comonotonic additive, this implies that

TG +&)=I(p1+92) =I(p1)+1(p2)=1(&)+1(&),

proving that [ is comonotonic additive. Viceversa, pick ¢1 and g in B (2,G) that are further comonotonic.
Define & = (g;,-) for i € {1,2}. By point (h) of Lemma 24, it follows that &; and & are comonotonic.
Moreover, we have that & + & = (p1 4 ¢2,-). By (47) and since I is comonotonic additive, we have that

I(pr+¢a)=1(&+&)=1(&)+1(&)=1(p1)+1(p2),

proving that I is comonotonic additive.

(7) If I is quasiconcave and lower semicontinuous, [ is inner continuous on Lg if and only if I is inner
continuous on By (Q,G).

Proof.

We first prove sufficiency. Consider &;,& € Lo such that I (¢&;) > I (&), {Cn}hen € Asepy such that
C, | 0, and k € R. By definition of L, it follows that there exist ¢1,p2 € By (2,G) such that & = (p;,-)
for i € {1,2}. By point (n) of Lemma 24, there exists a sequence {E,}, .y € G such that E, | ) and
le, = (1g,,-) for all n € N. It is immediate to see that

ko, +&le; = (klg, +¢ilpe,-) Vn € N.AT

By (47), we have that I (p1) = I (€1) > I(¢) = I(p2). By [12, Theorem 54], (47), and since I is inner
continuous on By (€2, G), there exists n € N such that

I (klc, +&lce) =1 (klg, +¢1lpe) > I (p2) = 1(&).

By point (2) and (4), it follows that I is lower semicontinuous and quasiconcave, other than being monotone
and normalized. By point (m) of Lemma 24 and [12, Theorem 54], this implies that I is inner continuous.
Viceversa, pick {¢n}, oy € Bo (€2,G) such that ¢, T ¢ € By (2,G). Define £ = (p,-) and &, = (¢n,-) for all
n € N. By point (e) of Lemma 24, it follows that &, T £ where {&,}, .y € Lo and § € Lo. By (47) and since
I is inner continuous on Ly, we have that

lim I (i) = lim 1 (&) =1 (€) =1 (p),

proving that I is inner continuous.

470bserve that for each n € N
&1 ={e1,7) =(p1lp,, ") + <<P11E;,'>-

If P ¢ Cy then 0 =1¢,, (P) = P(Ey). Thus, <klcn +£1107ci) (P) = &1 (P)1cg (P). It follows that
(klg, ,P) =0 and <k1En + gpllEfL,P> = <¢11E3,P> = (1, P) = &1 (P) = &1 (P) Loe (P).
Viceversa, if P € Cp, then 1 = 1¢, (P) = P (Ey). Thus, (klcn +& 1C3) (P) = k. It follows that

<k1En +g011E$L,P> = k.
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(8) Iis inner/outer continuous if and only if I is inner/outer continuous.

Proof.
Consider {&,},, oy € L such that &, T £ (resp., &, | £). By point (e) of Lemma 24, it follows that there

exists a sequence {¢n}, oy and ¢ in B (Q,G) such that ¢, T ¢ (resp., ¢, | ¢) and such that £ = (y,-) and
&n = (n, ) for all n € N. By (47) and since [ is inner (resp., outer) continuous, we have that

lim [ (€,) = lim I (pn) = I (p) =1 (€),

proving that [ is inner (resp., outer) continuous. Viceversa, pick {¢n},cn € B (Q,G) such that o, T ¢ €
B(Q,G) (resp., vn | ¢). Define £ = (p,-) and &, = (pn,-) for all n € N. By point (e) of Lemma 24, it
follows that &, T £ (resp., &, | &) where {£,,},,cy € L and £ € L. By (47) and since I is inner (resp., outer)
continuous, we have that

lim I (i) =lim 1 (&) =1 (€) =1 (p),

proving that I is inner (resp., outer) continuous. |

Let I : B(, F) — R be a normalized, monotone, and supnorm continuous functional. Define the binary
relation 7—; on B (2, F) by

pZrvelPe+(1-Nn) >+ 1-N)n)  VA€[0,1],Vne€ B(Q,F).

By the same arguments contained in [29] or [31], there exists a unique closed and convex subset C (I) C
A (2, F) such that

Sﬁifw@/gosz/de vPeC(I).
Q Q

Similarly, given a set C C A (2, F), we define the binary relation Z¢ on B (2, F) by

@icd)@/adeZ/de VP eC.
Q Q

Observe that Z¢ is a conic, monotone, and continuous preorder.

Lemma 26 Let (0, F,P) be a Dynkin space. If I : B(,F) — R is normalized, monotone, supnorm
continuous, and such that C (I) = ¢l (co (C)) where C C A% (Q, F) then the following conditions are equivalent:

(i) C C mco (P);

(i) ¢ Zp ¢ implies o Zc P

(i1i) C C A7 (Q,F,P) and ¢ ~c ¢* for all ¢ € B(Q, F);

(iv) C C A% (Q,F,P) and if ¢, € B(Q,F) then ¢* > * P-a.s. implies ¢ Zc ¥;
(v) © Zsp) ¥ implies o Ze ¥;

(vi) ¢ Zsepy ¥ implies I (@) > 1 (1);

(vit) @ Zp & implies I (p) =1 ().

Proof. Before starting observe that, since C (I) = ¢l (co (C)),

Y Zen Ve eZey Vo€ B(QF).
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(i) implies (v). Let ¢,v € B (92, F). By definition of ZZs¢py, if ¢ ZZs(p) ¢ then

/ odP > / vdP VP S(P).
Q %
This implies that for each p € A7 (S (P), Asp))
)= [ tePan®)z [ w.PdnP) =aw). (51)
S(P) P
By Proposition 18, we have that mco (P) = {ji: p € A7 (S (P), Asp))}- By (51), this implies that

/ pdP > / wdP VP € mco(P).

Q Q

By (i), we have that C C mco (P), thus, [, ¢dP > [, 1dP for all P € C, proving the statement.
(v) implies (ii). Since S (P) C P, the statement is obvious.

(ii) implies (iii). For each ¢ € B(Q,F) we have that [, dP = [, ¢*dP for all P € P. By definition
of 7~ p, this is equivalent to say that ¢ ~p ¢*. By (ii), this implies that ¢ ~¢ ¢*. Next, observe that if
P(A)=0for all P € P then 14 ~p 0. By (ii), it follows that 14 ~¢ 0. By definition of ¢, we can conclude
that C C A7 (Q, F,P).

(iii) implies (iv). By assumption, we have that C C A% (Q,F,P). Next, since C C A% (Q,F,P), if
©* > ¢* P-as. then ¢* =¢ ¢*. By (iii) and since Z¢ is a preorder, it follows that

Qe @t Ze bt e 1),

that is, ¢ =¢ .
(iv) implies (i). If © Zmeo(p) ¥ then
/ wdP > / wdP VP € mco(P). (52)
Q Q

Since (2, F,P) is a Dynkin space, consider W where W € F is such that P (W) = 1 for all P € P and
p(,w) € P for all w € W. Since P C mco (P) and by (52), it follows that if w € W then

/ pdp® > / pdp®,
Q Q

that is, ¢* > ¢* P-a.s.. By assumption, this implies that ¢ Z¢ ¥. By [29, Proposition A.1.] and since
mco (P) is convex, it follows that C C ¢l (co(C)) C ¢l (mco (P)). By assumption C C A7 (Q, F,P), this
implies that

C Ccl(meco(P))NAT (Q,F,P).

