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ABSTRACT

We provide the first systematic evidence on the link between long-short anomaly

portfolio returns—a cornerstone of the cross-sectional literature—and the time-

series predictability of the aggregate market excess return. Using 100 representative

anomalies from the literature, we employ a variety of shrinkage techniques (includ-

ing machine learning, forecast combination, and dimension reduction) to efficiently

extract predictive signals in a high-dimensional setting. We find that long-short

anomaly portfolio returns evince statistically and economically significant out-of-

sample predictive ability for the market excess return. Economically, the predictive

ability of anomaly portfolio returns appears to stem from asymmetric limits of

arbitrage and overpricing correction persistence.

Stock return predictability is a fundamental topic in finance. There are two major—and

voluminous—lines of research on this issue. The first examines whether firm character-

istics can predict the cross-sectional dispersion in stock returns, and this line identifies

∗XI DONG is at the City University of New York Baruch College. YAN LI is at the Southwestern
University of Finance and Economics. DAVID E. RAPACH is at Saint Louis University. GUOFU ZHOU
(corresponding author, zhou@wustl.edu) is at Washington University in St. Louis. Rapach was a visiting
professor at Washington University in St. Louis when this project was undertaken. We thank Daniel
Andrei, Svetlana Bryzgalova, John Cochrane, Andrew Detzel, Victor DeMiguel, Michael Hasler, Dashan
Huang, Lawrence Jin, Sicong (Allen) Li, Lin Peng, Joel Peress, Kelly Shue, Jack Strauss, Yajun Wang,
Xuemin (Sterling) Yan, and Lu Zhang, as well as conference and seminar participants at the 2020 FinTech
Conference in China, Chinese University of Hong Kong-Shenzhen, City University of New York Baruch
College, London Business School, Syracuse University, University of Bath, University of North Carolina
at Charlotte, University of Liverpool, and Washington University in St. Louis, for helpful comments.
We are especially grateful to the Editor, Associate Editor, and two referees for insightful and detailed
comments that substantially improved the paper. We have read the Journal of Finance disclosure policy
and have no conflicts of interest to disclose.

1

Electronic copy available at: https://ssrn.com/abstract=3562774

mailto:zhou@wustl.edu


a plethora of equity market anomalies (e.g., Fama and French (2015), Harvey, Liu, and

Zhu (2016), McLean and Pontiff (2016), Hou, Xue, and Zhang (2020)). The second line

of research investigates the time-series predictability of the aggregate market excess re-

turn based on a host of economic and financial variables, such as valuation ratios, interest

rates, and inflation (e.g., Nelson (1976), Campbell (1987), Fama and French (1988, 1989),

Pástor and Stambaugh (2009)). Studies in this vein attempt to understand the variables

that affect the equity risk premium.1

In this paper, we investigate whether these two leading lines of the finance literature

are linked. Specifically, we analyze the ability of long-short anomaly portfolio returns

from the cross-sectional literature to predict the market excess return. Our investigation

has a number of key features. First, we focus on a cornerstone of the cross-sectional

literature, long-short anomaly portfolio returns, as the literature often uses such returns

as evidence of cross-sectional mispricing. Second, we employ out-of-sample tests, since

such tests provide the most rigorous and relevant evidence on stock return predictability

(e.g., Goyal and Welch (2008), Martin and Nagel (2019)). Third, we examine the predic-

tive ability of a large number (100) of long-short anomaly portfolio returns representative

of those from the cross-sectional literature and simultaneously aggregate the informa-

tion in the set of anomaly portfolio returns. Because accommodating a large number of

anomaly portfolio returns poses problems for the conventional multiple predictive regres-

sion approach, we apply a variety of shrinkage techniques—including machine learning,

forecast combination, and dimension reduction—to guard against overfitting the data in

a high-dimensional setting. Fourth, we explore economic rationales for the ability of long-

short anomaly portfolio returns to predict the market return, thereby complementing our

statistical findings with economic analysis.

Empirically, we find that the information in the group of 100 long-short anomaly

portfolio returns is indeed useful for forecasting the monthly market excess return on an

out-of-sample basis, provided that we rely on strategies that guard against overfitting the

data. The out-of-sample R2 (R2
OS) statistics are economically sizable, ranging from 0.89%

1Rapach and Zhou (2013) provide a survey of the literature on market excess return predictability.
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to 2.81%, all of which exceed the 0.5% threshold for economic significance suggested by

Campbell and Thompson (2008). According to the Clark and West (2007) test, forecasts

based on the long-short anomaly returns provide statistically significant reductions in

mean squared forecast error (MSFE) vis-à-vis the prevailing mean (i.e., random walk

with drift) benchmark forecast. Furthermore, a mean-variance investor with a relative

risk aversion coefficient of three would be willing to pay 259 to 638 basis points in an-

nualized portfolio management fees to have access to the market excess return forecasts

based on the information in the group of 100 long-short anomaly portfolio returns. Over-

all, the evidence of out-of-sample market excess return predictability is statistically and

economically strong and robust to various shrinkage methods.

Economically, the predictive power of long-short anomaly portfolio returns for the

market return can be explained via asymmetric mispricing correction persistence (MCP),

which arises from asymmetric limits of arbitrage (Shleifer and Vishny (1997)). To analyze

the implications of MCP for market return predictability, we specify a data-generating

process with stationary underpricing and overpricing components in the prices of the

long and short legs, respectively, of the anomaly portfolio.2 Consider, for example, the

short leg. We show that when the return momentum effect from the correction of old

overpricing shocks dominates the return reversal effect from the immediate correction of

a new overpricing shock, the short-leg return in period t will be positively related to the

market return in period t + 1. Intuitively, the period-t short-leg return measures the

correction of the overpricing identified by the anomaly characteristic at the end of period

t − 1 (Akbas et al. (2015), Engelberg, McLean, and Pontiff (2018)). If the overpricing

correction process is sufficiently persistent, then there will be positive serial dependence

in the short-leg return; because the short-leg return is part of the market return, this in

turn means that the short-leg return is positively related to the future market return.

The short-leg return can also signal overpricing in market segments beyond the short

2We explain our findings in a framework in which anomalies reflect mispricing. Whether our findings

can also be explained in a risk-based framework is beyond the scope of the present paper but is an

interesting topic for future research.
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leg, thereby magnifying the effect on the market return. Indeed, we present empirical

evidence that short-leg returns contain relevant overpricing information for a broad swath

of the market. Analogous reasoning explains how the long-leg return can be positively

related to the future market return.

Our empirical results indicate that long- and short-leg returns are positively related

to the future market return. However, the out-of-sample predictive ability of long-leg

returns is weak, indicating that MCP is considerably stronger for overpricing vis-à-vis

underpricing. Consequently, long-short anomaly returns strongly negatively predict the

market return. Via recursive regressions, we find evidence that such negative relationships

remain important over time. Stronger MCP for overpricing relative to underpricing is

consistent with arbitrage with respect to overpriced shares being less aggressive, due to

factors such as short-sale constraints (Miller (1977)), feedback effects (Edmans, Goldstein,

and Jiang (2015)), and price drops coupled with declines in liquidity (Dong, Krystyniak,

and Peng (2019)). In support of relatively strong overpricing correction persistence,

evidence suggests that overvaluation, as reflected in the short legs of anomaly portfolios,

drives the profitability of many anomaly returns (e.g., Hong, Lim, and Stein (2000),

Stambaugh, Yu, and Yuan (2012, 2015), Avramov et al. (2013)).

If MCP is stronger in the short leg compared to the long leg, it may seem that using

short-leg anomaly portfolio returns instead of long-short anomaly returns would work

better for forecasting the market return. However, we show econometrically that long-

short anomaly returns can provide a stronger predictive signal for the market return.

Intuitively, the long- and short-leg returns contain a common component unrelated to

the future market return. By taking the difference between the long- and short-leg re-

turns, we filter the noise in the predictor variable, thereby providing a sharper signal for

anticipating the market return; such filtering is akin to alleviating the errors-in-variables

problem. We also show that aggregating information across long-short anomaly returns

can further sharpen the predictive signal by filtering the idiosyncratic noise in the indi-

vidual predictors.
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Methodologically, the most straightforward approach for incorporating the informa-

tion in a large set of potential predictors is to specify a multiple predictive regression

that includes all of the lagged predictors as explanatory variables. However, conventional

ordinary least squares (OLS) estimation of a high-dimensional predictive regression is

highly susceptible to overfitting. By construction, OLS maximizes the fit of the model

over the in-sample estimation period, which can lead to poor out-of-sample performance;

intuitively, OLS is prone to misinterpreting noise in the data for a predictive signal. Be-

cause we are interested in forecasting the monthly market excess return—which inherently

contains a small predictable component—we are operating in a quite noisy environment,

thereby exacerbating the danger of overfitting. As anticipated, we find that the con-

ventional forecast based on OLS estimation of the multiple predictive regression that

includes all of the long-short anomaly returns exhibits symptoms of extreme overfitting:

the forecast is highly volatile and substantially less accurate than the prevailing mean

benchmark.

We use a variety of forecasting strategies to guard against overfitting high-dimensional

predictive regressions, all of which essentially rely on shrinkage. The first employs the

elastic net (ENet, Zou and Hastie (2005)), a refinement of the well-known least absolute

shrinkage and selection operator (LASSO, Tibshirani (1996)), to estimate the forecasting

model. The LASSO and ENet are machine-learning techniques that use penalized regres-

sion to directly shrink the parameter estimates and thereby avoid overfitting the data.3

We also consider forecast combination (Bates and Granger (1969)). We use a simple com-

bination approach, which takes the arithmetic mean of univariate predictive regression

forecasts based on the individual predictors (Rapach, Strauss, and Zhou (2010)), as well

as a refinement due to Rapach and Zhou (2020), which incorporates insights from Diebold

and Shin (2019) by using machine-learning techniques to select the individual forecasts to

3Our study complements recent studies that employ machine-learning techniques to predict stock

returns using alternative predictor variables in high-dimensional settings, including Rapach, Strauss,

and Zhou (2013), Chinco, Clark-Joseph, and Ye (2019), Rapach et al. (2019), Freyberger, Neuhierl, and

Weber (2020), Gu, Kelly, and Xiu (2020), and Avramov, Cheng, and Metzker (2021).
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include in the combination forecast. Finally, we employ dimension-reduction techniques

to combine the predictors into a single variable, which subsequently serves as the explana-

tory variable in a univariate predictive regression. We consider three dimension-reduction

techniques: the first takes the cross-sectional average of the individual predictors; the sec-

ond extracts the first principal component from the set of predictors (Ludvigson and Ng

(2007, 2009)); the third, an implementation of partial least squares (PLS, Wold (1966)),

extracts the first target-relevant factor from the set of predictors (Kelly and Pruitt (2013,

2015), Huang et al. (2015)). As indicated previously, the forecasts based on strategies

designed to circumvent overfitting all produce statistically and economically significant

R2
OS statistics and generate large economic gains for an investor.

To further assess the relevance of asymmetric limits of arbitrage for generating our

findings, we form subgroups of anomalies using three proxies for limits of arbitrage: bid-

ask spread, idiosyncratic volatility, and market capitalization. Specifically, we use the

proxies to construct subgroups of anomalies characterized by more stringent limits of

arbitrage in their short legs vis-à-vis their long legs. To the extent that the proxies

capture limits of arbitrage, we expect the subgroups of long-short anomaly portfolio

returns comprised of anomalies with relatively strong (weak) limits of arbitrage in their

short legs to evince more (less) out-of-sample predictive ability for the market return.

This is what we find.

