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Abstract

Starting with the seminal paper of Gilboa and Schmeidler [34] an analogy between the maxmin

approach of decision theory under Ambiguity and the minimax approach of Robust Statistics � e.g.,

Blum and Rosenblatt [10] � has been hinted at. The present paper formally clari�es this relation by

showing the conditions under which the two approaches are actually equivalent.

Prior distributions can never be quanti�ed or elicited exactly (i.e., without error), especially in a �nite

amount of time. Berger [6, p. 64]

1 Introduction

Since the seminal work of Gilboa and Schmeidler [34, p. 142] a relation between decision making under

ambiguity and robust statistics has been hinted at, and indeed immediate similarities are quite evident. At

the same time, a formal treatment of this topic and a complete characterization of the relation between the

two approaches is still missing. The object of this paper is to �ll the gap, that is, relating ambiguity (also

called Knightian uncertainty or model uncertainty) to prior uncertainty.

Ambiguity refers to the case in which a decision maker does not have su¢ cient information to quantify

through a single probability distribution the stochastic nature of the problem he is facing. This uncertainty

is captured by using nonadditive probabilities �capacities �or sets of probability measures over the space

of states of the world (usually observations, in many economic applications).1

Prior uncertainty, in a parametric statistical model fP�g�2�, refers to uncertainty about the prior � on
�. This is a classical problem in robust statistics, where uncertainty is again represented by capacities or

sets of priors over the space � of parameters.2

�We especially thank Rose-Anne Dana, Marcelo Moreira, Ben Polak, Kyoungwon Seo, Chris Shannon, and Piotr Zakrzewski,
as well as, an associate editor and two anonymous referees for helpful suggestions. The �nancial support of the European
Research Council (advanced grant, BRSCDP-TEA) is gratefully acknowledged.

yFirst presented with the title Model Uncertainty and Su¢ cient Events at RUD 2010. Most of the results contained in this
paper appeared in the presentation slides, posted in June 2010 and still available on the conference website.

1Early classical references are Schmeidler [55], Bewley [8], and Gilboa and Schmeidler [34]. See Gilboa and Marinacci [33]
for a recent survey.

2 In the words of Blum and Rosenblatt [10, p. 1671]: �Except in rare situations, information concerning the a priori
distribution of a parameter is likely to be incomplete. Hence the use of a Bayes rule on some sistematically produced choice
for an a priori distribution ... is di¢ cult to justify ... In this note we investigate ... the case in which it is known only that
the distribution of the parameter is a member of some given family.� See also Randles and Hollander [51], Shafer [57], as well
as Berger [6] and [7].
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Clearly, prior uncertainty can be reduced to ambiguity. Loosely, if � is a (prior) capacity on the space �

of parameters, then

�� (�) =
Z
�

P� (�) d� (�) (1)

de�nes a (predictive) capacity on the states of the world. Analogously, if � is a set of priors on the space �

of parameters, then �
�� (�) =

Z
�

P� (�) d� (�) : � 2 �
�

(2)

de�nes a set of (predictive) probability measures on the states of the world.

In this paper we address the converse problem. That is, we start from a decision theoretic framework of

ambiguity and we show under which conditions the decision problem admits a (suitably unique) rephrasing

in terms of prior uncertainty. In this way, we are able to provide an axiomatic and behaviorally falsi�able

foundation to the criteria used in robust statistics and to suggest the general form such criteria could take

(see Section 4.1.1 for a discussion of the speci�c case of robust estimation). We achieve this goal by merging

the decision theoretic assumptions that are by now established in the literature of choice under ambiguity

with some of the fundamental insights contained in Wald [62], Ellsberg [24], Nehring [48], and Gilboa,

Maccheroni, Marinacci, and Schmeidler [32].

We model ambiguity by using a generalized Anscombe-Aumann setting as in Gilboa, Maccheroni, Mari-

nacci, and Schmeidler [32]. We denote by 
 the space of states of the world and we consider it endowed

with a �-algebra F of events and a set P of probability measures on F . We call these probability measures
objectively rational beliefs. The elements of P represent the probabilistic beliefs on F that the decision maker
is able to justify on the basis of the available information. Incompleteness of information is then captured by

the nonsingleton nature of P. In particular, the class of objectively rational beliefs we study is a special case
of the one considered by Gilboa, Maccheroni, Marinacci, and Schmeidler [32]. In fact, we further require

that (
;F ;P) is a Dynkin space. This notion was introduced by Dynkin [22] and is discussed in full detail
in Sections 2.2 and 3.3. In Section 2.2, the formal de�nition is provided and some important examples of

Dynkin spaces are collected. In Section 3.3, we discuss the reasons why the Dynkin space setup is a natural

framework to carry on our analysis. Here we just sketch two examples of Dynkin spaces.3

First, if an Ellsberg�s three colors urn is given (see Example 1) it is natural to consider as P the set of all
probability measures that, conditional on the composition of the urn, coincide with the classical probability

assignments.4 In this case, P is naturally interpreted as hard evidence since it refers to the possible physical
compositions of the urn. In other words, P is the set of all �objective�urn models.
Second, in a very di¤erent perspective, consider a coin which is tossed over and over again. Based

on subjective similarity considerations, the famous de Finetti�s argument imposes that only exchangeable

probability measures on the space of all sequences of tosses can be rationally justi�ed. In this case, P consists
of those measures that assign the same probability to all �nite sequences of the same length with the same

number of heads (and the same number of tails). In comparing this example with the previous one, it is

important to notice that here we are in the domain of subjective probability �without any obvious physical

counterpart. See Example 2 for details and extensions (standard Borel G-spaces and invariant probability

measures).

The decision maker�s behavior is described by a subjectively rational preference % on the set B0 (X) of all
3The two examples that follow were also suggested by Nehring [48, p. 1060] to justify the inclusion of beliefs among the

primitives of a decision problem. Many more examples can be found in Dynkin [22].
4That is, the set of probabilities that for every possible composition of the urn attribute to the extraction of a given color

the ratio between the number of balls with that color and the total number of balls.
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acts, that is, simple and measurable mappings f from 
 to the convex set X of outcomes.5 The preference

relation % represents the actual choices of the decision maker among acts. Our central assumption is that

choices are coherent with probabilistic information, and it is expressed by imposing consistency à la [32]

between objectively rational beliefs P and subjectively rational preference %. Formally, the consistency
axiom requires that Z




fdP %
Z



gdP for all P 2 P implies f % g (3)

where
R


fdP and

R


gdP belong toX and are the means of f and g under P , respectively. In other words, we

consider a decision problem in which information, for example based on physical (urns) or symmetry (coins)

considerations, restricts the decision maker�s conceivable beliefs to belong to P.6 If the decision maker could
con�dently select P in P, he would be a standard Anscombe-Aumann expected utility maximizer. In this
perspective, the left hand side of condition (3) means that, no matter what the best estimate P is, if the

agent trusted it he would prefer f to g.7 Consistency imposes that the decision maker�s subjective rationality

takes this fact into account, by declaring f preferred to g.

In a nutshell, our results show that when uncertainty is represented as above, if subjectively rational

preferences are consistent with objectively rational beliefs, then ambiguity is equivalent to prior uncertainty.

Next we discuss two of these results, which can be immediately recognized as the counterparts of the reduction

procedures described by (1) and (2).

As a consequence of Theorem 7, we have that if the decision maker is a Choquet expected utility maximizer

and his preferences are consistent, then % is represented by

V (f) =

Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) for all f 2 B0 (X) (4)

where S (P) is the set of strong extreme points of P and � is a unique capacity over S (P). As discussed in
Section 2.2, the set S (P) can be seen as the set of pure models de�ned by P, while all the other elements
of P can be seen as mixture models. In particular, in the Ellsberg urn case mentioned above S (P) = P
describes all possible urn compositions, while in the de Finetti exchangeable case S (P) is the set of i.i.d.
models. In words, our decision maker is acting like a statistician who, starting from P, is able to identify
the pure models S (P), but is not able to exactly quantify a prior probability over them.
By Schmeidler [55], the preferences of this decision maker are also represented by

V (f) =

Z



u (f (!)) d� (!) for all f 2 B0 (X)

where � is a unique capacity over 
 (rather than over S (P)). Our result implies that

� (A) =

Z
S(P)

P (A) d� (P ) for all A 2 F

that is, each (consistent) capacity � is a predictive capacity. In this way, Theorem 7 presents the ambiguity

counterpart of the reduction from priors to predictives described by (1).

5For the sake of precision, % is a nontrivial and continuous preorder which can be represented by a von Neumann-Morgenstern
utility u on X.

6 In the words of Ellsberg [24, p. 661]: �Out of the set [�(
)] of all possible distributions there remains a set [P] of
distributions that still seem �reasonable,� ... that his information � perceived as scanty, unreliable, ambiguous � does not
permit him con�dently to rule out ... he might suspect [that his best estimate P among the elements of P] might vary almost
hourly with his mood,� quoted also by [31].

7Notice that
R

 fdP and

R

 gdP would be the certainty equivalents of f and g, respectively.
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As a consequence of Theorem 8, we have that if the decision maker is a Bewley expected utility maximizer

and his preferences are consistent, then % is represented by

V (f) =

"Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P )

#
�2�

for all f 2 B0 (X) (5)

where � is a unique compact and convex set of priors over S (P); and again our decision maker is acting like
a statistician who is not able to exactly quantify a single prior probability.

By Bewley [8] and Gilboa, Maccheroni, Marinacci, and Schmeidler [32], the preferences of this decision

maker are also represented by

V (f) =

�Z



u (f (!)) dm (!)

�
m2C

for all f 2 B0 (X)

where C is a unique compact and convex set of probability measures over 
 (rather than over S (P)). Our
results imply that for every m 2 C there is a unique � 2 � such that

m (A) =

Z
S(P)

P (A) d� (P ) for all A 2 F

that is, each (consistent, compact, and convex) set of probability measures C is a set of predictives. In this

way, Theorem 8 presents the ambiguity counterpart of the reduction from priors to predictives described by

(2).8

The above results are not peculiar to Choquet or Bewley expected utility preferences. The equivalence

between ambiguity and prior uncertainty is a general consequence of the consistency axiom in conjunction

with the structure of Dynkin space (see Section 3.3). For example, Theorem 4 delivers a similar result

for the variational preferences of Maccheroni, Marinacci, and Rustichini [46], and it is then generalized to

the uncertainty averse preferences of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [12] in the

subsequent Theorem 5. Moreover, the structure of Dynkin space and the consistency axiom allow us to

provide, in Theorem 6, an alternative axiomatic foundation for the smooth ambiguity preferences introduced

by Klibano¤, Marinacci, and Mukerji [43].

The relation between consistency and the recognition of symmetry/similarity patterns in the state space

(like in the de Finetti�s coin example) is characterized by our �nal result: Proposition 9. Finally, Section 6

reviews the related literature and in particular the relations between our results and the ones of Amarante

[3], Epstein and Seo [25], [26], and [27], Al-Najjar and De Castro [2] and [18], and Klibano¤, Mukerji, and

Seo [44].

2 Preliminaries

2.1 Decision Theory

Consider a set 
 of states of the world, a separable (i.e., countably generated) �-algebra F of subsets of


 called events, and a convex set X of consequences. We denote by B0 (X) = B0 (
;F ; X) the set of all
(simple) acts: �nite-valued functions f : 
! X which are F-measurable.

8Notice that, while the functional V in (4) is real valued, V : B0 (X)! R, the functional with the same name in (5) is R�

valued, V : B0 (X) ! R�. This di¤erence corresponds to the contrast between the completeness of Choquet expected utility
and the incompleteness of Bewley expected utility. On the one hand, this incompleteness delivers the purest framework possible:
the one in which attitudes toward ambiguity/prior uncertainty do not matter. On the other hand, the same incompleteness is
a weak point in the description of actual choices. Even if incomparability of two alternatives is naturally interpreted as choice
deferral, eventually a course of action will be taken. So, while the main role of Theorem 8 is to better exemplify the connection
between ambiguity and prior uncertainty, this theorem (the last in order of presentation) is an exception in that for all other
results we impose completeness of %. A related result appears in De Castro and Al-Najjar [18] as discussed in Section 6.
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Given any x 2 X, de�ne x 2 B0 (X) to be the constant act such that x(!) = x for all ! 2 
. With this
slight abuse of notation, it is possible to identify X with the subset of the constant acts in B0 (X). If x 2 X,
A 2 F , and f 2 B0 (X), we denote by xAf 2 B0 (X) the act taking value x if ! 2 A and f (!) if ! =2 A.

For every f; g 2 B0 (X) and � 2 [0; 1] the act �f + (1 � �)g 2 B0 (X) yields �f(!) + (1 � �)g(!) 2 X for

each ! 2 
.
We model the decision maker�s (subjectively rational) preferences on B0 (X) by a binary relation %. As

usual, � and � denote the asymmetric and symmetric parts of %. If f 2 B0 (X), an element xf 2 X is a

certainty equivalent of f if f � xf . Given a probability P on F and f 2 B0 (X), the mean
R


fdP of f

under P is Z



fdP =
X
x2X

P
�
f�1 (x)

�
x:

Such integral is a well de�ned element of X since f is (measurable and) �nite valued and X is convex.

In particular, notice that, if the decision maker is an Anscombe-Aumann expected utility maximizer with

beliefs represented by P , then
R


fdP is just the certainty equivalent of act f .

2.2 Probability Theory

Let �(
) = �(
;F) be the set of all �nitely additive probabilities on F and �� (
) = �� (
;F) be the set
of all probability measures on F . Both sets and any of their subsets are endowed with the weak* topology.

De�nition 1 (Dynkin, 1978) Let P be a nonempty subset of �� (
). The triple (
;F ;P) is a Dynkin
space if and only if there exist a sub-�-algebra G � F , a set W 2 F , and a function

p : F � 
 ! [0; 1]

(A;!) 7! p (A;!)

such that:

(a) for each P 2 P and A 2 F , p (A; �) : 
 ! [0; 1] is a version of the conditional probability of A given

G;9

(b) for each ! 2 
, p (�; !) : F ! [0; 1] is a probability measure;

(c) P (W ) = 1 for all P 2 P and p (�; !) 2 P for all ! 2W .

Actually Dynkin considers a kernel ! 7! p! from 
 to �� (
) the projections of which are conditional

probabilities given G of all elements of P. The approaches are seen to be equivalent by setting p! = p (�; !)
for all ! 2 
.

Remark 2 In the rest of the paper, if (
;F ;P) is a Dynkin space and we consider a sub-�-algebra G � F ,
a set W 2 F , and a function p : F � 
! [0; 1], we assume that G, W , and p are as in De�nition 1.

If requirements (a) and (b) of De�nition 1 are satis�ed, we say that p is a common regular conditional

probability for P given G.10

Example 0 (Risk and Uncertainty) The smallest possible P is a singleton fPg. De�ne G = f;;
g,
take W = 
 and p (A;!) = P (A) for all A 2 F and for all ! 2 
. In this case, (
;F ; fPg) = (
;F ; P ) is a
Dynkin space capturing absence of ambiguity.

The largest possible P is �� (
). De�ne G = F , take W = 
 and p (A;!) = �! (A) for all A 2 F and

for all ! 2 
. In this case, (
;F ;�� (
)) = (
;F) is the Dynkin space capturing complete ambiguity, the
usual framework of decision making under uncertainty. �

9That is, p (A ; �) is G-measurable and P (A \B) =
R
B p (A;!) dP (!) for all B 2 G.

10Clearly, if P = fPg then this amounts to say that p is a regular conditional probability for P given G.
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Example 1 (Ellsberg Urn) Consider an urn which contains 90 balls. 30 balls are red while the remaining

60 balls are either green or blue. A ball is drawn after an agent bets on its color. Taking Savage�s de�nition

of state of the world,11 the state space is 
 = f(n; c) : n = 0; 1; :::; 60; c = r; g; bg. For ! = (n; c) 2 
, the
�rst component of ! is the number of green balls in the urn, and the second is the color of the extracted

ball. Given the structure of the problem, there is not a natural �objective probability�on 
, but rather a

set P of �objective probabilities�. In particular, P is the set of probabilities of the form

Pm (n; c) =

8>>>>>><>>>>>>:

0 n 6= m

30
90 n = m and c = r

m
90 n = m and c = g

60�m
90 n = m and c = b

(6)

for all (n; c) 2 
 and m = 0; 1; :::; 60. Graphically, each of the above probabilities takes the following form:

r g b

0 0 0 0

1 0 0 0

::: ::: ::: :::

m 30
90

m
90

60�m
90

::: ::: ::: :::

60 0 0 0

De�ne G = � (fmg � fr; g; bg : m = 0; 1; :::; 60), W = 
, and p : 2
 � 
! [0; 1] by

p (A; (m; d)) =
X

(n;c)2A

Pm (n; c) 8A 2 2
;8 (m; d) 2 
:

Then
�

; 2
;P

�
is the Dynkin space describing the Ellsberg urn situation. �

Example 2 (G-spaces and Exchangeability) A triple ((
;F) ; (G; �) ; a) is a standard Borel G-space
if and only if

1. (
;F) is a standard Borel space,

2. (G; �) is a locally compact group satisfying the second axiom of countability,

3. a is a measurable function
a : G� 
 ! 


(�; !) 7! �!

such that:

� � ({!) = (�{)! for all �;{ 2 G and ! 2 
,

� �! = ! for all ! 2 
, where � denotes the unit of G.

In this case, P 2 �� (
) is an invariant measure if and only if P
�
��1A

�
= P (A) for all � 2 G and for

all A 2 F . An element B 2 F is an invariant set if and only if ��1B = B for all � 2 G.12

11That is, a state of the world is �a description of the world, leaving no relevant aspect undescribed.�
12Clearly, if G

0
is a subgroup of G, the corresponding families of invariant measures and invariant sets are larger.
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Using the results of Varadarajan [60], Dynkin [22], and Becker and Kechris [5], if we denote by P the set
of all invariant probability measures, then any standard Borel G-space generates a Dynkin space (
;F ;P)
where G is the �-algebra of all invariant events.
The framework of the celebrated de Finetti Exchangeability Theorem is a particular standard Borel G-

space. In this case, 
 = f0; 1gN, F is the �-algebra generated by all cylinders, G is the group of all �nite

permutations of N, � is the discrete topology, and for each ! = f!ngn2N 2 
 and � 2 G, the measurable

action is such that �! =
�
!�(n)

	
n2N. Moreover, the invariant probability measures coincide with the

exchangeable ones.

Finally, the de�nitions of invariant measure and invariant set naturally apply to the case in which a single

measurable transformation T : 
! 
,13 sometimes called a shift, is considered. Also in this case, denoting

by P the invariant probability measures and by G the invariant events, (
;F ;P) is a Dynkin space. �

We endow the set �� (
) with the natural �-algebra

A = � (P 7! P (A) : A 2 F) ;

that is, the smallest �-algebra that makes the projections

h1A; �i : �� (
;F) ! R
P 7! P (A)

measurable for all A 2 F . Any nonempty subset P of �� (
) is endowed with the inherited �-algebra

AP = A \ P. For all � 2 �� (P) = �� (P;AP), the barycenter �� of � is the set function de�ned by

�� (A) =

Z
P
P (A) d� (P ) 8A 2 F :

It is easy to see that �� is a well de�ned probability measure on F , that is, �� 2 �� (
).

De�nition 3 Let ; 6= P � �� (
). An element P of P is a strong extreme point if and only if the only

probability measure � on P such that P is the barycenter of � is �P , S (P) denotes the set of all strong
extreme points of P.

Clearly, strong extreme points are extreme points in the sense of convex analysis. The converse is not in

general true, even if this is the case in our examples.14 Indeed, notice that if P = fPg then S (P) = fPg. If
P = �� (
;F) then S (P) = f�!g!2
. For the Ellsberg urn, we have that

P = S (P) =
�
30

90
�(m;r) +

m

90
�(m;g) +

60�m
90

�(m;b) : m = 0; 1; :::; 60

�
:

Thus, each element of S (P) is a classic �objective urn model�. Finally, for a Standard Borel G-space, we
have that

S (P) = fP 2 P : P (B) = 0 or 1 for each invariant set Bg :

Thus, S (P) is the set of all ergodic measures. This implies that, in the special exchangeable case, S (P) =
fP�g�2[0;1], where, for each � 2 [0; 1], P� on each cylinder f!ig

n
i=1 = f!1g�f!2g�:::�f!ng�f0; 1g�f0; 1g�:::

is de�ned by

P� (f!igni=1) = �j (1� �)n�j

and j = !1+!2+ :::+!n. That is, S (P) is the set of all independent and identically distributed probability
measures. Again, each element of S (P) is a classic �objective coin model�.
This suggests the interpretation of the elements of S (P) as the �pure models�corresponding to a Dynkin

space (
;F ;P).
13Rather than all the transformations ! 7! �! induced by the elements � of G.
14See Appendix B for more details on extreme points and strong extreme points.
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3 Subjective Rationality and Consistency

3.1 Subjective Rationality

Here we collect some behavioral assumptions on the preference % that formalize the concept of subjective

rationality discussed in the introduction.

The �rst two of them are maintained throughout the paper (unless explicitly stated otherwise). The

other is a version of the monotone continuity axiom of Villegas [61] and Arrow [4] which, as in [61] and [4],

will be invoked to re�ne �nite additivity into countable additivity. We will not expand on them since they

are all well known in the literature.

The usual rationality requirement of most of microeconomics is that preferences are complete, transitive,

nontrivial, and continuous. Formally:

Basic Conditions: The relation % is complete, transitive, nontrivial, and such that the sets f� 2 [0; 1] :
�f + (1� �)g % hg and f� 2 [0; 1] : h % �f + (1� �)gg are closed in [0; 1] for all f; g; h 2 B0 (X).

The Anscombe-Aumann framework where X is usually interpreted as a set of simple lotteries (random

outcomes) over a set of prizes Z (deterministic outcomes) and the fact that the decision maker we are

modelling uses all the available probabilistic information justify the following assumption:

Risk Independence: If x; y; z 2 X and � 2 (0; 1), then

x % y , �x+ (1� �) z % �y + (1� �) z:

Risk Independence allows some degree of separation between risk and ambiguity by imposing a standard

independence axiom on constant acts, that is, acts that only involve risk and no state uncertainty. Together

with the Basic Conditions it amounts to require the existence of an a¢ ne utility function u : X ! R
representing the decision maker�s preferences over X.15 ,16 Virtually all classes of preferences under ambiguity

studied in the literature and framed in the Anscombe-Aumann setting share these two assumptions. The main

exception is Bewley�s model which restricts completeness to constant acts, while extending independence to

the whole B0 (X), see Section 4.4 for details.

Finally, monotone continuity requires that vanishing perturbations of acts cannot a¤ect strict preference.

Monotone Continuity: If f � g in B0 (X), x 2 X, and En # ; in F , then xENf � g and f � xENg for

some N 2 N.

3.2 Consistency

The core assumption of our work is the Consistency axiom of [32] which connects the family of objectively

rational beliefs P to the decision maker�s subjectively rational preference %.

Consistency: If f ,g 2 B0 (X), thenZ



fdP %
Z



gdP 8P 2 P ) f % g: (7)

15To remain with Ellsberg [24, p. 661]: �Let us suppose that an individual must choose among a certain set of actions, to
whose possible consequences we can assign �von Neumann-Morgenstern utilities�.�
16 Indeed, a much weaker independence axiom on constant acts is necessary and su¢ cient for the existence of such a function

u, see [40], we opted for the strong form above to facilitate the comparison with the Bewley case discussed below.
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Recall that, the maintained Basic Conditions and Risk Independence imply the existence of an a¢ ne

utility function u : X ! R representing the decision maker�s preferences over X. Together with the linearity
of means, this implies that Consistency amounts to require thatZ




u (f) dP �
Z



u (g) dP 8P 2 P ) f % g: (8)

The objectively rational estimates of our decision maker about the realizations of 
 belongs to P, but he is
unsure which one is the best estimate.17 Nonetheless, the l.h.s. of (8) reveals that, irrespective of the best

estimate, f would be preferred to g. Consistency requires that f is preferred to g even if the best estimate

is unknown.

From a di¤erent perspective, Consistency means that the decision maker chooses act f over act g, if f

dominates g in the game in which he chooses an act in B0 (X) and Nature chooses a probability in P.
We next discuss Consistency for two important speci�cations of the space X of consequences.