We conclude the proof by showing that cl (mco (P))NA? (2, F,P) C mco (P). If P belongs to cl (mco (P))N
A7 (Q, F,P) then there exists a net {Pu},.4 € mco(P) such that (p, Po) — (¢, P) for all ¢ € B(Q,F).
By Proposition 18, we have that p is a r.c.p. for mco (P). For each A € F and each B € G, we have that

[ paap = [ pas(yap =tim [ pa)1500dr,
—lim Py (AN B) = P(AN B).
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Since P € A7 (Q, F,P), it follows that p is a r.c.p. for P. By Proposition 18, we conclude that P € mco (P).
We thus have proved the equivalence between points (i), (ii), (iii), (iv), and (v).
(v) implies (vi). Since C (I) = ¢l (co(C)), the statement follows immediately.
(vi) implies (vii). Since S (P) C P, clearly the statement follows.
(vii) implies (v). By definition of 7~ p, we have that if ¢ Zp ¢ then
A+ (1=Nnzp M+ (1—-Nn  VAe[0,1],Vne B(Q,F). (53)

By (vii) and (53), it follows that if ¢ ZZp 9 then I (Ao + (1 —A)n) > I (Mp+ (1 — A)n) for all A € [0,1] and
n € B(Q,F), that is, ¢ Z¢(r) ¥ and so ¢ Z¢ ¢. In other words, (vii) implies (ii). Given the previous part
of the proof, we have that (ii) implies (v), proving the statement. [ |

Lemma 27 Let (2, F,P) be a Dynkin space and let I : B (2, F) — R be a normalized, monotone, quasi-
concave, and lower semicontinuous functional. If G € L (R x A(Q,F)) is such that

I(p)= PEIAH(ISIZI,}') G (/Q wdP, P) Vo € B(Q,F)

and C = domaG then the following conditions are equivalent:
(i) ¢ Zsep) W implies p Ze b;

(it) ¢ Zsp) ¥ implies I (p) = I (4);

(iir) @ Zp ¢ implies I (p) = I (¢);

(iv) if o, € Bo(Q,F), ¢ Zp ¢ implies I (p) = I ().

Proof. First, observe that if ¢ ¢ ¢ then I (¢) > I (v). Indeed, consider ¢, € B (Q, F) such that ¢ =¢ .
Since G is increasing in the first component and by definition of =¢, it follows that

G(/deP,P> zG(/fqudP,P) VP ecC.

By definition of doma G, this implies that

I(so)=g1€irch(/Q<de,P> zrlgleirch</deP,P> =TI (v).

Finally, by Theorem 21 (see also [13]), we have that
G(t,P)sup{I(<p):/Q<de§t} V(t,P)eRxA(QF).
(i) implies (ii). Since if ¢ Z¢ 9 then I (p) > I (3), the statement follows immediately.
(ii) implies (iii). Since S (P) C P, clearly, the statement follows.
(iii) implies (iv). Since By (2, F) C B (2, F), the statement is obvious.

(iv) implies (i). We first show that A (Q, F) \cl (mco (P)) C A (Q, F) \domaG. Since mco (P) is convex,
cl

it follows that cl (mco (P)) is convex and closed. If A (Q,F)\cl (mco(P)) = @ then the inclusion is true.
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Otherwise, pick P € A (2, F)\cl (mco (P)). By an usual separation argument, we have that there exist
@ € By (Q,F) and € > 0 such that

/@dp<0<5§/@dP VP € mco (P).
Q Q
This implies that for each s, € R there exists 7 € N such that

/ n@dP < t and slgdP =5 < / npdP VP € mco (P).
Q

Q Q

Since [ is normalized, P C mco (P), 7@, slg € By (Q, F), and by (iv), we have that
/ﬁ@dpgtandsgl(ﬁ@.
Q

Since G (t, P) = sup {I (p) : [, pdP < t}, this implies that G (¢, P) > s for all s,t € R. We can conclude
that G (t,P) = oo for all ¢ € R. This proves that P € A (Q, F) \domaG. Since A (€, F)\cl (mco (P)) C
A (Q, F)\domaG, we have that domaG = C C ¢l (mco (P)). Next, consider ¢,v¢p € B (£, F) such that
¢ Zsep) Y. By the same arguments contained in Step 1 of the proof of Proposition 25 and since C C
¢l (mco (P)), it follows that

® iS(P) 1!] =@ imco(’/’) TZ} = icl(mco(P)) 1/) =@ ic 'l/}a

proving the statement. [ |

E Proofs

In this appendix, we prove the main statements of the paper. Before starting, we introduce a new piece of
notation. Given a Dynkin space (92, F,P), for each P € P and for each h € By (X) we use indifferently the
notation [, hdP and Py, that is,

Py = ZP({weQ:f(w):x})x:/ﬂth.

zeX

Lemma 28 Let (2, F,P) be a Dynkin space and 7 a binary relation on By (X). If - satisfies the Basic

Conditions, Consistency, and Risk Independence then 7, satisfies Monotonicity.

Proof. By [40] and since 7 satisfies the Basic Conditions and Risk Independence, there exists an affine
function v : X — R that represents 7~ restricted to X. Consider f,g € By (X) such that f(w) 7 g (w) for
all w € Q. We have that u (f),u(g) € By (2, F). Since u represents 7 over X, it follows that u (f) > u (g).
Next, recall that for each P € P

Pr=)Y PlweQ: f(w)=2})=.
rzeX

Since wu is affine and f takes just finitely many values, this implies that for each P € P

u(Pf):u(ZP({wEQ:f(w)zm})x)

zeX

=Y PHweQ: f(w) =z} u(x)

zeX

:/Qu(f)dP.
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Similarly, we have that u (P;) = [, u (g) dP for all P € P. Since u(f) > u(g) and P C A (€, F), it follows
that

u(Pf):/Qu(f)dPZ/Qu(g)dP:u(Pg) VP e P.

Since u represents 7 on X, this implies that Py 27 P, for all P € P. Since 7 satisfies Consistency, we can
conclude that f - g, proving the statement. |

Remark 29 If (Q,F,P) is a Dynkin space and 7 a binary relation on By (X) that satisfies the Basic
Conditions, Consistency, and Risk Independence then it follows that there exist x andy in X such that x > y.
Moreover, observe that, in the previous proof, we could dispense with completeness of 77, on By (X) and just
require completeness of = over constant acts. In other words, if 77 satisfies the Weak Basic Conditions,

Consistency, and Risk Independence then it satisfies Monotonicity and, in particular, it is reflexive.