Limits of arbitrage emerge from a variety of frictions (Gromb and Vayanos (2010)). In

the models of Gârleanu and Pedersen (2013, 2016) and Dong, Kang, and Peress (2020),

frictions such as limited risk-bearing capacity and transactions costs induce arbitrageurs

to only slowly correct mispricing, resulting in MCP. To examine the relevance of limits

of arbitrage, we analyze how various frictions are related to the out-of-sample predictive

ability of long-short anomaly portfolio returns. Intuitively, we expect arbitrage activity

to be more constrained during periods when frictions are more acute, so that we should

find stronger out-of-sample predictive power for long-short anomaly returns during such

periods. We consider a number of variables as proxies for frictions that can affect MCP in

anomaly portfolios (especially in the short legs), including aggregate liquidity (Pástor and

6

Electronic copy available at: https://ssrn.com/abstract=3562774

Andrea /tamoni



Stambaugh (2003)), idiosyncratic risk (Ang et al. (2006), Pontiff (2006)), trading noise

(Hu, Pan, and Wang (2013)), the VIX, economic uncertainty and risk aversion indices

(Jurado, Ludvigson, and Ng (2015), Bekaert, Engstrom, and Xu (forthcoming)), and

short costs (Asness et al. (2018)). Consistent with stronger MCP for overpricing vis-à-vis

underpricing, we detect significant increases in out-of-sample market return predictability

during periods of heightened frictions.

Finally, we provide more direct evidence that the predictive power of long-short

anomaly portfolio returns for the market return stems from slow arbitrage, especially

with respect to overpricing. Following Chen, Da, and Huang (2019), we construct net ar-

bitrage positions in the overall market by aggregating the value-weighted trades of hedge

funds and short sellers. We find that an increase in long-short anomaly portfolio returns

predicts a statistically and economically significant decrease in net arbitrage positions

in the market, primarily due to increases in short positions. We also examine the tone

of public news about US financial markets extracted from news articles from Thomson

Reuters by Calomiris and Mamaysky (2019). We find that an increase in long-short

anomaly returns leads to more negative market news tone.

Our study is related to Engelberg et al. (2020), which is presently the only other

study to systematically investigate connections between cross-sectional and time-series

stock return predictability. Engelberg et al. (2020) follow the existing approach in the

time-series literature by using the (equal- or value-weighted) average of firm-level values

for a given characteristic as a predictor of the market return. Considering a large number

of anomaly characteristics from the cross-sectional literature, they find little evidence that

characteristics on average have out-of-sample time-series predictive ability for the market

return. In contrast, we introduce a new approach that relies on long-short anomaly port-

folio returns—a bedrock of the cross-sectional literature—to predict the market return,

and we find strong evidence that the aggregate information in long-short anomaly returns

is valuable for forecasting the market return. The two papers complement each other by
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shedding light on the relationship between cross-sectional and time-series stock return

predictability.4

The remainder of the paper is organized as follows. Section I provides intuition on

the predictive power of long-short anomaly portfolio returns for the market return. Sec-

tion II describes the construction and evaluation of the out-of-sample forecasts. Section

III presents the data, while Section IV reports forecast performance results. Section

V provides additional results pertaining to asymmetric limits of arbitrage. Section VI

concludes.

I. Intuition on Predictability

In this section, we use a stylized data-generating process to provide intuition on the

predictive ability of anomaly portfolio returns for the market return.5

A. Data-Generating Process

Assume that the prices for the long and short legs of an anomaly portfolio contain a

common martingale component with period-t increment ft, while the long-leg (short-leg)

price contains a stationary component uL,t ≤ 0 (uS,t ≥ 0) reflecting the level of under-

pricing (overpricing), which is uncorrelated with the common component. Intuitively,

mispricing implies the presence of a stationary component in the price: under the as-

sumption that the mispricing eventually corrects, any mispricing shock only temporarily

affects the price, although the correction process can last for multiple periods. The log

return (in terms of price changes) in each leg is then given by

rl,t = ft + ∆ul,t for l = L, S, (1)

4In a related but different context, Fama and French (2020) compare cross-sectional and time-series

factor models.

5We thank the Editor for suggesting the framework for the data-generating process in this section.
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where rL,t (rS,t) is the long-leg (short-leg) return, ∆ul,t is the change in mispricing, and

cov(ft,∆uL,t) = cov(ft,∆uS,t) = 0. Using equation (1), the long-short anomaly portfolio

return rLS,t can be expressed as

rLS,t = ∆uL,t −∆uS,t. (2)

For expositional ease, assume that the long and short legs together comprise the market;

then,

rM,t = ft + 0.5(∆uL,t + ∆uS,t), (3)

where rM,t is the (equal-weighted) market return.6

According to the Wold representation theorem, the stationary component in each leg

related to mispricing (i.e., the pricing error) can be expressed as

ul,t =
∞∑
j=0

ψl,jvl,t−j for l = L, S, (4)

where ψl,0 = 1, vL,t ≤ 0 (vS,t ≥ 0) is a serially uncorrelated underpricing (overpricing)

shock, var(vl,t) ≥ 0,
∑∞

j=1 ψ
2
l,j < ∞ (square summability), and ψl,j ≥ 0 for j ≥ 1 (to

ensure that uL,t ≤ 0 and uS,t ≥ 0). For simplicity, we assume that vL,t and vS,t are

uncorrelated. When var(vL,t) = var(vS,t) = 0, there is no mispricing, and then the

market return in equation (3) reduces to rM,t = ft.

Equation (4) provides a general representation for the mispricing component in each

leg, as any stationary autoregressive moving-average (ARMA) process can be expressed

via the infinite-order MA process. The equation expresses the current-period level of

mispricing as a function of current and past mispricing shocks. The MA process can

be interpreted as an impulse-response function: ψl,j is the response (ceteris paribus)

6Following much of the cross-sectional literature, the anomaly portfolios in Section IV are based on

stocks sorted into decile portfolios, and each long-short anomaly portfolio goes long (short) the tenth

(first) decile portfolio. We discuss the extension to additional market segments in Section I.D.
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of ul,t+j for j ≥ 0 to a period-t unit mispricing shock. For example, consider a unit

overpricing shock and suppose that ψS,1 = 0.9, ψS,2 = 0.45, and ψS,j = 0 for j ≥ 3.

The pricing error is ψS,1 = 0.9 at the end of the period immediately after the shock, so

that ψS,1 − ψS,0 = 0.9 − 1 = −0.10; that is, 10% of the overpricing shock is corrected

during the first period after the shock. The pricing error is ψS,2 = 0.45 at the end of the

second period after the shock, meaning that an additional 45% (ψS,2 − ψS,1 = −0.45) of

the overpricing shock is corrected. Finally, the remaining 45% of the overpricing shock is

corrected during the third period after the shock (ψS,3 − ψS,2 = −0.45).

Taking the first difference of equation (4), we obtain the expression for the change in

mispricing:

∆ul,t =
∞∑
j=0

ψ̃l,jvl,t−j for l = L, S, (5)

where ψ̃l,0 = ψl,0 = 1 and ψ̃l,j = ψl,j − ψl,j−1 for j ≥ 1. To simplify the exposition, we

consider the following mispricing correction assumption:

ψ̃l,j = ψl,j − ψl,j−1 ≤ 0 for j ≥ 1, (6)

which assumes that arbitrage is sufficiently active to ensure that the mispricing associated

with a period-t mispricing shock is not exacerbated in any subsequent period.7

B. Mispricing Correction Persistence

Consider a predictive regression relating the long- or short-leg return of the anomaly

portfolio to next period’s market return:

rM,t+1 = αl + βlrl,t + εl,t+1 for l = S, L, (7)

7Relaxing this assumption does not change our main intuition, as discussed in footnote 11.
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where εl,t+1 is a zero-mean, serially uncorrelated disturbance term. Using equations (1)

and (3), the standardized slope coefficient in equation (7) is given by8

β̃l =
0.5cov(∆ul,t+1,∆ul,t)

[var(ft) + var(∆ul,t)]
0.5 for l = L, S. (8)

Equation (8) indicates that the predictive ability of the long- or short-leg return depends

on cov(∆ul,t+1,∆ul,t). Based on equation (5), the latter is given by

cov(∆ul,t+1,∆ul,t) =

[
(ψl,1 − 1) +

∞∑
j=1

(ψl,j − ψl,j−1)(ψl,j+1 − ψl,j)

]
var(vl,t) for l = L, S.

(9)

Our empirical results generally indicate that β̃l > 0, so that cov(∆ul,t+1,∆ul,t) > 0,

especially for the short leg.

To understand the conditions that produce cov(∆ul,t+1,∆ul,t) > 0, we can use equa-

tion (5) to write the changes in the level of mispricing for the current and next period

as

∆ul,t = vl,t +
∞∑
j=1

(ψl,j − ψl,j−1)vl,t−j for l = L, S, (10)

∆ul,t+1 = vl,t+1 + (ψl,1 − 1)vl,t +
∞∑
j=2

(ψl,j − ψl,j−1)vl,t+1−j for l = L, S, (11)

respectively. Equations (10) and (11) reveal that a new (i.e., period-t) pricing shock

affects the current and future changes in mispricing in opposite directions. Consider an

overpricing shock (vS,t > 0). According to equation (10), vS,t exacerbates the current level

of overpricing, corresponding to a positive change in overpricing in period t; according to

equation (11), the overpricing induced by the period-t shock is corrected in proportion

to ψS,1 − 1 ≤ 0 in period t + 1, corresponding to a non-positive change in overpricing.

Thus, the consecutive changes in mispricing due to a new overpricing shock can generate

8Section IA.A of the Internet Appendix provides details for the derivations of the standardized slope

coefficients for the predictive regressions in Sections I.B to I.D.
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negative serial dependence in the short-leg return. In contrast, old pricing shocks (vS,t−j

for j ≥ 1) can produce positive serial dependence in the short leg return. According to

equations (10) and (11), the changes in overpricing corresponding to these shocks are

non-positive in consecutive periods; for example, the overpricing associated with vS,t−1 is

corrected in proportion to ψS,1 − 1 ≤ 0 in t and ψS,2 − ψS,1 ≤ 0 in t+ 1.

Hence, two opposing effects determine cov(∆uS,t+1,∆uS,t): (i) the extent to which

the overpricing associated with a new shock is corrected in the next period and (ii) the

extent to which the overpricing associated with old overpricing shocks is corrected in the

current and next periods. These two effects are evident in the expression in brackets

in equation (9), which accounts for all of the consecutive pairs of return responses to

new and old overpricing shocks. The first term, ψS,1 − 1, is the product of the period-

t and period-(t + 1) return responses to a new unit overpricing shock, which captures

the potential reversal due to the immediate correction of the overpricing induced by

the new shock. The second term,
∑∞

j=1(ψS,j − ψS,j−1)(ψS,j+1 − ψS,j) ≥ 0, reflects the

potential momentum due to the persistent correction of the overpricing induced by old

shocks. For example, (ψS,1 − 1)(ψS,2 − ψS,1) is the product of the period-t and period-

(t + 1) overpricing corrections corresponding to a period-(t − 1) unit overpricing shock;

(ψS,2 − ψS,1)(ψS,3 − ψS,2) is the product of the period-t and period-(t + 1) overpricing

corrections corresponding to a period-(t− 2) unit overpricing shock; and so forth.9

In order for cov(∆uS,t+1,∆uS,t) > 0, the return momentum generated by the correc-

tion of the overpricing induced by old shocks needs to outweigh the magnitude of the

return reversal generated by the immediate correction of the overpricing induced by a

new shock. When the momentum effect dominates, MCP is sufficiently strong to make

cov(∆uS,t+1,∆uS,t) > 0 in equation (9) and β̃S > 0 in equation (8). We can express this

9As ψS,1 decreases, the degree of overpricing correction in the period immediately after the shock

increases, so that the magnitude of the reversal effect increases. In the extreme, ψS,1 = 0, which implies

that ψS,j = 0 for j ≥ 2, so that the overpricing shock fully corrects in one period, and ψS,1− 1 = −1. In

this case, the second term in brackets is zero, and cov(∆uS,t+1,∆uS,t) = −var(vS,t) in equation (9).
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condition as

∞∑
j=1

(ψS,j − ψS,j−1)(ψS,j+1 − ψS,j) > −(ψS,1 − 1). (12)

An analogous condition to equation (12) holds for cov(∆uL,t+1,∆uL,t) and β̃L. Equation

(12) is consistent with various theoretical models that can explain strong MCP.10

The previous example (ψS,1 = 0.9, ψS,2 = 0.45, and ψS,j = 0 for j ≥ 3) numerically

illustrates the intuition. A unit overpricing shock increases both the price and return by

one unit at the time of the shock. Since ψS,1 = 0.9 < 1, the price falls in the period

after the shock, corresponding to a return of ψS,1 − 1 = −0.10, so that the magnitude

of the reversal effect is 0.10. The size of the momentum effect associated with old unit

overpricing shocks is given by the second term is brackets, which equals (−0.10)(−0.45)+

(−0.45)(−0.45) = 0.2475. In this case, the magnitude of the momentum effect outweighs

that of the reversal effect, so that cov(∆uS,t+1,∆uS,t) = 0.1475var(vS,t) in equation (9).11

Next, consider a predictive regression based on the long-short anomaly portfolio re-

turn:

rM,t+1 = αLS + βLSrLS,t + εLS,t+1. (13)

10Andrei and Cujean (2017) show that when information about mispricing spreads among traders at

an accelerated rate, immediate correction of a current pricing error is dominated by the corrections of

previous pricing errors, resulting in return momentum. From a behavioral perspective, Chan, Jegadeesh,

and Lakonishok (1996), Daniel, Hirshleifer, and Subrahmanyam (1998), Hong and Stein (1999), and

Da, Gurun, and Warachka (2014) explain return momentum as under-reaction to news. Gârleanu and

Pedersen (2013, 2016), and Dong, Kang, and Peress (2020) show that risk and/or cost considerations

lead arbitrageurs to slowly allocate capital to correct mispricing.