Example 3 (Lotteries) In the original Anscombe-Aumann setting, X is the set of all simple lotteries

over a set Z of prizes, that is,

X =

(
x : Z ! [0; 1] : x (z) 6= 0 for �nitely many z�s in Z and

X
z2Z

x (z) = 1

)
:

Consider an act f 2 B0 (X) and a probability measure P 2 P. Under P , act f induces a two stage lottery.
First an event ff = xg occurs, with probability P (f! 2 
 : f (!) = xg), and then a prize z is paid to the
decision maker with probability x (z). In this setting,

R


fdP is the (one stage) lottery obtained by reducing

the previous compound lottery. In fact, y =
R


fdP is the element of X de�ned by

y (z) =
X
x2X

P (f! 2 
 : f (!) = xg)x (z) 8z 2 Z:

Consistency amounts to impose that: whenever the lottery induced by f under P is preferred to the one

induced by g under P for all P 2 P, then f must be preferred to g. �

Example 4 (Monetary Outcomes) Another important example is the one in which consequences are

quantities of one given good, say money. That is, X = R. In this case,
R


fdP is the usual expectation of

act f and the meaning of Consistency is clear (provided the decision maker preferences are monotone in the

amount of good he consumes). �

It is not hard to show that Consistency implies the classical Monotonicity axiom, another fundamental

rationality tenet in decision making under uncertainty.18

Monotonicity: If f; g 2 B0 (X), then f (!) % g (!) for all ! 2 
 implies f % g.

Actually, Consistency coincides with Monotonicity when P = �� (
;F). Finally, observe that preferences
that satisfy the Basic Conditions, Risk Independence, and Monotonicity are such that for each act f in B0 (X)

there exists a certainty equivalent xf in X.

17Moving to Ellsberg [24, p. 662]: �In this state of mind, searching for additional grounds for choice, he may try new
criteria, ask new questions. For any of the probability distributions in the �reasonably possible� set [P], he can compute an
expected value for each of his actions ...�
18Under the maintained hypotheses that % satis�es the Basic Conditions and Risk Independence. See also Lemma 28.
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3.3 Dynkin Spaces and Consistency

These two concepts are the pillars over which our analysis rests. In this section we discuss them in more

detail.

In the theory of choice under uncertainty, ambiguity is described as �lack of information�that prevents

the agent from forming a unique probabilistic model of the world (see Gilboa and Marinacci [33] for a

discussion). The Dynkin space structure allows to formally describe this �missing information�through the

sub-�-algebra G of F . In fact, by de�nition of Dynkin space, all the probability measures in P share a

common regular conditional probability p given G.
This interpretation is made possible by the observation that, given a Dynkin space (
;F ;P), the corre-

sponding sub-�-algebra G of F is determined in an essentially unique way by P. Uniqueness is proved in
[22, Theorem 3.2] which also shows how G becomes smaller as S (P) gets larger. It is important to observe
that the same theorem, together with our Theorem 12, allows to check whether a given triple (
;F ;P) is a
Dynkin space.19

Another conceptually relevant feature of Dynkin spaces is that, by [22, Theorem 3.1],

S (P) � fp! : ! 2 
g

that is, the elements of S (P) are updates of the elements of P after receiving information G. Conversely,
the event

f! 2 
 : p! 2 S (P)g

is almost certain for all elements of P, that is, the updates of P after receiving information G are almost
surely elements of S (P). This corroborates the interpretation of the set S (P) of strong extreme points of
P as the set of pure models and of G as representing the relevant probabilistic information. Indeed, if the
�missing information�were available, the agent would form, by updating, a single probabilistic model of the

world belonging (almost surely) to S (P).
Summing up, starting from a Dynkin space structure it is possible (for the modeler) to elicit the missing

information that generates ambiguity and the corresponding pure models.

On the other hand, under the Basic Conditions and Risk Independence, Consistency is equivalent toZ



fdP %
Z



gdP 8P 2 S (P) ) f % g: (9)

In light of the above discussion, (9) has the following interpretation: S (P) is the set of (objectively rational)
models of our decision maker about the realizations of 
, but lack of information prevents him from trusting

a single prior over these models.20 Nonetheless, the l.h.s. of (9) reveals that, irrespective of the prior, f

would perform at least as well as g; in this perspective, Consistency requires that f is preferred to g even if

information is incomplete. As observed in Section 4.1.1, this version of Consistency is tightly related to the

as good as relation of statistical decision theory.

On the technical side, the Basic Conditions and Risk Independence, allow to a¢ nely map each act

f : 
 ! X

! 7! f (!)

19Notice that G does not need to be given: rather it is derived from P, as shown by [22, Theorem 3.2]. On the other hand,
our Theorem 12 allows to check the existence of a common regular conditional probability for P given G.
20�On the one hand, one does frequently have a good idea as to the range of [the parameter], and as to which values in

this range are more or less likely. On the other hand, such information cannot be expected to be either su¢ ciently precise or
su¢ ciently reliable to justify complete trust in the Bayes approach.�As Hodges and Lehman [41, p. 396] put it.
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to a bounded function
hu (f) ; �i : S (P) ! R

P 7!
R


u (f) dP

while Consistency, in its equivalent form (9), guarantees that any numerical representation V (f) of % only
depends on hu (f) ; �i, that is,

V (f) = �I (hu (f) ; �i) :

Moreover, not only the functional �I : B
�
S (P) ;AS(P)

�
! R is well de�ned, but it inherits all the linearity

properties of V . Also the converse is true since the mapping f 7! hu (f) ; �i is a¢ ne.21 The preference

representation exercises of the next section consist in characterizing the form of �I starting from behavioral

assumptions on %.

4 Robust Preferences

This section contains our main representation results. We �rst discuss some recent models, then we consider

the Choquet and Bewley cases discussed in the Introduction. The interpretation of our results in terms of

prior uncertainty is fully discussed only for the �rst class of preferences we consider, analogous considerations

apply to the others. The di¤erences between the various classes pertain to the qualitative reaction to

ambiguity/prior uncertainty.

4.1 Variational Preferences

The class of variational preferences was introduced by Maccheroni, Marinacci, and Rustichini [46] and it

encompasses the Maxmin expected utility preferences of Gilboa and Schmeidler [34] as well as the Multiplier

preferences of Hansen and Sargent [39], later axiomatized by Strzalecki [59]. Variational preferences are

characterized by the following extra key assumptions:

Uncertainty Aversion: If f; g 2 B0 (X) and � 2 (0; 1), then f � g implies �f + (1� �) g % f .

Weak Certainty Independence: If f; g 2 B0 (X), x; y 2 X, and � 2 (0; 1), then

�f + (1� �)x % �g + (1� �)x ) �f + (1� �) y % �g + (1� �) y:

The Uncertainty Aversion axiom, introduced by Schmeidler [55] and sometimes called Ambiguity Aver-

sion, is a central axiom of the literature on decision making under ambiguity, and it can be seen as a

preference for hedging against ambiguity. See [12] for a detailed discussion.

On the other hand, Weak Certainty Independence is in between Risk Independence (which requires

stability of the preference w.r.t. mixing between constant acts only) and full blown Independence (which

requires stability of the preference w.r.t. mixing between all acts). In this respect, notice that, for each

f 2 B0 (X), x; y 2 X, and � 2 (0; 1), the graphs of �f + (1� �)x and �f + (1� �) y are congruent up
to a translation, that is, convex combinations with di¤erent constants (and �xed weights) do not a¤ect the

variability of consequences in di¤erent states. See [46] for a detailed discussion and Grant and Polak [36] for

an insightful interpretation in terms of constant absolute uncertainty aversion.

We further assume that there are either arbitrarily good or arbitrarily bad outcomes. For example, this

is automatically satis�ed when X contains the set of simple lotteries over R (see Example 3) and the decision
maker is risk averse (or risk neutral, or risk loving).

21B
�
S (P) ;AS(P)

�
is the space of all bounded and measurable functions on S (P). See the appendix for details on the

construction of �I and its properties.
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Unboundedness: For all x � y in X there exists z 2 X that satis�es either y � 1

2
x+

1

2
z or

1

2
y+

1

2
z � x:

Both in the original representation result of [46] and in the following one, this assumption implies that

the utility function u : X ! R is unbounded, which in turn delivers uniqueness of the representation. We
are ready to state our �rst representation result.

Theorem 4 Let (
;F ;P) be a Dynkin space and let % be a binary relation on B0 (X). The following

conditions are equivalent:

(i) % satis�es the Basic Conditions, Consistency, Uncertainty Aversion, Weak Certainty Independence,

and Unboundedness;

(ii) there exist an unbounded a¢ ne function u : X ! R and a grounded lower semicontinuous convex

function 
 : � (S (P))! [0;1] such that the functional de�ned by

V (f) = min
�2�(S(P))

(Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) + 
 (�)

)
8f 2 B0 (X) (10)

represents %.

Moreover,

1. u is cardinally unique and, given u, 
 is unique;

2. % satis�es Monotone Continuity if and only if


 (�) =1 8� 62 �� (S (P)) :

The interpretation of Theorem 4 in terms of prior uncertainty is quite straightforward: starting from the

set P of objectively rational beliefs, our decision maker identi�es the pure models S (P) and considers all
the possible priors over the models, the elements of �(S (P)).
If, as it is the case in Bayesian statistics, he is able to identify a single prior � 2 �� (S (P)), he simply

evaluates each act according to its expected utility

V (f) =

Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) (11)

which is the counterpart of the celebrated de Finetti Exchangeability Theorem, and corresponds to select


 (�) =

8<: 0 � = �

1 � 6= �
(12)

in representation (10). In other words, all priors �, except �, are excluded and given the highest possible

penalty 
 (�) =1.22

When, as it happens in robust Bayesian statistics (see Berger [6]) there is some degree of uncertainty about

the prior �, the decision maker can consider a (compact and convex) neighborhood � of �, for example an

"-contamination neighborhood (like in the insightful Hodges and Lehmann [41]) or a neighborhood relative to

some convex statistical distance. Then, uncertainty aversion induces him to consider the minimum expected

utility over �. This leads to the evaluation

V (f) = min
�2�

Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) (13)

22 In terms of behavioral assumptions this amounts to add Independence (see Section 4.4) and Monotone Continuity.
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and corresponds to select


 (�) =

8<: 0 � 2 �

1 � =2 �
(14)

in representation (10). In other words, all priors �, except those in �, are excluded and given the highest

possible penalty 
 (�) = 1.23 In estimation problems this corresponds to the �-minimax approach, as

detailed in the next section.

In the same robustness perspective, the decision maker can choose a convex statistical distance, say the

relative entropy R (�jj�), and penalize alternative priors proportionally to their distance from �.24 This

corresponds to select


 (�) _ R (�jj�)

in representation (10).25

Summing up, the robust approach here is incarnated by maxminimization of expected utility over prior

probabilities where the soft constraint is given by the penalty function 
, which thus captures the degree

of con�dence of the decision maker on the various priors. In the next section we show how this approach

generalizes robust estimation procedures.

4.1.1 
-Minimax Estimation

Given a Dynkin space (
;F ;P), the common regular conditional probability p can be viewed as an unknown
parameter (taking value p! in state !). Next we consider the statistical problem of estimating p, when the

the outcome of an experiment is available. Speci�cally, assume data are generated by a random variable �

taking values in the sample space N = f1; 2; :::; ng, that is, the experiment outcome determines to what cell
Ai = f! 2 
 : � (!) = ig of the partition f� = igi=1;:::;n the true state belongs. We refer to Shao [58] for the
basic elements of statistical decision theory.

An estimator (or decision rule) is just a function T : N ! �� (
) that associates an estimate T (i) to

each observation i. Denote by L (P;Q) the loss incurred in estimating P by Q. For each T 2 �� (
)N , the
state-contingent loss implied by the choice of decision rule T is fT : 
! R de�ned by

fT (!) = L (p!; T (� (!))) 8! 2 
: (15)

According to a common practice, denoting by T the set of available estimators, we assume that fT (!) �
�K > �1 for all T 2 T and ! 2 
, and that fT is bounded and measurable.
If the utility of loss ` is �`,26 the set of optimal estimators for a statistician who selects decision rules

according to (10) is

T � = arg sup
T2T

min
�2�(S(P))

(Z
S(P)

�Z



�fT (!) dP (!)
�
d� (P ) + 
 (�)

)

= arg inf
T2T

max
�2�(S(P))

(Z
S(P)

�Z



L (p!; T (� (!))) dP (!)

�
d� (P )� 
 (�)

)
:

But, for each P 2 S (P), L (P; T (� (�))) takes value L (P; T (i)) on Ai and hence it belongs to B0 (R);
moreover, by [22, Theorem 3.1], P (f! 2 
 : p! = Pg) = 1. Then,Z




L (p!; T (� (!))) dP (!) =

Z



L (P; T (� (!))) dP (!) 8P 2 S (P) (16)

23 In terms of behavioral assumptions this amounts to add Certainty Independence (see Gilboa and Schmeidler [34]).
24Recall that R (�k�) =

R
S(P)

d�
d�
log

�
d�
d�

�
d� if � is countably additive and absolutely continuous with respect to � and

R (�k�) =1 otherwise.
25 In terms of behavioral assumptions this amounts to add the assumptions of Theorem 6 (see [12]).
26Notice that our representation results can be extended from B0 (R) to the space of all bounded and measurable functions.
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and

T � = arg inf
T2T

max
�2�(S(P))

(Z
S(P)

�Z



L (P; T (� (!))) dP (!)

�
d� (P )� 
 (�)

)
:

Recalling that the risk of a decision rule T is de�ned by

RT (P ) =
X
i2N

L (P; T (i))P (f� = ig)

we conclude

T � = arg inf
T2T

max
�2�(S(P))

(Z
S(P)

RT (P ) d� (P )� 
 (�)
)
: (17)

This is a very general selection criterion of an optimal robust decision rule (see Berger [6, Section 3.2]). In

fact:

� the Bayes risk principle corresponds to 
 as de�ned in (12);

� the �-minimax principle corresponds to 
 as de�ned in (14);

� the classical (Waldean) minimax principle corresponds to 
 identically equal to 0;

� the �-minimax regret principle corresponds to the case in which 
 is the lower semicontinuous and
convex hull r�� of

r (�) =

8<: infT2T
R
S(P)RT (P ) d� (P ) � 2 �

1 � =2 �

under the (innocuous) normalization of L that guarantees inf�2� r (�) = 0.

In light of the last point, notice that an estimator T is said to be "-robust if and only if

max
�2�(S(P))

(Z
S(P)

RT (P ) d� (P )� r (�)
)
< "

that is, if the certain equivalent loss of fT (for the variational preferences with 
 = r��) is smaller than

". The interpretation is very compelling: an estimator is "-robust if the utility degradation induced by the

inability of exactly quantifying the prior is smaller than ".27

Summing up, Theorem 4 provides an axiomatic foundation of robust estimation procedures and suggests

a new general de�nition through (17).

Finally, recall that an estimator T1 is said to be as good as an estimator T2 if and only if RT1 (P ) � RT2 (P )

for all P 2 S (P), by (15) and (16) this is equivalent toZ



fT1dP %
Z



fT2dP 8P 2 S (P) :

By (9), it follows that Consistency requires that if T1 is as good as T2, then fT1 is preferred to fT2 (T1 is

chosen when T1 and T2 are available to the statistician).

27Notice that the normalization inf�2� r (�) = 0 amounts to set the utility of the optimal estimator at the most favourable
prior equal to 0.
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4.1.2 Uncertainty Averse Preferences

The robust representation discussed for variational preferences admits an extension that only relies on

Uncertainty Aversion, but requires a strengthening of the unboundedness assumption. The new requirement

is that there are arbitrarily good and arbitrarily bad outcomes. Formally:

Full Unboundedness: For all x � y in X there exist w; z 2 X that satisfy y � 1

2
x+

1

2
w and

1

2
y+

1

2
z � x:

In the representation this assumption implies that the utility function u : X ! R is onto (i.e., u (X) = R)
which again delivers the uniqueness of the representation.

In order to state the main result, we have to introduce some notions related to quasiconcave duality.

We de�ne L (R��(S (P))) to be the class of functions G : R��(S (P))! (�1;1] such that

� G is quasiconvex and lower semicontinuous;

� G (�; �) is increasing for all � 2 �(S (P));

� t = min�2�(S(P))G (t; �) for all t 2 R.

Given a function G 2 L (R��(S (P))), we say that G is linearly continuous if and only if the functional
I : B0 (R)! R de�ned by

I (') = min
�2�(S(P))

G

 Z
S(P)

�Z



' (!) dP (!)

�
d� (P ) ; �

!
8' 2 B0 (R)

is continuous.

Theorem 5 Let (
;F ;P) be a Dynkin space and let % be a binary relation on B0 (X). The following

conditions are equivalent:

(i) % satis�es the Basic Conditions, Consistency, Uncertainty Aversion, Risk Independence, and Full

Unboundedness;

(ii) there exist an onto a¢ ne function u : X ! R and a linearly continuous function G in L (R��(S (P)))
such that the functional de�ned by

V (f) = min
�2�(S(P))

G

 Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) ; �

!
8f 2 B0 (X) (18)

represents %.

Moreover,

1. u is cardinally unique and, given u, G is unique;

2. % satis�es Monotone Continuity if and only if

G (t; �) =1 8 (t; �) 62 R��� (S (P)) :

Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [12] show that the functionsG in L (R��(S (P)))
can be interpreted as games against Nature, thus Theorem 5 can be seen as providing the basis for a very

general maxmin approach to robust statistical decision theory.28 Moreover, in line with the results con-

tained in [12], it can be shown that G captures the comparative ambiguity/prior uncertainty attitudes of

the decision maker.
28As Huber and Ronchetti [42, p. 17] write �... as we de�ned robustness to mean insensitivity with regard to small deviations

from the assumptions, any quantitative measure of robustness must somehow be concerned with the maximum degradation of
performance possible for an "-deviation from the assumptions. An optimally robust procedure then minimizes this maximum
degradation and hence will be a minimax procedure of some kind.�
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4.2 Smooth Ambiguity Preferences

The structure of Dynkin space and the axiom of Consistency allow us to provide a possible axiomatic

foundation of the smooth ambiguity preference model proposed by Klibano¤, Marinacci, Mukerji [43].29 ;30

Theorem 6 Let (
;F ;P) be a Dynkin space and let % be a binary relation on B0 (X). The following

conditions are equivalent:

(i) % satis�es the Basic Conditions, Consistency, Risk Independence, Monotone Continuity, and its re-

striction to G-measurable acts satis�es P1-P6 of Savage [53];

(ii) there exist a nonconstant a¢ ne function u : X ! R, a strictly increasing and continuous function
� : u (X)! R, and a nonatomic � 2 �� (S (P)) such that the functional de�ned by

V (f) =

Z
S(P)

�

�Z



u (f (!)) dP (!)

�
d� (P ) 8f 2 B0 (X) (19)

represents %.

Moreover,

1. u is cardinally unique, � is unique, and, given u, � is cardinally unique;

2. � is concave if and only if % satis�es Uncertainty Aversion.

Notice that, in the perspective of this paper, standard expected utility (11) corresponds to the case in

which � is the identity. Thus, if we interpret
R


u (f (!)) dP (!) as the payo¤ associated by the decision

maker to act f if the pure model P is true, this means that he his neutral to model risk (that is the risk

involved by the fact that only the prior � over pure models is known to him). Theorem 6, corresponds to

a decision maker who, being able to form a single prior, is not neutral to model risk, but has an attitude

towards it that is captured by the curvature of � (as exempli�ed by point 2. of the statement).

Also, observe that in the original version of [43], the outer integral (w.r.t. �) in (19) is over the entire set

�� (
). The restriction to S (P) is natural given our interpretation of S (P) in terms of pure models and,
mathematically, corresponds to constraining the support of � in [43].

Moreover, notice that the choice of P1-P6 to obtain Savagian expected utility on G-measurable acts can
be replaced by any equivalent axiomatization (we opted for P1-P6 just for historical reasons and obviously

some of them are redundant given the Basic Conditions, e.g. P1 and P5). In particular, when P = �� (
)
as in Example 0, G = F and second order expected utility preferences as in Neilson [49] and Grant, Polak,

and Strzalecki [30] are obtained.

4.3 Choquet Expected Utility Preferences

We now turn our attention to Schmeidler�s Choquet expected utility: the �rst behavioral model that ad-

dressed Ellsberg�s critique.

Recall that two acts f and g are said to be comonotonic if and only if f (!) � f (�) and g (�) � g (!) for

no !; � 2 
.

Comonotonic Independence: If f; g; h 2 B0 (X) are pairwise comonotonic and � 2 (0; 1), then

f � g ) �f + (1� �)h � �g + (1� �)h. (20)

29Related models have been proposed by Nau [47], Chew and Sagi [16], Ergin and Gul [28], and Seo [56].
30Notice that our environment is richer than the original one given the presence of the set P in the primitives.
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Theorem 7 Let (
;F ;P) be a Dynkin space and let % be a binary relation on B0 (X). The following

conditions are equivalent:

(i) % satis�es the Basic Conditions, Consistency, and Comonotonic Independence on G-measurable acts;

(ii) there exist a nonconstant a¢ ne function u : X ! R and a capacity � on AS(P) such that the functional
de�ned by

V (f) =

Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) 8f 2 B0 (X) (21)

represents %.

Moreover,

1. u is cardinally unique and � is unique;

2. � is convex if and only if % satis�es Uncertainty Aversion;

3. � is continuous if and only if % satis�es Monotone Continuity.

Here prior uncertainty is captured by the lack of additivity of the �prior�capacity, exactly like in Shafer

[57]. A weakening of the axioms allows to obtain a more general representation where model-contingent

payo¤s
R


u (f (!)) dP (!) are weighted by a function � as in Theorem 6.31

As discussed in Section 6, Choquet integrals over sets of probability measures have been studied also by

Giraud [35] and Amarante [3], and the perspective of the latter is similar to ours.

4.4 Bewley Expected Utility Preferences

In this section, we consider another classical model of ambiguity, which was proposed by Bewley in the same

years in which Schmeidler was re�ning Choquet expected utility.

The main di¤erence with the rest of the paper is that in Bewley�s view ambiguity can be seen as a

source of incompleteness of the preference %. In terms of behavior, this can be revealed by the decision of
postponing the choice between some pairs of alternatives (which are thus incomparable, due to lack or poor

quality of information).32 In robust statistics this is the Doogian �black box�approach as vividly described

by Berger [7, Section 2].

For sake of brevity, in this section, we will say that % satis�es the Weak Basic Conditions if and only if
it satis�es the Basic Conditions where the assumption of completeness on B0 (X) is replaced by the weaker

assumption of completeness on X. Moreover, we will say that it satis�es Binary Monotone Continuity if and

only if it satis�es Monotone Continuity when f and g are constant acts. At the same time, Risk Independence

is replaced by the full blown independence axiom.

Independence: If f; g; h 2 B0 (X) and � 2 (0; 1), then

f % g , �f + (1� �)h % �g + (1� �)h:

Theorem 8 Let (
;F ;P) be a Dynkin space and let % be a binary relation on B0 (X). The following

conditions are equivalent:

31This is actually one of the objects of the authors�current research.
32See, for example, Danan and Ziegelmeyer [17] and Kopylov [45].
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(i) % satis�es the Weak Basic Conditions, Consistency, Independence, and Binary Monotone Continuity;

(ii) there exist a nonconstant a¢ ne function u : X ! R and a nonempty, compact, and convex set � of

�� (S (P)) such that for each f and g in B0 (X)

f % g ,
Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) �

Z
S(P)

�Z



u (g (!)) dP (!)

�
d� (P ) (22)

for all � 2 �.

Moreover, u is cardinally unique and � is unique.

We are in the purest multiple priors setting, the one in which the incompleteness of information generates

incompleteness of the preference, which in turn is re�ected by the impossibility of pinning down a single

prior probability on S (P).

5 Consistency and Unambiguous Symmetry

The role of Consistency is to connect (probabilistic) information and choice behavior. In some special cases,

information naturally comes in the form of symmetry/similarity considerations about the state space, and

Consistency follows from the recognition of the implied patterns.33 In this case, it is natural to consider

a standard Borel G-space as in Example 2 and the revealed unambiguous preference %� introduced by
Ghirardato, Maccheroni, Marinacci [29], that is,

f %� g , �f + (1� �)h % �g + (1� �)h 8� 2 [0; 1] ;8h 2 B0 (X) :

It is immediate to see that %� is derived from the primitive %. Speci�cally, it is the part of % which is not
a¤ected by hedging considerations.

The subjective recognition on part of the decision maker of the symmetry of 
 with respect to the action

of a group G is modelled by the next axiom.

Unambiguous Symmetry: If f 2 B0 (X) and � 2 G, then f � � �� f .

We are ready to state the last result of the paper.

Proposition 9 Let ((
;F) ; (G; �) ; a) be a standard Borel G-space, P be the set of invariant probability

measures, and % be a binary relation on B0 (X). If % satis�es the Basic Conditions, Risk Independence,

and %� satis�es Binary Monotone Continuity, then the following statements are equivalent:

(i) % satis�es Consistency;

(ii) % satis�es Monotonicity and Unambiguous Symmetry.

In other words, in this particular setup, Consistency incorporates subjective similarity assessments into

the preferences.

