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1. Introduction

Affine models of the term structure of interest rates are
a popular tool for the analysis of bond pricing. The models
typically start with three assumptions: (1) the pricing
kernel is exponentially affine in the shocks that drive the
economy, (2) prices of risk are affine in the state variables,
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and (3) innovations to state variables and log yield observation
errors are conditionally Gaussian (for examples, see Chen
and Scott, 1993; Dai and Singleton, 2000; Collin-Dufresne
and Goldstein, 2002; Duffee, 2002; Kim and Wright, 2005).
These assumptions give rise to yields that are affine in the
state variables and whose coefficients on the state vari-
ables are subject to constraints across maturities (for
overviews, see Duffie and Kan, 1996; Piazzesi, 2003;
Singleton, 2006). Empirically, the affine term structure
literature has primarily used maximum likelihood (ML)
methods to estimate coefficients and pricing factors, thus
exploiting the distributional assumptions as well as the
no-arbitrage constraints.

In this paper, we propose an alternative, regression-
based approach to the pricing of interest rates. We start
with observable pricing factors and develop a three-step
ordinary least squares (OLS) estimator. In the first step,
we decompose pricing factors into predictable compo-
nents and factor innovations by regressing factors on their
lagged levels. In the second step, we estimate exposures of
Treasury returns with respect to lagged levels of pricing
factors and contemporaneous pricing factor innovations.
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In the third step, we obtain the market price of risk
parameters from a cross-sectional regression of the expo-
sures of returns to the lagged pricing factors onto expo-
sures to contemporaneous pricing factor innovations. We
provide analytical standard errors that adjust for the
generated regressor uncertainty. We also discuss the advan-
tages of our method with respect to the recently suggested
approaches by Joslin, Singleton, and Zhu (2011) and
Hamilton and Wu (2012). In particular, we point out that
the assumption of serially uncorrelated yield pricing errors
underlying these likelihood-based methods imply excess
return predictability not captured by the pricing factors. In
contrast, because our approach is based on return regres-
sions, we do not need to make assumptions about serial
correlation in yield pricing errors.

We report a specification with five principal compo-
nents of zero coupon yields as pricing factors. We show
that models with fewer factors are rejected in specification
tests. The pricing errors in the five-factor specification are
remarkably small and return pricing errors do not exhibit
autocorrelation. We further find that level risk is priced
and that the time variation of level risk is best captured by
the second (the slope factor) and fifth principal compo-
nents. The five-factor specification exhibits substantial
variation in risk premiums and at the same time gives
reasonable maximal Sharpe ratios.

We next present a four-factor specification following
Cochrane and Piazzesi (2008, CP) which includes the first
three principal components of Treasury yields and a linear
combination of forward rates designed to predict Treasury
returns (the CP factor) as pricing factors. Unlike Cochrane
and Piazzesi (2008), we allow for unconstrained prices
of risk and find that the CP factor significantly prices all
factors except slope. The magnitude and time pattern of
the price of risk specification of the four-factor CP model is
akin to that of the five-factor model, indicating that the
two models capture term premium dynamics in a similar
way. However, in-sample yield pricing errors are some-
what larger in the four-factor model.

To compare the four- and five-factor models, we per-
form two out-of-sample exercises. In the first, we use the
model-implied term premiums to infer the future path
of average short-term interest rates. In the second, we
estimate the models using returns on bonds maturing in
less than or equal to ten years and then impute the model-
implied yields of bonds with longer maturities. In both of
these exercises, the five-factor model outperforms the
four-factor specification. Hence, we choose the five-factor
model to be our preferred specification.

Our procedure can potentially be applied to any set of
fixed income securities. In this paper, we use our approach
to estimate an affine term structure model from returns on
maturity-sorted portfolios of coupon-bearing Treasury
securities. The availability of a zero coupon term structure is,
therefore, not necessary to estimate the model. Yet, estimation
from the returns on maturity sorted bond portfolios with
pricing factors extracted from coupon bearing yields gen-
erates a zero coupon curve that is very similar to the Fama
and Bliss discount bond yields.

We present a number of extensions. First, we show
how to estimate the model in the presence of unspanned

factors. Such factors do not improve the cross-sectional fit
of yields but do affect the time variation of prices of risk
through their predictive power for the yield curve factors.
In contrast to the four- and five-factor specifications,
incorporating an unspanned real activity factor produces
a significant price of slope risk. Second, we show how to
impose linear restrictions on risk exposures and market
prices of risk in the estimation of the model. Third, we
show that the maximal Sharpe ratios implied by the four-
and five-factor specifications are very reasonable, with an
average level below one and peaks below 2.5. Fourth, we
explain how the model can be used to fit the yield curve at
the daily frequency. Finally, we show that the implied
principal component loadings from the term structure
model are statistically indistinguishable from the actual
principal component loadings.