11When the mispricing correction assumption in equation (6) does not hold, mispricing in response

to a shock can be exacerbated after anomaly portfolio formation. Equation (9) still applies, so that

cov(∆ul,t+1,∆ul,t) > 0 again requires the expression in brackets—which depends on the successive pairs

of return responses to a mispricing shock—to be positive. In this case, we need the momentum effect of

either mispricing correction or exacerbation to be stronger than the reversal effect in successive return

pairs.
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The standardized slope coefficient in equation (13) is given by

β̃LS =
0.5[cov(∆uL,t+1,∆uL,t)− cov(∆uS,t+1,∆uS,t)]

[var(∆uL,t) + var(∆uS,t)]
0.5 . (14)

Empirically, we find that β̃LS < 0, which holds when

cov(∆uS,t+1,∆uS,t) > cov(∆uL,t+1,∆uL,t), (15)

that is, when there is stronger MCP with respect to overpricing vis-à-vis underpricing.

Our finding that long-short anomaly portfolio returns negatively predict the market re-

turn is consistent with existing theoretical and empirical evidence. Miller (1977) argues

that, due to short-sale impediments, overpricing should be more prevalent and persis-

tent than underpricing. Edmans, Goldstein, and Jiang (2015) and Dong, Krystyniak,

and Peng (2019) further show that feedback effects and price drops in conjunction with

declines in liquidity, respectively, can generate overpricing persistence. In line with the

relative importance of overpricing, studies such as Hong, Lim, and Stein (2000), Stam-

baugh, Yu, and Yuan (2012, 2015), and Avramov et al. (2013) find that the short legs of

anomaly portfolios are primarily responsible for the profitability of long-short anomaly

portfolio returns.

C. Noise Reduction

In our setup, the long-short anomaly portfolio return can produce a better predictive

signal for predicting the market return than the short-leg return, which we also find

empirically. To see this, for simplicity, we assume in this and the next subsection that

β̃L = 0, which is in line with the weak predictive ability of long-leg returns in the data

(as discussed in Section IV.A). In this case, cov(∆uL,t+1,∆uL,t) = 0, so that equation

(14) becomes

β̃LS
∣∣
β̃L=0

=
−0.5cov(∆uS,t+1,∆uS,t)

[var(∆uL,t) + var(∆uS,t)]
0.5 . (16)
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The magnitude of β̃LS in equation (16) is greater than that of β̃S in equation (8) when

var(rLS,t) < var(rS,t), or, equivalently, var(ft) > var(∆uL,t). (17)

Intuitively, using rL,t − rS,t in lieu of rS,t as the predictor in the predictive regression re-

moves the common unpredictable component ft, thereby filtering noise from the predictor

to provide a sharper predictive signal for the market return. In other words, the problem

of using the short-leg return alone to predict the market return is akin to the errors-in-

variables problem. Consistent with this intuition, we empirically find that var(rLS,t) is

considerably smaller than var(rS,t).

A similar intuition explains why the long-short anomaly portfolio return is a better

predictor of next month’s market return than the market return itself. The standardized

slope coefficient for a regression of the market return on its own lag can be expressed as

β̃M
∣∣
β̃L=0

=
0.5cov(∆uS,t+1,∆uS,t)

[4var(ft) + var(∆uL,t) + var(∆uS,t)]
0.5 . (18)

Comparing equations (16) and (18), the numerators have the same magnitude. However,

the presence of 4var(ft) in the denominator of equation (18) creates noise in the predictive

signal, so that the magnitude of the slope coefficient in equation (16) is larger than that

in equation (18). Consistent with this intuition, in Section IV.C, we empirically find that

the lagged market return cannot predict the market return on an out-of-sample basis.

D. Extensions

For expositional ease, we assume that the long and short legs cover the market in

equation (3). When the long and short legs are the last and first decile portfolios,

respectively—as in our empirical application—the same intuition applies. We address

this issue empirically in Section V.B, where we show that the predictive ability of long-

short anomaly returns extends across multiple market segments. Thus, our intuition

behind market return predictability based on long-short anomaly returns extends beyond

serial dependence in the long and short legs (especially the latter) and includes the rel-
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evance of long-short anomaly returns for signaling mispricing correction more generally

across the market.12

Again for expositional ease, we focus on a single long-short anomaly return in the

predictive regression in equation (13). In our empirical application, we amalgamate the

information in a large number of long-short anomaly portfolio returns to predict the

market return. In the spirit of Section I.C, aggregating predictors can help to reduce

the noise in individual predictors to better uncover the predictive signal. To see this, we

can extend our framework to multiple observable anomalies, each of which contains an

idiosyncratic component:

riLS,t = ∆uL,t −∆uS,t + ωit for i = 1, . . . , n, (19)

where ωit is a serially uncorrelated idiosyncratic shock, cov(∆uL,t, ω
i
t) = cov(∆uS,t, ω

i
t) =

cov(ft, ω
i
t) = 0, and cov

(
ωit, ω

j
t

)
= 0 for i 6= j. The standardized slope coefficient for a

predictive regression relating riLS,t to rM,t+1 is given by

β̃iLS
∣∣
β̃L=0

=
−0.5cov(∆uS,t+1,∆uS,t)

[var(∆uL,t) + var(∆uS,t) + var(ωit)]
0.5 . (20)

Next, consider combining the information in the long-short anomaly returns by taking

their period-t cross-sectional average. Based on equation (19), we have

r̄LS,t =
1

n

n∑
i=1

riLS,t = ∆uL,t −∆uS,t +
1

n

n∑
i=1

ωit. (21)

12In a different context, Ehsani and Linnainmaa (forthcoming) find evidence of positive autocor-

relation in factor returns and use it to explain cross-sectional momentum. In contrast, we focus on

asymmetric MCP in the long and short legs of anomaly portfolios and its implications for market return

predictability.
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The standardized slope coefficient for a predictive regression relating r̄LS,t to rM,t+1 is

given by

β̃Avg
LS

∣∣
β̃L=0

=
−0.5cov(∆uS,t+1,∆uS,t)[

var(∆uL,t) + var(∆uS,t) + 1
n
var(ωit)

]0.5 , (22)

where var(ωit) = 1
n

∑n
i=1 var(ωit). If 1

n
var(ωit) < var(ωit), then the slope coefficient in

equation (22) will be larger in magnitude than that in equation (20). Intuitively, like

portfolio diversification, averaging across predictors can help to filter the idiosyncratic

noise, thereby providing a stronger signal for predicting the market return.13

II. Methodology

This section describes the construction of the out-of-sample forecasts and their eval-

uation using both statistical and economic criteria.

A. Forecast Construction

Suppose that we want to forecast the market excess return (rM,t) and that we have

multiple potential predictors; in our context, the predictors are 100 long-short anomaly

portfolio returns. We are interested in generating r̂M,t+1|t, a forecast of the month-(t+ 1)

market excess return based on information available through month t. All of our market

excess return forecast are out of sample, as we only use data available through month t

to forecast rM,t+1.

The prevailing mean forecast, which implicitly assumes that the market excess re-

turn is unpredictable (apart from its mean value), is the most popular benchmark in

the literature. The prevailing mean forecast is simply the average of the market excess

13For simplicity, we assume that the loadings on ∆uL,t − ∆uS,t in equation (19) are equal to one

for all of the long-short anomaly returns. When we allow for different loadings across anomalies, the

strength of the signal in an anomaly will also depend on the magnitude of its loading. A number of

the forecasting strategies in Section II.A can be interpreted as effectively placing greater emphasis on

long-short anomalies with stronger signals (in a manner that guards against overfitting).
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return observations available at the time of forecast formation. Because the predictable

component in the monthly market excess return is inherently small (i.e., return data are

quite noisy), the prevailing mean forecast is difficult to beat in practice (e.g., Goyal and

Welch (2008)). With this in mind, successful out-of-sample strategies effectively shrink

the market excess return forecast toward the prevailing mean benchmark to reduce the

likelihood of overreacting to the noise in return data.

We compare the prevailing mean benchmark to the seven forecasts summarized below,

each of which incorporates the information in the group of predictors. Section IA.B of

the Internet Appendix provides details for the construction of each forecast.

Conventional OLS The conventional OLS forecast is based on a fitted multiple pre-

dictive regression that includes all of the lagged predictors as explanatory variables.

Although it is straightforward to compute, the conventional OLS forecast is likely to

perform poorly in practice, especially when the number of predictors is large. By con-

struction, conventional OLS estimation maximizes the fit of the model (i.e., the in-sample

R2 statistic) over the estimation sample, which can lead to in-sample overfitting and poor

out-of-sample performance, especially for high-dimensional models. The inherently large

unpredictable component in the market excess return exacerbates the overfitting problem.

ENet The ENet forecast is based on the multiple predictive regression fitted via the

ENet instead of OLS. The ENet (Zou and Hastie (2005)) relies on penalized regression

to guard against overfitting. The ENet penalty term includes both `1 (LASSO) and `2

(ridge, Hoerl and Kennard (1970)) components. The `1 component permits shrinkage

to zero, so that the ENet performs variable selection. Based on Flynn, Hurvich, and

Simonoff (2013), we use the Hurvich and Tsai (1989) corrected version of the Akaike

(1973) information criterion to select the value of the regularization parameter governing

the degree of shrinkage. The ENet directly addresses overfitting by shrinking the slope

coefficients of the fitted model, which has the effect of shrinking the forecast toward the

prevailing mean benchmark.
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Simple combination Instead of OLS estimation of the multiple predictive regression,

forecast combination begins by computing a set of forecasts based on OLS estimation of

univariate predictive regressions that include each lagged predictor (in turn). The simple

combination forecast is the arithmetic mean of the individual univariate forecasts. As

shown by Rapach, Strauss, and Zhou (2010), the simple combination forecast exerts a

strong shrinkage effect.

Combination ENet When the number of predictors is large, the simple combination

forecast can be too conservative in the sense that it “overshrinks” the forecast toward the

prevailing mean, thereby neglecting too much of the relevant information in the predictor

variables. Using insights from Diebold and Shin (2019), Rapach and Zhou (2020) employ

the elastic net to refine the simple combination forecast. Instead of averaging across all of

the individual univariate predictive regression forecasts, the combination ENet (C-ENet)

forecast takes the average of the individual forecasts selected by the ENet in a Granger

and Ramanathan (1984) multiple regression relating the actual market excess return to

the individual univariate forecasts.

Predictor average An alternative strategy for guarding against overfitting is to first

combine the predictors themselves into a small number of variables and then use the re-

duced set of variables as predictors in a low-dimensional predictive regression. Intuitively,

as discussed in Section I.D, we consolidate the predictors to filter the noise in the individ-

ual predictors. The predictor average forecast is based on OLS estimation of a univariate

predictive regression in which the lagged cross-sectional average of the predictors serves

as the explanatory variable.