6 Related Literature

Our interest in the topic of this paper was inspired by Epstein and Seo [25] and De Castro and Al-Najjar

[18], while our perspective is closer to Amarante [3] and, to some extent, to Giraud [35]. At the same time,

the independent work of Klibano¤, Mukerji, and Seo [44] shares some of our insights. For this reason, next

we discuss these works.
33See the discussion of Epstein and Seo [25], De Castro and Al-Najjar [18], and Klibano¤, Mukerji, and Seo [44] in Section 6.
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Amarante Our Choquet expected utility representation is similar to the one of Amarante [3] who considers

preferences over acts that satisfy the assumptions of Ghirardato, Maccheroni, and Marinacci [29]. He shows

that these preferences admit a representation as in (21) with S (P) replaced by the set C of probabilities
representing the revealed unambiguous preference %� of the decision maker. Thus Amarante interprets the
preferences of [29] as robust Bayesian in a fully subjective way.

On the conceptual side, our view allows for probabilistic information, so that in general C is included in
the closed convex hull of P (see the discussion in [32]), and thus the elements of C are in general mixture
models rather than pure models. The technical downside of this fact is that uniqueness of the representation

(that is, of the prior capacity �) is irremediably lost. However, the special case in which (
;F ; C) is a Dynkin
space (see Rumbos [52]) presents the natural compromise between Amarante�s perspective and ours. In this

instance, representation (21) becomes

V (f) =

Z
S(C)

�Z



u (f (!)) dP (!)

�
d� (P ) 8f 2 B0 (X) :

That is, a unique nonadditive prior over purely subjective (pure) models is obtained.34 Relatedly, in Giraud

[35], pairs of acts and hypothetical information are compared and the representation

(f;P) % (g;Q) ,
Z
P

�Z



u (f (!)) dP (!)

�
d�P (P ) �

Z
Q

�Z



u (g (!)) dQ (!)

�
d�Q (Q)

is obtained. The fact of allowing objective information is what makes this paper close to ours. On the other

hand, the preference setting is quite di¤erent in that Giraud considers preferences on B0 (X) � P0, where
P0 is the class of all �nite sets of (nonatomic) probability measures on 
.

Epstein and Seo In [25], the framework is the exchangeable one discussed in Example 2. In this frame-

work, their Theorem 3.2 corresponds to the maxmin special case of our variational representation (10). This

result is obtained under strong exchangeability which is slightly weaker than our Unambiguous Symmetry

(see Section 7 of [44]).

Their Theorem 5.2, and especially its version for belief functions, developed in Epstein and Seo [26] as

Theorem 4.1, is almost perfectly complementary to our Theorem 7. In fact, they obtain

� (A) =

Z
Bel(S)

�1 (A) d� (�)

that is, the belief function � on 
 = S � S � ::: is an additive average (� is a probability measure) of i.i.d.

belief functions �1, while (in the exchangeable framework for belief functions) our Theorem 7 delivers

� (A) =

Z
��(S)

�1 (A) d� (�)

that is, the belief function � on 
 = S � S � ::: is a nonadditive average (� is a belief function) of i.i.d.

probability measures �1. In other words, their agent perceives experiments as being indistinguishable (but

not necessarily identical) and is neutral to prior uncertainty, our agent thinks the experiments are identical,

but she is averse to prior uncertainty. In light of their �ndings, the intersection of the two representations

is the celebrated de Finetti Theorem, corresponding to the case in which � is an exchangeable probability.

Interestingly, Section 6 of [26] considers the prediction counterpart of our Section 4.1.1 when robustness

about likelihoods, rather than priors, is considered.

Finally, the recent Epstein and Seo [27] completes the picture by taking an approach which allows

robustness of prior and likelihood together: admitting, in the belief function version, a (prior) belief function

� on (likelihood) belief functions �.

34We thank an anonymous referee for suggesting this view on our model.
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De Castro and Al-Najjar Here, we discuss the relation of our work with De Castro and Al-Najjar [18]

and the more recent Al-Najjar and De Castro [2]. We �rst introduce their contributions and then describe

the relationship with the present paper.

In De Castro and Al-Najjar [18] the framework is again a special case of the standard Borel G-space

setting discussed in Example 2.35 Like in [25], the transformations in G are interpreted as capturing similarity

patterns.

In [18] they show that, denoting by fP�g�2� the set of all ergodic measures, there exists a parameterization
# : 
! � of the state space such that for each (subjectively rational) preference % satisfying

f � f � �1 + :::+ f � �n
n

for all f 2 B0 (X) ; n 2 N; �1; ::; �n 2 G (23)

then

f % g if and only if
Z



fdP# %
Z



gdP# (24)

for all acts f and g. That is, recognition of similarity �as captured by (23) �allows to reduce the complexity

of comparisons. In fact, while f and g are F-measurable acts,
R


fdP# and

R


gdP# are acts measurable

with respect to the invariant �-algebra. �... In words, the integrals with respect to the parameters [the r.h.s.

of Equation (24)] are su¢ cient summary of how % ranks all acts ...�as they write in [2]. Building on this

result, in the exchangeable framework, [18] obtain Bewley expected utility preferences with an underlying

set C consisting of exchangeable probabilities (hence mixtures of i.i.d. models).

In the second part of the subsequent [2],36 they assume that there exists a parameterization # : 
 ! �

of the state space such that (24) holds. This assumption allows to relate the original preference % on

state-based acts h : ! 7! h (!) with a derived relation %0, that they call aggregator, on the corresponding
parameter-based acts H : � 7!

R


hdP#(#�1(�)) =

R


hdP� by setting

F %0 G def()
Z



fdP# %
Z



gdP# (25)

for all acts f and g. De�nition (25) together with (24), which is now considered to be an axiom that the

preference % must satisfy, allows them to obtain a parametric version of uncertainty averse preferences à

la Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [12] and a parametric version of second order

subjective expected utility à la Neilson [49] and Strzalecki [59], by making the corresponding assumptions

on the aggregator %0.

Two observations clarify the structural relationship and the main di¤erences between the results in De

Castro and Al-Najjar [18] and ours. First, denoting by P the set of all invariant probability measures of a

standard Borel G-space, the triple (
;F ;P) is a Dynkin space and S (P) coincides with the set fP�g�2� of
all ergodic measures (see Example 2). Second, using (24), it can be shown that, in the exchangeable and in

the shift frameworks, the Invariance axiom (23) implies our Consistency axiom (7).

Looking at the relationship between representations, their foundation of Bewley expected utility with an

underlying set C consisting of exchangeable probabilities is a special case of our Theorem 8.

Di¤erently from [18], where (24) follows from the Invariance axiom (23), in the second part of [2], the

existence of a parameterization # : 
! � is assumed, and especially the Parameterizability condition (24)

becomes the crucial axiom that the preference % must satisfy. This observation is important to understand
the two main di¤erences between Al-Najjar and De Castro [2] and the present paper.

35Speci�cally the exchangeable and the shift frameworks discussed at the end of the example.
36The �rst part subsumes [18] and generalizes its results.
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First, as a behavioral condition, Consistency (7) can be shown to be weaker than Parameterizability

(24), and it may be argued to be more compelling.37 This implies that falsifying Consistency is easier than

falsifying Parameterizability. Speci�cally, falsifying our (7) consists in checking whether the relation

f <P g
def()

Z



fdP %
Z



gdP for all P 2 P (26)

is a subrelation of the subjectively rational preference %; that is, checking whether f <P g implies f % g.

On the other hand, falsifying their (24) consists checking whether the relation

f <# g def()
Z



fdP# %
Z



gdP# (27)

coincides with the subjectively rational preference %; that is, checking whether f <# g is equivalent to

f % g. In this respect, notice that, while the integrals
R


fdP and

R


gdP in (26) are just elements of X,

the integrals
R


fdP# and

R


gdP# in (27) are acts, ! 7!

R


fdP#(!) and ! 7!

R


gdP#(!) for all ! 2 
.

The other implication of the di¤erent strength of Consistency and Parameterizability is that the derivation

of our representation results becomes more delicate and the proofs highly nontrivial.

Second, although some of the functional forms we study are also studied by [2], the key conceptual and

formal di¤erences lie in the kind of axiomatic foundations provided. Consider, for example, our general

uncertainty aversion case

V (f) = min
�2�(S(P))

G

 Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) ; �

!
(28)

and the corresponding

V (f) = min
�2�(�)

G

�Z
�

�Z



u (f (!)) dP� (!)

�
d� (�) ; �

�
(29)

of [2].

The purpose of our paper is to show how general classes of preferences under ambiguity � like the

uncertainty averse ones � admit an equivalent and unique representation in terms of prior uncertainty �

like (28). In the example, the goal of our exercise consists in providing an axiomatic foundation to (28) by

making the weakest possible assumptions on the primitive preference % on B0 (X).
In [2], the approach is the opposite. For Al-Najjar and De Castro it is �more convenient to introduce

assumptions regarding how the decision maker treats parameter-uncertainty directly on acts de�ned in

terms of parameters.�These acts are functions from the parameter space � to the consequence set X. In

this perspective, they start from prior uncertainty (parameter-uncertainty to be precise) and �construct

a preference on the underlying state space.� For example, in the uncertainty aversion case, they directly

assume the axioms of Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [12] on the relation %0
between parameter-based acts. These axioms deliver a representation V of %0 of the form

V (F ) = min
�2�(�)

G

�Z
�

u (F (�)) d� (�) ; �

�
which translates into representation (29) of % by means of the very de�nition (25) of %0 and Parameteriz-
ability. As explained above, our approach is conceptually opposite (and technically very di¤erent).

37 Indeed also the primitives (the data) are di¤erent: a set P of objectively rational beliefs, in our case, a parameterization #,
in theirs.

21



Klibano¤, Mukerji, and Seo In [44], they maintain the exchangeable framework of Epstein and Seo [25].

Their objective is to obtain a behavioral de�nition of relevant (i.i.d.) models and to study their properties.

In so doing, they characterize preferences that admit a representation of the form

V (f) = V
��Z




u (f) d�1
�
�2�

�
where � is the relevant family of measures on �� (S). Their derivation relies on a symmetry condition that

they show to be equivalent to our Unambiguous Symmetry in the exchangeable case. Finally, under additional

behavioral assumptions, they characterize the case in which V describes the �-maxmin expected utility model
and the one in which V describes the smooth ambiguity preference model. The latter characterization is the
counterpart in their setting of our Theorem 6.

This paper From an objective rationality point of view, all of the above papers (with the exception of

Giraud [35]) restrict the agent�s probabilistic reasoning to symmetry considerations (re�ected by the standard

Borel G-space structure). In this paper, any kind of information that can be captured by a Dynkin space

(
;F ;P) can be consistently included in the decision process. For example, this allows to easily include
Ellsberg urns as shown by Example 1. Beyond the relevance in the ambiguity literature of Ellsberg type

paradoxes, urn settings are important since they allow to design experiments that make our Consistency

axiom easily testable (the �rst experiment of this kind appears in Eliaz and Ortoleva [23]).

A Common Regular Conditional Probabilities

In this section, we consider (
;F), a measurable space, and G a sub-�-�eld of F . As usual, �� (
;F) is the
set of all probability measures on F . We denote by B (
) the set of all bounded functions from 
 to R and
by B (
;F) the set of all bounded and F-measurable functions. Both spaces are endowed with the supnorm.
Given an element P 2 �� (
;F), we denote by L1 (
;F ; P ) the set of all F-measurable and P -integrable
functions from 
 to R. Finally, if P 2 �� (
;F) then we denote by PG the restriction of P to G. Notice
that PG 2 �� (
;G).
Let P be an element of �� (
;F), G a sub-�-�eld of F , and f an element of L1 (
;F ; P ). By [9, Ch. 6],

there exists g 2 L1 (
;G; PG) such thatZ
G

fdP =

Z
G

gdPG 8G 2 G:

Any such g is called a version of the conditional expected value of f given G. The set of all these functions
g is denoted by EP [f jG]. EP [f jG] forms an equivalence class of L1 (
;G; PG) with respect to the PG-a.s.
equality. If f = 1A for some A 2 F then EP [f jG] is denoted by P [AjG] and any of its elements is called a
version of the conditional probability of A given G.

De�nition 10 Let P be an element of �� (
;F) and G a sub-�-�eld of F . A regular conditional probability
(r.c.p.) for P given G is a function p : F � 
! [0; 1] such that

� for each A 2 F , p (A; �) : 
 ! [0; 1] is a version of the conditional probability of A given G (that is,
p (A; �) 2 P [AjG]);

� for each ! 2 
, p (�; !) : F ! [0; 1] is a probability measure (that is, p! = p (�; !) 2 �� (
;F)).

The measurable space (
;F) is a standard Borel space if and only if it is isomorphic to a measurable
space (I;Borel (I)) for some Borel set I of a Polish space. That is, there exists a bimeasurable bijection
' : (
;F)! (I;Borel (I)).
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Theorem 11 ([37, Ch. 6]) Let P be an element of �� (
;F) and G a sub-�-�eld of F . If (
;F) is a
standard Borel space then there exists a regular conditional probability for P given G.

Theorem 12 Let (
;F) be a standard Borel space and G a sub-�-�eld of F . The following statements are
equivalent for P � �� (
;F):

(i)
T
P2P EP [f jG] 6= ; for all f 2 B (
;F).

(ii)
T
P2P P [AjG] 6= ; for all A 2 F .

(iii) The elements of P admit a common regular conditional probability given G.

In this case, if p and p0 are two common regular conditional probabilities for P given G then

p (�; !) = p0 (�; !) P-a.s.,

that is, f! 2 
 : p (�; !) = p0 (�; !)g 2 G and P (f! 2 
 : p (�; !) = p0 (�; !)g) = 1 for all P 2 P.

Proof. Clearly, (i) implies (ii).

(ii) implies (iii). We proceed by steps.

Step 1: For each A 2 F and for each gA 2
T
P2P P [AjG] we have that (gA _ 0) ^ 1 2

T
P2P P [AjG].

Proof of the Step.

For each A 2 F let gA be an element of
T
P2P P [AjG]. It follows that g

+
A 2

T
P2P P [AjG]. Indeed, for

each P 2 P we have that Z
G

gAdPG = P (A \G) � 0 8G 2 G:

Thus, we have that PG (f! 2 
 : gA (!) < 0g) = 0 and gA = g+A PG-a.s., that is P -a.s., hence gA _ 0 = g+A 2
P [AjG]. Without loss of generality, we can assume that gA (!) � 0 for all ! 2 
. Next, we show that

gA ^ 1 2
T
P2P P [AjG]. Indeed, for each P 2 PZ

G

gAdPG = P (A \G) � P (G) =

Z
G

1
dPG 8G 2 G:

Thus, we have that PG (f! 2 
 : gA (!) > 1g) = 0 and gA = gA ^ 1 PG-a.s., that is P -a.s., hence gA ^ 1 2
P [AjG]. �
In light of Step 1, for each A 2 F �x an element ĝA 2

T
P2P P [AjG] such that ĝA (!) 2 [0; 1] for all

! 2 
. Given ĝ; 2
T
P2P P [;jG] and ĝ
 2

T
P2P P [
jG], de�ne N0 = f! 2 
 : ĝ; (!) 6= 0g and N1 =

f! 2 
 : ĝ
 (!) 6= 1g.
Step 2: Given i 2 f0; 1g, we have that P (Ni) = 0 for all P 2 P.
Proof of the Step.

By the choice of ĝ; and ĝ
, we have that 1
 � ĝ
; ĝ; � 0. Since ĝ; 2 P [;jG] = EP [0jG] for all P 2 P,
we have that Z

G

ĝ;dPG = 0 8G 2 G.

This implies that ĝ; = 0 PG-a.s., that is P -a.s., for all P 2 P. It follows that P (N0) = 0 for all P 2 P.
Since ĝ
 2 P [
jG] = EP [1
jG] for all P 2 P, we have thatZ

G

ĝ
dPG = 1 8G 2 G.

This implies that ĝ
 = 1 PG-a.s., that is P -a.s., for all P 2 P. It follows that P (N1) = 0 for all P 2 P. �
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By [37, Corollary 3.4 and Theorem 4.3] and since (
;F) is a standard Borel space, there exists an at
most countable �eld A generating F such that every �nitely additive probability on A extends (uniquely)

to a probability measure on F . Since A�A is at most countable, let f(An; Bn)g1n=2 be the collection of all
disjoint pairs of elements of A and set

Nn = f! 2 
 : ĝAn[Bn
(!) 6= ĝAn

(!) + ĝBn
(!)g 8n � 2:

Step 3: P (Nn) = 0 for all P 2 P and for all n � 2.
Proof of the Step.

By contradiction, assume that there exists a P 2 P and n � 2 such that P (Nn) > 0. Since ĝAn[Bn 2
P [An [BnjG], for each G 2 G we have thatZ

G

ĝAn[Bn
dPG = P ((An [Bn) \G) = P ((An \G) [ (Bn \G))

= P (An \G) + P (Bn \G) =
Z
G

ĝAn
dPG +

Z
G

ĝBn
dPG

=

Z
G

(ĝAn + ĝBn) dPG ;

which implies that ĝAn
+ ĝBn

2 P [An [BnjG]. Thus, we have that ĝAn
+ ĝBn

= ĝAn[Bn
PG-a.s., that is

P -a.s., which contradicts P (Nn) > 0. �
Let U = (

S1
n=0Nn)

c. By Step 2 and Step 3, it follows that U 2 G and P (U) = 1 for all P 2 P. Moreover,
we have that for each ! 2 U :

ĝA (!) 2 [0; 1] 8A 2 A;
ĝ; (!) = 0;

ĝ
 (!) = 1;

ĝA[B (!) = ĝA (!) + ĝB (!) 8A;B 2 A such that A \B = ;.

That is, for each ! 2 U the mapping A 7! ĝA (!) is a �nitely additive probability measure on A. Let Q be

a �xed element of P and set for each A 2 A and ! 2 


~g (A;!) =

(
ĝA (!) if ! 2 U
Q (A) if ! 2 U c

:

For all P 2 P, ~g : A� 
! [0; 1] is a function such that:

- for each A 2 A, ~g (A; �) is G-measurable and ~g (A; �) = gA (�) PG-a.s., that is, ~g (A; �) 2 P [AjG];

- for each ! 2 
, ~g (�; !) : A ! [0; 1] is a �nitely additive probability measure on A.

For each ! 2 
 denote by ĝ (�; !) the unique probability measure that extends ~g (�; !) from A to F .
Step 4: The mapping (A;!) 7! ĝ (A;!) is a regular conditional probability for all P 2 P given G.
Proof of the Step.

Since F is a standard Borel Space and by [37, Corollary 3.4 and Theorem 4.3], ĝ is well de�ned.38 Let

M = fA 2 F : ĝ (A; �) 2 P [AjG]g. By construction, notice that:

- for each A 2 A, ĝ (A;!) = ~g (A;!) for all ! 2 
 and ĝ (A; �) = ~g (A; �) 2 P [AjG];
38Since (
;F) is standard, ~g (�; !) is a countably additive probability measure on A for each ! 2 
. By the Caratheodory

theorem (see, e.g., [9, Theorem 3.3 and Theorem 11.2]), it extends uniquely to F =� (A).
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- for each ! 2 
, ĝ (�; !) : F ! [0; 1] is a probability measure on F .

This implies that A �M. Consider fAngn2N �M and An % A (resp., &). Since F is a �-algebra and

ĝ (�; !) is a measure for all ! 2 
, we have that A 2 F and ĝ (An; !)% ĝ (A;!) (resp., &) for all ! 2 
. It
follows that ĝ (An; �)% ĝ (A; �) (resp., &). Since ĝ is bounded, we thus obtain that ĝ (A; �) 2 L1 (
;G; PG).
By the Monotone Convergence Theorem, we conclude that for each G 2 G,Z

G

ĝ (A; �) dPG = lim
n!1

Z
G

ĝ (An; �) dPG = lim
n!1

P (An \G) = P (A \G) :

That is, we obtain that ĝ (A; �) 2 P [AjG]. By the Monotone Class Lemma (see, e.g., [9, Theorem 3.4]) and

sinceM is a monotone class containing A, it follows thatM� � (A) = F . �
Step 4 proves the implication.

(iii) implies (i). Let p : F � 
! [0; 1] be a common regular conditional probability for all the elements

P of P given G. Then, for each P 2 P we have that:

- for each A 2 F , p (A; �) 2 P [AjG];

- for each ! 2 
, p! 2 �� (
;F).

De�ne
? : B (
;F) ! B (
;G)

f 7! f?

where f? (!) =
R


fdp! for all ! 2 
 and for all f 2 B (
;F). In the rest of the proof, we prove that such

a mapping is well de�ned, linear, (Lipschitz) continuous, and such that f? 2 EP [f jG] for all f 2 B (
;F)
and for all P 2 P .
Claim: The mapping ? : B (
;F)! B (
) is linear and continuous.

Proof of the Claim.

We �rst observe that the mapping ? : B (
;F)! B (
) is well de�ned and linear. Indeed,

jf? (!)j =
����Z



fdp!
���� � kfk 8! 2 
:

Moreover, for each �; � 2 R and for each f; g 2 B (
;F), we have that �f + �g 2 B (
;F) and

(�f + �g)
?
(!) =

Z



(�f + �g) dp! = �

Z



fdp! + �

Z



gdp! = �f? (!) + �g? (!) 8! 2 
;

that is, (�f + �g)? = �f? + �g?. Second, if ffngn2N � B (
;F) and f 2 B (
;F) are such that fn ! f

(where the convergence is uniform) then

jf? (!)� f?n (!)j =
����Z



fdp! �
Z



fndp
!

���� � kfn � fk 8! 2 
:

It follows that f?n ! f?, proving that ? : B (
;F)! B (
) is Lipschitz continuous. �
Fix P 2 P. We next show that f? 2 EP [f jG] for all f 2 B (
;F). Let V = ff 2 B (
;F) : f? 2 EP [f jG]g.

Since the mapping ? : B (
;F)! B (
) is linear, if f; g 2 V and �; � 2 R then

(�f + �g)
?
= �f? + �g? 2 �EP [f jG] + �EP [gjG] � EP [�f + �gjG] :

This implies that V is a vector subspace of B (
;F). Similarly, since ? : B (
;F)! B (
) is continuous, if

ffngn2N � V and fn ! f then ff?ngn2N � B (
;G) converges to f?. It follows that f? 2 B (
;G) and thatZ
G

f?dP = lim
n

Z
G

f?ndP = lim
n

Z
G

fndP =

Z
G

fdP 8G 2 G:
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This implies that f? 2 EP [f jG] and that V is closed. Finally, observe that if A 2 F and f = 1A then for

each ! 2 

f? (!) = (1A)

?
(!) =

Z



1Adp
! = p (A;!) ;

that is, f? = p (A; �) 2 P [AjG] = EP [1AjG]. We can conclude that V contains all the indicator functions of

elements of F . Since V is a vector subspace of B (
;F), this implies that B0 (
;F) � V � B (
;F). Since
V is closed, it follows that V = B (
;F).
Since P in P was arbitrarily chosen, it follows that f? 2

T
P2P EP [f jG] for all f 2 B (
;F). Moreover,

notice that ? : B (
;F)! B (
) is a linear and (Lipschitz) continuous operator and we can restrict its target

space to B (
;G).

Finally, we prove P-a.s. uniqueness of the common regular conditional probability for P given G. Since
(
;F) is a standard Borel space there exists an at most countable algebra, A = fAngn2N,39 generating F .
Let p and p0 be two common regular conditional probabilities for P given G. Fix P 2 P. By assumption,
for each n 2 N we have that p (An; �) and p0 (An; �) are elements of P [AnjG]. It follows that

Un = f! 2 
 : p (An; !) = p0 (An; !)g 2 G and P (Un) = 1:

This implies that U =
T
n2N Un 2 G and P (U) = 1. We can conclude that

U = f! 2 
 : p (An; !) = p0 (An; !) ; 8n 2 Ng
= f! 2 
 : p (A;!) = p0 (A;!) ; 8A 2 Ag

=
n
! 2 
 : p (�; !)jA = p0 (�; !)jA

o
= f! 2 
 : p (�; !) = p0 (�; !)g

where the last equality follows by Dynkin lemma (see, e.g., [9, Theorem 3.3]) given that F = � (A). The
proof is complete since P in P was arbitrarily chosen. �

Remark 13 Notice that:

� The implications (i) implies (ii) and (iii) implies (i) hold for any measurable space. The standardness
assumption is used only in proving (ii) implies (iii). On the other hand, the uniqueness part of the

statement just requires that F is countably generated.

� Under (iii), the operator ? : B (
;F)! B (
;G), de�ned for each f 2 B (
;F) by

f? (!) =

Z



fdp! 8! 2 
;

is well de�ned, linear, continuous, and such that:

- (1A)
?
= p (A; �) 2

T
P2P P [AjG] for all A 2 F ;

- f? 2
T
P2P EP [f jG] for all f 2 B (
;F).