Lemma 30 Let (2, F,P) be a Dynkin space and 7 a binary relation on By (X) that satisfies the Basic
Conditions, Consistency, and Risk Independence. If u : X — R, I : By (Q,F,u(X)) — R, and J :
B(Q,G,u(X)) — R are such that

1. u is nonconstant and affine;

2. I is normalized, monotone, and continuous;

3. J is normalized, monotone, and continuous;

4. if o,v € By (Q,F,u (X)) then [, pdP > [dP for all P € P implies I (@) > I (1);

5. if f,9 € Bo(X) then f 2 g if and only if I (u(f)) > I (u(g));

6. if f,g € Bo(X) and f and g are G-measurable then f 7 g if and only if J (u(f)) > J (u(g));
then, I (p) = J(p) for all p € By (Q,G,u (X)) and I () = J (¢*) for all ¢ € By (Q, F,u (X)).

Proof. Since w is nonconstant and affine, notice that w(X) is an interval with nonempty interior. By
Lemma 28 and since - satisfies the Basic Conditions, Consistency, and Risk Independence, it follows that
7 satisfies Monotonicity. This implies that for each f € By (X) there exists x5 € X such that f ~ ;. If
© € By (Q,G,u (X)) then there exists f in By (X), which is further G-measurable, such that ¢ = u (f). Since
I and J are normalized and, once composed with u, they represent =, it follows that

~)

Ip) =T (u(f) =1 (u(zs)lo) = u(zs) = J(u(ry) lo) = J (u(f)) = T (¥),

proving the first part of the statement. If ¢ € By (2, F,u (X)) then we have that ¢* € B(,G,u (X)) and
that there exists two sequences, {¢n},cn and {¥n}, oy, in Bo (2,6, u (X)) such that ¢, | ¢* and 1, T ¢*
where the convergence is uniform. Moreover, since P C A7 (2, F), observe that for each n € N

/<pndP2/go*dP:/<de:/go*dP2/wndP VP e P.
Q Q Q Q Q

By the previous part of the proof and point 4., this implies that

J(on)=T(on)>T(0)>1(n)=J )  VneN.

Since J is continuous, passing to the limit, we obtain that

J (") 21 (p) > J(¢),

proving the last part of the statement. |
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Lemma 31 Let (2, F,P) be a Dynkin space and 7 a binary relation on By (X).

Conditions, Consistency, and Comonotonic Independence on G-measurable acts if and only if there exist a

>~ satisfies the Basic

~

nonconstant affine function v : X — R and a normalized, monotone, translation invariant, and positively

homogeneous functional I : B (Q, F) — R, which is further comonotonic additive on B (2,G) and such that
(a) [o@dP > [wdP for all P € P implies I (p) > I (1));
(b) fzZ g if and only if I (u(f)) =1 (u(g)).

Moreover,

1. u is unique up to an affine transformation and I is unique.
2. 1 is quasiconcave if and only if 7 satisfies Uncertainty Aversion.

3. I is inner and outer continuous on B (Q,G) if and only if 7 satisfies Monotone Continuity.

Proof. We first prove necessity. Since - satisfies the Basic Conditions and Comonotonic Independence
on G-measurable acts, 7- satisfies Risk Independence & la Herstein and Milnor. By [40], it follows that
there exists an affine function u : X — R that represents = restricted to X. This implies that = satisfies
Risk Independence and, in particular, that w is nonconstant. Moreover, u is cardinally unique. Since u
is cardinally unique, without loss of generality, we assume that w(X) 2 [—1,1]. Since 7 further satisfies
Consistency and by Lemma 28, = satisfies Monotonicity. By [11] and since - satisfies the Basic Conditions,
Monotonicity, and Risk Independence, it follows that there exists a normalized, monotone, and continuous
functional I : By (Q, F,u (X)) — R such that for each f and g in By (X) we have that

frmogelw(f)>1(u(g). (54)

If 9,1 € By (Q,F,u(X)) are such that [, odP > [, ¥dP for all P € P then there exist f and g in By (X)
such that ¢ = u (f),¥ =u(g), and [,u(f)dP > [,u(g)dP for all P € P. By definition of Py and P, and
since u is affine, it follows that

u(Pf):/Qu(f)dPZ/Qu(g)dP:u(Pg) VP e P.

Since u represents 27 over X, this implies that Py 27 P, for all P € P. Since 7 satisfies Consistency and I
satisfies (54), it follows that

L) =1 (u(f)=1(u(g)=1().

Next, recall that =, restricted to G-measurable acts, satisfies the Basic Conditions, Monotonicity, and

~)

Comonotonic Independence. By [55], it follows that there exists a capacity p : G — [0, 1] such that
froe [u@dez [ uo)dp (55)
Q Q
where the integrals are in the Choquet sense. If we define J : B (2,G) — R by
J () = /dep Vo € B(Q,0)

then J is a normalized, monotone, and continuous functional. Moreover, J is comonotonic additive and such
that

fzge Jw(f)dp=J(ulg)).
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By Lemma 30, it follows that I (¢) = J(p) for all ¢ € By (Q,G,u (X)) and I (@) = J(¢*) for all ¢ €
By (2, F,u(X)). Define the functional I : B (Q2,F) — R by

o | o dp = J (¢¥).

Since I is the composition of J with the linear and continuous operator * : B (Q, F) — B (£,G), it follows
that I is a normalized, monotone, translation invariant, and positively homogeneous functional. In particular,

it follows that I is Lipschitz continuous. By the previous part of the proof and by definition of I, we have
that for each ¢ € By (22,6, u (X))

J(p)=1(p)=J(¢")=1(p). (56)

Since u (X) D [—1,1], if ¢ € By (£2,G) then there exist A € (0,00) such that ¢ = Ap € By (Q2,G,u(X)). By

(56) and since both I and J are positively homogeneous, it follows that
M () =T (Ap) =T (@) =1(p) =T (Ap) = A (p) = J(p) =1 (),

proving that I coincides to J on By (€, G). Since both I and J are continuous on B (£2,§G), this implies
that I and J coincide on B (Q,G). Therefore, it follows that I is comonotonic additive on B (2,G). Since
u(X) D [~1,1], if ¢,1 € By (9, F) then there exist A € (0,00) such that ¢ = Ay and 1) = \i) are both
elements of By (Q, F,u (X)). If, furthermore, [, ¢dP > [, 1dP for all P € P then [, dP > [, dP for all
P € P. By the previous part of the proof, it follows that

=1(p)
> 1 (%)
=J (@) =1®)=1(\) =X ().

It follows that I (o) > I (1)). On the other hand, if ¢, € B(Q,F) are such that [, odP > [, ¥dP for all
P € P then there exist two sequences, {¢n},cn and {¥n}, oy, in Bo (2, F) such that ¢, | ¢ and 1, T ¢
and the convergence is uniform. Since P C A7 (2, F), it follows that fQ ppdP > fQ YndP for all P € P
and for all n € N. By the previous part of the proof, it follows that I (v,) > I (v,) for all n € N. Since I
is continuous and passing to the limit, it follows that I (¢) > I (), proving that I satisfies (a). Finally, by
(54) and since I (p) = J (¢*) = I () for all ¢ € By (Q, F,u (X)), it follows that

Frmgelw(f)=1(ulg) e (u(f)=1(ulyg),

proving that I satisfies (b), and thus proving necessity. Sufficiency follows from routine arguments.
1. It follows from [29, Lemma 1] and the Lipschitz continuity of I.
2. By [12, Lemma 60], if 77 further satisfies Uncertainty Aversion then

fzg = aft+(l-a)gzg Vae(01).