Principal component We can also combine the predictors by extracting the first prin-

cipal component from the set of predictors. The principal component forecast uses the

lagged principal component as the explanatory variable in a univariate predictive regres-

sion estimated via OLS.

PLS The first principal component explains as much variation as possible in the predic-

tors themselves; however, from a forecasting standpoint, we are interested in explaining
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the target variable. Instead of extracting a factor that explains as much of the variation in

the predictors as possible, Kelly and Pruitt (2013, 2015) develop a three-pass-regression

filter to construct a target-relevant factor from a set of predictors that is maximally

correlated with the target variable; the lagged target-relevant factor then serves as the

explanatory variable in a univariate predictive regression estimated via OLS. The three-

pass regression filter is essentially a version of PLS.

B. Forecast Evaluation—Statistical Accuracy

We first assess market excess return forecasts in terms of statistical accuracy via

MSFE. Denote the errors for the prevailing mean benchmark and a competing forecast

by

ê0,t|t−1 = rM,t − r̂PMM,t|t−1, (23)

ê1,t|t−1 = rM,t − r̂M,t|t−1, (24)

respectively, where r̂PMM,t|t−1 is the prevailing mean benchmark forecast and r̂M,t|t−1 gener-

ically denotes a competing forecast. The sample MSFE is given by

M̂SFEj =
1

T

T∑
t=1

ê2j,t|t−1 for j = 0, 1, (25)

where T is the number of out-of-sample observations. We test for a difference in the

population MSFEs using the Clark and West (2007) procedure, which can be conveniently

implemented in a simple regression framework:

dt|t−1 +
(
r̂PMM,t|t−1 − r̂M,t|t−1

)2︸ ︷︷ ︸
ft|t−1

= µ+ εt, (26)
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where d̂t|t−1 = ê20,t|t−1−ê21,t|t−1 is the period-t loss differential. The t-statistic corresponding

to the OLS estimate of µ in equation (26) is used to test

H0: MSFE0 ≤ MSFE1 (µ ≤ 0) versus HA: MSFE0 > MSFE1 (µ > 0), (27)

where MSFEj is the population MSFE for j = 0, 1.14 The t-statistic is computed using

a heteroskedasticity- and autocorrelation-consistent (HAC) standard error (Newey and

West (1987)).

When comparing MSFEs for the prevailing mean benchmark and a competing market

excess return forecast, it is common to report the Campbell and Thompson (2008) R2
OS

statistic:

R2
OS = 1− M̂SFE1

M̂SFE0

. (28)

Equation (28) gives the proportional reduction in the sample MSFE for the competing

forecast vis-à-vis the prevailing mean benchmark. Using the Clark and West (2007)

statistic to test equatiion (27) is tantamount to testing H0: R
2
OS ≤ 0 against HA: R2

OS > 0

(in population). Because the predictable component in the monthly market excess return

is necessarily limited, the R2
OS statistic will be small. Nevertheless, based on the market

Sharpe ratio, Campbell and Thompson (2008) suggest that a monthly R2
OS statistic as

small as 0.5% can signal economic significance. As described in Section II.C, we also

assess the economic significance of market return forecasts more directly by measuring

their economic value to an investor.

In addition, we examine whether out-of-sample return predictability (as measured

by the R2
OS statistic) is related to market frictions. To the extent that greater frictions

14The well-known Diebold and Mariano (1995) and West (1996) (DMW) procedure uses dt|t−1 instead

of ft|t−1 as the dependent variable in equation (26). Clark and McCracken (2001) and McCracken (2007)

show that the DMW test tends to be severely undersized when comparing forecasts from nested models

(as in our application), so that it has little power to detect improvements in forecast accuracy. Clark

and West (2007) adjust the DMW test statistic so that its asymptotic distribution is well approximated

by the standard normal.
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exacerbate limits of arbitrage, we expect anomaly portfolio returns to generate stronger

out-of-sample gains during high-friction periods. To test whether out-of-sample return

predictability changes with the state of market frictions, we augment the Clark and West

(2007) framework in equation (26) as follows:

ft|t−1 = µ+ ξIt + εt, (29)

where It is an indicator variable that equals one (zero) if market frictions are high (low).

We use the t-statistic corresponding to the OLS estimate of ξ in equation (29) to test

H0: R
2
OS,high ≤ R2

OS,low (ξ ≤ 0) versus HA: R2
OS,high > R2

OS,low (ξ > 0), (30)

where R2
OS,high (R2

OS,low) is the value of the R2
OS statistic during periods of high (low)

market frictions. We again compute the t-statistic using a HAC standard error.

C. Forecast Evaluation—Economic Value

In addition to statistical accuracy, we compare the benchmark and competing forecasts

in terms of their economic value to an investor. Specifically, we consider a mean-variance

investor who allocates across equities and risk-free Treasury bills each month. At the end

of month t, the investor faces the following objective function:

arg max
wt+1|t

wt+1|tr̂M,t+1|t − 0.5γw2
t+1|tσ̂

2
t+1|t, (31)

where γ represents the coefficient of relative risk aversion; wt+1|t and 1 − wt+1|t are the

allocations to the market portfolio and risk-free bills, respectively, in period t+1; r̂M,t+1|t

is the investor’s market excess return forecast; and σ̂2
t+1|t is the investor’s forecast of the

variance of the market excess return. The well-known solution to equation (31) takes the
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following form:15

w∗t+1|t =

(
1

γ

)(
r̂M,t+1|t

σ̂2
t+1|t

)
. (32)

We assume that the investor uses the sample variance computed over a 60-month

rolling estimation window to forecast the variance in equation (32). The average utility

realized by the investor is given by

Ūj = r̄j − 0.5γσ̂2
j , for j = 0, 1, (33)

where r̄0 (r̄1) and σ̂2
0 (σ̂2

1) are the mean and variance, respectively, for the portfolio return

over the out-of-sample period when the investor uses the prevailing mean (competing)

forecast for r̂M,t+1|t in equation (32). Mean-variance utility has the same units as returns,

and equation (33) can be interpreted as the certainly equivalent return. Finally, we

compute the average utility gain (or increase in certainty equivalent return) when the

investor uses the competing forecast in lieu of the prevailing mean benchmark in equation

(32):

∆ = Ū1 − Ū0. (34)

After multiplying the average utility gain in equation (34) by twelve, it can be interpreted

as the annualized portfolio management fee (as a proportion of wealth) that the investor

would be willing to pay to have access to the information in the competing forecast

relative to that in the prevailing mean benchmark. For our empirical analysis in Section

IV, we assume that γ = 3; the results are similar for reasonable alternative values for γ.

15To keep the equity allocation in a reasonable range, we impose the restriction that −1 ≤ wt+1|t ≤ 2.
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III. Data

We consider 100 long-short anomaly portfolio returns that are representative of anoma-

lies from the cross-sectional literature and that can be replicated using publicly available

data from CRSP, Compustat, and I/B/E/S. The anomalies are from numerous categories,

such as value versus growth, profitability, investment, issuance activity, momentum, and

trading frictions. Table IA.I in the Internet Appendix lists the 100 anomalies.16

For each anomaly, at the beginning of each month, we sort stocks into value-weighted

decile portfolios based on the relevant characteristic. We consider all stocks traded on the

NYSE, AMEX, and NASDAQ, after excluding stocks with a price below $5. The long-

short anomaly portfolio goes long (short) the tenth (first) decile portfolio, where the long

(short) leg is expected to generate relatively high (low) returns. We exclude anomalies

that are interactions of two separate signals (since such anomalies are essentially based

on multiple anomalies) and those that are indicator variables (such as IPOs). We also use

anomalies that have a non-missing return starting in 1985.17 The market excess return

is the CRSP value-weighted market return minus the risk-free return (also from CRSP).

The sample period spans 1970:01 to 2017:12. Table I reports summary statistics for

the anomaly portfolio returns. Of the 100 representative anomalies, 75, 71, 56, and 49

generate alphas with t-statistics (in magnitude) above 1.645, 1.96, 2.58, and three, re-

spectively, in the context of the Fama and French (1993) three-factor model. The average

correlation between decile rankings of any two anomalies is 0.05, which is similar to those

reported in McLean and Pontiff (2016) and Green, Hand, and Zhang (2017), so that a

stock considered overvalued or undervalued by one anomaly has a nearly equal chance

of being considered overvalued or undervalued by another anomaly. This is consistent

with the argument of Stambaugh, Yu, and Yuan (2012, 2015) and Akbas et al. (2015)

that individual anomaly characteristics can be noisy indicators of whether a stock is mis-

16Section IA.C of the Internet Appendix provides detailed definitions and relevant studies for the

anomalies.

17The exception is the change in forecasted earnings per share, which begins in 1989.
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Table I

Summary Statistics

The table reports summary statistics for monthly anomaly portfolio returns for 100
anomalies. The sample period is 1970:01 to 2017:12. For each anomaly, we sort stocks into
value-weighted decile portfolios according to the characteristic underlying the anomaly.
The long-short anomaly portfolio goes long (short) the tenth (first) decile portfolio.

Number of anomalies 100

Fama and French (1993) three-factor model alpha

Number of long-short anomaly portfolio returns with |t-stat.| ≥ 1.645 75

Number of long-short anomaly portfolio returns with |t-stat.| ≥ 1.96 71

Number of long-short anomaly portfolio returns with |t-stat.| ≥ 2.58 56

Number of long-short anomaly portfolio returns with |t-stat.| ≥ 3 49

Average correlation across anomaly decile rankings 0.05

Average correlation across monthly anomaly excess returns

Long leg 0.76

Short leg 0.82

Long-short 0.08

Long-leg anomaly portfolio excess returns

Average of sample means 0.71%

Average of sample standard deviations 5.16%

Short-leg anomaly portfolio excess returns

Average of sample means 0.33%

Average of sample standard deviations 6.20%

Long-short anomaly portfolio returns

Average of sample means 0.38%

Average of sample standard deviations 4.37%

priced. It also suggests that aggregating the information in anomalies can help to reduce

the noise in individual anomalies.

On average, the long- and short-leg portfolio returns of any two anomalies are strongly

correlated (0.76 and 0.82, respectively). In the context of Section I, this likely reflects

the common component in the long- and short-leg returns unrelated to mispricing (ft).

The long-short returns are relatively weakly correlated on average (0.08). This is consis-

tent with the presence of idiosyncratic components in the individual long-short anomaly

returns, as discussed in Section I.D. In support of the condition in equation (17), the

average of the sample standard deviations for the long-short portfolio returns is about
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70% of that for the short-leg excess returns, indicating that long-short returns provide

a sharper predictive signal than short-leg returns, as discussed in Section I.C. Figure

IA.1 in the Internet Appendix provides histograms for the sample autocovariances for

the long- and short-leg excess returns. Consistent with stronger MCP for overpricing

vis-à-vis underpricing in equation (15), the mean of the autocovariances for the short-leg

excess returns is considerably larger than that for the long-leg excess returns (4.39 and

2.14, respectively), and the difference in means is significant at the 1% level.18

IV. Out-of-Sample Results

In constructing the out-of-sample forecasts, we use the first ten years (1970:01 to

1979:12) of the full sample period as the initial in-sample estimation period. The sub-

sequent five years (1980:01 to 1984:12) serve as the initial holdout out-of-sample period

for computing the C-ENet forecast, so that 1985:01 to 2017:12 (396 observations) consti-

tutes the out-of-sample period for forecast evaluation. Because the methods in Section

II.A require non-missing predictor data (with the exception of the predictor average),

for an anomaly with a missing return in a month, we fill in the missing return with the

cross-sectional average for the available anomaly returns in that month.