� For a singleton set P = fPg, point (i) of Theorem 12 is trivially satis�ed. Thus, Theorem 12 yields

Theorem 11 as a corollary. Moreover, the proof of (iii) implies (i) shows that if p is a regular conditional

probability for P given G then for each f 2 B (
;F) the function f?, de�ned by

f? (!) =

Z



fdp! 8! 2 
;

is a version of the conditional expected value of f given G. Theorem 12 also shows P -a.s. uniqueness

of the regular conditional probability for P given G.
39 In particular, A is a �-class.
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B Dynkin Spaces

In this section, we maintain the notation and terminology introduced in the previous one. We denote by

ba (
;F) the space of bounded and �nitely additive set functions from F to R. We consider ba (
;F)
endowed with the weak* sigma algebra,

Aba(
;F) = � (hf; �i : f 2 B (
;F)) ;

and each of its subsets with the induced sigma algebra. It is well known that ba (
;F) is isometrically
isomorphic to the norm dual, B (
;F)�, of B (
;F). We endow ba (
;F) with the weak* topology and each
of its subsets with the relative (weak*) topology.

Fact 1 Let (
;F) be a measurable space. Aba(
;F) = � (h1A; �i : A 2 F) and for each C � ba (
;F)

AC = Aba(
;F) \ C = �
�
hf; �ijC : f 2 B (
;F)

�
= �

�
h1A; �ijC : A 2 F

�
:

If C is a norm bounded subset of ba (
;F) and � is a �nitely additive probability on C, that is on AC ,
then the barycenter �� of � is the functional de�ned for each f 2 B (
;F) by

�� (f) =

Z
C
hf;mi d� (m) :

Notice that �� is well de�ned. Indeed, since C is norm bounded, the mapping m 7! hf;mi is bounded and
AC measurable. Moreover, let us de�ne ~� : F ! R to be such that ~� (A) = �� (1A) for all A 2 F . Then, we
have the following

Fact 2 Let (
;F) be a measurable space, C a norm bounded subset of ba (
;F), and � : AC ! [0; 1] a �nitely

additive probability. Then, ~� 2 ba (
;F) and �� 2 B (
;F)�. Moreover, we have thatZ
C
hf;mi d� (m) = �� (f) =

Z



fd~� 8f 2 B (
;F) :

For this reason, we will just, equivalently, say that ~� is the barycenter of � and we will denote it by ��. By

the Hahn-Banach Theorem, �� always belongs to the closed convex hull of C in ba (
;F).40 Conversely, the
closed convex hull of C consists exactly of all barycenters of all �nitely additive probabilities on C. Indeed, if
m 2 co� (C) then there exists a net fm�g�2A of convex combinations of elements of C that converges to m.
That is, there exists a net f��g�2A of simple probability measures on C such that f���g�2A converges to m
and ��� = m� for all � 2 A. Since the set of �nitely additive probabilities on C is a compact set, it follows
that there exists a subnet

�
���

	
�2B of f��g�2A which converges to �. It is immediate to check that �� = m.

As a consequence of the Monotone Convergence Theorem, we have the following fact:

Fact 3 If P � �� (
;F) and � 2 �� (P;AP) then �� 2 �� (
;F).

De�nition 14 A subset P of �� (
;F) is measure convex if and only if �� 2 P for all � 2 �� (P;AP).

Measure convex subsets of �� (
;F) are convex.41 Conversely, by the Hahn-Banach Theorem, compact
convex subsets of �� (
;F) are measure convex. On the other hand, �� (
;F) is measure convex without
40 If �� =2 co� (C) then there would exist f 2 B (
;F), � 2 R, and " > 0 such that hf; ��i � � < � + " � hf;m0i for all

m0 2 co� (C). This would imply that hf; ��i =
R
C hf;mi d� (m) � �+ " > hf; ��i, a contradiction.

41 In fact, for each P1; P2 2 P and each � 2 [0; 1],�
��P1 + (1� �) �P2

�
(A) =

Z
P
h1A; �i d

�
��P1 + (1� �) �P2

�
= �

Z
P
h1A; �i d�P1 + (1� �)

Z
P
h1A; �i d�P2

= �P1 (A) + (1� �)P2 (A) 8A 2 F :
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being necessarily compact. Finally, the intersection of measure convex sets is measure convex. These last

two facts allow to naturally de�ne the measure convex hull mco (P) of any P � �� (
;F), that is, mco (P)
is the intersection of all measure convex subsets of �� (
;F) that further contain P. From the previous

discussion, it follows that

co (P) � mco (P) � co� (P) \�� (
;F) :

De�nition 15 Let P � �� (
;F). An element P of P is:

1. an extreme point of P if and only if for each P 0; P 00 2 P and � 2 (0; 1) such that P = �P 0+(1� �)P 00

we have that P 0 = P = P 00. E = E (P) denotes the set of all extreme points of P;

2. a strong extreme point of P if and only if the only probability measure � on P such that P is the

barycenter of � is �P . S = S (P) denotes the set of all strong extreme points of P.

Clearly, strong extreme points are extreme points. The two notions coincide when P is measure convex
and (
;F ;P) is a Dynkin space. We here recall the de�nition of Dynkin space.

De�nition 16 (Dynkin, 1978) Let P be a nonempty subset of �� (
;F) where (
;F) is a separable
measurable space. (
;F ; P ) is a Dynkin space if and only if there exists a sub-�-algebra G � F , a set
W 2 F , and a function

p : F � 
 ! [0; 1]

(A;!) 7! p (A;!)

such that:

(a) for each P 2 P and A 2 F , p (A; �) : 
! [0; 1] is a version of the conditional probability of A given G;

(b) for each ! 2 
, p (�; !) : F ! [0; 1] is a probability measure;

(c) P (W ) = 1 for all P 2 P and p (�; !) 2 P for all ! 2W .

Given P � �� (
;F) and a sub-�-algebra G � F , we denote

�� (
;G;P) = fQ 2 �� (
;G) : Q (B) = 0 if P (B) = 0 for all P 2 Pg :

Theorem 17 ([22, Theorem 3.1]) Let (
;F ;P) be a Dynkin space. Then:

1. S (P) = fP 2 P : P (G) = f0; 1gg.

2. S (P) is measurable, that is, S (P) 2 AP .

3. For each P 2 P there exists a unique measure �P concentrated on S (P) such that P = ��P .

4. If P is measure convex then the restriction map P 7! PG from P to �� (
;G;P) is a¢ ne, bijective,
and S (P) = E (P).

If p is a common regular conditional probability for P given G then

�P (�) = P (f! 2 
 : p! 2 �g) ; (30)

for all � 2 AP . Moreover,

S (P) = fP 2 P : P (f! 2 
 : p! = Pg) = 1g ; (31)

particularly, S (P) is a subset of fp!g!2
.
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We next present a characterization of the measure convex hull of a set P. Before proving it, we present
some ancillary notions and facts.

Proposition 18 Let (
;F ;P) be a Dynkin space. Then:

mco (P) =
�Z




p (�; !) dQ (!) : Q 2 �� (
;G;P)
�

= fR 2 �� (
;F ;P) : p is a r.c.p. given G for Rg
=
�
��QW : Q 2 �� (
;G;P)

	
=
�
�� : � 2 ��

�
S (P) ;AS(P)

�	
= f�� : � 2 �� (P;AP)g :

Moreover,

1. The restriction map R 7! RG from mco (P) to �� (
;G;P) is an a¢ ne bijection. The inverse image
of Q 2 �� (
;G;P) is ��QW .

2. The map Q 7! �QW from �� (
;G;P) to ��
�
S (P) ;AS(P)

�
is an a¢ ne bijection. The inverse image

of � is ��G.

3. mco (P) is closed in �� (
;F) with respect to the relative weak* topology.

Before proving this result, we make few observations. Consider a Dynkin space (
;F ;P). It is not hard
to check that the mapping ! 7! p! is G � A��(
;F) measurable. Since (
;F ;P) is a Dynkin space, let
W 2 F be such that P (W ) = 1 for all P 2 P and p! 2 P for all ! 2W . Then, the map

p�jW :W ! P

is G \W -AP measurable. In fact, if � 2 AP then there is � 2 A��(
;F) such that � = � \ P. This implies
that

f! 2 
 : p! 2 �g 2 G ) f! 2W : p! 2 � and p! 2 Pg = f! 2W : p! 2 �g = f! 2 
 : p! 2 �g \W 2 G \W

)
n
! 2W : p!jW 2 �

o
= f! 2W : p! 2 � \ Pg 2 G \W:

We denote

�� (W;G \W;P) = fQ0 2 �� (W;G \W ) : Q0 (B \W ) = 0 if B 2 G and P (B) = 0 for all P 2 Pg :

For all Q 2 �� (W;G \W;P) set �Q = Q �
�
p�jW

��1
, that is,

�Q (�) = Q (f! 2W : p! 2 �g) 8� 2 AP : (32)

Notice that if P 2 P then PG\W 2 �� (W;G \W;P). In this case, we might just write �P rather than

�PG\W and, by (32), we have that

�P (�) = P (f! 2W : p! 2 �g) 8� 2 AP :

Notice that f! 2 
 : p! 2 �g = f! 2W : p! 2 �g[f! 2W c : p! 2 �g might not belong to F . Nevertheless,
since f! 2W : p! 2 �g 2 G \W � F and P (W c) = 0 for all P 2 P, f! 2 
 : p! 2 �g must belong to the
P completion of F for all P 2 P. Thus, we can write

�P (�) = P (f! 2W : p! 2 �g) = P (f! 2 
 : p! 2 �g) 8P 2 P;8� 2 AP :
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In other words, (30) holds modulo completion. Clearly, for each Q 2 �� (W;G \W;P) we have that
�Q 2 �� (P;AP). On the other hand for each f 2 B (
;F), since hf; �i 2 B (P;AP) and by the change of
variable formula (see, e.g., [9, Theorem 16.13]), we have that

��Q (f) =

Z
P
hf; �i d�Q =

Z
W

(hf; �i � p�) dQ =
Z
W

hf; p!i dQ (!) =
Z
W

f? (!) dQ (!) =

Z



f? (!) dQW (!) ;

(33)

where QW (B) = Q (B \W ) for all B 2 G.

Fact 4 The map W : �� (W;G \W;P)! �� (
;G;P) such that Q 7! QW is an a¢ ne bijection. We denote

its inverse by W : �� (
;G;P)! �� (W;G \W;P), that is, Q 7! QW .

Since f? 2
T
P2P EP [f jG] and by (33), if P 2 P then

��P (f) =

Z
W

f? (!) dPG\W (!) =

Z



f? (!) dPG (!) =

Z



f (!) dP (!) 8f 2 B (
;F) : (34)

It follows that ��P = P . Moreover, if f 2 B (
;G) then

P (f! 2 
 : f (!) 6= f? (!)g) = 0 8P 2 P:

This implies that f = f? Q-a.s. for all Q 2 �� (
;G;P). Thus, we can conclude that if f 2 B (
;G) then
for each Q 2 �� (
;G;P) Z




fdQ =

Z



f?dQ =

Z
W

f?dQW = ��QW (f) : (35)

Proposition 19 Let Q 2 �� (
;G;P). The following statements are true:

1. ��QW 2 �� (
;F ;P). Moreover, ��QW 2 P if P is measure convex;

2. ��QW (A) =
R


p (A;!) dQ (!) for all A 2 F ;

3.
�
��QW

�
G = Q and

�
��QW

�
G\W = QW ;

4. p is a regular conditional probability for ��QW ;

5. �QW (S (P)) = 1;

6. �(PG)W = �PG\W =: �P for all P 2 P.

Proof. 1. Since �QW 2 �� (P;AP) and by Fact 3, ��QW 2 �� (
;F) and ��QW 2 P if P is measure convex.
Finally, observe that for each A 2 F such that P (A) = 0 for all P 2 P,

��QW (A) =

Z
P
P (A) d�QW (P ) =

Z
P
0d�QW (P ) = 0;

proving that ��QW 2 �� (
;F ;P).
2. For each A 2 F , by (33) and Remark 13,

��QW (A) =

Z
P
h1A; �i d�QW =

Z



(1A)
?
(!) dQWW (!) =

Z



(1A)
?
(!) dQ (!) =

Z



p (A;!) dQ (!) :

3. For each B 2 G, by (35),
Q (B) =

Z



1BdQ = ��QW (B) ;

proving the �rst part of the statement. Moreover, by point 1. and the previous part of the proof,��
��QW

�
G\W

�
W
(B) = ��QW (B \W ) = ��QW (B) = Q (B) 8B 2 G:
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By Fact 4,we have that
�
��QW

�
G\W = QW if and only if

��
��QW

�
G\W

�
W
= Q. Then, the statement follows.

4. Since p (A; �) 1B (�) 2 B (
;G) for all A 2 F and B 2 G, we have that

��QW (A \B) =
Z
P
P (A \B) d�QW (P ) =

Z
P

�Z
B

p (A;!) dP (!)

�
d�QW (P )

=

Z
P
hp (A; �) 1B (�) ; P i d�QW (P ) = ��QW (p (A; �) 1B (�)) :

Thus, by (35) and point 3., it follows that

��QW (A \B) = ��QW (p (A; �) 1B (�)) =
Z



p (A;!) 1B (!) dQ (!)

=

Z
B

p (A; �) d
�
��QW

�
G ;

proving that p (A; �) 2 ��QW [AjG].
5. Set Q̂ = ��QW . Since (
;F ;P) is a Dynkin space, we have that there exists a countable family

fHngn2N � F generating F . Without loss of generality, we can assume that fHngn2N is a �-class. Fix an
arbitrary n 2 N. For each �! 2W , we have that p�! 2 P andZ




�
p (Hn; !)� p�! (Hn)

�2
dp�! (!) =

Z



�
p (Hn; !)�

Z



p (Hn; !) dp
�! (!)

�2
dp�! (!)

=

Z



p (Hn; !)
2
dp�! (!)�

�Z



p (Hn; !) dp
�! (!)

�2
=

Z



p (Hn; !)
2
dp�! (!)� p�! (Hn)

2

=
�
p (Hn; �)2

�?
(�!)� p�! (Hn)

2
=
�
p (Hn; �)2

�?
(�!)� p (Hn; �!)

2
:

By point 4. and since p (Hn; �) is G-measurable,
�
p (Hn; �)2

�?
; p (Hn; �)2 2 EQ̂

h
p (Hn; �)2 jG

i
. It follows thatZ




�
p (Hn; !)� p�! (Hn)

�2
dp�! (!) = 0 8�! 2W:

By point 1., Q̂ (W ) = 1. By Dynkin Lemma and since n was arbitrarily chosen and fHngn2N is a countable
�-class, this implies that

1 = Q̂
��
�! 2W : p�!

��
! 2 
 : p (Hn; !) = p�! (Hn) ; 8n 2 N

	�
= 1
	�

= Q̂
��
�! 2W : p�!

��
! 2 
 : p (�; !) = p�!

	�
= 1
	�

By Theorem 17, we can conclude that

1 = Q̂
��
�! 2W : p�!

��
! 2 
 : p! = p�!

	�
= 1
	�
= Q̂

��
�! 2W : p�! 2 S (P)

	�
:

Next, since S (P) 2 AP and p�jW is G \W -AP measurable, observe that f�! 2W : p�! 2 S (P)g 2 G \W . By
point 4., Q̂G\W =

�
��QW

�
G\W = QW , this implies that

�QW (S (P)) = QW
��
�! 2W : p�! 2 S (P)

	�
= Q̂

��
�! 2W : p�! 2 S (P)

	�
= 1;

proving the statement.

6. Notice that if P 2 P then for each B 2 G we have that

P (B) = P (B \W ) = (PG\W )W (B) ;
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that is, (PG\W )W = PG , (PG)
W
= PG\W . By de�nition of �P , this implies that

�(PG)W = �PG\W =: �P ;

proving the statement. �

Proof of Proposition 18. Point 2. of Proposition 19 shows that�Z



p (�; !) dQ (!) : Q 2 �� (
;G;P)
�
=
�
��QW : Q 2 �� (
;G;P)

	
: (36)

Set C = fR 2 �� (
;F ;P) : p is a r.c.p. for R given Gg.
Step 1: C is measure convex and P � C.
Proof of the Step.

Since (
;F ;P) is a Dynkin space, it is immediate to see that P � C. Let � 2 �� (C;AC). Since

C � �� (
;F ;P), if A 2 F and P (A) = 0 for all P 2 P then

�� (A) =

Z
C
R (A) d� (R) =

Z
C
0d� (R) = 0

and �� 2 �� (
;F ;P). Moreover, for each A 2 F and B 2 G,

�� (A \B) =
Z
C
R (A \B) d� (R) =

Z
C

�Z
B

p (A;!) dR (!)

�
d� (R)

=

Z
C
hp (A; �) 1B (�) ; Ri d� (R) = �� (p (A; �) 1B (�))

=

Z



p (A; �) 1B (�) d�� =
Z
B

p (A; �) d��G ;

that is, p (A; �) 2 �� [AjG]. Summing up, �� 2 �� (
;F ;P) and p is a r.c.p. for �� given G, for all � 2 �� (C;AC),
proving that �� 2 C and that C is a measure convex set. �
Step 2: C =

�R


p (�; !) dQ (!) : Q 2 �� (
;G;P)

	
.

Proof of the Step.

Let R 2 C and let p be the r.c.p. for R given G (for R and P). By assumption, we have that R 2
�� (
;F ;P) and that for each A 2 F

R (A) = R (A \ 
) =
Z



p (A;!) dRG (!) (37)

where, clearly, RG 2 �� (
;G;P). This implies that R 2
�R



p (�; !) dQ (!) : Q 2 �� (
;G;P)

	
.

Viceversa, let R =
R


p (�; !) d ~Q (!) for some ~Q 2 �� (
;G;P). By point 2. of Proposition 19, we have

that

R (A) =

Z



p (A;!) d ~Q (!) = �� ~QW (A) 8A 2 F :

By point 1. of Proposition 19, we have that R = �� ~QW 2 �� (
;F ;P). By point 4. of Proposition 19, we
can conclude that p is a regular conditional probability for it, proving that R 2 C. �
Hence, by Proposition 19, we can conclude that

P =
n
��(PG)W : P 2 P

o
�
�
��QW : Q 2 �� (
;G;P)

	
=

�Z



p (�; !) dQ (!) : Q 2 �� (
;G;P)
�
= C =

�
��QW : Q 2 �� (
;G;P)

	
�
�
�� : � 2 ��

�
S (P) ;AS(P)

�	
� f�� : � 2 �� (P;AP)g � mco (P)
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where the �rst equality follows by (34), the �rst inclusion is immediate since PG 2 �� (
;G;P) for all P 2 P,
the second equality follows by (36), the third equality follows by Step 2, the second inclusion follows by point

5. of Proposition 19, the third inclusion is obvious, and the last inclusion follows by the de�nition of mco (P).
Finally, by Step 1 we have that C is measure convex and it contains P. Given the previous chain of

inclusions and equalities and since P � C, this implies that

mco (P) � C =
�
��QW : Q 2 �� (
;G;P)

	
=

�Z



p (�; !) dQ (!) : Q 2 �� (
;G;P)
�
= C

�
�
�� : � 2 ��

�
S (P) ;AS(P)

�	
= f�� : � 2 �� (P;AP)g � mco (P) ;

proving the �rst part of the proposition.

1. Consider the restriction map R 7! RG from mco (P) = C to �� (
;G;P). Clearly, this mapping is well
de�ned and a¢ ne. Injectivity follows from the marginal-conditional decomposition (37). Indeed, if R; ~R 2 C
then

RG = ~RG )
Z



p (A; �) dRG =
Z



p (A; �) d ~RG ; 8A 2 F

) R (A) = ~R (A) 8A 2 F :

Finally, by point 3. of Proposition 19, for each Q 2 �� (
;G;P),
�
��QW

�
G = Q and by the �rst part of the

theorem ��QW 2 mco (P).
2. By point 5. of Proposition 19, for each Q 2 �� (
;G;P), �QW = QW � p�1jW is a measure on P

such that �QW (S (P)) = 1. Since S (P) 2 AP , without loss of generality, we can assume that �QW 2
��
�
S (P) ;AS(P)

�
, by considering �QW jAP\S(P) . By Fact 4, for each Q; ~Q 2 �� (
;G;P) and � 2 [0; 1], we

have that
�
�Q+ (1� �) ~Q

�W
= �QW + (1� �) ~QW . Then, it follows that for each � 2 AS(P)

�(�Q+(1��) ~Q)
W (�) =

�
�Q+ (1� �) ~Q

�W �
p�1jW (�)

�
= �QW

�
p�1jW (�)

�
+ (1� �) ~QW

�
p�1jW (�)

�
= ��QW (�) + (1� �)� ~QW (�) ;

that is, Q 7! �QW is a¢ ne. Injectivity follows from point 3. of Proposition 19. Indeed, for each Q; ~Q 2
�� (
;G;P),

�QW = � ~QW ) Q =
�
��QW

�
G =

�
�� ~QW

�
G
= ~Q:

Finally, if � 2 ��
�
S (P) ;AS(P)

�
then �� 2 mco (P). By the initial part of the proof and point 1., �� 2

�� (
;F ;P) and Q = ��G 2 �� (
;G;P) and �� = ��QW . It follows that for each � 2 AS(P)

�(��G)
W (�) =

�
��G
�W �

p�1jW (�)
�
= QW

�
p�1jW (�)

�
= ��QW

�
p�1jW (�)

�
= ��

�
p�1jW (�)

�
=

Z
S(P)

P
�
p�1jW (�)

�
d� (P )

=

Z
S(P)

1� (P ) d� (P ) = � (�) ;

that is, � = �(��G)
W . We prove the last equality below. Indeed, we will show that P

�
p�1jW (�)

�
= 1� (P ) for

all P 2 S (P).
If P in S (P) belongs to � then

1 = P (f! 2 
 : p! = Pg) = P (f! 2W : p! = Pg)

� P (f! 2W : p! 2 �g) = P
�
p�1jW (�)

�
� 1:
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If P in S (P) does not belong to � then f! 2W : p! 2 �g � f! 2W : p! 6= Pg and

0 = P (f! 2 
 : p! 6= Pg) = P (f! 2W : p! 6= Pg)

� P (f! 2W : p! 2 �g) = P
�
p�1jW (�)

�
� 0;

as wanted.

3. Let R 2 �� (
;F) be such that there exists a net fR�g�2A in mco (P) such that

lim
�
hf;R�i = hf;Ri 8f 2 B (
;F) :

It is immediate to see that R 2 �� (
;F ;P). Moreover, for each A 2 F and B 2 G,

R (A \B) = lim
�
R� (A \B) = lim

�

Z



p (A; �) 1B (�) dR�

= lim
�
hp (A; �) 1B (�) ; R�i = hp (A; �) 1B (�) ; Ri

=

Z



p (A; �) 1B (�) dR;

that is, p is a r.c.p. given G for R. By the initial part of the proof, it follows that R 2 mco (P). �

With the symbol $, we denote a¢ ne bijections. In light of Proposition 18, we can conclude that

mco (P) $ �� (
;G;P) $ ��
�
S (P) ;AS(P)

�
R � RG � �(RG)

W

�� � ��G � �

P 3 P � PG � �P

(38)

and we just write �R for �(RG)
W if R 2 mco (P).42 By (38):

Corollary 20 For each R 2 mco (P), ��R = R and �R is the unique element of ��
�
S (P) ;AS(P)

�
having

R as its barycenter.

C Quasiconcave Duality Theory

In this appendix, we present the basic notions of quasiconcave duality theory. We denote by (S;�) a

measurable space. In particular, (S;�) will be either (
;F) or
�
S (P) ;AS(P)

�
. We denote by B0 (S;�)

and B (S;�), respectively, the set of all simple and measurable real valued functions on S and the set of

all bounded and measurable functions on S. We denote by L (R��(S;�)) the class of functions G :

R��(S;�)! (�1;1] such that
42 Indeed, for each B 2 G,

R (B) = R (B \W ) = (RG\W )W (B) ;

that is, (RG\W )W = RG , (RG)
W = RG\W , and �(RG)W

= �RG\W . In other words, for each � 2 AP

�
(RG)

W (�) = RG\W
�
p�1jW (�)

�
= R (f! 2W : p! 2 �g) :

Moreover, f! 2 
 : p! 2 �g = f! 2W : p! 2 �g [ f! 2W c : p! 2 �g, might not belong to F , but it must belong to the R
completion of F for all R 2 mco (P) (f! 2W : p! 2 �g 2 G \W � F , P (W c) = 0 for all P 2 P , and R 2 �� (
;F ;P)). Thus
we can write

�R (�) := �
(RG)

W (�) = R (f! 2W : p! 2 �g) = R (f! 2 
 : p! 2 �g) ; 8R 2 mco (P) ;� 2 AP :

In other words, modulo completion �R (�) = R (f! 2 
 : p! 2 �g).
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- G is quasiconvex and lower semicontinuous;

- G (�; P ) is increasing for all P 2 �(S;�);
- t = minP2�(S;�)G (t; P ) for all t 2 R.
We denote by dom�G the set fP 2 �(S;�) : G (t; P ) <1 for some t 2 Rg.