By the previous part of the proof, recall that u (X) 2 [-1,1]. If p,% € By (Q,F) and « € (0,1) then there
exists A € (0,00) such that @ = A\p and ¢ = A\ belong to By (2, F,u (X)). Thus, there exist f and g in
By (X) such that ¢ = u (f) and ¥ = u (g). Without loss of generality, assume that f = g. Since u is affine
and I is positively homogeneous and satisfies (b), it follows that

M(ap+(1-a)p)=1I(ag+(1-a)p) >min{I(p),I(¥)}=Amin{l(p),I(¢)}
= I(ap+ (1 —a)y) = min{l (), I ()},
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proving the quasiconcavity of I on By (2, F). By the continuity of I, it follows that I is quasiconcave on
B (2, F), proving sufficiency. Necessity is obvious.

3. We next prove sufficiency. By [54] and since I is a normalized, monotone, and comonotonic additive
functional on B (£,G), there exists a unique capacity p : G — [0,1] such that I(¢) = [, @dp for all
¢ € B(Q,G). Consider {E,}, .y € G and E € G such that E,, | E (resp., E,, T E). It is immediate to
see that lim, p (E,,) is well defined, it belongs to [0,1], and that lim, p (E,) > p(E) (resp., < p(F)). By
contradiction, assume that lim, p (E,) > p(E) (resp., < p(F)). Since, without loss of generality, we can
assume that u (X) D [—1,1], consider x,y,z € X such that u(z) =1, u(z) = limpen p (Er), and u (y) = 0.
Moreover, define F,, = E,\E (resp., E\E,) foralln € N, f = z and g = Fy (resp., f =xFyand g = 2). It
is immediate to see that u(g) = 1g and u (xF,g) = 1g, (resp., u(yF,f) = 1g,) for all n € N. By working
hypothesis, this implies that f = g (resp., f = g). Since I satisfies (b) and 7 satisfies Monotone Continuity,
there exists N € N such that f = xFxng (resp., yFnf = g), that is,

limp (E,) = u(2) = I (u(2) 1o) > I (u(xFyg)) = I (15y) = p(En) > lim p (E,)

(resp., Timp (Ey) = u (=) = 1 (u(2) 1a) < I (u(yFxf)) = I (sy) = p(Ex) < limp (E,)),

a contradiction. It follows that p is continuous. It is well known (see, e.g., [15]) that the continuity of p
implies that I is inner and outer continuous on B (£, G).

Necessity follows by observing that, since I satisfies point (a), inner and outer monotone continuity of
I on B(£,G) implies inner and outer monotone continuity of I on B (Q,F). By a routine argument, this
latter fact implies that - satisfies Monotone Continuity. |

Lemma 32 Let (Q,F,P) be a Dynkin space and 7 a binary relation on By (X). 7 satisfies the Basic Con-
ditions, Consistency, Weak Certainty Independence, Uncertainty Aversion, and Unboundedness if and only
if there exist an unbounded affine function u : X — R and a normalized, monotone, translation invariant,
and concave functional I : B (Q, F) — R such that

(a) [opdP > [o¥dP for all P € P implies I (@) > I (1);
(b) £ g if and only if I (u(f)) > I (u(g)).
Moreover,
1. u is unique up to an affine transformation and, given u, I is unique.
2. 1 is inner continuous if 7, satisfies Monotone Continuity.

Proof. We first prove necessity. Since 77 satisfies the Basic Conditions and Weak Certainty Independence,
7 satisfies Risk Independence & la Herstein and Milnor. By [40], it follows that there exists an affine
function u : X — R that represents = restricted to X. This implies that - satisfies Risk Independence.
Since 7 satisfies Unboundedness, it is easy to check that « (X) is unbounded. Furthermore, u is unique
up to an affine transformation. Since u is unique up to an affine transformation, without loss of generality,
we can assume that u is such that 0 € int (u (X)). Since 7 further satisfies Consistency and by Lemma

28, =

~

satisfies Monotonicity. Since 7 further satisfies Uncertainty Aversion and by [46, Lemma 25 and
Lemma 28] and the proof of [46, Theorem 3], it follows that there exists a normalized and concave niveloid
I:By(Q,F,u(X))— R such that f 2z ¢ if and only if I (u(f)) > I (u(g)). By [46, pag. 1476], it follows
that I has a unique extension to By (£, F) which is normalized and concave as well. With a small abuse
of notation, we denote this extension by I. By [46, Lemma 25], it follows that I : By (Q,F) — R is a

normalized, monotone, translation invariant, and concave functional.
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Before proceeding with the proof, observe that
By (@, F,u (X)) ={u(f): f € Bo(X)}. (57)

Consider ¢, € By (Q,F). Assume that [, odP > [, ¥dP for all P € P. Since u(X) is unbounded, there
exists k € R such that ¢ = ¢ + klg and 9 = 1 + klg belong to By (2, F,u (X)). Since P C A7 (Q, F), we
have that [, pdP > [, %dP for all P € P. By (57), it follows that there exist f and g in By (X) such that
¢ =u(f) and 1 = u(g). This implies that [, u(f)dP > [,u(g)dP for all P € P. By definition of Py and
P, and since u is affine, we have that

u(Pf):/Qu(f)dPZ/Qu(g)dP:u(Pg) VP e P.

Since u represents 7 over X, this implies that Py 77 P, for all P € P. Since 7 satisfies Consistency and I is

translation invariant and satisfies (b), it follows that

Ie)+k=1(@)=1(u(f) 2 1(u(g)=1()=1W)+k=1(p)=1(). (58)

Since I is normalized, monotone, and translation invariant, observe that I is Lipschitz continuous. This
implies that I admits a unique continuous extension to B (€2, F). It is routine to check that this extension
is itself a normalized, monotone, translation invariant, and concave functional over B (Q, F). Again with a
small abuse of notation, we denote this extension by I. Moreover, I clearly satisfies (b). Finally, consider
@, € B(Q,F) such that [, pdP > [, dP for all P € P. It follows that there exist two sequences,
{on}nen and {¥n}, oy, in Bo (2, F) such that ¢, | ¢ and 1, T ¢ and the convergence is uniform. Since
P C A7 (Q,F), we have that [, ¢,dP > [, ¢,dP for all P € P and for all n € N. By (58), this implies
that I (¢,) > I (y,) for all n € N. Since I is continuous, we can conclude that I (¢) > I (v), proving that I
satisfies (a) as well, thus, proving necessity. Sufficiency follows from routine arguments.

1. By the proof of [46, Lemma 28], it follows that u is unique up to an affine transformation. Next,
fix 4 and consider two normalized, monotone, and translation invariant functions, I; and Is, satisfying (b).
Consider ¢ € By (2, F). Since u (X) is unbounded, it follows that there exists k € R such that g = ¢+ klg
belongs to By (2, F,u (X)). This implies that there exists f € By (X) such that ¢ = u (f). Moreover, given
the assumptions, we have that for each f € By (X) there exists 2y € X such that f ~ z;. Since I; and I,

are normalized, translation invariant, and they both satisfy (b), we have that

We can conclude that I3 and I coincide on By (£, F). Since both functionals are Lipschitz continuous
functionals and By (2, F) is dense in B (£2, F), the statement follows.