Our paper is organized as follows. In Section 2, we
present the model and our three-step estimator, and
we show how to obtain model-implied yields from the
estimated parameters. We further discuss the relation
between our approach and other estimation methods in
the literature. In Section 3, we present our main empirical
findings. Section 4 discusses extensions and robustness
checks. Section 5 concludes.

2. The model

In this section, we derive the data generating process
for arbitrage-free excess holding period returns from a
dynamic asset pricing model with an exponentially affine
pricing kernel. We then show how to estimate the model
parameters via three-step linear regressions, present
their asymptotic distributions, and derive the no-arbitrage
cross-equation constraints for bond yields.

2.1. State variables and expected returns

We assume that the dynamics of a K x 1 vector of state
variables X; evolve according to the following vector
autoregression (VAR):

Xep1 =p + OX¢ + Veyr. (M

This specification of the dynamic evolution of the state
variables can be interpreted as a discrete time analog to
the intertemporal capital asset pricing model (ICAPM)
state variable dynamics of Merton (1973) or the general
equilibrium setup of Cox, Ingersoll, and Ross (1985). We
assume that the shocks v, conditionally follow a Gaussian
distribution with variance-covariance matrix X:

Vet |{Xs}§ _o~N(0,2), (2)

where {X;s}!_, denotes the history of X,. We denote P\ the
zero coupon Treasury bond price with maturity n at time t.
The assumption of no-arbitrage implies (see Dybvig and Ross,
1987) that there exists a pricing kernel M, such that

P{” =Ed[Me1 P13") 3)

We assume that the pricing kernel M., is exponentially
affine:

M = exp(—r[—%ﬂ’tit—ﬂ’tZ‘l/zth ), 4)
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where 1, =In P“) is the continuously compounded risk-free
rate. We further assume that market prices of risk are of the
essentially affine form as suggested in Duffee (2002):

Ae =220 + 1 Xo). 6)
We denote rx"}" the log excess holding return of a bond
maturing in n periods:

1 1
1) =In PV —In PV —r. (6)

Using Egs. (4) and (6) in Eq. (3) yields

1= Efexp(rx; " =32 cde=2/ 27 v )], 7

Assuming that {rx(";
we then find

1 D ve,q) are jointly normally distributed,

Edlrx(};"1 = Covelrx{3", Ve =7 223 vardx{13"L - (®)
We denote
BV = CoveX P, viea12 7 9)

and using Eq. (5) we obtain

BV g + X ]-Var "1, (10)

Eelrx(1;"]1=

t+1
We can decompose the unexpected excess return into a
component that is correlated with v,,; and another compo-
nent that is conditionally orthogonal. Then we find

=Bl 1= A" Ve + e, (1n
It is straightforward to show that 7"~V = "D using Eq. (9).
We assume that the return pricing errors eﬁ’ill) are condi-
tionally independently and identically distributed (i.i.d.) with
variance ¢2.

In our baseline specifications, we use linear combina-
tions of log yields (such as principal components) as
observable factors X; and estimate the model parameters
using holding period returns based on the same set of
yields. Per construction, this implies that g, = g vt. We thus
proceed with the assumption that g is constant.

The return generating process for log excess holding
period returns is then

() ="V o+ X)) 3"V +6?)

Expected Convexity
return adjustment

+H Vv el (12)
— e —

Priced return

Return pricing
innovation error

Stacking this system across maturities and time periods,
we rewrite it as

X =p'(Aot't + 21X_)—3B* vec(Z) + Pyt +pV+E  (13)

where rx is an NxT matrix of excess returns,
p=pV p? ... pN] is a Kx N matrix of factor loadings,
i and 1y are a Tx 1 and N x 1 vectors of ones, X_ =
[Xo X7 -+ X7_1] is a K x T matrix of lagged pricing factors,
B* = [vec(8VpVy .. vec(pN M) is an N x K? matrix, V is
a K x T matrix, and E is an N x T matrix.

2.2. Estimation

Based on Eq. (13), we propose the following simple
three-step regression-based estimator for the parameters
of the model.!

1. We begin by estimating Eq. (1) via ordinary least
squares. This allows the decomposition of X;,; into a
predictable component and an estimate of the innova-
tion V.. 1. We stack these innovations into the matrix V
and construct an estimator of the state variable var-
iance-covariance matrix £ =VV//T.