Theorem 21 Let Y be either B0 (S;�) or B (S;�). A functional I : Y ! R is normalized, monotone,

lower semicontinuous, and quasiconcave if and only if there exists a unique function G 2 L (R��(S;�))
such that

I (') = min
P2�(S;�)

G

�Z
S

'dP; P

�
8' 2 Y: (39)

Moreover,

1. G (t; P ) = sup
�
I (') :

R
S
'dP � t and ' 2 Y

	
=
�
I (') :

R
S
'dP � t and ' 2 B0 (S;�)

	
for all (t; P )

in R��(S;�).

2. I is inner continuous on B0 (S;�) if and only if

G (t; P ) =1 8 (t; P ) 62 R��� (S;�) :

3. I is translation invariant if and only if there exists a convex and lower semicontinuous function c :

� (S;�)! [0;1] such that

min
P2�(S;�)

c (P ) = 0 and G (t; P ) = t+ c (P ) 8 (t; P ) 2 R��(S;�) :

Proof. We start by observing that Y , in both cases, is anM -space with unit. By [13, Theorem 3 and Lemma
20] and since I is real valued, if I : Y ! R is a normalized, monotone, lower semicontinuous, quasiconcave,
real valued functional then there exists a unique function G : R��(S;�)! (�1;1] such that
- G (�; P ) is increasing for all P 2 �(S;�);
- limt!1G (t; P ) = limt!1G (t; P 0) for all P; P 0 2 �(S;�);
- G is quasiconvex and lower semicontinuous;

- t = minP2�(
;F)G (t; P ) for all t 2 R;
- I (') = minP2�(
;F)G

�R


'dP; P

�
for all ' 2 Y .

Moreover, G satis�es the equation in 1. This proves necessity. Viceversa, consider G 2 L (R��(S;�))
and a functional I : Y ! [�1;1] such that (39) holds. Notice that the condition t = minP2�(
;F)G (t; P )
for all t 2 R implies that limt!1G (t; P ) =1 = limt!1G (t; P 0) for all P; P 0 2 �(S;�). By [13, Theorem
3] and the proof of [13, Lemma 20], we have that I is a normalized, monotone, lower semicontinuous, and

quasiconcave functional. In particular, I is real valued.

1. It follows from [13, Theorem 3].

2. It follows from [12, Theorem 54].

3. It follows from [13, Theorem 9]. �

D Dynkin Functionals

If S is a nonempty set then we say that a subset L � B (S) is a Stone vector lattice if and only if L is
a vector subspace of B (S), a lattice,43 and 1S 2 L. We endow L with the supnorm. Given a sequence
f�ngn2N and an element � in B (S), we write �n ! � if and only if f�ngn2N converges uniformly to �. On
43That is, for each �1; �2 2 L we have that �1 _ �2; �1 ^ �2 2 L.
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the other hand, we write that �n " � (resp., �n # �) if and only if �n+1 � �n (resp., �n � �n+1) for all n 2 N
and limn �n (s) = � (s) for all s 2 S. Given a function ' 2 B (
;F), we denote by h'; �ijS(P) = h'; �i the
functional on S (P) such that P 7! h'; P ijS(P) =

R
'dP for all P 2 S (P). Sometimes, with a small abuse

of notation, we denote by h'; �i the functional P such that P 7!
R
'dP for all P 2 P. It will be clear from

the context what is the domain for the functional h'; �i.

Lemma 22 Let (
;F ;P) be a Dynkin space. The sets

L0 =
n
h ; �ijS(P) :  2 B0 (
;G)

o
and L =

n
h ; �ijS(P) :  2 B (
;G)

o
=
n
h'?; �ijS(P) : ' 2 B (
;F)

o
=
n
h'; �ijS(P) : ' 2 B (
;F)

o
are Stone vector lattices in B

�
S (P) ;AS(P)

�
. Moreover, L0 is supnorm dense in L.

Proof. The chain of equalities contained in the statement follows from the fact that for each ' 2 B (
;F)
we have that h'?; �ijS(P) = h'; �ijS(P), moreover, '? is an element of B (
;G) for each ' 2 B (
;F) and
B (
;G) is contained in B (
;F). Since B0 (
;G) and B (
;G) are vector spaces, it is immediate to see that
L0 and L are vector spaces as well.

For each  2 B (
;G),

jh ; P ij =
����Z



 dP

���� � Z



j j dP � k k 8P 2 S (P) :

This implies that L0 and L are vector subspaces of B
�
S (P) ;AS(P)

�
. Moreover, since  = 1
 belongs to

B0 (
;G), we have that 1S(P) belongs to L0 and L.
Finally, consider h 1; �i ; h 2; �i 2 L0 with  1;  2 2 B0 (
;G). Recall that P 2 S (P) if and only if P 2 P

and P (G) = f0; 1g. Then, there exist a partition fEjghj=1 � G and two sets
�
�1j
	h
j=1

;
�
�2j
	h
j=1

� R such
that

 1 =
hX
j=1

�1j1Ej and  2 =
hX
j=1

�2j1Ej :

Notice that for each P 2 S (P) there exists a unique EjP such that P (EjP ) = 1. This implies thatR


 idP = �ijP for i 2 f1; 2g and for all P 2 S (P). Therefore, it follows that

(h 1; �i _ h 2; �i) (P ) = h 1; P i _ h 2; P i = �1jP _ �
2
jP =

Z



( 1 _  2) dP = h 1 _  2; P i (40)

for all P 2 S (P). Since  1 _  2 2 B0 (
;G), it follows that h 1; �i _ h 2; �i 2 L0. If h 1; �i ; h 2; �i 2 L with
 1;  2 2 B (
;G) then there exist two sequences, f 1;ngn2N and f 2;ngn2N, in B0 (
;G), such that  i;n !  i

for i 2 f1; 2g. Therefore, by (40) and the continuity of the lattice operations (that is,  1;n _ 2;n !  1 _ 2)
it follows that

(h 1; �i _ h 2; �i) (P ) = h 1; P i _ h 2; P i = lim
n
(h 1;n; P i _ h 2;n; P i) (41)

= lim
n
h 1;n _  2;n; P i = h 1 _  2; P i

for all P 2 S (P). Since  1 _  2 2 B (
;G), it follows that h 1; �i _ h 2; �i 2 L. By the same argument,

h 1; �i ^ h 2; �i 2 L0 (resp., L). Thus, L0 and L are Stone vector lattices.
Finally, since B0 (
;G) is supnorm dense in B (
;G), if h ; �i 2 L with  2 B (
;G) then there exists a

sequence f ngn2N � B0 (
;G) such that  n !  . It follows that for each n 2 N and for each P 2 S (P)

jh ; P i � h n; P ij = jh �  n; P ij � k �  nk :
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This implies that supP2S(P) jh ; P i � h n; P ij � k �  nk ! 0. By de�nition of L0, we have that fh n; �ign2N
is a sequence in L0, proving that L0 is supnorm dense in L. �

By similar arguments, we obtain the following lemma:

Lemma 23 Let (
;F ;P) be a Dynkin space. The set

L00 =
n
h ; �ijS(P) :  2 B0 (
;F)

o
is a vector subspace of B

�
S (P) ;AS(P)

�
and 1S(P) 2 L00. Moreover, L00 is supnorm dense in L.

Lemma 24 Let (
;F ;P) be a Dynkin space.

(a) If �1; �2 2 L0 are such that �1 � �2 then there exist '1 and '2 in B0 (
;G) such that '1 � '2 and

�i (P ) = h'i; P i 8P 2 S (P) ;8i 2 f1; 2g : (42)

In particular, if �2 = 0 then we can take '2 = 0.

(b) Given f�ngn2N � L0 and � 2 L, if �n # � (resp., ") then there exist a sequence f'ngn2N � B0 (
;G)
and ' 2 B (
;G) such that 'n # ' (resp., ") and � = h'; �i and �n = h'n; �i for all n 2 N.

(c) If � 2 L+ then there exists ' 2 B+ (
;G) such that � = h'; �i.

(d) If �1; �2 2 L are such that �1 � �2 then there exist '1 and '2 in B (
;G) such that '1 � '2 and

�i (P ) = h'i; P i 8P 2 S (P) ;8i 2 f1; 2g : (43)

(e) Given f�ngn2N � L and � 2 L, �n # � (resp., ") if and only if there exist a sequence f'ngn2N � B (
;G)
and ' 2 B (
;G) such that 'n # ' (resp., ") and � = h'; �i and �n = h'n; �i for all n 2 N.

(f) L = B
�
S (P) ;AS(P)

�
.

(g) If ' 2 B (
;G) and v : R! R is continuous then v � h'; �i = hv � '; �i.

(h) Given �1 and �2 in L, �1 and �2 are comonotonic if and only if there exist '1 and '2 in B (
;G) that
are comonotonic and such that (43) holds. In particular, �1 and �2 are in L0 if and only if '1 and '2
can be chosen to be in B0 (
;G).

(i) If A 2 G then h1A; �i 2 B0
�
S (P) ;AS(P)

�
. In particular, L0 � B0

�
S (P) ;AS(P)

�
.

(l) If C 2 AS(P) then there exists A 2 G such that h1A; �i = 1C . In particular, B0
�
S (P) ;AS(P)

�
� L0.

(m) L0 = B0
�
S (P) ;AS(P)

�
.

(n) Given fCngn2N � AS(P), Cn # ; if and only if there exists a sequence fEngn2N � G such that En # ;
and 1Cn = h1En ; �i for all n 2 N.

Proof. (a) Consider �1; �2 2 L0 such that �1 (P ) � �2 (P ) for all P 2 S (P). Moreover, let  1;  2 2 B0 (
;G)
be such that

�i = h i; �i 8i 2 f1; 2g :
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Then, there exist a partition fEjghj=1 � G and two sets f�jg
h
j=1 ; f�jg

h
j=1 � R such that

 1 =
hX
j=1

�j1Ej and  2 =
hX
j=1

�j1Ej :

Set J = fj = 1; :::; h : P (Ej) 6= 0 for some P 2 Pg, E =
S
j2J Ej , and 'i =  i1E for i 2 f1; 2g. It is

immediate to see that h'i; �i = h i; �i = �i for i 2 f1; 2g.44 For each ! 2 
 there exists a unique j 2 f1; :::; hg
such that ! 2 Ej . We have two cases:

1. j 2 J . By de�nition of J , there exists Pj 2 P such that Pj (Ej) > 0. By Theorem 17, it follows that

0 < Pj (Ej) =

Z
S(P)

P (Ej) d�Pj (P ) :

where P (Ej) 2 f0; 1g for all P 2 S (P). This implies that there exists Rj in S (P) such that Rj (Ej) =
1. It follows that Rj (Ek) = 0 if k 6= j. Finally, we have that

'1 (!) = h'1; Rji = �1 (Rj) � �2 (Rj) = h'2; Rji = '2 (!) :

2. j =2 J . Then, 1E (!) = 0 and '1 (!) = 0 � 0 = '2 (!).

Summing up, h'i; �i = �i for i 2 f1; 2g and '1 � '2.

(b) Consider f�ngn2N � L0 and � 2 L such that �n # �. Moreover, assume that � � 0. By de�nition of L0
and L, it follows that there exist f ngn2N � B0 (
;G) and  2 B (
;G) such that � = h ; �i and �n = h n; �i
for all n 2 N. By point (a), without loss of generality, we can assume that  n � 0 for all n 2 N. Then,
de�ne the sequence f'ngn2N by

'n = inf
k�n

 k � 0 8n 2 N:

Notice that f'ngn2N � B0 (
;G) and 'n # ' = infn 'n = infn  n where ' is well de�ned, it belongs to

B (
;G), and ' � 0. By (41), each element P in S (P) induces a lattice homomorphism on B (
;G). It
follows that

h'n; P i =
�
inf
k�n

 k; P

�
= inf

k�n
h k; P i = inf

k�n
�k (P ) = �n (P ) = h n; P i 8P 2 S (P) ;8n 2 N:

By the Dominated Convergence Theorem, this implies that

� (P ) = lim
n
�n (P ) = lim

n
h n; P i = lim

n
h'n; P i = h'; P i 8P 2 S (P) :

Consider f�ngn2N � L0 and � 2 L such that �n # �. There exists a constant k 2 R such that �n + k1S(P) #
� + k1S(P) � 0. Since L0 and L are Stone vector lattices and by the previous part of the proof, there

exist a sequence f ngn2N � B0 (
;G) and  2 B (
;G) such that  n #  where � + k1S(P) = h ; �i and
�n + k1S(P) = h n; �i for all n 2 N. If we set ' =  � k1
 and 'n =  n � k1
 for all n 2 N then the

statement follows. Analogous considerations hold for the increasing case.

(c) Consider � � 0 in L. By de�nition, there exists  2 B (
;G) such that � = h ; �i. It follows that
there exists a sequence f ngn2N � B0 (
;G) such that  n #  . De�ne f�ngn2N by �n = h n; �i for all n 2 N.
By the Dominated Convergence Theorem, �n # � � 0. By point (a) and since �n � 0 for all n 2 N, there
exists

�
� n
	
n2N � B0 (
;G) such that �n =



� n; �

�
and � n � 0 for all n 2 N. Then, de�ne the sequence

f'ngn2N by
'n = inf

k�n
� k � 0 8n 2 N:

44Notice that if �2 = 0 then  2 can be chosen to be equal to 0. In turn, this implies that '2 = 0.
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Notice that f'ngn2N � B0 (
;G) and 'n # ' = infn 'n = infn � n where ' is well de�ned, it belongs to

B (
;G), and ' � 0. By the same arguments used to prove point (b), it follows that � = h'; �i, proving the
statement.

(d) Let �1; �2 2 L be such that �1 � �2. Then, �1 = �2+(�1 � �2). By point (c), there exists  in B+ (
;G)
such that �1 � �2 = h ; �i. Consider ' 2 B (
;G) such that �2 = h'; �i. It follows that �1 = h'+  ; �i and
clearly '+  � '.

(e) We �rst prove necessity. Consider f�ngn2N � L and � 2 L such that �n # �. Moreover, assume
that � � 0. By de�nition of L, it follows that there exist f ngn2N � B (
;G) and  2 B (
;G) such that
� = h ; �i and �n = h n; �i for all n 2 N. By point (c), without loss of generality, we can assume that  n � 0
for all n 2 N. De�ne the sequence f'ngn2N by

'n = inf
k�n

 k � 0 8n 2 N:

Notice that f'ngn2N � B (
;G) and 'n # ' = infn 'n = infn  n where ' is well de�ned, it belongs to

B (
;G), and ' � 0. By (41), each element P in S (P) induces a lattice homomorphism on B (
;G). It
follows that

h'n; P i =
�
inf
k�n

 k; P

�
= inf

k�n
h k; P i = inf

k�n
�k (P ) = �n (P ) = h n; P i 8P 2 S (P) ;8n 2 N:

By the Dominated Convergence Theorem, this implies that

� (P ) = lim
n
�n (P ) = lim

n
h n; P i = lim

n
h'n; P i = h'; P i 8P 2 S (P) :

Consider f�ngn2N � L and � 2 L such that �n # �. There exists a constant k 2 R such that �n + k1S(P) #
�+k1S(P) � 0. Since L is a Stone vector lattice and by the previous part of the proof, there exist a sequence
f ngn2N � B (
;G) and  2 B (
;G) such that  n #  and �+ k1S(P) = h ; �i and �n+ k1S(P) = h n; �i for
all n 2 N. If we set ' =  � k1
 and 'n =  n � k1
 for all n 2 N then the statement follows. Analogous
considerations hold for the increasing case.

Su¢ ciency follows by the Dominated Convergence Theorem.

(f) By Lemma 22, L is a Stone vector lattice in B
�
S (P) ;AS(P)

�
and AS(P) is the �-algebra generated

by L. By using point (e), we show that L is closed under bounded monotone convergence. Let f�ngn2N be
a bounded sequence in L such that �n #. De�ne � 2 B

�
S (P) ;AS(P)

�
to be the pointwise limit of f�ngn2N.

Since f�ngn2N is bounded and converging, it follows that � is well de�ned. Next, we show that � 2 L.

Assume that � � 0. By de�nition of L, it follows that there exists a sequence f ngn2N � B (
;G) such that
�n = h n; �i for all n 2 N. By point (c), without loss of generality, we can assume that  n � 0 for all n 2 N.
De�ne now the sequence f'ngn2N by

'n = inf
k�n

 k � 0 8n 2 N:

Notice that f'ngn2N � B (
;G) and 'n # ' = infn 'n = infn  n where ' is well de�ned, it belongs to

B (
;G), and ' � 0. By (41), each element P in S (P) induces a lattice homomorphism on B (
;G). It
follows that

h'n; P i =
�
inf
k�n

 k; P

�
= inf

k�n
h k; P i = inf

k�n
�k (P ) = �n (P ) = h n; P i 8P 2 S (P) ;8n 2 N:

Next, by the Dominated Convergence Theorem, observe that

� (P ) = lim
n
�n (P ) = lim

n
h n; P i = lim

n
h'n; P i = h'; P i 8P 2 S (P) :
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Thus, � = h'; �i 2 L+.
In general, if � 6� 0 then there exists a constant k 2 R such that �n + k1S(P) # � + k1S(P) � 0. Since

L is a Stone vector lattice,
�
�n + k1S(P)

	
n2N � L+. By the previous part of the proof, it follows that

� + k1S(P) 2 L+, proving that � 2 L. This shows that L is closed under bounded monotone (from above)

pointwise convergence. A similar argument shows that L is closed under bounded monotone from below

pointwise convergence. By [20, Theorem 22.3], we have that�
� 2 B

�
S (P) ;AS(P)

�
: � 2 L

	
= L � B (S (P) ; � (L)) = B

�
S (P) ;AS(P)

�
:

By Lemma 22, the statement follows.

(g) Let ' =
hX
j=1

�j1Aj 2 B0 (
;G) where f�jghj=1 � R and fAjghj=1 is a partition of 
 in G. Each

P 2 S (P) is f0; 1g-valued on G. Therefore, for each P 2 S (P) there exists a unique AjP in G such that
P (AjP ) = 1. This implies that

v (h'; P i) = v (�jP ) = hv � '; P i 8P 2 S (P) ;

proving the statement for ' 2 B0 (
;G). If ' 2 B (
;G) then there exists a sequence f'ngn2N that converges
uniformly to '. Since v is continuous, it follows that the sequence fv � 'ngn2N converges uniformly to v �'.
Since v is continuous and by the previous part of the proof, it follows that

v (h'; P i) = lim
n
v (h'n; P i) = lim

n
hv � 'n; P i = hv � '; P i 8P 2 S (P) ;

proving the statement.

(h) Consider �1 and �2 in L and assume they are comonotonic. By [21, Proposition 4.5], there exist two

monotone and continuous functions v1; v2 : R! R such that �i = vi (�1 + �2) for i 2 f1; 2g. By de�nition of
L, there exists ' 2 B (
;G) such that �1 + �2 = h'; �i. De�ne 'i = vi � ' for i 2 f1; 2g. Since v1 and v2 are
monotone and continuous and by [21, Proposition 4.5], it follows that '1 and '2 are comonotonic elements

of B (
;G). By point (g), it follows that

�i (P ) = vi ((�1 + �2) (P )) = vi (h'; P i) = hvi � '; P i = h'i; P i 8P 2 S (P) ;8i 2 f1; 2g :

Finally, observe that if �1 and �2 were elements of L0 then ' could be chosen to be an element of B0 (
;G)
and so vi � ' = 'i 2 B0 (
;G) for i 2 f1; 2g. Viceversa, if '1 and '2 are comonotonic elements of B (
;G)
then there exist two monotone and continuous functions v1; v2 : R ! R such that'i = vi ('1 + '2) for

i 2 f1; 2g. Consider �i = h'i; �i for i 2 f1; 2g. By point (g), it follows that

�i (P ) = h'i; P i = hvi � ('1 + '2) ; P i = vi (h'1 + '2; P i) = vi ((�1 + �2) (P )) 8P 2 S (P) ;8i 2 f1; 2g :

By [21, Proposition 4.5], it follows that �1 = h'1; �i and �2 = h'2; �i are comonotonic. By de�nition of L0,
observe that if '1 and '2 were elements of B0 (
;G) then �1 and �2 would be elements of L0.

(i) Let A 2 G. Since P 2 S (P) if and only if P (A) 2 f0; 1g for all A 2 G, it follows that h1A; �i is a
f0; 1g-valued function. Since h1A; �i 2 L0, h1A; �i is AS(P)-measurable, proving the statement. In particular,
if ' 2 B0 (
;G) then ' =

Ph
j=1 �j1Aj where f�jg

h
j=1 � R and fAjg

h
j=1 is a partition of 
 in G. In other

words, ' is a linear combination of G-measurable indicator functions. Thus, h'; �i =
Ph

j=1 �j


1Aj ; �

�
is a

linear combination of AS(P)-measurable indicator functions. That is, L0 � B0
�
S (P) ;AS(P)

�
.
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(l) Consider C 2 AS(P). By point (f), 1C 2 L. By de�nition, there exists  2 B (
;G) such that
h ; �i = 1C . Without loss of generality, we can assume that 0 �  � 1.45 Then, there exists a sequence

f ngn2N � B0 (
;G) such that  n "  uniformly and 0 �  n �  for all n 2 N. De�ne �n = h n; �i for
all n 2 N. It follows that 0 � �n " 1C uniformly. By construction, for each n 2 N there exist a partition
fEn;jghnj=1 of 
 in G and a set f�n;jg

hn
j=1 � R such that

 n =

hnX
j=1

�n;j1En;j :

For each n 2 N set Jn = fj = 1; :::; hn : P (En;j) 6= 0 for some P 2 Pg, E =
T
n2N

S
j2Jn En;j , and set

'n =  n1E . Notice that 0 � 'n �  n �  � 1 and �n = h'n; �i for all n 2 N. Moreover, we have that
f'ngn2N � B0 (
;G) ; 'n " ' =  1E 2 B (
;G) ; and h'; �i = h ; �i = 1C .46 Finally, we show that ' is

f0; 1g-valued, that is, ' = 1A for some A 2 G. By contradiction, assume that there exists �! 2 
 such that
' (�!) = � 2 (0; 1). Since 'n " ', there exist " > 0 and n1 2 N such that 1�" > 'n (�!) > " for all n � n1. By

construction, it follows that for each n � n1 there exists Pn 2 S (P) such that h'n; Pni = 'n (�!) 2 ("; 1� ").
Since �n converges uniformly to 1C , there exists n2 2 N such that j�n (P )� 1C (P )j < "

2 for all n � n2 and

all P 2 S (P). We can conclude that for each n � max fn1; n2g:

� If Pn 2 C then "
2 > j�n (Pn)� 1j = 1� �n (Pn) = 1� h'n; Pni, that is, h'n; Pni > 1�

"
2 ;

� If Pn =2 C then "
2 > j�n (Pn)j = �n (Pn) = h'n; Pni, that is, h'n; Pni < "

2 ,

a contradiction, since h'n; Pni = 'n (�!) 2 ("; 1� ") for all n � max fn1; n2g. Finally, since L0 is a vector
space and indicator functions of AS(P) belong to L0, it follows that B0

�
S (P) ;AS(P)

�
� L0.

(m) By points (i) and (l), the statement clearly follows.

45Consider  2 B (
;G) such that h ; �i = 1C . By assumption, we have that h ; P i 2 [0; 1] for all P 2 S (P). De�ne
E1 = f! 2 
 :  (!) > 1g and E2 = f! 2 
 :  (!) < 0g. It is immediate to see that E1; E2 2 G. By contradiction, assume
that there exists �P 2 S (P) such that �P (E1) 6= 0. Recall that P (G) = f0; 1g for all P 2 S (P). It follows that �P (E1) = 1.
Notice that

E1 =
[
n

�
! 2 
 :  (!) � 1 + 1

n

�
and�
! 2 
 :  (!) � 1 + 1

n

�
2 G 8n 2 N:

Since �P 2 S (P), it follows that there exists �n such that

�P

��
! 2 
 :  (!) � 1 + 1

�n

��
= 1:

We could then conclude that 1 �


 ; �P

�
� 1 + 1

�n
> 1, a contradiction. A similar argument shows that P (E2) = 0 for all

P 2 S (P). It is then immediate to see that if we de�ne � =  1Ec1\E
c
2
then 0 � � � 1 and


� ; �
�
= 1C :

46 In fact, E 2 G and Ec =
S
n2N

�S
j2Jn En;j

�c
=
S
n2N

S
j 62Jn En;j . It follows that for each n 2 N and each P 2 P,

P

0@0@ [
j2Jn

En;j

1Ac1A = P

0@ [
j =2Jn

En;j

1A =
X
j =2Jn

P (En;j) = 0:

Thus, P (Ec) = 0 for all P 2 P.
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(n) We �rst prove necessity. Consider fCngn2N � AS(P) such that Cn # ;. By point (l), it follows that
there exists a sequence fBngn2N � G such that 1Cn = h1Bn

; �i for all n 2 N. De�ne f ngn2N by

 n = inf
k�n

1Bk
� 0 8n 2 N:

Notice that f ngn2N is a decreasing sequence. Furthermore,  n is f0; 1g-valued for all n 2 N and  n #  =
infn  n = infn 1Bn

. It is immediate to see that  is well de�ned, f0; 1g-valued, and G-measurable. By (41),
each element P in S (P) induces a lattice homomorphism on B (
;G). Since Cn # ;, it follows that

h n; P i =
�
inf
k�n

1Bk
; P

�
= inf

k�n
h1Bk

; P i = inf
k�n

1Ck (P ) = 1Cn (P ) 8P 2 S (P) ;8n 2 N:

Next, by the Dominated Convergence Theorem and since Cn # ;, observe that

0 = lim
n
1Cn (P ) = limn

h n; P i = h ; P i 8P 2 S (P) : (44)

Since  2 B (
;G) and  is f0; 1g-valued, there exists a set E 2 G such that  = 1E . By (44), it follows

that P (E) = 0 for all P 2 S (P). De�ne f'ngn2N by 'n =  n1Ec for all n 2 N. It follows that

1Cn (P ) = h n; P i = h'n; P i 8P 2 S (P) ;8n 2 N: (45)

Since f ngn2N is a decreasing sequence of G-measurable and f0; 1g-valued functions, it follows that f'ngn2N
is a decreasing sequence of G-measurable and f0; 1g-valued functions. Moreover, we have that 'n #  1Ec = 0.