2. Consider ¢,v € By (Q,F) such that I () > I (), k € R, and {E, }, .y € F such that E, | 0. Since
u (X) is unbounded, it follows that there exists h € R such that ¢ = ¢ + hlq, 1 =9 + hlg, and (k + h) 1o
belong to By (2, F,u(X)). Since I is translation invariant, notice that I (@) > I (¢). Moreover, we have
that there exist f,g € By (X) and z € X such that @ = u (f), ¥» = u(g), and u (x) = k + h. Since I satisfies
(b), it follows that
[ =gand u(zE,f) = (k+h)lg, +@le: Vn € N.
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Since 77, satisfies Monotone Continuity, it follows that there exists an N € N such that xEn f = ¢. Since I

is translation invariant and it satisfies (b), we can conclude that

I(klgy +@lpe) +h=1((k+h)lgy +@lps) =1(u(zEnf))>1(u(g) =1(¢) =1()+h
=1 (klpy +¢lpg) > 1(Y).
By Theorem 21 and [12, Theorem 54], it follows that I is inner continuous on By (€2, F). Since I is translation

invariant and by using the same techniques contained in [15, Lemma 15], it follows that I is inner continuous
on B (9, F). |

Lemma 33 Let (Q,F,P) be a Dynkin space and 5 a binary relation on By (X).

Conditions, Consistency, Risk Independence, Uncertainty Aversion, and Full Unboundedness if and only if

= satisfies the Basic

~

there exist an onto affine function v : X — R and a normalized, monotone, lower semicontinuous, and
quasiconcave functional I : B (Q,F) — R such that

(a) [oypdP > [, 4dP for all P € P implies I () > I (¢);
(b) =g ifand only if I (u(f)) = I (u(g));
(c) T is continuous on By (2, F).

Moreover,

1. u is unique up to an affine transformation and, given u, I is unique.

2. I is inner continuous if 7, satisfies Monotone Continuity.

Proof. We first prove necessity. By [40] and since 7 satisfies the Basic Conditions and Risk Independence,
it follows that there exists an affine function v : X — R that represents 7 restricted to X. Furthermore, u
is unique up to an affine transformation. Since = further satisfies Consistency and by Lemma 28, = satisfies
Monotonicity. Since 7~ satisfies Full Unboundedness, it is easy to check that u (X) = R. It follows that

B() (Q,./T) = {’LL (f) : f S B() (X)} . (59)

By [12, Lemma 61], there exists a unique normalized, monotone, continuous, and quasiconcave functional
I:By(Q,F)—Rsuchthat frmge I(u(g) > I(u(f)).

Consider ¢,v € By (2, F). Assume that [, pdP > [, 1dP for all P € P. By (59), it follows that there
exist f and g in By (X) such that ¢ = u(f) and ¢ = u (g). This implies that [, u (f)dP > [,u(g)dP for
all P € P. By definition of Py and P, and since u is affine, we have that

u(Pf):/Qu(f)dPZ/Qu(g)dP:u(Pg) VP e P.

Since u represents 27 over X, this implies that Py 27 P, for all P € P. Since 7 satisfies Consistency and I

represents -, once composed with u, it follows that

I(p)=1(u(f))=1(ulg)=1(). (60)

By Theorem 21, it follows that there exists a unique G € L (R x A (2, F)) such that
1 = i G dP, P v By (22 . 61
(¥) =, min </Qso , ) ¢ € By (Q, F) (61)
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By Theorem 21, if we define J : B (2, F) — R by

-  mi dP, P Vo € B(Q
J () peril(lél,ﬂG(/Q‘P ) p € B(Q,F)

then we have that .J is a normalized, monotone, lower semicontinuous, and quasiconcave extension of I to
B (9, F). With a small abuse of notation, we also call the extension I. By the previous part of the proof,
it follows that I satisfies all the requirements of the statement as well as points (b) and (¢). Moreover, I
satisfies point (a) when ¢ and ¢ are elements of By (2, F). This implies that I satisfies point (iv) of Lemma
27. Thus, we can conclude that I satisfies point (iii) of Lemma 27, which is point (a).

1. By [12, Lemma 61], it follows that u is unique up to an affine transformation. Moreover, by the same
result and given u, I is unique over By (Q, F). As a consequence of Theorem 21, I admits a unique normalized,

monotone, lower semicontinuous, and quasiconcave extension to B (€, F), proving the uniqueness of I.

2. If 7 further satisfies Monotone Continuity then it is immediate to check that I, restricted to By (2, F)
and represented as in (61), satisfies the conditions of [12, Theorem 54]. By [12, Theorem 54|, it follows that
I is inner continuous on By (€2, F) and that there exists a probability measure R such that G (¢, P') = oo
for all t € R and for all P’ ¢ {P € A? (Q,F) : P << R}. In light of this observation and by using the same
arguments of [12, Theorem 54], it follows that I is inner continuous on B (£, F). |

Lemma 34 Let (Q,F,P) be a Dynkin space and 7 a binary relation on By (X) that satisfies the Basic
Conditions, Consistency, and Risk Independence. Ifu : X — R, Q € A7 (Q,G,P), ¢ : u(X) — R, and
I:By(Q,F,u(X))— R are such that

1. u is nonconstant and affine;

2. 1 is normalized, monotone, and continuous;

8. ¢ is strictly increasing and continuous;

4. if o1,02 € By (U, F,u (X)) then [, o1dP > [, p2dP for all P € P implies I (1) > I (p2);
9. 1f f,9 € Bo(X) then f Z g if and only if I (u(f)) = I (u(g));

6. if f,g € Bo(X) and f and g are G-measurable then

frge o </Q¢>(U(f))d62> > gt (/Q¢<u<g>>dcz).

then, there exists u € A° (S (P) ,As(p)) such that

I(p)=0" (/ ¢(/ LP(W)dP(W)> dM(P)> Vo € By (€, F, u(X)). (62)
S(P) Q
Proof. Define J: B(Q,G,u (X)) — R by
s =07 ([ owa@)  weB@Gux).
Since ¢ is strictly increasing and continuous, it is immediate to see that J is well defined, normalized,

monotone, and continuous. Moreover, by point 6., it follows that for each f and g, which are further

G-measurable, we have that
fzge Jw(f) > J(ulg).
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By Lemma 30, it follows that I (¢) = J (¢*) for all ¢ € By (Q, F,u(X)). Pick ¢ € By (Q,F,u(X)). It

follows that
I(g)=J(¢") = ¢! (/Qwso*)dcy) e (/qu(so*) dQW)
s ( /P 6 ({9, )) dqu) — gy ( /S PRA(CR) dqu)
—p! ( / K ( | ewap <w>) dugw <P>>

where the first equality follows from the previous part of the proof, the second follows by definition of J,
the third equality follows from the fact that @ € A% (2,G,P) and by Fact 4, the fourth equality follows
from the Change of Variables Theorem (see [1, Theorem 13.46]), the fifth equality follows from point 5. of
Proposition 19, and the sixth equality is a trivial rewriting. Define p1 : Agpy — [0, 1] by

Since pgw € A% (P, Ap), S(P) € Ap, and pgw (S(P)) = 1, it follows that p is well defined and p €
A (S (P) 7A5(7>)). By the previous part of the proof and since ¢ was arbitrarily chosen, it follows that p
satisfies (62). [ |

Proof of Theorem 4. Let (2, F,P) be a Dynkin space and - a binary relation on By (X).