2. Next we regress excess returns on a constant, lagged
pricing factors and contemporaneous pricing factor
innovations according to

rx=ar’r +pV +cX_ +E (14)

Collecting the regressors into the (2K + 1) x T matrix
Z =iy V' X'_], our estimators become

[ap €=mxZ2ZZ)". (15)

We collect the residuals from this regression into the
N> T matrix E. We then estimate 62 =tr(EE")/NT. We
construct B* from f.

3. We estimate the price of risk parameters /g and 1; via
cross-sectional regression. We know from Eq. (13) that
a=p'%—3(B* vec(X) + oiy) and ¢ = f'A;. We use these
expressions to obtain the following estimators for Ag
and Aq:

lo=@BB) PG + 1B vec(E) + 62)) (16)
and
21 =(Bp)"pe. (17)

2.3. Inference

Denoting the matrix A =[1g 4], we can write the price
of risk estimator in the single expression

A=@B) ' BIx +1B" vecEy'r + 16% i MyZ_(Z_MyZ' )Y,
(18)

where Z_=[ir X'_]' and My, =I;-V'(VV")'V. The equiva-
lence of Eq. (18) with Eq. (16) and Eq. (17) follows from
observing that /tMyZ_(Z-MyZ'_)"" = ¢'1, where ¢; is a
(K+ 1) x 1 vector with first element equal to one and
zeros elsewhere and because [a €]=rxMyZ_(Z-MyZ'_)7".

We show in the Appendix that g and A have the joint
limiting distribution:

vec(B-p) | 4 0 Vi Cap’
ﬁ[VEC(A—A)]—)N<<O)’ |:CA,/} Va ])’ (19

! For a regression-based approach using a linear pricing kernel
specification, see Adrian, Crump, and Moench (2012).
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with
V=) (20)

We provide the analytical expressions for V, and C,y
in the Appendix. The asymptotic variance of the factor risk
exposures g depends only on the variance of the return
pricing errors in the regression of excess returns on lagged
factors and factor innovations as well as on the variance
of the VAR innovations of the pricing factors, but not on g
or A. This implies that we could conduct inference about
whether a given pricing factor is a significant explanatory
variable for bond returns without estimating the full set of
model parameters.

2.4. Affine yields

From the estimated model parameters, we can generate
a zero coupon yield curve. Under the assumptions we have
made so far, we can show that bond prices are exponen-
tially affine in the vector of state variables:

In PV = Ay + B'nX; + ul™. (1)
By substituting Eq. (21) into Eq. (6), we see that
rx(tz__]l) :An—l + B,n—1Xt+l + Ui'l_ll)—An—B’an—uim

+A; + B'1 X, + ulD. (22)

Equating this expression for excess returns with the return
generating expression in Eq. (12), we find

Anc1 + Bl (p+ DX + Vegr) + U7 —An—B/nXe—uy”

+A1 + B 1 X¢ + up) (23)

=" (G0 + M Xe + Ve )=V Zp + 6?) + 7.
24)

This equation has to hold state by state. Let A; = -y and
By = —81. Matching terms, we obtain the following system
of recursive linear restrictions for the bond pricing para-
meters:

An=An_1 + B'y1(u=20) + XB'n-1ZBy_1 + *)—do, (25)
B'n =B'n_1(P—-241)-6"1, (26)
Ap=0, By=0, 27)
and

M =By, (28)

We also obtain the following expression for the log bond
pricing errors:

(n-1)_, (m) 1 _ =1
Uppp —Up U = €y 29)
—_— ——

Log yield return pricing
pricing- error r

Several remarks are in order. First, the derivation of log
bond prices is exact, provided that g™ = B’,,. Second, the
recursions in Egs. (25) and (26) are the standard linear
difference equations for affine term structure models with
homoskedastic shocks. The only difference with respect to
the standard formulation is the appearance of the term 1 2
in Eq. (25). This arises due to the fact that we allow for a
maturity-specific return fitting error that is conditionally

orthogonal to the state variable innovations. Our approach
thus incorporates pricing errors explicitly into the no-
arbitrage recursions.

Eq. (29) implies that if yield pricing errors are i.i.d., then
return pricing errors are cross-sectionally and serially
correlated. Likelihood-based estimation approaches for
affine term structure models typically assume serially
uncorrelated yield pricing errors and, thus, implicitly
assume return pricing errors to be serially correlated.

Setting the price of risk parameters g and 1; to zero in
the recursions in Eq. (25) and Eq. (26; generates the
risk-adjusted bond pricing parameters Aﬁ and BEF. These
parameters have the property that —(1/m)(AR + Bf'X,)
equals the time t expectation of average future short rates
over the next n periods. These risk-neutral yields are of
independent economic interest, as the term premium can
be calculated as the difference between the risk neutral
yield and model-implied fitted yield.