Since each 'n is G-measurable and f0; 1g-valued for all n 2 N, for each n 2 N there exists a set En 2 G such
that 'n = 1En . By (45), it follows that 1Cn = h1En ; �i for all n 2 N. Since 'n # 0, it follows that En # ;,
proving necessity.

Su¢ ciency follows by the Dominated Convergence Theorem. �

Proposition 25 Let (
;F ;P) be a Dynkin space. I : B (
;G)! R is a normalized functional such thatZ



'1dP �
Z



'2dP 8P 2 P ) I ('1) � I ('2) (46)

if and only if there exists a normalized and monotone functional �I : L! R such that

I (') = �I (h'; �i) 8' 2 B (
;G) : (47)

Moreover, �I is unique and

(1) �I is translation invariant if and only if I is translation invariant;

(2) �I is lower/upper semicontinuous if and only if I is lower/upper semicontinuous;

(3) �I is concave if and only if I is concave;

(4) �I is quasiconcave if and only if I is quasiconcave;

(5) �I is supermodular if and only if I is supermodular;

(6) �I is comonotonic additive if and only if I is comonotonic additive;

(7) If I is quasiconcave and lower semicontinuous, �I is inner continuous on L0 if and only if I is inner

continuous on B0 (
;G);

(8) �I is inner/outer continuous if and only if I is inner/outer continuous.
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Proof.
In order to prove the main statement, we proceed by steps. We start by proving necessity. De�ne

�I : L! R to be such that for each � 2 L

�I (�) = I (') where ' 2 B (
;G) and � (P ) =
Z



'dP for all P 2 S (P) : (48)

Step 1: Let '1; '2 2 B (
;G).Z



'1dP �
Z



'2dP 8P 2 P

,
Z



'1dP �
Z



'2dP 8P 2 S (P)

,
Z



'1dP �
Z



'2dP 8P 2 mco (P)

Proof of the Step.

Consider '1; '2 2 B (
;G). Since S (P) � P, it is immediate to see that if
R


'1dP �

R


'2dP for all

P 2 P then
R


'1dP �

R


'2dP for all P 2 S (P). Consider '1; '2 2 B (
;G). If '1 and '2 are such thatZ




'1dP �
Z



'2dP 8P 2 S (P)

then for each � 2 ��
�
S (P) ;AS(P)

�
�� ('1) =

Z
S(P)

h'1; P i d� (P ) �
Z
S(P)

h'2; P i d� (P ) = �� ('2) : (49)

By Proposition 18, we have that mco (P) =
�
�� : � 2 ��

�
S (P) ;AS(P)

�	
. By (49), this implies thatZ




'1dP �
Z



'2dP 8P 2 mco (P) :

Finally, since P � mco (P), it is immediate to see that if
R


'1dP �

R


'2dP for all P 2 mco (P) thenR



'1dP �

R


'2dP for all P 2 P, proving the statement. �

Step 2: �I is well de�ned.

Proof of the Step.

Consider � 2 L and assume that there exist '1 and '2 in B (
;G) such thatZ



'1dP = � (P ) =

Z



'2dP 8P 2 S (P) :

By Step 1, this implies that Z



'1dP = � (P ) =

Z



'2dP 8P 2 P:

By (46), it follows that I ('1) = I ('2), proving the statement. �
Step 3: I is monotone.

Proof of the Step.

Consider '1; '2 2 B (
;G) such that '1 � '2. Since P � �� (
;F), this implies thatZ



'1dP �
Z



'2dP 8P 2 P:

By (46), it follows that I ('1) � I ('2). �
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Step 4: �I is monotone.

Proof of the Step.

Consider �1; �2 2 L such that �1 � �2. By point (d) of Lemma 24, there exist '1; '2 2 B (
;G) such that
'1 � '2 and

�i (P ) =

Z



'idP 8P 2 S (P) ;8i 2 f1; 2g :

By de�nition of �I and since I is monotone, this implies that �I (�1) = I ('1) � I ('2) = �I (�2), proving the

statement. �
Step 5: �I is normalized.

Proof of the Step.

Consider k 2 R. Then, it follows that k1S(P) = hk1
; �i. By de�nition of �I and since I is normalized,

�I
�
k1S(P)

�
= I (k1
) = k:

Since k was arbitrarily chosen, the statement follows. �
Step 6: If �I is a normalized and monotone functional on L such that (47) holds then I is a normalized

functional on B (
;G). Moreover, if '1; '2 2 B (
;G) thenZ



'1dP �
Z



'2dP 8P 2 P ) I ('1) � I ('2) : (50)

Proof of the Step.

Fix k 2 R. By (47) and since �I is normalized, it follows that

I (k1
) = �I (hk1
; �i) = �I
�
k1S(P)

�
= k:

Since k was arbitrarily chosen, it follows that I is normalized. Next, consider '1; '2 2 B (
;G) such thatR


'1dP �

R


'2dP for all P 2 P. It follows that

R


'1dP �

R


'2dP for all P 2 S (P). De�ne �i = h'i; �i

for i 2 f1; 2g. It is immediate to see that �1; �2 2 L and �1 � �2. By (47) and since �I is monotone, it follows

that

I ('1) = �I (h'1; �i) = �I (�1) � �I (�2) = �I (h'2; �i) = I ('2) ;

proving that I satis�es (50). �
Step 7: �I is unique.

Proof of the Step.

Assume that there exist two functionals over L, �I1 and �I2, such that

�I1 (h'; �i) = I (') = �I2 (h'; �i) 8' 2 B (
;G) :

Consider � 2 L. By de�nition of L, there exists ' 2 B (
;G) such that � = h'; �i. It follows that

�I1 (�) = �I1 (h'; �i) = I (') = �I2 (h'; �i) = �I2 (�) 8� 2 L;

proving the statement. �

Steps 1 to 6 prove the main statement. Step 7 proves the uniqueness of �I.

(1) �I is translation invariant if and only if I is translation invariant.

Proof.
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We �rst prove su¢ ciency. Fix � 2 L and k 2 R. Consider ' 2 B (
;G) such that � = h'; �i. It follows
that

�
� + k1S(P)

�
(P ) =

R


('+ k1
) dP for all P 2 S (P). By (47) and since I is translation invariant, we

have that
�I
�
� + k1S(P)

�
= I ('+ k1
) = I (') + k = �I (�) + k:

Since � and k were arbitrarily chosen, su¢ ciency follows. Viceversa, �x ' 2 B (
;G) and k 2 R. De�ne
� 2 L by � = h'; �i. It follows that � + k1S(P) = h'+ k1
; �i. By (47) and since �I is translation invariant,
we have that

I ('+ k1
) = �I
�
� + k1S(P)

�
= �I (�) + k = I (') + k:

Since ' and k were arbitrarily chosen, necessity follows.

(2) �I is lower/upper semicontinuous if and only if I is lower/upper semicontinuous.

Proof.

We �rst prove a claim.

Claim: If I is lower (resp., upper) semicontinuous then the set
n
� 2 [0; 1] : �I (��1 + (1� �) �2) � c

o
(resp.,

n
� 2 [0; 1] : �I (��1 + (1� �) �2) � c

o
) is closed for all �1; �2 2 L and c 2 R.

Proof of the Claim.

Fix �1; �2 2 L and c 2 R. Set

L�1;�2;c =
n
� 2 [0; 1] : �I (��1 + (1� �) �2) � c

o
and U�1;�2;c =

n
� 2 [0; 1] : �I (��1 + (1� �) �2) � c

o
:

By point (f) of Lemma 24, we have that L = B
�
S (P) ;AS(P)

�
. This implies that �I (��1 + (1� �) �2) is well

de�ned for all � 2 [0; 1]. If L�1;�2;c (resp., U�1;�2;c) is empty then L�1;�2;c (resp., U�1;�2;c) is closed. Otherwise,
consider f�ngn2N � L�1;�2;c (resp., f�ngn2N � U�1;�2;c) such that �n ! �. De�ne '1; '2 2 B (
;G) to be
such that �i = h'i; �i for i 2 f1; 2g. It follows that

�n�1 + (1� �n) �2 = h�n'1 + (1� �n)'2; �i 8n 2 N
and ��1 + (1� �) �2 = h�'1 + (1� �)'2; �i :

It is immediate to see that the sequence f�n'1 + (1� �n)'2gn2N converges uniformly to �'1 + (1� �)'2.
By (47) and since I is lower (resp., upper) semicontinuous on B (
;G), this implies that

�I (��1 + (1� �) �2) = I (�'1 + (1� �)'2) � lim inf
n

I (�n'1 + (1� �n)'2)

= lim inf
n

�I (�n�1 + (1� �n) �2) � c

(resp:;

�I (��1 + (1� �) �2) = I (�'1 + (1� �)'2) � lim sup
n

I (�n'1 + (1� �n)'2)

= lim sup
n

�I (�n�1 + (1� �n) �2) � c);

proving that L�1;�2;c (resp., U�1;�2;c) is closed. Since �1, �2, and c were arbitrarily chosen, the statement

follows. �
We now prove su¢ ciency. By the previous claim, if I is lower (resp., upper) semicontinuous then the

set L�1;�2;c (resp., U�1;�2;c) is closed for all �1; �2 2 L and c 2 R. By [12, Lemma 46] and since L =

B
�
S (P) ;AS(P)

�
and �I is monotone, this implies that �I is lower (resp., upper) semicontinuous. Viceversa,

consider f'ngn2N � B (
;G) and ' 2 B (
;G) such that 'n ! '. De�ne � 2 L and f�ngn2N � L such that
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� = h'; �i and �n = h'n; �i for all n 2 N. It is immediate to see that �n ! �. By (47) and since �I is lower

(resp., upper) semicontinuous, this implies that

I (') = �I (�) � lim inf
n

�I (�n) = lim inf
n

I ('n)

(resp:;

I (') = �I (�) � lim sup
n

�I (�n) = lim sup
n

I ('n));

proving necessity.

(3) �I is concave if and only if I is concave.

Proof.

We �rst prove su¢ ciency. Pick �1; �2 2 L and � 2 (0; 1). By assumption, there exist '1; '2 2 B (
;G)
such that �i = h'i; �i for i 2 f1; 2g. It follows that ��1 + (1� �) �2 = h�'1 + (1� �)'2; �i. By (47) and
since I is concave, we have that

�I (��1 + (1� �) �2) = I (�'1 + (1� �)'2) � �I ('1) + (1� �) I ('2) = ��I (�1) + (1� �) �I (�2) ;

proving that �I is concave. Viceversa, pick '1; '2 2 B (
;G) and � 2 (0; 1). De�ne �i = h'i; �i for i 2 f1; 2g.
It follows that ��1 + (1� �) �2 = h�'1 + (1� �)'2; �i. By (47) and since �I is concave, we have that

I (�'1 + (1� �)'2) = �I (��1 + (1� �) �2) � ��I (�1) + (1� �) �I (�2) = �I ('1) + (1� �) I ('2) ;

proving that I is concave.

(4) �I is quasiconcave if and only if I is quasiconcave.

Proof.

We �rst prove su¢ ciency. Pick �1; �2 2 L and � 2 (0; 1). By assumption, there exist '1; '2 2 B (
;G)
such that �i = h'i; �i for i 2 f1; 2g. It follows that ��1 + (1� �) �2 = h�'1 + (1� �)'2; �i. By (47) and
since I is quasiconcave, we have that

�I (��1 + (1� �) �2) = I (�'1 + (1� �)'2) � min fI ('1) ; I ('2)g = min
n
�I (�1) ; �I (�2)

o
;

proving that �I is quasiconcave. Viceversa, pick '1; '2 2 B (
;G) and � 2 (0; 1). De�ne �i = h'i; �i for
i 2 f1; 2g. It follows that ��1 + (1� �) �2 = h�'1 + (1� �)'2; �i. By (47) and since �I is quasiconcave, we
have that

I (�'1 + (1� �)'2) = �I (��1 + (1� �) �2) � min
n
�I (�1) ; �I (�2)

o
= min fI ('1) ; I ('2)g ;

proving that I is quasiconcave.

(5) �I is supermodular if and only if I is supermodular.

Proof.

We �rst prove su¢ ciency. Pick �1; �2 2 L. By assumption, there exist '1; '2 2 B (
;G) such that
�i = h'i; �i for i 2 f1; 2g. By (41), each element P in S (P) induces a lattice homomorphism on B (
;G). It
follows that �1 _ �2 = h'1 _ '2; �i and that �1 ^ �2 = h'1 ^ '2; �i. By (47) and since I is supermodular, we
have that

�I (�1 _ �2) + �I (�1 ^ �2) = I ('1 _ '2) + I ('1 ^ '2) � I ('1) + I ('2) = �I (�1) + �I (�2) ;

proving that �I is supermodular. Viceversa, pick '1; '2 2 B (
;G). De�ne �i = h'i; �i for i 2 f1; 2g. By the
same argument used before, it follows that �1 _ �2 = h'1 _ '2; �i and that �1 ^ �2 = h'1 ^ '2; �i. By (47) and
since �I is supermodular, we have that

I ('1 _ '2) + I ('1 ^ '2) = �I (�1 _ �2) + �I (�1 ^ �2) � �I (�1) + �I (�2) = I ('1) + I ('2) ;
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proving that I is supermodular.

(6) �I is comonotonic additive if and only if I is comonotonic additive;

Proof of the Step.

We �rst prove su¢ ciency. Consider �1; �2 2 L comonotonic. By point (h) of Lemma 24, there exist

'1; '2 2 B (
;G) such that '1 and '2 are comonotonic and �i = h'i; �i for i = 1; 2. It is immediate to see
that �1 + �2 = h'1 + '2; �i. By (47) and since I is comonotonic additive, this implies that

�I (�1 + �2) = I ('1 + '2) = I ('1) + I ('2) = �I (�1) + �I (�2) ;

proving that �I is comonotonic additive. Viceversa, pick '1 and '2 in B (
;G) that are further comonotonic.
De�ne �i = h'i; �i for i 2 f1; 2g. By point (h) of Lemma 24, it follows that �1 and �2 are comonotonic.
Moreover, we have that �1 + �2 = h'1 + '2; �i. By (47) and since �I is comonotonic additive, we have that

I ('1 + '2) = �I (�1 + �2) = �I (�1) + �I (�2) = I ('1) + I ('2) ;

proving that I is comonotonic additive.

(7) If I is quasiconcave and lower semicontinuous, �I is inner continuous on L0 if and only if I is inner

continuous on B0 (
;G).
Proof.

We �rst prove su¢ ciency. Consider �1; �2 2 L0 such that �I (�1) > �I (�2), fCngn2N � AS(P) such that
Cn # ;, and k 2 R. By de�nition of L0, it follows that there exist '1; '2 2 B0 (
;G) such that �i = h'i; �i
for i 2 f1; 2g. By point (n) of Lemma 24, there exists a sequence fEngn2N � G such that En # ; and
1Cn = h1En ; �i for all n 2 N. It is immediate to see that

k1Cn + �11Cc
n
=


k1En + '11Ec

n
; �
�

8n 2 N:47

By (47), we have that I ('1) = �I (�1) > �I (�2) = I ('2). By [12, Theorem 54], (47), and since I is inner

continuous on B0 (
;G), there exists n 2 N such that

�I
�
k1Cn + �11Cc

n

�
= I

�
k1En + '11Ec

n

�
> I ('2) = �I (�2) :

By point (2) and (4), it follows that �I is lower semicontinuous and quasiconcave, other than being monotone

and normalized. By point (m) of Lemma 24 and [12, Theorem 54], this implies that �I is inner continuous.

Viceversa, pick f'ngn2N � B0 (
;G) such that 'n " ' 2 B0 (
;G). De�ne � = h'; �i and �n = h'n; �i for all
n 2 N. By point (e) of Lemma 24, it follows that �n " � where f�ngn2N � L0 and � 2 L0. By (47) and since
�I is inner continuous on L0, we have that

lim
n
I ('n) = lim

n
�I (�n) = �I (�) = I (') ;

proving that I is inner continuous.

47Observe that for each n 2 N
�1 = h'1; �i = h'11En ; �i+

D
'11Ecn ; �

E
:

If P 62 Cn then 0 = 1Cn (P ) = P (En). Thus,
�
k1Cn + �11Ccn

�
(P ) = �1 (P ) 1Ccn (P ). It follows that

hk1En ; P i = 0 and
D
k1En + '11Ecn ; P

E
=
D
'11Ecn ; P

E
= h'1; P i = �1 (P ) = �1 (P ) 1Ccn (P ) :

Viceversa, if P 2 Cn then 1 = 1Cn (P ) = P (En). Thus,
�
k1Cn + �11Ccn

�
(P ) = k. It follows thatD

k1En + '11Ecn ; P
E
= k:
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(8) �I is inner/outer continuous if and only if I is inner/outer continuous.

Proof.

Consider f�ngn2N � L such that �n " � (resp., �n # �). By point (e) of Lemma 24, it follows that there
exists a sequence f'ngn2N and ' in B (
;G) such that 'n " ' (resp., 'n # ') and such that � = h'; �i and
�n = h'n; �i for all n 2 N. By (47) and since I is inner (resp., outer) continuous, we have that

lim
n
�I (�n) = lim

n
I ('n) = I (') = �I (�) ;

proving that �I is inner (resp., outer) continuous. Viceversa, pick f'ngn2N � B (
;G) such that 'n " ' 2
B (
;G) (resp., 'n # '). De�ne � = h'; �i and �n = h'n; �i for all n 2 N. By point (e) of Lemma 24, it
follows that �n " � (resp., �n # �) where f�ngn2N � L and � 2 L. By (47) and since �I is inner (resp., outer)
continuous, we have that

lim
n
I ('n) = lim

n
�I (�n) = �I (�) = I (') ;

proving that I is inner (resp., outer) continuous. �

Let I : B (
;F)! R be a normalized, monotone, and supnorm continuous functional. De�ne the binary

relation %I on B (
;F) by

' %I  , I (�'+ (1� �) �) � I (� + (1� �) �) 8� 2 [0; 1] ;8� 2 B (
;F) :

By the same arguments contained in [29] or [31], there exists a unique closed and convex subset C (I) �
�(
;F) such that

' %I  ,
Z



'dP �
Z



 dP 8P 2 C (I) :

Similarly, given a set C � �(
;F), we de�ne the binary relation %C on B (
;F) by

' %C  ,
Z



'dP �
Z



 dP 8P 2 C:

Observe that %C is a conic, monotone, and continuous preorder.

Lemma 26 Let (
;F ;P) be a Dynkin space. If I : B (
;F) ! R is normalized, monotone, supnorm

continuous, and such that C (I) = cl (co (C)) where C � �� (
;F) then the following conditions are equivalent:

(i) C � mco (P);

(ii) ' %P  implies ' %C  

(iii) C � �� (
;F ;P) and ' �C '? for all ' 2 B (
;F);

(iv) C � �� (
;F ;P) and if '; 2 B (
;F) then '? �  ? P-a.s. implies ' %C  ;

(v) ' %S(P)  implies ' %C  ;

(vi) ' %S(P)  implies I (') � I ( );

(vii) ' %P  implies I (') � I ( ).

Proof. Before starting observe that, since C (I) = cl (co (C)),

' %C(I)  , ' %C  8'; 2 B (
;F) :
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(i) implies (v). Let '; 2 B (
;F). By de�nition of %S(P), if ' %S(P)  thenZ



'dP �
Z



 dP 8P 2 S (P) :

This implies that for each � 2 ��
�
S (P) ;AS(P)

�
�� (') =

Z
S(P)

h'; P i d� (P ) �
Z
S(P)

h ; P i d� (P ) = �� ( ) : (51)

By Proposition 18, we have that mco (P) =
�
�� : � 2 ��

�
S (P) ;AS(P)

�	
. By (51), this implies thatZ




'dP �
Z



 dP 8P 2 mco (P) :

By (i), we have that C � mco (P), thus,
R


'dP �

R


 dP for all P 2 C, proving the statement.

(v) implies (ii). Since S (P) � P, the statement is obvious.

(ii) implies (iii). For each ' 2 B (
;F) we have that
R


'dP =

R


'?dP for all P 2 P. By de�nition

of %P , this is equivalent to say that ' �P '?. By (ii), this implies that ' �C '?. Next, observe that if
P (A) = 0 for all P 2 P then 1A �P 0. By (ii), it follows that 1A �C 0. By de�nition of %C , we can conclude
that C � �� (
;F ;P).

(iii) implies (iv). By assumption, we have that C � �� (
;F ;P). Next, since C � �� (
;F ;P), if
'? �  ? P-a.s. then '? %C  ?. By (iii) and since %C is a preorder, it follows that

' �C '? %C  ? �C  ;

that is, ' %C  .

(iv) implies (i). If ' %mco(P)  thenZ



'dP �
Z



 dP 8P 2 mco (P) : (52)

Since (
;F ;P) is a Dynkin space, consider W where W 2 F is such that P (W ) = 1 for all P 2 P and

p (�; !) 2 P for all ! 2W . Since P � mco (P) and by (52), it follows that if ! 2W thenZ



'dp! �
Z



 dp!;

that is, '? �  ? P-a.s.. By assumption, this implies that ' %C  . By [29, Proposition A.1.] and since
mco (P) is convex, it follows that C � cl (co (C)) � cl (mco (P)). By assumption C � �� (
;F ;P), this
implies that

C � cl (mco (P)) \�� (
;F ;P) :

We conclude the proof by showing that cl (mco (P))\�� (
;F ;P) � mco (P). If P belongs to cl (mco (P))\
�� (
;F ;P) then there exists a net fP�g�2A 2 mco (P) such that h'; P�i ! h'; P i for all ' 2 B (
;F).
By Proposition 18, we have that p is a r.c.p. for mco (P). For each A 2 F and each B 2 G, we have thatZ

B

p (A; �) dP =
Z



p (A; �) 1B (�) dP = lim
�

Z



p (A; �) 1B (�) dP�

= lim
�
P� (A \B) = P (A \B) :
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Since P 2 �� (
;F ;P), it follows that p is a r.c.p. for P . By Proposition 18, we conclude that P 2 mco (P).

We thus have proved the equivalence between points (i), (ii), (iii), (iv), and (v).

(v) implies (vi). Since C (I) = cl (co (C)), the statement follows immediately.

(vi) implies (vii). Since S (P) � P, clearly the statement follows.

(vii) implies (v). By de�nition of %P , we have that if ' %P  then

�'+ (1� �) � %P � + (1� �) � 8� 2 [0; 1] ;8� 2 B (
;F) : (53)

By (vii) and (53), it follows that if ' %P  then I (�'+ (1� �) �) � I (� + (1� �) �) for all � 2 [0; 1] and
� 2 B (
;F), that is, ' %C(I)  and so ' %C  . In other words, (vii) implies (ii). Given the previous part
of the proof, we have that (ii) implies (v), proving the statement. �

Lemma 27 Let (
;F ;P) be a Dynkin space and let I : B (
;F) ! R be a normalized, monotone, quasi-
concave, and lower semicontinuous functional. If G 2 L (R��(
;F)) is such that

I (') = min
P2�(
;F)

G

�Z



'dP; P

�
8' 2 B (
;F)

and C = dom�G then the following conditions are equivalent:

(i) ' %S(P)  implies ' %C  ;

(ii) ' %S(P)  implies I (') � I ( );

(iii) ' %P  implies I (') � I ( );

(iv) if '; 2 B0 (
;F), ' %P  implies I (') � I ( ).