(i) implies (ii). By Lemma 32, if 7~ satisfies the Basic Conditions, Consistency, Weak Certainty Indepen-
dence, Uncertainty Aversion, and Unboundedness then there exist an unbounded affine function v : X — R
and a normalized, monotone, translation invariant, and concave functional I : B (€2, F) — R such that
(a) [ @dP > [, 1dP for all P e P implies I (¢) > I (1);

(b) f 7 g if and only if T (u (f)) > I (u(g)).

By (b), we have that if we define V' : By (X) — R by V(f) = I (u(f)) for all f € By(X) then V
represents .

Next, observe that if we define I:L > Rasin Proposition 25, then it follows that Iisa normalized,
monotone, translation invariant, and concave functional on L such that I (@) = I ((¢,-)) for all o € B (Q,G).

Moreover, since I satisfies (a), we have that

I =1 =1(¢" ) =1(p) VoeB(F). (63)

By point (f) of Lemma 24, L = B (S (P), Asp)). Given the properties of I and by Theorem 21 (see
also [46, Lemma 26]), there exists a unique, grounded, lower semicontinuous, and convex function =y :
A (S (P), Asp)) — [0,00] such that

[9= omin & cdusay  VeL (64)
S(P)

REA(S(P),As(p))

By the previous part of the proof and (63), we can conclude that

V() =I@(f)=1(u(f),))= min {/S(P)<U(f)7->du+v(u)}

HEA(S(P),AS(p))

T LeA(SP s) {/sm ([t @nar e )dnr) (u)} Vf € By (X).

(ii) implies (i). It is routine.
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1. Uniqueness follows from point 1. of Lemma 32 and the uniqueness of I and its representation.

2. Sufficiency is routine. Viceversa, by point 2. of Lemma 32, if 7~ further satisfies Monotone Continuity
then I is inner continuous. By point (8) of Proposition 25, this implies that [ is inner continuous. By
Theorem 21, this implies that v (1) = oo for all u & A7 (S (P), As(p))- [ |

Proof of Theorem 5. Let (0, F,P) be a Dynkin space and 7 a binary relation on By (X).
(i) implies (ii). By Lemma 33, if 7 satisfies the Basic Conditions, Consistency, Risk Independence,

Uncertainty Aversion, and Full Unboundedness then there exist an onto affine function v : X — R and a
normalized, monotone, lower semicontinuous and quasiconcave functional I : B (2, F) — R such that:
(a) [oedP > [, ¢dP for all P € P implies I (p) > I (1);
(b) £ 5 g if and only if I (u (f)) > I (u(g));
(c) I is continuous on By (€2, F).

By (b), we have that if we define V : By (X) — R by V(f) = I (u(f)) for all f € By(X) then V
represents Z.

Next, observe that if we define I : L — R as in Proposition 25, then it follows that I is a normalized,
monotone, lower semicontinuous, and quasiconcave functional on L such that I (¢) = I ({p,-)) for all p €
B (€, G). Moreover, since I satisfies (a), we have that

I)=I(p*)=I((¢*,))=1(lp,")) VeoeB(QF). (65)

By point (f) of Lemma 24, L = B (S (P) ,Ag(p)). Given the properties of I and by Theorem 21 (see also
[13]), there exists a unique function G € £ (R x A (S (P), As(p))) such that

f©= min G < / edp, ,L) veelL. (66)
HEA(S(P),As(p)) S(P)

By the previous part of the proof and (65), we can conclude that

V() =T(f)=1(u(f),)) = min G </ (u (f),->du,u>
) S(P)

HEA(S(P),As(p)

= ILGA(SI(%)I}AS(@))G (/5(73) (/Qu(f (w))dP (W)> du (P) ,/L) Vf € By (X).

We are left to show that G is linearly continuous. By (65) and (66), notice that for each ¢ € By (Q,F) =
By (R) we have that

s ( / N ( [ et <w>) an (P) ,u> () =1 ().

By point (¢), I is continuous on Bg (2, F), proving the linear continuity of G.
(ii) implies (i). It is routine.
1. Uniqueness follows from point 1. of Lemma 33 and the uniqueness of I and its representation.

2. Sufficiency is routine. Viceversa, by point 2. of Lemma 33, if 7~ further satisfies Monotone Continuity
then I is inner continuous. By point (8) of Proposition 25, this implies that [ is inner continuous. By
Theorem 21, this implies that G (¢, ) = oo for all (¢, 1) € R x A7 (S(P), As(p))- [ |

Proof of Theorem 6. Let (2, F,P) be a Dynkin space and - a binary relation on By (X).

(i) implies (ii). By Lemma 28 and since - satisfies the Basic Conditions, Consistency, and Risk Inde-

pendence, it follows that = satisfies Monotonicity. By [11], this implies that there exist a nonconstant affine
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function v : X — R and a normalized, monotone, and continuous functional I : By (2, F,u (X)) — R such
that for each f and g in By (X)

fzgew(f) =1(ulg). (67)

On the other hand, by Savage [53] (see also [14, Proposition 3]|) and since 7 satisfies the Basic Conditions,
Consistency, Risk Independence, Monotone Continuity, and its restriction to G-measurable acts satisfies P2-
P6 then there exist a nonatomic probability measure Q € A (2, G), a nonconstant affine function @ : X — R,
and a strictly increasing and continuous function ¢ : 4 (X) — R such that for each f and g in By (X) that

are further G-measurable
rrgeot([oaumae) o ([ o@wae). (68)

Moreover, () is unique, w is cardinally unique, and ¢ is cardinally unique given 4. By [11] and [14, Proposition
3], without loss of generality, we can assume that 4 = u, that 0,1 € int (u (X)), and that ¢ (1)—1 =0 = ¢ (0).
Consider @1, € By (Q, F,u (X)) such that [, p1dP > [, @2dP for all P € P. It follows that there exist
f1 and f2 in By (X) such that

wi=u(f;) forie{l,2} and u(Pfl):/Qu(fl)dPZ/QU(fg)dP:u(PfQ) VP eP.