A. Forecast Accuracy

Figure 1 depicts monthly market excess return forecasts based on the 100 long-short

anomaly portfolio returns and strategies described in Section II.A. The conventional OLS

forecast is highly volatile. In fact, the conventional OLS forecast is more than 6% (72%

annualized) in magnitude for a number of months; such extreme forecasts point to severe

18We also generate a forecast of the short-leg excess return via a univariate predictive regression

with the lagged short-leg excess return serving as the predictor. As shown in Table IA.II in the Internet

Appendix, there is significant out-of-sample evidence of serial dependence: the R2
OS statistics are positive

for all anomalies, and 73, 30, and seven are significant at the 10%, 5%, and 1% levels, respectively. Table

IA.III in the Internet Appendix reports the full matrix of cross-autocorrelations for the 100 long-short

anomaly portfolio returns.
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overfitting. The other forecasts are substantively less volatile than the conventional OLS

forecast. In other words, as intended, the ENet, simple combination, C-ENet, predictor

average, principal component, and PLS strategies all work to shrink the forecasts to-

ward the prevailing mean (while still incorporating information from the 100 long-short

anomaly portfolio returns). The simple combination forecast exerts a particularly strong

shrinkage effect (as discussed in Section II.A). Excluding the conventional OLS forecast,

the PLS forecast evinces the most volatility, with the volatilities for the ENet, C-ENet,

predictor average, and principal component forecasts falling between those for the sim-

ple combination and PLS forecasts. Observe that the market excess return forecasts in

Figure 1 are typically more volatile around business-cycle recessions, indicating that the

long-short anomaly portfolio returns themselves are more volatile around recessions.
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Figure 1. Market excess return forecasts based on 100 long-short anomaly
portfolio returns. Each panel depicts the competing market excess return forecast
in the panel heading and prevailing mean benchmark forecast. Vertical bars delineate
business-cycle recessions as dated by the National Bureau of Economic Research.

27

Electronic copy available at: https://ssrn.com/abstract=3562774



Table II reports R2
OS statistics for monthly market excess return forecasts based on

the 100 long-short anomaly portfolio returns. The conventional OLS forecast produces a

negative R2
OS statistic that is extremely large in magnitude, confirming that the forecast

is plagued by overfitting.19 In sharp contrast, the other forecasts all generate positive

R2
OS statistics, so that they are more accurate than the prevailing mean benchmark over

the 1985:01 to 2017:12 out-of-sample period. Using the Campbell and Thompson (2008)

threshold of 0.5%, the monthly R2
OS statistics for all six of the forecasts designed to

guard against overfitting are economically significant; indeed, the R2
OS statistics for the

ENet, C-ENet, predictor average, and PLS forecasts are quite sizable (2.03%, 2.81%,

1.89%, and 2.06%, respectively), making them among the highest in the literature to date.

Furthermore, according to the Clark and West (2007) statistics, all six of the forecasts

designed to guard against overfitting provide statistically significant improvements in

MSFE vis-à-vis the prevailing mean benchmark.

Overall, we find evidence that the information in the group of 100 long-short anomaly

portfolio returns is quite useful for predicting the monthly market excess return, provided

that we employ forecasting strategies that guard against overfitting. The fact that the

ENet, simple combination, C-ENet, predictor average, principal component, and PLS

forecasts all generate statistically and economically significant improvements in out-of-

sample accuracy indicates that our results are robust and not overly reliant on a particular

method for circumventing overfitting.

Table II also reports results for monthly market excess return forecasts based on long-

and short-leg anomaly portfolio excess returns. A clear pattern emerges: the short-leg ex-

cess returns provide some evidence of statistically and economically significant predictive

ability, while there is no statistically or economically significant evidence of predictive

ability for the long-leg excess returns. As discussed in Section I.B, this pattern is con-

19In a univariate predictive regression setting, Campbell and Thompson (2008) find that truncat-

ing OLS forecasts from below at zero helps to improve out-of-sample performance. In our application,

although this approach improves the accuracy of the conventional OLS forecast, it still performs sub-

stantially worse than the prevailing mean benchmark (R2
OS = −31.50%). Thus, in our high-dimensional

setting, truncating the OLS forecast appears insufficient for guarding against overfitting.
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Table II

R2
OS Statistics

The table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) statistics

in percent for market excess return forecasts based on 100 anomaly portfolio returns.
The out-of-sample period is 1985:01 to 2017:12. The OLS (ENet) forecast is based on
ordinary least squares (elastic net) estimation of a multiple predictive regression that
includes all 100 of the anomaly portfolio returns. Combine is the arithmetic mean of
univariate predictive regression forecasts based on the 100 individual anomaly portfolio
returns (in turn). C-ENet is the arithmetic mean of the univariate predictive regression
forecasts selected by the elastic net in a Granger and Ramanathan (1984) regression.
Avg is a univariate predictive regression forecast based on the cross-sectional average
of the 100 anomaly portfolio returns. PC (PLS) is a univariate predictive regression
forecast based on the first principal component (target-relevant factor) extracted from
the 100 anomaly portfolio returns. Based on the Clark and West (2007) test, ∗, ∗∗, and
∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively, for the positive R2

OS

statistics.

(1) (2) (3) (4) (5) (6) (7) (8)

Anomaly
Portfolio OLS ENet Combine C-ENet Avg PC PLS

Long-short −2,513.86 2.03∗∗ 0.89∗∗∗ 2.81∗∗∗ 1.89∗∗ 1.25∗∗ 2.06∗∗∗

return

Long-leg −344,960.22 −0.90 0.29 −0.68 0.26 0.24 0.41
excess return

Short-leg −13,284.68 1.81∗ 0.72∗ 0.39∗ 0.75∗ 0.74∗ 0.84∗

excess return

sistent with asymmetric limits of arbitrage and stronger MCP for overpricing vis-à-vis

underprcing.

Comparing the results in Table II for the long-short and short-leg excess returns, the

former perform better than the latter for forecasting the monthly market excess return.

As explained in Section I.C (and supported by the average volatilities reported in Table

I), the long-short return can provide a sharper predictive signal when the long and short

legs contain a sizable common component unrelated to the future market excess return,

as the long-short return filters the common component to produce a less-diluted signal.
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B. Economic Value

As described in Section II, we also measure the marginal economic benefit of the pre-

dictive ability of long-short anomaly portfolio returns for a mean-variance investor with

a relative risk aversion coefficient of three who allocates between the market portfolio

and risk-free Treasury bills. Figure 2 portrays log cumulative excess returns for portfo-

lios using market excess return forecasts based on the 100 long-short anomaly returns.

The figure also depicts the log cumulative excess return for the portfolio based on the

prevailing mean benchmark forecast, as well as that for the market portfolio. Figure 2

reveals that portfolios that incorporate the information in the 100 long-short anomaly

returns generally exhibit superior performance compared to both the portfolio based on

the prevailing mean benchmark forecast and the market portfolio.

Figure 2 also reports annualized average utility gains when the investor uses a com-

peting forecast of the market excess return in lieu of the prevailing mean benchmark. For

the conventional OLS forecast based on the 100 long-short anomaly returns (not reported

in the figure), there is a large loss of −4.97%, further manifesting the overfitting problem

for the conventional approach. In contrast, the forecasts designed to guard against over-

fitting all generate substantial utility gains. The smallest annualized gain is for the simple

combination forecast (2.59%), which is still economically sizable.20 The annualized gain

reaches as high as 6.38% for the PLS forecast, and it is above 600 basis points for the

ENet and C-ENet forecasts (6.26% and 6.06%, respectively).

Although largely ignored by the market return predictability literature, it is important

to assess the statistical significance of the average utility gains. To do so, we use the

moving-block bootstrap procedure recommended by McCracken and Valente (2018) to

compute critical values for testing H0: ∆ ≤ 0 against HA: ∆ > 0 in equation (34).

The utility gains for the portfolios based on the ENet, predictor average, and principal

component (simple combination, C-ENet, and PLS) forecasts are significant at the 5%

(1%) level. Overall, the utility gains provide further convincing evidence that long-short

20Pástor and Stambaugh (2000) use a 2% annualized utility gain as a threshold for economic signifi-

cance when comparing factor models that include the market excess return.
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Figure 2. Log cumulative excess returns for portfolios constructed using mar-
ket excess return forecasts based on 100 long-short anomaly returns. Each panel
depicts the log cumulative excess return for a portfolio constructed using the market ex-
cess return forecast in the panel heading and the prevailing mean benchmark forecast,
as well as the log cumulative excess return for the CRSP value-weighted market portfo-
lio. Each panel also reports the annualized average utility gain when the investor uses
the competing forecast in the panel heading in lieu of the prevailing mean benchmark
forecast. Vertical segments delineate business-cycle recessions as dated by the National
Bureau of Economic Research.

anomaly portfolio returns contain valuable information for predicting the market excess

return.21

For the portfolios based on the ENet, C-ENet, predictor average, principal component,

and PLS forecasts, the information in the long-short anomaly returns appears especially

valuable for improving performance during the latter half of the Great Recession. It is

worth noting that most of the 100 anomalies were published before that time, suggesting

21Table IA.IV in the Internet Appendix reports Sharpe ratios for the portfolios, which follow the same

pattern as the utility gains in Figure 2.
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that the utility gains accruing to the information in the group of anomalies are not limited

to the anomalies’ pre-publication periods.22

C. Additional Results

Because the long- and short-leg anomaly returns are parts of the market return, the

lagged market return itself potentially contains relevant information for forecasting the

monthly market return. For the 1970:01 to 2017:12 sample period, the autocorrelation

for the market excess return is 0.08 (significant at the 10% level). However, the lagged

market excess return does not evince out-of-sample predictive ability: for the 1985:01

to 2017:12 out-of-sample period, a univariate predictive regression forecast based on the

lagged market excess return fails to outperform the prevailing mean benchmark forecast

(R2
OS = −0.58). As explained in I.C, this is not surprising, since the market return is a

noisier predictor than the long-short anomaly portfolio return.

Long-short anomaly portfolio returns also evince stronger predictive power for the

monthly market excess return than popular predictors from the literature for the 1985:01

to 2017:12 out-of-sample period. Table IA.VI in the Internet Appendix reports R2
OS

statistics for univariate predictive regression forecasts based on 16 popular predictors,

including a variety of economic variables (e.g., valuation ratios, interest rates, interest

rate spreads, and inflation) from Goyal and Welch (2008) and technical indicators from

Neely et al. (2014).23 Among the 16 predictors, three produce a positive R2
OS statistic:

22Table IA.V in the Internet Appendix reports R2
OS statistics and annualized average utility gains for

the 1985:01 to 2001:12 and 2002:01 to 2017:12 subsamples. The results indicate substantial out-of-sample

gains across both subsamples, again provided that we use strategies designed to guard against overfitting.

23Data used to construct the predictors are from Amit Goyal’s website and Federal Reserve Economic

Data. The predictors are the log dividend-price ratio; log earnings-price ratio; return volatility, computed

using the approach in Mele (2007); three-month Treasury bill yield (deviation from a twelve-month

moving average); ten-year Treasury bond yield (deviation from a twelve-month moving average); ten-year

Treasury bond yield minus the three-month Treasury bill yield; Baa-rated corporate bond yield minus the

Aaa-rated corporate bond yield; long-term Treasury bond return; corporate bond return minus the long-

term Treasury bond return; net equity expansion; consumer price index inflation; industrial production

growth; MA(1,12) (MA(3,12)), an indicator variable that takes a value of one if the S&P 500 index
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the ten-year Treasury bond yield (0.54%, significant at the 10% level) and two of the

technical indicators, MA(1,12) and MOM(6) (0.45% and 0.19%, respectively). When we

aggregate the information in the 16 predictors using the methods in Section II.A, only

the simple combination forecast outperforms the prevailing mean benchmark (R2
OS =

0.14%).24 Hence, these predictors appear less useful than long-short anomaly returns for

predicting the market excess return.

To directly compare the information in the popular predictors to that in the long-short

anomaly returns, Table IA.VIII in the Internet Appendix reports Harvey, Leybourne, and

Newbold (1998) forecast encompassing test results for monthly market excess return fore-

casts based on the two sets of predictors. Forecasts based on the popular predictors do not

encompass those based on the long-short anomaly returns, so that the anomaly returns

contain information useful for forecasting the monthly market excess return beyond that

contained in the popular predictors. Thus, the information in long-short anomaly returns

appears quite different from that in popular predictors from the literature.25 Moreover,

as shown in Table II and Figure 2, the differential information in long-short anomaly

returns delivers statistically and economically significant out-of-sample gains.