Proof. First, observe that if ' %C  then I (') � I ( ). Indeed, consider '; 2 B (
;F) such that ' %C  .
Since G is increasing in the �rst component and by de�nition of %C , it follows that

G

�Z



'dP; P

�
� G

�Z



 dP; P

�
8P 2 C:

By de�nition of dom�G, this implies that

I (') = min
P2C

G

�Z



'dP; P

�
� min

P2C
G

�Z



 dP; P

�
= I ( ) :

Finally, by Theorem 21 (see also [13]), we have that

G (t; P ) = sup

�
I (') :

Z



'dP � t

�
8 (t; P ) 2 R��(
;F) :

(i) implies (ii). Since if ' %C  then I (') � I ( ), the statement follows immediately.

(ii) implies (iii). Since S (P) � P, clearly, the statement follows.

(iii) implies (iv). Since B0 (
;F) � B (
;F), the statement is obvious.

(iv) implies (i). We �rst show that �(
;F) ncl (mco (P)) � �(
;F) ndom�G. Since mco (P) is convex,
it follows that cl (mco (P)) is convex and closed. If �(
;F) ncl (mco (P)) = ; then the inclusion is true.
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Otherwise, pick �P 2 �(
;F) ncl (mco (P)). By an usual separation argument, we have that there exist
�' 2 B0 (
;F) and " > 0 such thatZ




�'d �P < 0 < " �
Z



�'dP 8P 2 mco (P) :

This implies that for each s; t 2 R there exists �n 2 N such thatZ



�n �'d �P � t and
Z



s1
dP = s �
Z



�n �'dP 8P 2 mco (P) :

Since I is normalized, P � mco (P), �n �'; s1
 2 B0 (
;F), and by (iv), we have thatZ



�n �'d �P � t and s � I (�n �') :

Since G
�
t; �P

�
= sup

�
I (') :

R


'd �P � t

	
, this implies that G

�
t; �P

�
� s for all s; t 2 R. We can conclude

that G
�
t; �P

�
= 1 for all t 2 R. This proves that �P 2 �(
;F) ndom�G. Since �(
;F) ncl (mco (P)) �

�(
;F) ndom�G, we have that dom�G = C � cl (mco (P)). Next, consider '; 2 B (
;F) such that
' %S(P)  . By the same arguments contained in Step 1 of the proof of Proposition 25 and since C �
cl (mco (P)), it follows that

' %S(P)  ) ' %mco(P)  ) ' %cl(mco(P))  ) ' %C  ;

proving the statement. �

E Proofs

In this appendix, we prove the main statements of the paper. Before starting, we introduce a new piece of

notation. Given a Dynkin space (
;F ;P), for each P 2 P and for each h 2 B0 (X) we use indi¤erently the
notation

R


hdP and Ph, that is,

Ph =
X
x2X

P (f! 2 
 : f (!) = xg)x =
Z



hdP:

Lemma 28 Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X). If % satis�es the Basic

Conditions, Consistency, and Risk Independence then % satis�es Monotonicity.

Proof. By [40] and since % satis�es the Basic Conditions and Risk Independence, there exists an a¢ ne

function u : X ! R that represents % restricted to X. Consider f; g 2 B0 (X) such that f(!) % g (!) for

all ! 2 
. We have that u (f) ; u (g) 2 B0 (
;F). Since u represents % over X, it follows that u (f) � u (g).

Next, recall that for each P 2 P

Pf =
X
x2X

P (f! 2 
 : f (!) = xg)x:

Since u is a¢ ne and f takes just �nitely many values, this implies that for each P 2 P

u (Pf ) = u

 X
x2X

P (f! 2 
 : f (!) = xg)x
!

=
X
x2X

P (f! 2 
 : f (!) = xg)u (x)

=

Z



u (f) dP:
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Similarly, we have that u (Pg) =
R


u (g) dP for all P 2 P. Since u (f) � u (g) and P � �� (
;F), it follows

that

u (Pf ) =

Z



u (f) dP �
Z



u (g) dP = u (Pg) 8P 2 P:

Since u represents % on X, this implies that Pf % Pg for all P 2 P. Since % satis�es Consistency, we can

conclude that f % g, proving the statement. �

Remark 29 If (
;F ;P) is a Dynkin space and % a binary relation on B0 (X) that satis�es the Basic

Conditions, Consistency, and Risk Independence then it follows that there exist x and y in X such that x � y.

Moreover, observe that, in the previous proof, we could dispense with completeness of % on B0 (X) and just

require completeness of % over constant acts. In other words, if % satis�es the Weak Basic Conditions,

Consistency, and Risk Independence then it satis�es Monotonicity and, in particular, it is re�exive.

Lemma 30 Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X) that satis�es the Basic

Conditions, Consistency, and Risk Independence. If u : X ! R, I : B0 (
;F ; u (X)) ! R, and J :

B (
;G; u (X))! R are such that

1. u is nonconstant and a¢ ne;

2. I is normalized, monotone, and continuous;

3. J is normalized, monotone, and continuous;

4. if '; 2 B0 (
;F ; u (X)) then
R


'dP �

R
 dP for all P 2 P implies I (') � I ( );

5. if f; g 2 B0 (X) then f % g if and only if I (u (f)) � I (u (g));

6. if f; g 2 B0 (X) and f and g are G-measurable then f % g if and only if J (u (f)) � J (u (g));

then, I (') = J (') for all ' 2 B0 (
;G; u (X)) and I (') = J ('?) for all ' 2 B0 (
;F ; u (X)).

Proof. Since u is nonconstant and a¢ ne, notice that u (X) is an interval with nonempty interior. By

Lemma 28 and since % satis�es the Basic Conditions, Consistency, and Risk Independence, it follows that

% satis�es Monotonicity. This implies that for each f 2 B0 (X) there exists xf 2 X such that f � xf . If

' 2 B0 (
;G; u (X)) then there exists f in B0 (X), which is further G-measurable, such that ' = u (f). Since

I and J are normalized and, once composed with u, they represent %, it follows that

I (') = I (u (f)) = I (u (xf ) 1
) = u (xf ) = J (u (xf ) 1
) = J (u (f)) = J (') ;

proving the �rst part of the statement. If ' 2 B0 (
;F ; u (X)) then we have that '? 2 B (
;G; u (X)) and
that there exists two sequences, f'ngn2N and f ngn2N, in B0 (
;G; u (X)) such that 'n # '? and  n " '?

where the convergence is uniform. Moreover, since P � �� (
;F), observe that for each n 2 NZ



'ndP �
Z



'?dP =

Z



'dP =

Z



'?dP �
Z



 ndP 8P 2 P:

By the previous part of the proof and point 4., this implies that

J ('n) = I ('n) � I (') � I ( n) = J ( n) 8n 2 N:

Since J is continuous, passing to the limit, we obtain that

J ('?) � I (') � J ('?) ;

proving the last part of the statement. �
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Lemma 31 Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X). % satis�es the Basic

Conditions, Consistency, and Comonotonic Independence on G-measurable acts if and only if there exist a
nonconstant a¢ ne function u : X ! R and a normalized, monotone, translation invariant, and positively

homogeneous functional I : B (
;F)! R, which is further comonotonic additive on B (
;G) and such that

(a)
R


'dP �

R


 dP for all P 2 P implies I (') � I ( );

(b) f % g if and only if I (u (f)) � I (u (g)).

Moreover,

1. u is unique up to an a¢ ne transformation and I is unique.

2. I is quasiconcave if and only if % satis�es Uncertainty Aversion.

3. I is inner and outer continuous on B (
;G) if and only if % satis�es Monotone Continuity.

Proof. We �rst prove necessity. Since % satis�es the Basic Conditions and Comonotonic Independence

on G-measurable acts, % satis�es Risk Independence à la Herstein and Milnor. By [40], it follows that

there exists an a¢ ne function u : X ! R that represents % restricted to X. This implies that % satis�es

Risk Independence and, in particular, that u is nonconstant. Moreover, u is cardinally unique. Since u

is cardinally unique, without loss of generality, we assume that u (X) � [�1; 1]. Since % further satis�es

Consistency and by Lemma 28, % satis�es Monotonicity. By [11] and since % satis�es the Basic Conditions,
Monotonicity, and Risk Independence, it follows that there exists a normalized, monotone, and continuous

functional Î : B0 (
;F ; u (X))! R such that for each f and g in B0 (X) we have that

f % g , Î (u (f)) � Î (u (g)) : (54)

If '; 2 B0 (
;F ; u (X)) are such that
R


'dP �

R


 dP for all P 2 P then there exist f and g in B0 (X)

such that ' = u (f) ;  = u (g) ; and
R


u (f) dP �

R


u (g) dP for all P 2 P. By de�nition of Pf and Pg and

since u is a¢ ne, it follows that

u (Pf ) =

Z



u (f) dP �
Z



u (g) dP = u (Pg) 8P 2 P:

Since u represents % over X, this implies that Pf % Pg for all P 2 P. Since % satis�es Consistency and Î

satis�es (54), it follows that

Î (') = Î (u (f)) � Î (u (g)) = Î ( ) :

Next, recall that %, restricted to G-measurable acts, satis�es the Basic Conditions, Monotonicity, and
Comonotonic Independence. By [55], it follows that there exists a capacity � : G ! [0; 1] such that

f % g ,
Z



u (f) d� �
Z



u (g) d�; (55)

where the integrals are in the Choquet sense. If we de�ne J : B (
;G)! R by

J (') =

Z



'd� 8' 2 B (
;G)

then J is a normalized, monotone, and continuous functional. Moreover, J is comonotonic additive and such

that

f % g , J (u (f)) d� � J (u (g)) :
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By Lemma 30, it follows that Î (') = J (') for all ' 2 B0 (
;G; u (X)) and Î (') = J ('?) for all ' 2
B0 (
;F ; u (X)). De�ne the functional I : B (
;F)! R by

' 7!
Z



'?d� = J ('?) :

Since I is the composition of J with the linear and continuous operator ? : B (
;F) ! B (
;G), it follows
that I is a normalized, monotone, translation invariant, and positively homogeneous functional. In particular,

it follows that I is Lipschitz continuous. By the previous part of the proof and by de�nition of I, we have

that for each ' 2 B0 (
;G; u (X))

J (') = Î (') = J ('?) = I (') : (56)

Since u (X) � [�1; 1], if ' 2 B0 (
;G) then there exist � 2 (0;1) such that �' = �' 2 B0 (
;G; u (X)). By
(56) and since both I and J are positively homogeneous, it follows that

�J (') = J (�') = J ( �') = I ( �') = I (�') = �I (')) J (') = I (') ;

proving that I coincides to J on B0 (
;G). Since both I and J are continuous on B (
;G), this implies
that I and J coincide on B (
;G). Therefore, it follows that I is comonotonic additive on B (
;G). Since
u (X) � [�1; 1], if '; 2 B0 (
;F) then there exist � 2 (0;1) such that �' = �' and � = � are both

elements of B0 (
;F ; u (X)). If, furthermore,
R


'dP �

R


 dP for all P 2 P then

R


�'dP �

R


� dP for all

P 2 P. By the previous part of the proof, it follows that

�I (') = I (�') = I ( �') = J ( �'?)

= Î ( �')

� Î
�
� 
�

= J
�
� ?
�
= I

�
� 
�
= I (� ) = �I ( ) :

It follows that I (') � I ( ). On the other hand, if '; 2 B (
;F) are such that
R


'dP �

R


 dP for all

P 2 P then there exist two sequences, f'ngn2N and f ngn2N, in B0 (
;F) such that 'n # ' and  n "  
and the convergence is uniform. Since P � �� (
;F), it follows that

R


'ndP �

R


 ndP for all P 2 P

and for all n 2 N. By the previous part of the proof, it follows that I ('n) � I ( n) for all n 2 N. Since I
is continuous and passing to the limit, it follows that I (') � I ( ), proving that I satis�es (a). Finally, by

(54) and since Î (') = J ('?) = I (') for all ' 2 B0 (
;F ; u (X)), it follows that

f % g , Î (u (f)) � Î (u (g)), I (u (f)) � I (u (g)) ;

proving that I satis�es (b), and thus proving necessity. Su¢ ciency follows from routine arguments.

1. It follows from [29, Lemma 1] and the Lipschitz continuity of I.

2. By [12, Lemma 60], if % further satis�es Uncertainty Aversion then

f % g ) �f + (1� �) g % g 8� 2 (0; 1) :

By the previous part of the proof, recall that u (X) � [�1; 1]. If '; 2 B0 (
;F) and � 2 (0; 1) then there
exists � 2 (0;1) such that �' = �' and � = � belong to B0 (
;F ; u (X)). Thus, there exist f and g in
B0 (X) such that �' = u (f) and � = u (g). Without loss of generality, assume that f % g. Since u is a¢ ne

and I is positively homogeneous and satis�es (b), it follows that

�I (�'+ (1� �) ) = I
�
� �'+ (1� �) � 

�
� min

�
I ( �') ; I

�
� 
�	
= �min fI (') ; I ( )g

) I (�'+ (1� �) ) � min fI (') ; I ( )g ;

54



proving the quasiconcavity of I on B0 (
;F). By the continuity of I, it follows that I is quasiconcave on
B (
;F), proving su¢ ciency. Necessity is obvious.
3. We next prove su¢ ciency. By [54] and since I is a normalized, monotone, and comonotonic additive

functional on B (
;G), there exists a unique capacity � : G ! [0; 1] such that I (') =
R


'd� for all

' 2 B (
;G). Consider fEngn2N � G and E 2 G such that En # E (resp., En " E). It is immediate to
see that limn � (En) is well de�ned, it belongs to [0; 1], and that limn � (En) � � (E) (resp., � � (E)). By

contradiction, assume that limn � (En) > � (E) (resp., < � (E)). Since, without loss of generality, we can

assume that u (X) � [�1; 1], consider x; y; z 2 X such that u (x) = 1, u (z) = limn2N � (En), and u (y) = 0.

Moreover, de�ne Fn = EnnE (resp., EnEn) for all n 2 N, f = z and g = xEy (resp., f = xEy and g = z). It

is immediate to see that u (g) = 1E and u (xFng) = 1En (resp., u (yFnf) = 1En) for all n 2 N. By working
hypothesis, this implies that f � g (resp., f � g). Since I satis�es (b) and % satis�es Monotone Continuity,
there exists N 2 N such that f � xFNg (resp., yFNf � g), that is,

lim
n
� (En) = u (z) = I (u (z) 1
) > I (u (xFNg)) = I (1EN ) = � (EN ) � lim

n
� (En)

(resp:; lim
n
� (En) = u (z) = I (u (z) 1
) < I (u (yFNf)) = I (1EN ) = � (EN ) � lim

n
� (En));

a contradiction. It follows that � is continuous. It is well known (see, e.g., [15]) that the continuity of �

implies that I is inner and outer continuous on B (
;G).
Necessity follows by observing that, since I satis�es point (a), inner and outer monotone continuity of

I on B (
;G) implies inner and outer monotone continuity of I on B (
;F). By a routine argument, this
latter fact implies that % satis�es Monotone Continuity. �

Lemma 32 Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X). % satis�es the Basic Con-
ditions, Consistency, Weak Certainty Independence, Uncertainty Aversion, and Unboundedness if and only

if there exist an unbounded a¢ ne function u : X ! R and a normalized, monotone, translation invariant,
and concave functional I : B (
;F)! R such that

(a)
R


'dP �

R


 dP for all P 2 P implies I (') � I ( );

(b) f % g if and only if I (u (f)) � I (u (g)).

Moreover,

1. u is unique up to an a¢ ne transformation and, given u, I is unique.

2. I is inner continuous if % satis�es Monotone Continuity.

Proof. We �rst prove necessity. Since % satis�es the Basic Conditions and Weak Certainty Independence,
% satis�es Risk Independence à la Herstein and Milnor. By [40], it follows that there exists an a¢ ne

function u : X ! R that represents % restricted to X. This implies that % satis�es Risk Independence.

Since % satis�es Unboundedness, it is easy to check that u (X) is unbounded. Furthermore, u is unique

up to an a¢ ne transformation. Since u is unique up to an a¢ ne transformation, without loss of generality,

we can assume that u is such that 0 2 int (u (X)). Since % further satis�es Consistency and by Lemma

28, % satis�es Monotonicity. Since % further satis�es Uncertainty Aversion and by [46, Lemma 25 and

Lemma 28] and the proof of [46, Theorem 3], it follows that there exists a normalized and concave niveloid

I : B0 (
;F ; u (X)) ! R such that f % g if and only if I (u (f)) � I (u (g)). By [46, pag. 1476], it follows

that I has a unique extension to B0 (
;F) which is normalized and concave as well. With a small abuse
of notation, we denote this extension by I. By [46, Lemma 25], it follows that I : B0 (
;F) ! R is a

normalized, monotone, translation invariant, and concave functional.
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Before proceeding with the proof, observe that

B0 (
;F ; u (X)) = fu (f) : f 2 B0 (X)g : (57)

Consider '; 2 B0 (
;F). Assume that
R


'dP �

R


 dP for all P 2 P. Since u (X) is unbounded, there

exists k 2 R such that �' = '+ k1
 and � =  + k1
 belong to B0 (
;F ; u (X)). Since P � �� (
;F), we
have that

R


�'dP �

R


� dP for all P 2 P. By (57), it follows that there exist f and g in B0 (X) such that

�' = u (f) and � = u (g). This implies that
R


u (f) dP �

R


u (g) dP for all P 2 P. By de�nition of Pf and

Pg and since u is a¢ ne, we have that

u (Pf ) =

Z



u (f) dP �
Z



u (g) dP = u (Pg) 8P 2 P:

Since u represents % over X, this implies that Pf % Pg for all P 2 P. Since % satis�es Consistency and I is
translation invariant and satis�es (b), it follows that

I (') + k = I ( �') = I (u (f)) � I (u (g)) = I
�
� 
�
= I ( ) + k ) I (') � I ( ) : (58)

Since I is normalized, monotone, and translation invariant, observe that I is Lipschitz continuous. This

implies that I admits a unique continuous extension to B (
;F). It is routine to check that this extension
is itself a normalized, monotone, translation invariant, and concave functional over B (
;F). Again with a
small abuse of notation, we denote this extension by I. Moreover, I clearly satis�es (b). Finally, consider

'; 2 B (
;F) such that
R


'dP �

R


 dP for all P 2 P. It follows that there exist two sequences,

f'ngn2N and f ngn2N, in B0 (
;F) such that 'n # ' and  n "  and the convergence is uniform. Since
P � �� (
;F), we have that

R


'ndP �

R


 ndP for all P 2 P and for all n 2 N. By (58), this implies

that I ('n) � I ( n) for all n 2 N. Since I is continuous, we can conclude that I (') � I ( ), proving that I

satis�es (a) as well, thus, proving necessity. Su¢ ciency follows from routine arguments.

1. By the proof of [46, Lemma 28], it follows that u is unique up to an a¢ ne transformation. Next,

�x u and consider two normalized, monotone, and translation invariant functions, I1 and I2, satisfying (b).

Consider ' 2 B0 (
;F). Since u (X) is unbounded, it follows that there exists k 2 R such that �' = '+ k1


belongs to B0 (
;F ; u (X)). This implies that there exists f 2 B0 (X) such that �' = u (f). Moreover, given

the assumptions, we have that for each f 2 B0 (X) there exists xf 2 X such that f � xf . Since I1 and I2
are normalized, translation invariant, and they both satisfy (b), we have that

I1 (') + k = I1 ( �') = I1 (u (f))

= I1 (u (xf ) 1
)

= u (xf )

= I2 (u (xf ) 1
) = I2 (u (f)) = I2 ( �') = I2 (') + k:

We can conclude that I1 and I2 coincide on B0 (
;F). Since both functionals are Lipschitz continuous
functionals and B0 (
;F) is dense in B (
;F), the statement follows.
2. Consider '; 2 B0 (
;F) such that I (') > I ( ), k 2 R, and fEngn2N � F such that En # ;. Since

u (X) is unbounded, it follows that there exists h 2 R such that �' = '+ h1
, � =  + h1
, and (k + h) 1

belong to B0 (
;F ; u (X)). Since I is translation invariant, notice that I ( �') > I

�
� 
�
. Moreover, we have

that there exist f; g 2 B0 (X) and x 2 X such that �' = u (f), � = u (g), and u (x) = k+ h. Since I satis�es

(b), it follows that

f � g and u (xEnf) = (k + h) 1En + �'1Ec
n

8n 2 N:
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Since % satis�es Monotone Continuity, it follows that there exists an N 2 N such that xENf � g. Since I

is translation invariant and it satis�es (b), we can conclude that

I
�
k1EN + '1Ec

N

�
+ h = I

�
(k + h) 1EN + �'1Ec

N

�
= I (u (xENf)) > I (u (g)) = I

�
� 
�
= I ( ) + h

) I
�
k1EN + '1Ec

N

�
> I ( ) :

By Theorem 21 and [12, Theorem 54], it follows that I is inner continuous on B0 (
;F). Since I is translation
invariant and by using the same techniques contained in [15, Lemma 15], it follows that I is inner continuous

on B (
;F). �

Lemma 33 Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X). % satis�es the Basic

Conditions, Consistency, Risk Independence, Uncertainty Aversion, and Full Unboundedness if and only if

there exist an onto a¢ ne function u : X ! R and a normalized, monotone, lower semicontinuous, and

quasiconcave functional I : B (
;F)! R such that

(a)
R


'dP �

R


 dP for all P 2 P implies I (') � I ( );

(b) f % g if and only if I (u (f)) � I (u (g));

(c) I is continuous on B0 (
;F).

Moreover,

1. u is unique up to an a¢ ne transformation and, given u, I is unique.

2. I is inner continuous if % satis�es Monotone Continuity.

Proof. We �rst prove necessity. By [40] and since % satis�es the Basic Conditions and Risk Independence,
it follows that there exists an a¢ ne function u : X ! R that represents % restricted to X. Furthermore, u
is unique up to an a¢ ne transformation. Since % further satis�es Consistency and by Lemma 28, % satis�es
Monotonicity. Since % satis�es Full Unboundedness, it is easy to check that u (X) = R. It follows that

B0 (
;F) = fu (f) : f 2 B0 (X)g : (59)

By [12, Lemma 61], there exists a unique normalized, monotone, continuous, and quasiconcave functional

I : B0 (
;F)! R such that f % g , I (u (g)) � I (u (f)).

Consider '; 2 B0 (
;F). Assume that
R


'dP �

R


 dP for all P 2 P. By (59), it follows that there

exist f and g in B0 (X) such that ' = u (f) and  = u (g). This implies that
R


u (f) dP �

R


u (g) dP for

all P 2 P. By de�nition of Pf and Pg and since u is a¢ ne, we have that

u (Pf ) =

Z



u (f) dP �
Z



u (g) dP = u (Pg) 8P 2 P:

Since u represents % over X, this implies that Pf % Pg for all P 2 P. Since % satis�es Consistency and I

represents %, once composed with u, it follows that

I (') = I (u (f)) � I (u (g)) = I ( ) : (60)

By Theorem 21, it follows that there exists a unique G 2 L (R��(
;F)) such that

I (') = min
P2�(
;F)

G

�Z



'dP; P

�
8' 2 B0 (
;F) : (61)
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By Theorem 21, if we de�ne J : B (
;F)! R by

J (') = min
P2�(
;F)

G

�Z



'dP; P

�
8' 2 B (
;F)

then we have that J is a normalized, monotone, lower semicontinuous, and quasiconcave extension of I to

B (
;F). With a small abuse of notation, we also call the extension I. By the previous part of the proof,
it follows that I satis�es all the requirements of the statement as well as points (b) and (c). Moreover, I

satis�es point (a) when ' and  are elements of B0 (
;F). This implies that I satis�es point (iv) of Lemma
27. Thus, we can conclude that I satis�es point (iii) of Lemma 27, which is point (a).

1. By [12, Lemma 61], it follows that u is unique up to an a¢ ne transformation. Moreover, by the same

result and given u, I is unique over B0 (
;F). As a consequence of Theorem 21, I admits a unique normalized,
monotone, lower semicontinuous, and quasiconcave extension to B (
;F), proving the uniqueness of I.
2. If % further satis�es Monotone Continuity then it is immediate to check that I, restricted to B0 (
;F)

and represented as in (61), satis�es the conditions of [12, Theorem 54]. By [12, Theorem 54], it follows that

I is inner continuous on B0 (
;F) and that there exists a probability measure R such that G (t; P 0) = 1
for all t 2 R and for all P 0 62 fP 2 �� (
;F) : P << Rg. In light of this observation and by using the same
arguments of [12, Theorem 54], it follows that I is inner continuous on B (
;F). �

Lemma 34 Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X) that satis�es the Basic

Conditions, Consistency, and Risk Independence. If u : X ! R, Q 2 �� (
;G;P), � : u (X) ! R, and
I : B0 (
;F ; u (X))! R are such that

1. u is nonconstant and a¢ ne;

2. I is normalized, monotone, and continuous;

3. � is strictly increasing and continuous;

4. if '1; '2 2 B0 (
;F ; u (X)) then
R


'1dP �

R


'2dP for all P 2 P implies I ('1) � I ('2);

5. if f; g 2 B0 (X) then f % g if and only if I (u (f)) � I (u (g));

6. if f; g 2 B0 (X) and f and g are G-measurable then

f % g , ��1
�Z




� (u (f)) dQ

�
� ��1

�Z



� (u (g)) dQ

�
:

then, there exists � 2 ��
�
S (P) ;AS(P)

�
such that

I (') = ��1

 Z
S(P)

�

�Z



' (!) dP (!)