2.5. Discussion of related literature

While Gaussian affine term structure models have
historically been estimated using computationally inten-
sive maximum likelihood techniques, Joslin, Singleton,
and Zhu (2011, JSZ) and Hamilton and Wu (2012, HW)
have recently proposed alternative, faster, estimation
approaches. We now briefly compare these approaches with
the method introduced here.

A crucial difference between our method and the
approaches in JSZ and HW is that we do not impose the
bond pricing recursions given in Section 2.4 in our estima-
tion procedure. This allows us to derive simple regression-
based estimators for all model parameters whereas both
JSZ and HW require numerical optimization for a subset of
the parameters in their models. We show in Section 3.3
that the risk exposures estimated via the regression approach
satisfy these additional restrictions to a very high degree
of precision without imposing them in the estimation.
Moreover, because we do not impose these restrictions, our
approach does not require the availability of a zero-coupon
yield curve, but can instead be readily used in applications
with returns on coupon-bearing bond portfolios as we
discuss in Section 3.6. Another important difference between
our approach and those in JSZ and HW is that we do not
impose the constraint that principal components (or other
linear combinations of yields) must be priced perfectly.
As a consequence, there is a potential inconsistency between
actual and model-implied principal components. However,
we show in Section 4.5 that any such inconsistency is nume-
rically negligible in our preferred five-factor specification.

Joslin, Singleton, and Zhu (2011) show that Gaussian
affine dynamic term structure models which impose these
constraints imply additional restrictions across parameters.
Under certain assumptions, linear combinations of yields can
be used as observable pricing factors and the model para-
meters can be split into two subsets. The first subset
summarizes the parameters governing the evolution of the
pricing factors under the historical measure. JSZ show that
for this subset, the ML estimator coincides with the OLS
estimator of a VAR(1) of the pricing factors. Hence, they
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suggest a two step estimation approach. In the first step, they
estimate the parameters of the VAR(1) via OLS. Then, in the
second step, they estimate the remaining model parameters
which govern the evolution of pricing factors under the risk-
neutral measure, via numerical solution of the likelihood
function taking as given the OLS estimates of the first step.

We see several advantages of our method with respect
to that of JSZ. First, ]SZ assume that the yield pricing errors
are conditionally independent of lagged values of yield
pricing errors. This assumption allows them to reduce
the computational complexity of the estimation. Eq. (29)
above shows that in affine models where bond prices are
exponentially affine functions of the pricing factors, seri-
ally uncorrelated yield pricing errors give rise to autocor-
relation of the return pricing errors. Serially correlated
return pricing errors, in turn, generate excess return
predictability not captured by the pricing factors. We think
that this is an undesirable assumption and indeed our
empirical results suggest that there is a strong level of
serial correlation in yield fitting errors while there is little
to no autocorrelation in return pricing errors. Second, the
estimation approach suggested by JSZ is tailored to affine
models that use linear combinations of yields (such as
principal components) as pricing factors. In contrast, our
approach does not require pricing factors to be linear
combinations of yields but can also be readily applied to
models that use observable (and economically interpre-
table) pricing factors such as macroeconomic variables.
Third, while the approach in JSZ estimates a subset of
parameters via OLS, it still requires estimation of a subset
of parameters via numerical methods. These could be
prone to issues related to the convergence to the global
maximum of the likelihood function. By contrast, our
approach relies exclusively on linear regressions which
greatly alleviates such concerns.

Hamilton and Wu (2012) have recently proposed
another multi-step estimation method for affine models
which combines OLS regressions with numerical optimi-
zation. While their method does not require a particular
normalization of the model, it is also based on the
assumption that exactly K linear combinations of yields
are observed and priced without error while the remain-
ing yields are observed with error. Based on this assump-
tion, HW first run an OLS regression of the vector of
observed yields on their contemporaneous and lagged
values. In further estimation steps, they then back out
the remaining model parameters by numerically minimiz-
ing a chi-squared objective function which summarizes
the deviations of the structural from the reduced form
parameters, an approach which is asymptotically equiva-
lent to full information maximum likelihood. As in JSZ, HW
require that yield fitting errors are not serially correlated,
which as we discuss above has strong implications for the
properties of the return pricing errors. Indeed, Hamilton
and Wu (forthcoming) show that popular affine term
structure models feature serially correlated yield fitting
errors. Moreover, it does not appear that the HW method
can be readily applied to specifications which feature
unspanned factors in the term structure of interest rates
which we show is easy in our setup. Finally, the HW approach
requires numerical optimization which our method avoids.