(three-month moving average of the S&P 500 index) is greater than the twelve-month moving average

of the S&P 500 index and zero otherwise; MOM(6) (MOM(12)), an indicator variable that takes a value

of one if the S&P 500 index is greater than its value six (twelve) months ago and zero otherwise.

24Table IA.VII in the Internet Appendix reports annualized average utility gains for forecasts based

on the 16 predictors. Only the simple combination and principal component forecasts generate positive

annualized utility gains (0.29% and 1.16%, respectively).

25Table IA.IX in the Internet Appendix reports R2 statistics for univariate regressions of the ENet,

simple combination, C-ENet, predictor average, principal component, and PLS forecasts based on the

long-short anomaly returns on forecasts based on the 16 individual popular predictors (in turn). Further

confirming the weak links between market excess return forecasts based on the long-short anomaly returns

and those based on popular predictors, only twelve of the 96 R2 statistics are above 5%, and none are

above 15%. Among the popular predictors, the forecast based on the corporate bond return minus the

long-term Treasury bond return is generally the most strongly related to the forecasts based on the

long-short anomaly returns.

33

Electronic copy available at: https://ssrn.com/abstract=3562774



The out-of-sample predictive ability of long-short anomaly portfolio returns at longer

horizons is also of interest. Table IA.X in the Internet Appendix reports R2
OS statistics

for market excess return forecasts based on the 100 anomalies for horizons of two, three,

six, and twelve months.26 Predictability tends to fall as the horizon increases, and we

find no significant evidence of predictability at the twelve-month horizon. The results

are consistent with our economic explanation, as we expect the mispricing related to

anomalies to correct reasonably quickly, so that long-short anomaly returns are primarily

short-horizon predictors.

As an external validity test, we examine the out-of-sample predictive ability of long-

short anomaly portfolio returns for industry excess returns.27 Specifically, we consider

five industry portfolios (spanning the market) from Kenneth French’s Data Library: Con-

sumer, Manufacturing, Hi-Tech, Health, and Other.28 Table IA.XI in the Internet Ap-

pendix reports R2
OS statistics for the five industry excess returns. The conventional OLS

forecast continues to perform poorly, as the R2
OS statistics are negative and large in

magnitude for all of the industries. As with the market excess return, the forecasting

strategies designed to guard against overfitting perform substantially better, producing

positive R2
OS statistics for three to five of the industries. For these strategies, 21 of the 30

R2
OS statistics are significant at conventional levels. Out-of-sample return predictability

is especially strong for Consumer, Manufacturing, and Other, and a number of the R2
OS

statistics are above 3% for these industries.29 The results for the industry excess returns

26To compute market excess return forecasts beyond the one-month horizon, we straightforwardly

modify the methods in Section II using the multi-period return, r
(h)
M,t = (1/h)

∑h
j=1 rM,t+(j−1), as the

target variable. The HAC standard error used to compute the t-statistic for the intercept term in equation

(26) accounts for the autocorrelation induced in the forecast errors by the overlap in the multi-period

return observations.

27We thank a referee for suggesting this external validity test.

28Available at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.

html.

29Out-of-sample return predictability is the weakest for Health. This is likely due in part to the fact

that the Health industry is a relatively small segment of the market. For 1970:01 to 2017:12, the average
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provide further evidence that long-short anomaly portfolio returns are genuine predictors

of the market excess return.

As a final assessment of out-of-sample return predictability in this section, we explore

the effects of the selection of the group of long-short portfolio returns used to forecast

the market excess return.30 We begin with a set of more than 18,000 long-short portfolio

returns from Yan and Zheng (2017), which are constructed by sorting on individual firm

characteristics from Compustat.31 From the complete set of long-short portfolio returns,

we form two subsets with insignificant and significant alphas, respectively.32 Based on

the evidence in Yan and Zheng (2017), long-short portfolio returns with highly significant

alphas are likely to be meaningful anomalies and not the result of data mining. We ran-

domly draw two groups of 100 long-short portfolio returns from the respective subsets;

for each group, we generate out-of-sample market excess return forecasts beginning in

1985:01 using the predictor average and compute the R2
OS statistics. Repeating this pro-

cess 1,000 times, we have empirical distributions for the R2
OS statistics for market excess

return forecasts based on randomly selected groups of 100 insignificant and significant

long-short portfolio returns.

Figure 3 reports histograms for the R2
OS statistics for the two subsets of long-short

portfolio returns. The R2
OS statistics corresponding to the significant long-short portfolio

returns are clustered to the right of those corresponding to the insignificant long-short

portfolio returns. The difference between the means (1.91) for the two distributions is

significant at the 1% level. The histograms in Figure 3 indicate that groups of significant

long-short portfolio returns generally improve out-of-sample market excess return fore-

casts. Overall, groups of long-short portfolio returns that are significantly more likely to

market capitalization share for Health is 9%, while the shares range from 19% to 30% for the other four

industries.

30We thank a referee for suggesting this insightful analysis.

31We thank Xuemin Yan and Lingling Zheng for providing the data from Yan and Zheng (2017).

32For the purpose of forming the subsets, insignificant (significant) alphas are those with t-statistics

below one (above 2.58) in magnitude in the Fama and French (1993) three-factor model.
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Figure 3. Histograms for R2
OS statistics. The figure depicts histograms for Camp-

bell and Thompson (2008) out-of-sample R2 (R2
OS) statistics in percent for market excess

return forecasts based on the predictor average. The forecasts are based on 1,000 ran-
domly selected groups of 100 long-short portfolio returns from Yan and Zheng (2017) with
insignificant (Panel A) and significant (Panel B) Fama and French (1993) three-factor
model alphas. The vertical dashed line delineates the R2

OS statistic for the predictor
average forecast based on the long-short anomaly portfolio returns in Table II.

constitute anomalies appear more informative for predicting the market excess return,

providing further evidence for the importance of anomalies.

V. Asymmetric Limits of Arbitrage

In this section, we further examine the relevance of asymmetric limits of arbitrage for

market excess return predictability based on long-short anomaly portfolio returns.

A. Slope Coefficients

We first examine recursive estimates of the slope coefficients in the predictive regres-

sions underlying the predictor average, principal component, and PLS forecasts. These
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predictive regressions provide a convenient means for capturing the information in all 100

of the long-short anomaly portfolio returns in a single slope coefficient.

The predictive regression underlying the predictor average forecast is given by

rM,t+1 = α + βr̄LS,t + εt+1, (35)

where r̄LS,t = 1
n

∑n
i=1 r

i
LS,t and riLS,t is the long-short portfolio return for the ith anomaly

for i = 1, . . . , n (n = 100). For the principal component forecast, we replace r̄LS,t in

equation (35) with Zt, the first principal component extracted from the 100 long-short

anomaly portfolio returns. We set the sign of the principal component so that it is

positively correlated with r̄LS,t, meaning that an increase in Zt can be interpreted as a

general increase in the long-short anomaly portfolio returns. For the PLS forecast, we

replace r̄LS,t in equation (35) with Z∗t , the first target-relevant factor extracted from the

100 long-short anomaly portfolio returns, and we again set the sign of Z∗t so that it is

positively correlated with r̄LS,t. When computing the recursive slope coefficients estimates

based on Zt and Z∗t , the principal components and target-relevant factors are computed

using data available at the time of forecast formation, so that there is no look-ahead bias

in the recursive estimates.

Panels A to C of Figure 4 depict recursive estimates of the standardized slope coeffi-

cients in equation (35) and their 90% confidence intervals when the explanatory variable

is r̄LS,t, Zt, and Z∗t , respectively.33 The recursive estimates are always negative, consis-

tent with stronger MCP for overpricing vis-à-vis underpricing. As expected, the 90%

confidence intervals tend to narrow as the estimation sample lengthens. For the predic-

tor average (principal component) regression, the recursive estimates become significant

starting in the mid-to-late 1990s (early 2000s) and remain significant thereafter; for the

PLS regression, the recursive estimates are always significant. The recursive estimates

33The horizontal axes in Figure 4 correspond to the forecast month, so that the month-t estimate is

based on data available through month t− 1. Confidence intervals for the slope coefficient estimates for

the predictive regressions with Zt and Z∗t are based on the formulas for the standard errors in Bai and

Ng (2006) and Kelly and Pruitt (2015), respectively.

37

Electronic copy available at: https://ssrn.com/abstract=3562774

Andrea /tamoni

Andrea /tamoni

Andrea /tamoni

Andrea /tamoni



−0.8

−0.4

0.0

1990 2000 2010

S
lo

p
e

 c
o

e
ff

ic
ie

n
t

Panel A: Predictor Average

−1.0

−0.5

0.0

1990 2000 2010

S
lo

p
e

 c
o

e
ff

ic
ie

n
t

Panel B: Principal Component

−1.5

−1.0

−0.5

0.0

1990 2000 2010

S
lo

p
e

 c
o

e
ff

ic
ie

n
t

Panel C: Partial Least Squares

Figure 4. Recursive slope coefficient estimates. Solid lines depict standardized
recursive slope coefficient estimates used to compute the predictor average, principal
component, and partial least squares forecasts of the market excess return based on 100
long-short anomaly portfolio returns. Dashed lines delineate 90% confidence intervals.
Vertical bars delineate business-cycle recessions as dated by the National Bureau of Eco-
nomic Research.

are quite stable in all three panels of Figure 4 from the early to late 2000s. They then

become larger in magnitude around the Global Financial Crisis and concomitant Great

Recession and remain relatively stable thereafter, suggesting that asymmetric limits of

arbitrage have not substantially diminished in importance since the early 2000s.34

34Table IA.XII in the Internet Appendix reports standardized OLS slope coefficient estimates for

univariate predictive regressions based on the 100 individual long-short anomaly portfolio returns (in

turn) for the 1970:01 to 2017:12 sample period. Further supporting stronger MCP for overpricing vis-à-

vis underpricing, the vast majority (78) of the slope coefficient estimates are negative, and 41, 32, and

12 are significant at the 10%, 5%, and 1% levels, respectively.

38

Electronic copy available at: https://ssrn.com/abstract=3562774



B. Market Segments

According to the intuition in Section I, an important part of the predictive ability

of long-short anomaly portfolio returns stems from their lead-lag covariances with seg-

ments of the market return. To glean insight into this mechanism, we examine the cross-

autocovariances between long-short anomaly portfolio returns and decile excess returns.

This allows us to investigate the relevance of the information contained in long-short

anomaly returns for different segments of the market related to the anomalies.

To incorporate information from the entire group of 100 anomalies and construct

market segments without overlapping stocks, we proceed as follows.35 For a given month,

we sort stocks according to each anomaly characteristic (in turn). For each stock, we then

take the average of its ranks across the anomalies; we take the average of the ranks to

account for the fact that some stocks have missing observations for some characteristics

in a given month. We then sort stocks into value-weighted decile portfolios according

to their average ranks, with the first (tenth) decile constituting the most overvalued

(undervalued) stocks. The long-short portfolio again goes long (short) the tenth (first)

decile portfolio.

Panel A of Figure 5 plots estimates of cov(rj,t+1, rLS,t) for the decile excess returns,

indexed by j = S,D2, . . . , D9, L. The cross-autocovariances are all negative. The first

decile excess return (rS,t+1) displays the largest covariance in magnitude with rLS,t, so

that MCP appears most relevant in the short leg. Nevertheless, the covariances of many

of the other decile excess returns with the lagged long-short anomaly return are often sig-

nificant at conventional levels, so that the mispricing detected in the long-short anomaly

return has important implications for the market more broadly. The magnitudes of the

cross-autocovariances tend to decrease from the first to the tenth deciles, and the cross-

autocovariance for the tenth decile excess return (rL,t+1) is the smallest in magnitude (and

statistically insignificant). Lagged long-short anomaly returns thus appear more relevant

35We thank a referee for suggesting this informative procedure.
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for segments of the market that contain stocks that are relatively more overpriced on

average according to the anomalies, consistent with asymmetric limits of arbitrage.36
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Figure 5. Cross-autocovariances for long-short anomaly and market segment
returns. Each panel depicts estimates of cross-autocovariances for the month-(t + 1)
decile excess return and month-t long-short anomaly return. The deciles are constructed
by sorting stocks according to their average rank across 100 anomaly characteristics. The
decile excess returns in Panel B are weighted by the deciles’ market capitalization shares;
∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively.