�
d� (P )

!
8' 2 B0 (
;F ; u (X)) : (62)

Proof. De�ne J : B (
;G; u (X))! R by

J ( ) = ��1
�Z




� ( ) dQ

�
8 2 B (
;G; u (X)) :

Since � is strictly increasing and continuous, it is immediate to see that J is well de�ned, normalized,

monotone, and continuous. Moreover, by point 6., it follows that for each f and g, which are further

G-measurable, we have that
f % g , J (u (f)) � J (u (g)) :
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By Lemma 30, it follows that I (') = J ('?) for all ' 2 B0 (
;F ; u (X)). Pick ' 2 B0 (
;F ; u (X)). It
follows that

I (') = J ('?) = ��1
�Z




� ('?) dQ

�
= ��1

�Z
W

� ('?) dQW
�

= ��1
�Z

P
� (h'; �i) d�QW

�
= ��1

 Z
S(P)

� (h'; �i) d�QW

!

= ��1

 Z
S(P)

�

�Z



' (!) dP (!)

�
d�QW (P )

!
where the �rst equality follows from the previous part of the proof, the second follows by de�nition of J ,

the third equality follows from the fact that Q 2 �� (
;G;P) and by Fact 4, the fourth equality follows
from the Change of Variables Theorem (see [1, Theorem 13.46]), the �fth equality follows from point 5. of

Proposition 19, and the sixth equality is a trivial rewriting. De�ne � : AS(P) ! [0; 1] by

� (�) = �QW (�) 8� 2 AS(P):

Since �QW 2 �� (P;AP), S (P) 2 AP , and �QW (S (P)) = 1, it follows that � is well de�ned and � 2
��
�
S (P) ;AS(P)

�
. By the previous part of the proof and since ' was arbitrarily chosen, it follows that �

satis�es (62). �

Proof of Theorem 4. Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X).
(i) implies (ii). By Lemma 32, if % satis�es the Basic Conditions, Consistency, Weak Certainty Indepen-

dence, Uncertainty Aversion, and Unboundedness then there exist an unbounded a¢ ne function u : X ! R
and a normalized, monotone, translation invariant, and concave functional I : B (
;F)! R such that
(a)

R


'dP �

R


 dP for all P 2 P implies I (') � I ( );

(b) f % g if and only if I (u (f)) � I (u (g)).

By (b), we have that if we de�ne V : B0 (X) ! R by V (f) = I (u (f)) for all f 2 B0 (X) then V

represents %.
Next, observe that if we de�ne �I : L ! R as in Proposition 25, then it follows that �I is a normalized,

monotone, translation invariant, and concave functional on L such that I (') = �I (h'; �i) for all ' 2 B (
;G).
Moreover, since I satis�es (a), we have that

I (') = I ('?) = �I (h'?; �i) = �I (h'; �i) 8' 2 B (
;F) : (63)

By point (f) of Lemma 24, L = B
�
S (P) ;AS(P)

�
. Given the properties of �I and by Theorem 21 (see

also [46, Lemma 26]), there exists a unique, grounded, lower semicontinuous, and convex function 
 :

�
�
S (P) ;AS(P)

�
! [0;1] such that

�I (�) = min
�2�(S(P);AS(P))

(Z
S(P)

�d�+ 
 (�)

)
8� 2 L: (64)

By the previous part of the proof and (63), we can conclude that

V (f) = I (u (f)) = �I (hu (f) ; �i) = min
�2�(S(P);AS(P))

(Z
S(P)

hu (f) ; �i d�+ 
 (�)
)

= min
�2�(S(P);AS(P))

(Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) + 
 (�)

)
8f 2 B0 (X) :

(ii) implies (i). It is routine.
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1. Uniqueness follows from point 1. of Lemma 32 and the uniqueness of �I and its representation.

2. Su¢ ciency is routine. Viceversa, by point 2. of Lemma 32, if % further satis�es Monotone Continuity
then I is inner continuous. By point (8) of Proposition 25, this implies that �I is inner continuous. By

Theorem 21, this implies that 
 (�) =1 for all � 62 ��
�
S (P) ;AS(P)

�
. �

Proof of Theorem 5. Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X).
(i) implies (ii). By Lemma 33, if % satis�es the Basic Conditions, Consistency, Risk Independence,

Uncertainty Aversion, and Full Unboundedness then there exist an onto a¢ ne function u : X ! R and a
normalized, monotone, lower semicontinuous and quasiconcave functional I : B (
;F)! R such that:
(a)

R


'dP �

R


 dP for all P 2 P implies I (') � I ( );

(b) f % g if and only if I (u (f)) � I (u (g));

(c) I is continuous on B0 (
;F).
By (b), we have that if we de�ne V : B0 (X) ! R by V (f) = I (u (f)) for all f 2 B0 (X) then V

represents %.
Next, observe that if we de�ne �I : L ! R as in Proposition 25, then it follows that �I is a normalized,

monotone, lower semicontinuous, and quasiconcave functional on L such that I (') = �I (h'; �i) for all ' 2
B (
;G). Moreover, since I satis�es (a), we have that

I (') = I ('?) = �I (h'?; �i) = �I (h'; �i) 8' 2 B (
;F) : (65)

By point (f) of Lemma 24, L = B
�
S (P) ;AS(P)

�
. Given the properties of �I and by Theorem 21 (see also

[13]), there exists a unique function G 2 L
�
R��

�
S (P) ;AS(P)

��
such that

�I (�) = min
�2�(S(P);AS(P))

G

 Z
S(P)

�d�; �

!
8� 2 L: (66)

By the previous part of the proof and (65), we can conclude that

V (f) = I (u (f)) = �I (hu (f) ; �i) = min
�2�(S(P);AS(P))

G

 Z
S(P)

hu (f) ; �i d�; �
!

= min
�2�(S(P);AS(P))

G

 Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) ; �

!
8f 2 B0 (X) :

We are left to show that G is linearly continuous. By (65) and (66), notice that for each ' 2 B0 (
;F) =
B0 (R) we have that

min
�2�(S(P);AS(P))

G

 Z
S(P)

�Z



' (!) dP (!)

�
d� (P ) ; �

!
= �I (h'; �i) = I (') :

By point (c), I is continuous on B0 (
;F), proving the linear continuity of G.
(ii) implies (i). It is routine.

1. Uniqueness follows from point 1. of Lemma 33 and the uniqueness of �I and its representation.

2. Su¢ ciency is routine. Viceversa, by point 2. of Lemma 33, if % further satis�es Monotone Continuity
then I is inner continuous. By point (8) of Proposition 25, this implies that �I is inner continuous. By

Theorem 21, this implies that G (t; �) =1 for all (t; �) 62 R���
�
S (P) ;AS(P)

�
. �

Proof of Theorem 6. Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X).
(i) implies (ii). By Lemma 28 and since % satis�es the Basic Conditions, Consistency, and Risk Inde-

pendence, it follows that % satis�es Monotonicity. By [11], this implies that there exist a nonconstant a¢ ne
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function u : X ! R and a normalized, monotone, and continuous functional I : B0 (
;F ; u (X)) ! R such
that for each f and g in B0 (X)

f % g , I (u (f)) � I (u (g)) : (67)

On the other hand, by Savage [53] (see also [14, Proposition 3]) and since % satis�es the Basic Conditions,

Consistency, Risk Independence, Monotone Continuity, and its restriction to G-measurable acts satis�es P2-
P6 then there exist a nonatomic probability measure Q 2 �� (
;G), a nonconstant a¢ ne function û : X ! R,
and a strictly increasing and continuous function � : û (X) ! R such that for each f and g in B0 (X) that
are further G-measurable

f % g , ��1
�Z




� (û (f)) dQ

�
� ��1

�Z



� (û (g)) dQ

�
: (68)

Moreover, Q is unique, u is cardinally unique, and � is cardinally unique given û. By [11] and [14, Proposition

3], without loss of generality, we can assume that û = u, that 0; 1 2 int (u (X)), and that � (1)�1 = 0 = � (0).

Consider '1; '2 2 B0 (
;F ; u (X)) such that
R


'1dP �

R


'2dP for all P 2 P. It follows that there exist

f1 and f2 in B0 (X) such that

'i = u (fi) for i 2 f1; 2g and u (Pf1) =
Z



u (f1) dP �
Z



u (f2) dP = u (Pf2) 8P 2 P:

By (67) and since % satis�es Consistency, it follows that I ('1) = I (u (f1)) � I (u (f2)) = I ('2), that is,

I satis�es point 4. of Lemma 34. Similarly, consider A 2 G such that P (A) = 0 for all P 2 P. Since
0; 1 2 int (u (X)), it follows that 1A; 1; 2 B0 (
;G; u (X)) and that

R


1;dP = 0 = P (A) =

R


1AdP for all

P 2 P. De�ne x; y 2 X to be such that u (x) = 1 and u (y) = 0. By (68) and since � (1)� 1 = 0 = � (0) and

% satis�es Consistency, it follows that

��1 (Q (A)) = ��1
�Z




� (1A) dQ

�
= ��1

�Z



� (u (xAy)) dQ

�
= ��1

�Z



� (u (y)) dQ

�
= 0;

that is, Q (A) = 0 and Q 2 �� (
;G;P). By Lemma 34, it follows that there exists � 2 ��
�
S (P) ;AS(P)

�
such that

I (') = ��1

 Z
S(P)

�

�Z



' (!) dP (!)

�
d� (P )

!
8' 2 B0 (
;F ; u (X)) : (69)

We next show that � is nonatomic. Consider C 2 AS(P) and A 2 G such that h1A; �i = 1C and � (C) > 0.
By (69), it follows that

0 < ��1 (� (C)) = ��1

 Z
S(P)

�

�Z



1A (!) dP (!)

�
d� (P )

!
= I (1A) = ��1 (Q (A)) (70)

where the last equality is consequence of Lemma 30.48 Next, consider C1 2 AS(P) such that � (C1) > 0. By
point (l) of Lemma 24, there exists A1 2 G such that h1A1

; �i = 1C1 . By (70), it follows that Q (A1) > 0.

Since Q is nonatomic, it follows that there exists A2 2 G such that A2 � A1 and 0 < Q (A2) < Q (A1). By

the proof of point (i) of Lemma 24, we have that 1C1 = h1A1
; �i � h1A2

; �i = 1C2 where C2 2 AS(P), that is,
C2 � C1. By (70), we can conclude that

0 < � (C2) = Q (A2) < Q (A1) = � (C1) ;

thus proving that � is nonatomic.

48J : B (
;G; u (X))! R is de�ned by

 7! ��1
�Z



� ( ) dQ

�
:

61



Finally, by (69), notice that the function V : B0 (X)! R, de�ned by

V (f) =

Z
S(P)

�

�Z



u (f (!)) dP (!)

�
d� (P ) 8f 2 B0 (X) ;

is such that V = � � I � u. Since � is strictly increasing and by (67), it follows that V represents %.

(ii) implies (i). Assume that there exist a nonatomic probability measure � 2 ��
�
S (P) ;AS(P)

�
, a

nonconstant a¢ ne function u : X ! R, and a strictly increasing and continuous function � : u (X) ! R
such that

V (f) =

Z
S(P)

�

�Z



u (f (!)) dP (!)

�
d� (P ) 8f 2 B0 (X)

represents %. De�ne I : B0 (
;F ; u (X))! R by

I (') = ��1

 Z
S(P)

�

�Z



' (!) dP (!)

�
d� (P )

!
8' 2 B0 (
;F ; u (X)) :

Since � is strictly increasing and continuous and � 2 ��
�
S (P) ;AS(P)

�
, it is immediate to see that I is

normalized, monotone, continuous, and inner/outer continuous. Since � is strictly increasing and continuous,

it follows that the function V 0 = ��1 � V = I � u represents %. By the arguments contained in [11], it
follows that % satis�es the Basic Conditions and Risk Independence. It is immediate to see that % satis�es
Consistency and Monotone Continuity as well. Next, de�ne Q = ��G where �� is the barycenter of �. Notice

that Q 2 �� (
;G;P). We next show that Q is nonatomic. Consider A 2 G and C 2 AS(P) such that
h1A; �i = 1C . It follows that

� (C) =

Z
S(P)

1Cd� =

Z
S(P)

h1A; �i d� =
Z



1Ad�� =

Z



1AdQ = Q (A) : (71)

Consider A1 2 G such that Q (A1) > 0. By the proof of point (i) of Lemma 24, we have that h1A1 ; �i = 1C1
where C1 2 AS(P). By (71), it follows that � (C1) > 0. Since � is nonatomic, it follows that there exists

C2 2 AS(P) such that C2 � C1 and 0 < � (C2) < � (C1). By point (l) of Lemma 24, there exists A2 2 G
such that h1A2

; �i = 1C2 . De�ne A3 = A1 \A2 2 G. Since C2 � C1 and A1; A2 2 G , it follows that

1C2 = 1C1 ^ 1C2 = h1A1
; �i ^ h1A2

; �i = h1A1
^ 1A2

; �i = h1A3
; �i :

It follows that A3 � A1. By (71), we thus have that 0 < Q (A3) = � (C2) < � (C1) = Q (A1), proving that

Q is nonatomic. Next, observe that for each  2 B0 (
;G; u (X)) we have that

I ( ) = ��1

 Z
S(P)

� (h ; �i) d�
!
= ��1

 Z
S(P)

� (h ; �i) d�QW

!
= ��1

�Z
P
� (h ; �i) d�QW

�
= ��1

�Z
W

� ( ?) dQW
�
= ��1

�Z



� ( ?) dQ

�
= ��1

�Z



� ( ) dQ

�
:

where the �rst equality follows by de�nition of I, the second equality follows by (38), the third equality

follows from point 5. of Proposition 19, the fourth equality follows from the Change of Variables Theorem

(see [1, Theorem 13.46]), the �fth equality follows from the fact that Q 2 �� (
;G;P) and by Fact 4, and
the sixth equality follows from the fact that Q 2 �� (
;G;P) and  =  ? P-a.s., since  2 B (
;G). This
implies that V 0 (f) = ��1 (V (f)) = I (u (f)) = ��1

�R


� (u (f)) dQ

�
for all f 2 B0 (X) that are further

G-measurable. By [14, Proposition 3] and since Q is a nonatomic probability measure, u : X ! R is

nonconstant and a¢ ne, � : u (X)! R is strictly increasing and continuous, and V 0 represents %, it follows
that the restriction of % to G-measurable acts satis�es P2-P6.
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1. Uniqueness is routine to check.

2. By [14, Proposition 3], if % satis�es Uncertainty Aversion then � is concave. Viceversa, if � is concave
then it is immediate to see that % satis�es Uncertainty Aversion. �

Proof of Theorem 7. Let (
;F ;P) be a Dynkin space and % a binary relation on B0 (X).
(i) implies (ii). By Lemma 31, if % satis�es the Basic Conditions, Consistency, and Comonotonic Inde-

pendence on G-measurable acts then there exist a nonconstant a¢ ne function u : X ! R and a normalized,
monotone, translation invariant, and positively homogeneous functional I : B (
;F) ! R, which is further
comonotonic additive on B (
;G) and such that:
(a)

R


'dP �

R


 dP for all P 2 P implies I (') � I ( );

(b) f % g if and only if I (u (f)) � I (u (g)).

By (b), we have that if we de�ne V : B0 (X) ! R by V (f) = I (u (f)) for all f 2 B0 (X) then V

represents %.
Next, observe that if we de�ne �I : L ! R as in Proposition 25, then it follows that �I is a normalized,

monotone, and comonotonic additive functional on L such that I (') = �I (h'; �i) for all ' 2 B (
;G).
Moreover, since I satis�es (a) we have that

I (') = I ('?) = �I (h'?; �i) = �I (h'; �i) 8' 2 B (
;F) : (72)

By point (f) of Lemma 24, L = B
�
S (P) ;AS(P)

�
. Given the properties of �I and by [54], there exists a

unique capacity � : AS(P) ! [0; 1] such that

�I (�) =

Z
S(P)

�d� 8� 2 L: (73)

By the previous part of the proof and (72), we can conclude that

V (f) = I (u (f)) = �I (hu (f) ; �i) =
Z
S(P)

hu (f) ; �i d� =
Z
S(P)

�Z



u (f (!)) dP (!)

�
d� (P ) 8f 2 B0 (X) ;

proving the implication.

(ii) implies (i). It is routine.

1. Uniqueness follows from point 1. of Lemma 31 and the uniqueness of �I and its representation.

2. Necessity is trivial. Viceversa, by point 2. of Lemma 31, if % further satis�es Uncertainty Aversion

then I is quasiconcave. By point (4) of Proposition 25, this implies that �I is quasiconcave. By [54] and (73),

it follows that � is convex.

3. Necessity is trivial. Viceversa, by point 3. of Lemma 31, if % further satis�es Monotone Continuity

then I is inner and outer continuous on B (
;G). By point (8) of Proposition 25, this implies that �I is inner
and outer continuous. Given (73), it follows that � is inner and outer continuous, that is, continuous. �

Proof of Theorem 8. (i) implies (ii). By Remark 29 and since % satis�es the Weak Basic Conditions,

Consistency, and Independence, it follows that % satis�es Monotonicity and it is re�exive. By [32, Theorem
1] and since % is re�exive and satis�es the Weak Basic Conditions, Monotonicity, and Independence, there

exist a nonconstant a¢ ne function u : X ! R and a nonempty, closed, and convex set C � �(
;F) such
that

f % g ,
Z



u (f) dP �
Z



u (g) dP 8P 2 C: (74)
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Moreover, u is unique up to an a¢ ne transformation and it represents % restricted to X. Without loss of

generality, we can assume that 1; 0 2 int (u (X)). De�ne x; z 2 X and the sequence fykgk2N � X to be

such that u (x) = 1, u (z) = 0, and u (yk) = 1=k for all k 2 N. Next, consider a sequence of events fEngn2N
in F such that En # ;. It follows that u (xEnz) = 1En for all n 2 N. Since % satis�es Binary Monotone

Continuity and yk � z for all k 2 N, it follows that for each k 2 N there exists Nk 2 N such that yk % xENk
z.

By (74), this implies that

1

k
= u (yk) �

Z



u (xENk
z) dP = P (ENk

) � lim
n
P (En) � 0 8P 2 C: (75)

Passing to the limit in (75), it follows that limn P (En) = 0 for all P 2 C. Since fEngn2N was arbitrarily
chosen, it follows that C � �� (
;F). By Proposition 18 and (74), and since % satis�es Consistency, u is

a¢ ne, and it represents % restricted to X, it follows that for each f and g in B0 (X)Z



u (f) dP �
Z



u (g) dP 8P 2 mco (P),
Z



u (f) dP �
Z



u (g) dP 8P 2 P

,
Z



fdP %
Z



gdP 8P 2 P

)
Z



u (f) dP �
Z



u (g) dP 8P 2 C:

By [29, Proposition A.1] and since C is closed and convex and mco (P) is convex, it follows that C �
cl (mco (P)). Recall that mco (P) ; C � �� (
;F). By point 3. of Proposition 18, this implies that

C = C \�� (
;F) � cl (mco (P)) \�� (
;F) = mco (P) :

De�ne � =
�
� 2 ��

�
SP ;AS(P)

�
: �� = P for some P in C

	
. By Corollary 20, it follows that � is well de�ned.

By (38) and since C is nonempty, closed (compact), and convex, it follows that � shares the same properties.49

In light of (74) and given �, it is immediate to check that � represents % as in (22).
(ii) implies (i). It is routine.

Finally, uniqueness follows from routine arguments. �

Proof of Proposition 9. Since % satis�es the Basic Conditions and Risk Independence, observe that either
under (i) or under (ii) % satis�es Monotonicity. By [11, Proposition 1 and Proposition 2] and since % satis�es
the Basic Conditions, Monotonicity, and Risk Independence, it follows that there exist a nonconstant and

a¢ ne function u : X ! R and a closed and convex set C � �(
;F) such that

f %� g ,
Z



u (f) dP �
Z



u (g) dP 8P 2 C: (76)

49Notice tha the map from C to � de�ned by
P 7! �P 8P 2 C

is a well de�ned a¢ ne homeomorphism when both the domain and the target space are endowed with the relative topologies
induced by the respective weak* topologies. Recall that C � mco (P). By Corollary 20 and de�nition, the above map is well
de�ned and bijective. By (38) and its discussion, it is a¢ ne. Regarding continuity, consider a net fP�g�2A � C such that
P� ! �P 2 C. Consider D 2 AS(P). By point (l) of Lemma 24, it follows that there exists A 2 G such that 1D = h1A; �i. This
implies that

�P� (D) =

Z
S(P)

1Dd�P� =

Z
S(P)

h1A; �i d�P� = P� (A)! �P (A)

=

Z
S(P)

h1A; �i d� �P =
Z
S(P)

1Dd� �P = � �P (D) :

Since D was arbitrarily chosen, the continuity of the above map follows. By [1, Theorem 2.36] and since C is compact and �
is an Hausdor¤ topological space, it follows that the above map is a homeomorphism.
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Moreover, u is unique up to an a¢ ne transformation and it represents % restricted to X while C is indepen-

dent of the choice of u. Without loss of generality, we can assume that 1; 0 2 int (u (X)). De�ne x; z 2 X
and the sequence fykgk2N � X to be such that u (x) = 1, u (z) = 0, and u (yk) = 1=k for all k 2 N. Next,
consider a sequence of events fEngn2N in F such that En # ;. It follows that u (xEnz) = 1En for all n 2 N.
Since %� satis�es Binary Monotone Continuity and yk �� z for all k 2 N, it follows that for each k 2 N there
exists Nk 2 N such that yk %� xENk

z. By (76), this implies that

1

k
= u (yk) �

Z



u (xENk
z) dP = P (ENk

) � lim
n
P (En) � 0 8P 2 C: (77)

Passing to the limit in (77), it follows that limn P (En) = 0 for all P 2 C. Since fEngn2N was arbitrarily
chosen, it follows that C � �� (
;F).
(i) implies (ii). By Lemma 28 and since % satis�es the Basic Conditions and Risk Independence, if %

satis�es Consistency then it satis�es Monotonicity. By the initial and common part of the proof and since

% satis�es Consistency, it follows that for f; g 2 B0 (X)Z



u (f) dP �
Z



u (g) dP 8P 2 mco (P) )
Z



u (f) dP �
Z



u (g) dP 8P 2 P ) f % g:

By de�nition of %� and the initial and common part of the proof, it is immediate to see that this implies
that Z




u (f) dP �
Z



u (g) dP 8P 2 mco (P) )
Z



u (f) dP �
Z



u (g) dP 8P 2 C:

By [29, Proposition A.1] and since C is closed and convex and mco (P) is convex, it follows that C �
cl (mco (P)). Recall that mco (P) ; C � �� (
;F). By point 3. of Proposition 18, this implies that

C = C \�� (
;F) � cl (mco (P)) \�� (
;F) = mco (P) :

However, it is immediate to see that the set of invariant measures is measure convex, thus P = mco (P).
Finally, if f 2 B0 (X) then u (f) 2 B0 (
;F). It follows that there exists a partition fEigni=1 � F and a

collection f�igni=1 such that u (f) =
nX
i=1

�i1Ei . If � 2 G then we have that u (f � �) =
nX
i=1

�i1��1(Ei). Since

P is the set of invariant measures and C � P, we have that
R


u (f) dP =

R


u (f � �) dP for all P 2 C, that

is, f � � �� f , proving the statement.
(ii) implies (i). Consider E 2 F and � 2 G. By the initial and common part of the proof, recall that,

without loss of generality, 1; 0 2 int (u (X)). This implies that there exists f 2 B0 (X) such that u (f) = 1E .
By (76) and since % satis�es Unambiguous Symmetry, we have that

f � � �� f and P
�
��1 (E)

�
=

Z



u (f � �) dP =
Z



u (f) dP = P (E) 8P 2 C:

Since C � �� (
;F) and E and � were arbitrarily chosen, it follows that C � P. Since %� is a subrelation
of %, u represents % restricted to X, and u is a¢ ne, it follows that for each f and g in B0 (X)Z




fdP %
Z



gdP 8P 2 P ,
Z



u (f) dP �
Z



u (g) dP 8P 2 P

)
Z



u (f) dP �
Z



u (g) dP 8P 2 C ) f %� g ) f % g;

proving that % satis�es Consistency. �
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