T satisfies point 4. of Lemma 34. Similarly, consider A € G such that P(A) = 0 for all P € P. Since
0,1 € int (u (X)), it follows that 14,19 € By (Q,G,u (X)) and that [, 1gdP =0 = P (A) = [, 14dP for all
P € P. Define z,y € X to be such that « (z) = 1 and u (y) = 0. By (68) and since ¢ (1) —1 =0 = ¢ (0) and

7~ satisfies Consistency, it follows that

671 (Q(A) = 97" (/Q¢(1A>dcz) e (/fqu(u (wAy))dQ> — gy (/Qm <y>>d@) —o,

that is, @ (A) = 0 and Q € A7 (Q,G,P). By Lemma 34, it follows that there exists u € A7 (S (P), Asp))
such that

By (67) and since 7 satisfies Consistency, it follows that I (¢1) = I (u(f1)) > I (u(f2)) = I (¢2), that is,

I(g)= o ( /S ? ( / o (w)dP <w>) dy <P>> Vo € Bo (9 Fu(X)). (69)

We next show that y is nonatomic. Consider C' € Agpy and A € G such that (14,-) = 1¢ and p(C) > 0.
By (69), it follows that

0< ¢! (u(C)) =671 ( /S e ( / 14 (w) dP <w>) de)) —I(14) = 67 (Q(A) (70)

where the last equality is consequence of Lemma 30.*® Next, consider Cy € Ag(py such that 4 (C1) > 0. By
point (1) of Lemma 24, there exists A; € G such that (14,,-) = 1¢,. By (70), it follows that @ (A;) > 0.
Since () is nonatomic, it follows that there exists Ay € G such that As C 47 and 0 < Q (A2) < Q (A1). By
the proof of point (i) of Lemma 24, we have that 1¢, = (1a,,-) > (la,,") = 1c, where Cy € Ag(p), that is,
Cy C C;. By (70), we can conclude that

0</L(CQ):Q(A2) <Q(A1):M(Cl)7

thus proving that p is nonatomic.

87:B(Q,6,u (X)) — R is defined by

s g (/qu(w)dca).
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Finally, by (69), notice that the function V' : By (X) — R, defined by

V(f)=[S(P)¢(AU(f(w))dP(w)> du(P)  VfeBy(X),

is such that V' = ¢ o I o u. Since ¢ is strictly increasing and by (67), it follows that V represents 7.

(ii) implies (i). Assume that there exist a nonatomic probability measure p € A% (S(P), As(p)), a
nonconstant affine function v : X — R, and a strictly increasing and continuous function ¢ : v (X) — R
such that

vin- [ (P)Gﬁ( [utr@yar@)aur) v e )

represents 2. Define I : By (2, F,u (X)) — R by

I(p) =" ( /S (p)¢< / o () dP(w)) du(P)> Ve € By (2, F,u(X)).

Since ¢ is strictly increasing and continuous and p € A° (S (P) ,AS('p)), it is immediate to see that I is
normalized, monotone, continuous, and inner/outer continuous. Since ¢ is strictly increasing and continuous,
it follows that the function V' = ¢~! oV = I o u represents -. By the arguments contained in [11], it
follows that = satisfies the Basic Conditions and Risk Independence. It is immediate to see that - satisfies
Consistency and Monotone Continuity as well. Next, define @) = fig where [i is the barycenter of pu. Notice
that @ € A7 (2,G,P). We next show that @ is nonatomic. Consider A € G and C € Agp such that
(14,+) = 1¢. It follows that

1(C) = /S Lot = /S (= [ Ladji = /Q 14dQ = Q (4). (71)

Consider A; € G such that @ (A1) > 0. By the proof of point (i) of Lemma 24, we have that (14,,-) = 1¢,
where C1 € Ag(p). By (71), it follows that p(C1) > 0. Since p is nonatomic, it follows that there exists
Co € Asepy such that Co € C1 and 0 < p(C2) < p(Ch). By point (1) of Lemma 24, there exists Ay € G
such that (14,,-) = 1¢,. Define A3 = A; N Az € G. Since Cy C Cy and Ay, A € G, it follows that

102 = 101 A 102 = <1A15 > A <1A27 > = <1A1 A 1A2a > = <1A3’ > .

It follows that A5 C A;. By (71), we thus have that 0 < @ (A3) = pu(Cs) < u(C1) = Q (A1), proving that
@ is nonatomic. Next, observe that for each ¢ € By (2,G,u (X)) we have that

1@ =6 ([ otwnan) =6 ([ st )= ([ o dun )
S(P) S(P) P

. (/Wfb(w*)dQW) — (/ﬂ(b(w*)dQ) e (/chw)dQ) |

where the first equality follows by definition of I, the second equality follows by (38), the third equality
follows from point 5. of Proposition 19, the fourth equality follows from the Change of Variables Theorem
(see [1, Theorem 13.46]), the fifth equality follows from the fact that @ € A% (,G,P) and by Fact 4, and
the sixth equality follows from the fact that Q € A (Q,G,P) and ¢ = ¢* P-a.s., since ¢ € B (,G). This
implies that V' (f) = ¢=(V (f)) = I (u(f)) = ¢~ (o @ (u(f))dQ) for all f € By (X) that are further
G-measurable. By [14, Proposition 3] and since @ is a nonatomic probability measure, u : X — R is
nonconstant and affine, ¢ : u (X) — R is strictly increasing and continuous, and V' represents -, it follows
that the restriction of 2~ to G-measurable acts satisfies P2-P6.
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1. Uniqueness is routine to check.

2. By [14, Proposition 3], if 7~ satisfies Uncertainty Aversion then ¢ is concave. Viceversa, if ¢ is concave

then it is immediate to see that 7 satisfies Uncertainty Aversion. |

Proof of Theorem 7. Let (Q2,F,P) be a Dynkin space and 77 a binary relation on By (X).

(i) implies (ii). By Lemma 31, if 7 satisfies the Basic Conditions, Consistency, and Comonotonic Inde-
pendence on G-measurable acts then there exist a nonconstant affine function v : X — R and a normalized,
monotone, translation invariant, and positively homogeneous functional I : B (Q, F) — R, which is further
comonotonic additive on B (£2,G) and such that:

(a) [ @dP > [, 1dP for all P e P implies I (¢) > I (1));
(b) 7 2= g if and only if I (u(f)) > I (u(g)).

By (b), we have that if we define V' : By (X) — R by V(f) = I (u(f)) for all f € By (X) then V
represents .

Next, observe that if we define I:L > Rasin Proposition 25, then it follows that Iisa normalized,
monotone, and comonotonic additive functional on L such that I (@) = I({(p,-)) for all ¢ € B(Q,G).

Moreover, since I satisfies (a) we have that
He)=1(") =1(e"))=1{p) VYoeB(QF). (72)

By point (f) of Lemma 24, L = B (S(P),As(p)). Given the properties of I and by [54], there exists a
unique capacity v : Ag(py — [0, 1] such that

) = / ¢dv  Veel (73)
S(P)

By the previous part of the proof and (72), we can conclude that

V(f)=I(U(f))=f(<U(f),-))=/S(p) <u<f>,->du=/sm (/Qu(f(w))dP(W)> v (P)  VfeBy(X).

proving the implication.
(ii) implies (i). It is routine.
1. Uniqueness follows from point 1. of Lemma 31 and the uniqueness of I and its representation.

2. Necessity is trivial. Viceversa, by point 2. of Lemma 31, if 7~ further satisfies Uncertainty Aversion
then I is quasiconcave. By point (4) of Proposition 25, this implies that I is quasiconcave. By [54] and (73),

it follows that v is convex.