For the deciles constructed based on the average of anomaly ranks, and in the spirit

of Lo and MacKinlay (1990) and Lewellen (2002), we can obtain an exact decomposition

of the covariance between the long-short anomaly return and next month’s market excess

36The long-short portfolio return constructed from average ranks also evinces out-of-sample predictive

ability for the market excess return. The R2
OS statistic is 1.29%, which is significant at the 5% level

according to the Clark and West (2007) test.
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return as follows:

cov(rM,t+1, rLS,t) = cov(wS,t+1rS,t+1, rLS,t) +
9∑
j=2

cov
(
wDj ,t+1rDj ,t+1, rLS,t

)
+ cov(wL,t+1rL,t+1, rLS,t),

(36)

where wj,t+1 is the jth decile’s market capitalization share. Panel B of Figurre 5 depicts es-

timates of the cross-autocovariances on the right-hand-side of equation (36), which weight

the decile returns by their market capitalization shares.37 The results are similar to those

in Panel A, in that the cross-autocovariances are all negative, the cross-autocovariance

for the first decile is the largest in magnitude, the cross-autcovariances are significant

for many market segments, and they tend to decrease in magnitude from the first to the

tenth deciles.

To further explore the relevance of overpricing correction persistence, we examine

return predictability for portfolios of stocks that are most overvalued according to the

predictor average.38 The predictor average (i.e., the cross-sectional average of the long-

short anomaly portfolio returns) for a given month is effectively a portfolio of all of the

individual available stocks for the month (although some stocks may receive zero weights).

Each month, we back out the portfolio weights corresponding to the predictor average and

sort stocks according to the predictor average weights. We then form a portfolio (NEG10-

PA) comprised of the 10% of stocks with the largest negative weights (in magnitude) in

the predictor average portfolio; the weights for the stocks in the NEG10-PA portfolio are

proportional to the absolute values of their weights in the predictor average portfolio.

Based on a univariate predictive regression, we then use the excess return on the NEG10-

PA portfolio to predict the excess return on a portfolio of the same stocks with the same

weights in the next month. For the 1985:01 to 2017:12 out-of-sample period, the R2
OS

statistic for the predictive regression forecast is 1.87%, which is significant at the 5%

level. We then repeat the same analysis using the same 10% of stocks each month, but

37We scale the cross-autocovariances in Figure 5 to makes them comparable across Panels A and B.

38We thank a referee for suggesting this instructive analysis.
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instead use portfolio weights proportional to market capitalization. The R2
OS statistic in

this case is nearly a third smaller (0.65%) and insignificant at conventional levels. In

sum, we find stronger out-of-sample return predictability for a portfolio of overvalued

stocks (as detected by the predictor average) when we weight the stocks according to

their relative importance in the predictor average portfolio, rather than simply by their

market capitalization. This indicates that the information in the long-short anomaly

portfolio returns is linked to overpricing correction persistence.

C. Subgroups

Next, we generate out-of-sample forecasts based on subgroups of anomalies formed ac-

cording to proxies for asymmetric limits of arbitrage.39 We form subgroups based on three

proxies: bid-ask spread (BA), idiosyncratic volatility (IDIO), and market capitalization

(SIZE).40 For a given month and anomaly characteristic, we sort stocks into deciles as

described in Section III and compute the average values for a given proxy for the stocks

in the long and short legs, respectively. We then compute the long-leg average value for

the proxy minus the short-leg average value for the proxy for each month. Finally, we

compute the time-series average of the differences for 1970:01 to 1984:12. We denote the

time-series averages for the differences for the bid-ask spread, idiosyncratic volatility, and

size proxies by DTSA-BA, DTSA-IDIO, and DTSA-SIZE, respectively.

We form the subgroups BA-NEG, IDIO-NEG, and SIZE-NEG (BA-POS, IDIO-POS,

and SIZE-POS), which are the subgroups of anomalies for which DTSA-BA, DTSA-IDIO,

and DTSA-SIZE, respectively, are negative (positive). In line with our out-of-sample

focus, we exclude data from the forecast evaluation period when determining the sub-

groups.41 Stocks with larger bid-ask spreads, greater idiosyncratic volatility, and smaller

market capitalization are typically viewed as having stronger limits of arbitrage. Hence,

39We thank a referee for recommending the formation of informative subgroups along these lines.

40Idiosyncratic volatility is the standard deviation of the residuals for a regression of the daily excess

return on the three Fama and French (1993) factors for the previous month.

41Table IA.XIII in the Internet Appendix lists the anomalies included in the subgroups.
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we expect greater market return predictability based on BA-NEG, IDIO-NEG, and SIZE-

POS compared to BA-POS, IDIO-POS, and SIZE-NEG, respectively, as the former three

subgroups represent anomalies with asymmetrically strong limits of arbitrage in their

short legs vis-à-vis their long legs. To combine the information in the different proxies,

we also form a subgroup that is the union of the anomalies in BA-NEG, IDIO-NEG, and

SIZE-POS, as well as a subgroup comprised of the complement of the union. We expect

the union subgroup to evince stronger predictive ability relative to its complement.

Table III reports R2
OS statistics for the different subgroups using the strategies de-

signed to guard against overfitting.42 Although the bid-ask spread, idiosyncratic volatil-

ity, and size are quite noisy proxies for limits of arbitrage, the results generally support

the relevance of asymmetric limits of arbitrage and stronger MCP for overpricing vis-

à-vis underpricing. For example, Panel A reports results for the two subgroups formed

using the bid-ask spread. The R2
OS statistics for the BA-NEG subgroup are all positive

and sizable in magnitude, well above the Campbell and Thompson (2008) threshold for

economic significance. The R2
OS statistics for the ENet, C-ENet, and PLS forecasts are

particularly large (3.57%, 3.65%, and 2.94%, respectively). All six of the forecasts based

on the BA-NEG subgroup are significant at conventional levels according to the Clark and

West (2007) statistics. For each forecasting strategy, the R2
OS statistic for the BA-POS

subgroup is always lower than the corresponding statistic for the BA-NEG subgroup.

Two of the R2
OS statistics for the BA-POS subgroup are negative, and only two are above

the 0.5% threshold. The results in Panel A align with the intuition in Section I, with

relatively stronger limits of arbitrage in the short leg producing greater market return

predictability. The results for the subgroups based on idiosyncratic volatility and size in

Panels B and C, respectively, deliver similar messages to those for the subgroups based

on the bid-ask spread in Panel A.

Panel D of Table III reports R2
OS statistics for the union of the BA-NEG, IDIO-NEG,

and SIZE-POS subgroups. All of the R2
OS statistics for the union subgroup are statistically

42The conventional OLS forecasts based on the subgroups are always negative and large in magnitude,

so that overfitting remains a serious problem.
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Table III

R2
OS Statistics for Subgroups

The table reports Campbell and Thompson (2008) out-of-sample R2 (R2
OS) statistics in

percent for market excess return forecasts based on long-short anomaly portfolio returns
for the subgroup in the first column. The out-of-sample period is 1985:01 to 2017:12.
The ENet forecast is based on elastic net estimation of a multiple predictive regression
that includes all of the long-short anomaly portfolio returns in the subgroup. Combine is
the arithmetic mean of univariate predictive regression forecasts based on the individual
long-sort anomaly portfolio returns in the subgroup (in turn). C-ENet is the arithmetic
mean of the univariate predictive regression forecasts selected by the elastic net in a
Granger and Ramanathan (1984) regression. Avg is a univariate predictive regression
forecast based on the cross-sectional average of the long-short anomaly portfolio returns
in the subgroup. PC (PLS) is a univariate predictive regression forecast based on the
first principal component (target-relevant factor) extracted from the long-short anomaly
portfolio returns in the subgroup. Based on the Clark and West (2007) test, ∗, ∗∗, and
∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively, for the positive R2

OS

statistics.

(1) (2) (3) (4) (5) (6) (7)

Subgroup ENet Combine C-ENet Avg PC PLS

Panel A: Bid-Ask Spread

BA-NEG 3.57∗∗∗ 1.13∗∗∗ 3.65∗∗∗ 1.97∗∗ 1.39∗∗ 2.94∗∗∗

BA-POS −0.28 0.48∗∗ −1.41 0.97∗∗ 0.85∗ 0.29∗∗

Panel B: Idiosyncratic Volatility

IDIO-NEG 1.63∗∗∗ 0.97∗∗∗ 2.43∗∗∗ 1.53∗∗ 1.24∗∗ 1.85∗∗∗

IDIO-POS 1.17∗ 0.42∗∗ −0.43 −0.33 0.12 −0.14

Panel C: Market Capitalization

SIZE-NEG 0.39 0.40∗∗ −1.01 0.43 0.19 −1.20

SIZE-POS 2.39∗∗∗ 1.04∗∗ 2.91∗∗∗ 1.60∗∗ 1.15∗∗ 1.59∗∗∗

Panel D: Bid-Ask Spread, Idiosyncratic Volatility, Market Capitalization

Union of BA-NEG, 2.67∗∗∗ 0.98∗∗∗ 3.10∗∗∗ 1.93∗∗ 1.23∗∗ 2.12∗∗∗

IDIO-NEG,

SIZE-NEG

Complement of union 0.37 −0.05 −0.09 −0.26 −0.31 −0.83

and economically significant. For the complement subgroup, five of the R2
OS statistics are

negative, and the positive statistic is neither statistically nor economically significant.

Continuing the pattern in Panels A to C, the R2
OS statistics for the subgroup that we
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expect to have stronger predictive ability (union) are always larger than the corresponding

statistics for the subgroup that we expect to have weaker predictive ability (complement).

We also form subgroups via a double sort to identify subgroups of anomalies with

both high limits of arbitrage overall and high asymmetric limits of arbitrage with respect

to their short legs. To do so, for BA, we first identify anomalies with relatively low and

high average values for the proxy for the stocks in their long and short legs (BA-LOW and

BA-HIGH, respectively). For each of the BA-LOW and BA-HIGH subgroups, we then

form NEG and POS subgroups as described above, resulting in four subgroups based on

BA (BA-LOW-NEG, BA-LOW-POS, BA-HIGH-NEG, and BA-HIGH-POS). For com-

pactness, we take the union of the BA-LOW-NEG, BA-LOW-POS, and BA-HIGH-POS

subgroups to form the BA-REST group. We then compare the results between the BA-

HIGH-NEG and BA-REST subgroups. In a similar manner, we form IDIO-HIGH-NEG

and IDIO-REST (SIZE-LOW-POS and SIZE-REST) subgroups based on IDIO (SIZE).

We expect the BA-HIGH-NEG, IDIO-HIGH-NEG, and SIZE-LOW-POS subgroups to

exhibit stronger predictive ability compared to the BA-REST, IDIO-REST, and SIZE-

REST subgroups, respectively, as the former three subgroups are the anomalies with both

high limits of arbitrage overall and high asymmetric limits of arbitrage with respect to

their short legs. As shown in Table IA.XIV in the Internet Appendix, this is indeed what

we find.

D. Market Frictions

As argued by Gârleanu and Pedersen (2013, 2016) and Dong, Kang, and Peress (2020),

frictions such as limited risk-bearing capacity and transaction costs induce arbitrageurs

to slowly respond to mispricing, resulting in MCP. If our predictability finding is driven

by arbitrageurs slowly correcting mispricing in the presence of asymmetric limits of arbi-

trage and stronger MCP for overpricing vis-à-vis underpricing, then long-short anomaly

portfolio returns should contain more relevant information for predicting the market ex-

cess return during times of high frictions. We investigate this issue by testing for an

increase in the R2
OS statistic during periods of high frictions using equation (29).
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We consider a variety of proxies for market frictions from the literature. We begin

with the level of and innovations to aggregate liquidity from Pástor and Stambaugh

(2003). We also consider idiosyncratic volatility, which is widely believed to be a major

implementation cost of short arbitrage (e.g., Pontiff (2006)). We measure aggregate

idiosyncratic risk for a given month by first calculating the idiosyncratic volatility of

individual stocks following Ang et al. (2006) and then computing the value-weighted

average of the idiosyncratic volatilities for the individual stocks. Furthermore, we use

trading noise (Hu, Pan, and Wang (2013)), which tracks the shortage in arbitrage capital

via noise in Treasury security prices, as well as short fees (Asness et al. (2018)), which

measure the cost of shorting stocks. For the latter, we again aggregate to the market

level by computing the value-weighted average of short fees for individual stocks.43

In addition to the above variables, we consider risk, uncertainty, and risk aversion in-

dices as proxies for the frictions affecting the risk-bearing capacity of arbitrageurs. Along

with the VIX, we use macroeconomic, financial, and real uncertainty indices from Jurado,

Ludvigson, and Ng (2015), who construct the indices by estimating stochastic volatility se-

ries for the residuals from fitted dynamic diffusion-index models based on macroeconomic

and financial variables. Finally, we consider the jointly estimated economic uncertainty

and risk aversion indices from Bekaert, Engstrom, and Xu (forthcoming). For all of the

proxies, we delineate high- and low-friction regimes using the sample median.

Table IV reports differences in R2
OS statistics (in percentage points) between high-

and low-friction regimes for market excess return forecasts based on the 100 long-short

anomaly portfolio returns. In support of the relevance of asymmetric limits of arbitrage

and stronger MCP for overpricing relative to underpricing, the R2
OS statistics are almost

always higher during high-friction periods, and the vast majority of the increases are

significant according to the augmented Clark and West (2007) test. Furthermore, the

magnitudes of the increases in the R2
OS statistics are economically sizable, exceeding ten

43The short fee is based on the cost-to-borrow score from Markit. Short fee data are available beginning

in 2002:01.
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Table IV

R2
OS Statistic Differences Between High-

and Low-Friction Regimes

The table reports percentage-point increases in Campbell and Thompson (2008) out-of-
sample R2 (R2

OS) statistics for market excess return forecasts based on 100 long-short
anomaly portfolio returns. The out-of-sample period is 1985:01 to 2017:12. The increase
is computed between high- and low-friction periods, which are defined using the sam-
ple median of the variable in the first column. The ENet forecast is based on elastic
net estimation of a multiple predictive regression that includes all 100 of the long-short
anomaly portfolio returns. Combine is the arithmetic mean of univariate predictive re-
gression forecasts based on the 100 individual long-short anomaly portfolio returns (in
turn). C-ENet is the arithmetic mean of the univariate predictive regression forecasts
selected by the elastic net in a Granger and Ramanathan (1984) regression. Avg is a
univariate predictive regression forecast based on the cross-sectional average of the 100
long-short anomaly portfolio returns. PC (PLS) is a univariate predictive regression fore-
cast based on the first principal component (target-relevant factor) extracted from the
100 long-short anomaly portfolio returns. We use an augmented version of the Clark and
West (2007) statistic to test for an increase in the R2

OS statistic; ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7)

Friction ENet Combine C-ENet Avg PC PLS

Aggregate liquidity 4.48∗∗ 0.86∗∗ 5.20∗∗ 3.92∗∗ 3.64∗∗ 9.23∗∗

Liquidity innovations 6.53∗∗ 1.42∗∗ 6.56∗∗ 7.82∗∗∗ 6.11∗∗∗ 13.21∗∗∗

Idiosyncratic volatility 2.73∗ 1.06∗∗ 4.21∗∗ 4.29∗∗ 3.57∗∗ 2.05∗∗

Trading noise 3.67∗∗ 1.49∗∗∗ 5.11∗∗ 8.12∗∗∗ 5.83∗∗∗ 12.42∗∗∗

Short fees 10.34∗ 2.50∗∗ 12.56∗ 9.63∗∗ 8.50∗∗ 14.70∗∗

VIX −0.25 1.26∗∗ 4.87∗∗ 6.06∗∗ 6.10∗∗ 8.93∗∗

Financial uncertainty −1.28 0.02∗ 1.18∗ 3.24∗∗ 2.80∗∗ 3.94∗∗

Macro uncertainty 1.20 0.95∗∗ 3.28∗ 3.97∗∗ 4.09∗∗ 7.21∗∗

Real uncertainty 2.02∗ 1.10∗∗ 6.19∗∗ 4.47∗∗ 4.31∗∗ 8.02∗∗∗

Economic uncertainty 1.29 0.88∗∗ 3.93∗ 3.67∗∗ 3.48∗∗ 3.59∗∗

Risk aversion uncertainty 3.52∗∗ 0.60∗∗ 6.36∗∗ 4.68∗∗ 4.19∗∗ 7.38∗∗

percentage points for some of the forecasts for frictions proxied by liquidity innovations,

trading noise, and short fees.

E. Arbitrage Trading

Next, we examine whether long-short anomaly portfolio returns predict arbitrageurs’

trading in the broad market and the tone of market-wide news. If the overpricing correc-
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tion signaled by long-short anomaly returns during month t is only partial and continues

to spread throughout the market in the subsequent month, then we expect an increase in

long-short anomaly returns in month t to lead to a reduction in arbitrageurs’ net positions

(i.e., long minus short positions) in the broad market in month t + 1, which is likely to

be primarily driven by an increase in their short positions; we also expect more negative

market-wide news tone in month t+ 1.

We first examine changes in arbitrageurs’ aggregate net position in the broad market,

where we follow Chen, Da, and Huang (2019) in constructing the net arbitrage trading

measure. Specifically, we compute aggregate value-weighted long positions for hedge

funds across all stocks in the market, where hedge funds’ long positions in individual

stocks are based on quarterly reported holdings in the 13F database. Agarwal et al. (2013)

identify hedge funds by combining the information in the 13F database and five hedge

fund databases. The 13F holdings data cover the largest number of institutional investors,

as all institutional investment managers that have discretion over $100 million or more

in Section 13(f) securities need to report their quarter-end holdings in these securities. A

13F-filing institution is classified as a hedge fund if its major business is sponsoring and/or

managing hedge funds according to information from various sources (such as institution

websites, SEC filings, industry publications, and news articles). Our final sample consists

of 1,710 unique hedge funds.44 We construct the value-weighted short-selling positions

across all stocks in the market by aggregating short interest in individual stocks. A

stock’s short interest in a month is the total number of uncovered shares sold short for

transactions settled on or before the 15th of the month (from Compustat) divided by the

total number of shares outstanding (from CRSP). We use short interest from the last

month of each quarter to match the quarterly data frequency for hedge-fund holdings.

The sample period covers 1980:1 to 2017:4.

Since hedge funds’ aggregate long positions and short interest display trends, we

compute deviations in the long positions of hedge funds and short interest from trailing

44We thank Vikas Agarwal, Wei Jiang, Yuehua Tang, and Baozhong Yang for providing information

for identifying hedge funds.
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four-quarter moving averages. Chen, Da, and Huang (2019) show that the difference

between the long and short arbitrage trading measures (i.e., net arbitrage trading) effec-

tively aggregates the actions of arbitrageurs.

Table V reports standardized slope coefficient estimates for predictive regressions

that relate quarterly arbitrage trading measures to lagged long-short anomaly portfolio

returns, where we use long-short anomaly returns from the last month in the quarter. As

in Section V.A, in order to capture the aggregate information across the 100 anomalies in

a single slope coefficient, we estimate predictive regressions with r̄LS,t, Zt, and Z∗t serving

as the predictor (in turn). The estimates for the net market position regressions in the

second column are all significant (at the 5% or 1% level). The estimates are all negative,

so that an increase in long-short anomaly returns leads arbitrageurs to decreases their net

positions in the market. The coefficient estimates are also economically sizable: a one-

standard-deviation increase in the predictor corresponds to a 4.81% to 5.81% reduction

in the net arbitrage market position (in terms of value-weighted shares outstanding).

The third and fourth columns of Table V report results for arbitrageurs’ long and

short positions, respectively. The coefficient estimates are all negative (positive) for the

long (short) trading measure, indicating that arbitrageurs reduce (increase) their long

(short) positions in the market in response to an increase in long-short anomaly returns.

The estimates are all significant at the 5% level for the regressions for the short market

position, while they are all insignificant for the regressions for the long market position.

Comparing the results in the third and fourth columns, the coefficient estimates are larger

in magnitude for the short side than for the long side, consistent with stronger MCP for

overpricing. Decomposing the net change in the second column, approximately one-third

comes from declines in long positions and two-thirds from increases in short positions.

Finally, the last column of Table V reports predictive regression results for monthly

US financial market news tone. The news-tone measure, from Calomiris and Mamaysky

(2019), is based on English-language news articles from Thomson Reuters. Monthly news

tone is an aggregation of differences in word tone among news articles on the topic of US

financial markets. We detrend news tone by computing deviations from a trailing twelve-
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Table V

Arbitrage Trading and News Tone

The table reports ordinary least squares estimates of standardized slope coefficient esti-
mates for univariate predictive regressions that use the strategy in the first column to
combine the information in 100 long-short anomaly portfolio returns to predict the vari-
able in the column heading. Predictor average uses the the cross-sectional average of the
100 long-short anomaly portfolio returns. Principal component (partial least squares) uses
the first principal component (target-relevant factor) extracted from the 100 long-short
anomaly portfolio returns. The sample period for the second through fourth columns
is 1980:1 to 2017:4; the sample period for the fifth column is 1996:01 to 2017:12. The
dependent variable is standardized in the fifth column; ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5)

Arbitrage Net Arbitrage Long Arbitrage Short Financial Market
Strategy Market Position Market Position Market Position News Tone

Predictor −5.81∗∗∗ −1.91 3.89∗∗ −0.36∗∗∗

Average

Principal −4.81∗∗ −1.18 3.63∗∗ −0.32∗∗∗

component

Partial least −5.32∗∗∗ −1.62 3.70∗∗ −0.35∗∗∗

squares

month moving average. In order to incorporate information from the 100 anomalies in

a single slope coefficient, we again estimate predictive regressions with r̄LS,t, Zt, and

Z∗t serving as the predictor (in turn). We standardize both the dependent variable and

predictor before estimating the predictive regressions. The sample period is 1996:01 to

2017:12.45

To the extent that asymmetric limits of arbitrage generate relatively strong overpricing

correction persistence, we expect an increase in long-short anomaly returns to lead to more

negative market-wide news tone in the next month; in other words, public news is more

likely to confirm that shares were broadly overvalued. The results in the last column of

Table V support this proposition. The coefficient estimates are all significantly negative

(at the 1% level), and the economic magnitudes of the estimates are sizable: a one-

standard-deviation increase in the predictor results in a 0.32- to 0.36-standard-deviation

45We thank Charles Calomiris and Harry Mamaysky for providing updated data through 2017.
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drop in market news tone. Overall, the results in Table V are consistent with the notion

that long-short anomaly portfolio returns predict market returns because arbitrageurs

slowly correct market-wide overpricing.

VI. Conclusion

Is cross-sectional stock return predictability related to the time-series predictability

of the aggregate market excess return? Our paper provides the first positive systematic

answer to this question. Specifically, we find that a representative group of 100 long-short

anomaly portfolio returns from the cross-sectional literature contains valuable informa-

tion for predicting the market excess return on an out-of-sample basis, provided that

we use forecasting strategies that guard against overfitting the data. We explore eco-

nomic channels underlying the predictive ability of long-short anomaly portfolio returns,

explaining how asymmetric limits of arbitrage—by giving rise to overpricing correction

persistence—can account for the patterns of return predictability in the data. We also

provide evidence supporting the relevance of asymmetric limits of arbitrage and overpric-

ing correction persistence for explaining our results. In light of our positive findings for

the equity market, it would be interesting in future research to examine links between

cross-sectional and time-series return predictability in other markets, such as bonds and

currencies, by applying our methods for extracting predictive signals from large sets of

cross-sectional anomalies.
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Pástor, L̆ubos̆, and Robet F. Stambaugh, 2000, Comparing asset pricing models: An

investment perspective, Journal of Financial Economics 56, 335–381.
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