3. Necessity is trivial. Viceversa, by point 3. of Lemma 31, if = further satisfies Monotone Continuity
then I is inner and outer continuous on B (€2, G). By point (8) of Proposition 25, this implies that I is inner

and outer continuous. Given (73), it follows that v is inner and outer continuous, that is, continuous. |

Proof of Theorem 8. (i) implies (ii). By Remark 29 and since 7 satisfies the Weak Basic Conditions,
Consistency, and Independence, it follows that 7 satisfies Monotonicity and it is reflexive. By [32, Theorem
1] and since 7 is reflexive and satisfies the Weak Basic Conditions, Monotonicity, and Independence, there
exist a nonconstant affine function u : X — R and a nonempty, closed, and convex set C' C A (2, F) such
that

fﬁg@/ﬂu(f)dPZ/ﬂu(g)dP YP e C. (74)
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Moreover, « is unique up to an affine transformation and it represents - restricted to X. Without loss of
generality, we can assume that 1,0 € int (u(X)). Define 2,z € X and the sequence {yr},.y € X to be
such that u (x) = 1, u(2) = 0, and u (yx) = 1/k for all k € N. Next, consider a sequence of events {F, },
in F such that E, | 0. It follows that u (zE,z2) = 1g, for all n € N. Since 7 satisfies Binary Monotone
Continuity and yi, > z for all k£ € N, it follows that for each k € N there exists Ny, € N such that y;, - cEn, 2.
By (74), this implies that

% =u(yx) > / u(zEn,2)dP = P(En,) > lim P (E,) >0 VP e C. (75)
Q n

Passing to the limit in (75), it follows that lim, P (E,) = 0 for all P € C. Since {E,}, y was arbitrarily
chosen, it follows that C C A? (2, F). By Proposition 18 and (74), and since 7 satisfies Consistency, u is
affine, and it represents - restricted to X, it follows that for each f and g in By (X)

/u(f)dPE/u(g)dP VPEmco(P)@/u(f)dPZ/u(g)dP YPeP
Q o Q Q
@/fdPij/gdP VP eP
Q Q

é/ﬂu(f)dpz/gu(g)dp VP ecC.

By [29, Proposition A.1] and since C is closed and convex and mco (P) is convex, it follows that C' C
cl (mco (P)). Recall that mco (P),C C A° (2, F). By point 3. of Proposition 18, this implies that

C=CnNA%(Q,F)Ccl(meco(P))NA7(Q,F) =mco(P).

Define I' = {u €A’ (57:7 Ag(p)) : p = P for some P in C’}. By Corollary 20, it follows that I is well defined.
By (38) and since C'is nonempty, closed (compact), and convex, it follows that I' shares the same properties.*’
In light of (74) and given T', it is immediate to check that I" represents 7~ as in (22).

(ii) implies (i). It is routine.

Finally, uniqueness follows from routine arguments. |

Proof of Proposition 9. Since - satisfies the Basic Conditions and Risk Independence, observe that either
under (i) or under (ii) 77 satisfies Monotonicity. By [11, Proposition 1 and Proposition 2] and since 7 satisfies
the Basic Conditions, Monotonicity, and Risk Independence, it follows that there exist a nonconstant and
affine function u : X — R and a closed and convex set C C A (Q, F) such that

fz*g@/ﬂu(f)dpz/ﬂu(g)dp WP e C. (76)

49Notice tha the map from C to I’ defined by
P pup VPe(C
is a well defined affine homeomorphism when both the domain and the target space are endowed with the relative topologies
induced by the respective weak* topologies. Recall that C' C mco (P). By Corollary 20 and definition, the above map is well
defined and bijective. By (38) and its discussion, it is affine. Regarding continuity, consider a net {Pa}aeA C C such that
P, — P € C. Consider D € As(p). By point (1) of Lemma 24, it follows that there exists A € G such that 1p = (14, ). This
implies that

pen (D)= [ Apdun, = [ () dun, = Pa (4) » P(4)
S(P) S(P)

= (1a,-)dup :/ Ipdup = pp (D).
S(P) S(P)

Since D was arbitrarily chosen, the continuity of the above map follows. By [1, Theorem 2.36] and since C' is compact and T’
is an Hausdorff topological space, it follows that the above map is a homeomorphism.
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Moreover, u is unique up to an affine transformation and it represents 7 restricted to X while C is indepen-
dent of the choice of u. Without loss of generality, we can assume that 1,0 € int (v (X)). Define z,z € X
and the sequence {yx},cny € X to be such that u(z) =1, u(z) = 0, and u (y) = 1/k for all k& € N. Next,
consider a sequence of events {E,}, . in F such that E, | 0. It follows that u (zE,z) = 1g, for all n € N.
Since ~* satisfies Binary Monotone Continuity and y; >=* z for all k € N, it follows that for each k& € N there
exists Ny € N such that y, Z* *En, z. By (76), this implies that

L) > / w(zEx, 2)dP = P (Ex,) > im P (E,) >0 VP e C. (77)
Q n

Passing to the limit in (77), it follows that lim, P (E,) = 0 for all P € C. Since {E,},, .y was arbitrarily
chosen, it follows that C' C A% (Q, F).
(i) implies (ii). By Lemma 28 and since 7 satisfies the Basic Conditions and Risk Independence, if 77

satisfies Consistency then it satisfies Monotonicity. By the initial and common part of the proof and since
7 satisfies Consistency, it follows that for f,g € By (X)

/Qu(f)dpz/u(g)dP VP € mco (P :>/ dP>/ (9)dP VPeP = [y

Q
By definition of Z—* and the initial and common part of the proof, it is immediate to see that this implies
that

/Qu(f)dPZ/u(g)dP VP € mco (P :>/ dP>/ (g)dP VP eC.

Q
By [29, Proposition A.1] and since C is closed and convex and mco (P) is convex, it follows that C' C
cl (mco (P)). Recall that mco (P),C C A% (2, F). By point 3. of Proposition 18, this implies that

C=CnNA%(Q,F) Ccl(meco(P)) NAT (Q,F) =mco (P).

However, it is immediate to see that the set of invariant measures is measure convex, thus P = mco (P).
Finally, if f € By (X) then u(f) € BO (Q,F). Tt follows that there exists a partition {El}:;l C F and a

collection {ai}?zl such that u ( ZazlE If 7 € G then we have that u (f o) Zall ~1(g,)- Since
=1
P is the set of invariant measures and C' C P, we have that [, u (f)dP = [,u(f o) dP for all P € C, that

is, fom ~* f, proving the statement.

(ii) implies (i). Consider F € F and 7 € G. By the initial and common part of the proof, recall that,
without loss of generality, 1,0 € int (u (X)). This implies that there exists f € By (X) such that u (f) = 1g.
By (76) and since 7 satisfies Unambiguous Symmetry, we have that

fom~* fand P (n ™' (E)) :/

u(fow)dP:/u(f)szP(E) VP e C.
Q

Q

Since C' C A? (2, F) and E and 7 were arbitrarily chosen, it follows that C' C P. Since 7Z* is a subrelation
of 7, u represents 7~ restricted to X, and w is affine, it follows that for each f and g in By (X)

/fdp:/gdp VPeP@/u(f)sz/u(g)dP VPP
Q Q Q
@/ dP>/ (g)dP YPeC = fr*g= frg,

proving that - satisfies Consistency. |
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