3. Empirical results

In this section, we provide estimation results from our
regression approach for different specifications of affine
term structure models. We start by testing for the number
of factors necessary to explain the time series and cross
section of Treasury returns. To demonstrate the robustness
of these results with respect to the choice of data, we do so
using different combinations of Treasury yield and return
data that have previously been employed in the literature.
The results of this analysis, discussed in Section 3.2, show
that the first five principal components of Treasury yields
are needed to explain Treasury returns. We, therefore,
choose a K=5 factor specification as our baseline example
and discuss its properties and implications in Section 3.3.
We also estimate a model with K=4 factors in the style of
Cochrane and Piazzesi (2008), which employs the first
three principal components of Treasury yields and a return
forecasting factor as pricing factors. This model is pre-
sented in Section 3.4. We compare the two model speci-
fications in Section 3.5 and find that the five-factor model
outperforms the four-factor model in economically impor-
tant dimensions.

Both models use bond returns inferred from fitted zero
coupon yield curves. However, a distinguishing feature of
our estimation approach is that it does not require the
availability of zero coupon yield data. Instead, given a risk-
free short-term rate as well as a set of pricing factors
that span the cross section of bond yields, we can obtain
estimates of fitted zero coupon yield curves without
observing these curves. To illustrate this capability, our
third specification combines excess returns obtained from
maturity-sorted portfolios of coupon bearing bonds with
the first five principal components extracted from the set
of Treasury yields published in the Federal Reserve Board's
H.15 release. We discuss estimation results for this speci-
fication in Section 3.6.

3.1. Data

We estimate our baseline four- and five-factor specifi-
cations using the zero coupon yield data constructed by
Gurkaynak, Sack, and Wright (2007, GSW).? These data are
based on fitted Nelson-Siegel-Svensson curves, the para-
meters of which are published along with the estimated
zero coupon curve. We use these parameters to back out
the cross section of yields for maturities n=3,...,120
months. From these yields we extract principal compo-
nents. Taking as the risk-free rate the n=1 month yield, we
calculate excess returns for n=6,12, 18,24, ...,60, 84, and
120 month zero coupon bonds directly from Eq. (6), giving
a cross section of N=12 maturities.

Our third specification uses factors extracted from the
constant maturity yields from the Federal Reserve Board's
H.15 release and excess returns of Fama maturity-sorted
bond portfolios and the Fama one-month risk-free rate,

2 We thank the authors for making these data available for down-
load, on the website http://www.federalreserve.gov/Pubs/feds/2006/200628/
feds200628.xls.
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available from the Center for Research in Security Prices
(CRSP). The Fama bond portfolios are sorted into six-
month maturity buckets with n=1-6,7-12,...,55-60
months in addition to a portfolio grouping maturities
61-120 months, for a total of N=11 maturity groups. From
the Fama risk-free rate Rf and the monthly portfolio

returns R(t”ﬁ”. we calculate log excess returns according to

") =log (1 + R";")-log (1 + RY). (30)

We estimate all models over the sample period 1987:01-
2011:12, which provides a total of T=300 monthly observa-
tions. Taken as given the set of pricing factors, we estimate
the parameters (@, X, g, 3,19, A1) using our three-step esti-
mation approach. We further obtain estimates of the short
rate parameters 5o and &; by regressing the one-month
T-bill on the pricing factors. We then feed all parameter
estimates into Eqs. (25) and (26) to obtain the recursive
pricing parameters and use the latter to compute model-
implied yields of the maturities of interest.

3.2. Model specification tests and identification

We start by testing for the number of pricing factors.
While early research by Scheinkman and Litterman (1991)
and Garbade (1996, Chapter 16) pointed out that three
factors are enough to explain the cross-sectional variation
of yields, more recent papers such as Cochrane and Piazzesi
(2005, 2008) and Duffee (2011) emphasize the importance of
additional factors to explain Treasury returns.

Our estimation approach uses return regressions to fit
the cross section of yields and allows for direct tests of the
number of pricing factors. Whether the pricing factors
explain return variation is important for the identification
of the price of risk parameters. This is easy to see in the
three-step regression approach. Recall from Egs. (16) and
(17) that the market price of risk parameters are obtained
via regressions onto the matrix of factor risk exposures.
Identification of prices of risk thus requires that the
stacked factor loadings g’ are of full column rank.?

Because the asymptotic variance of g is of a simple OLS
form [see Eq. (20)], we can apply standard tools to assess
the rank of . We test for the possible rank deficiency
using the Anderson (1951) canonical correlations test. We
denote the sample partial canonical correlation between V
and rx conditional on X_ by p; for i =1, ...,K factors. Then,
under the null hypothesis that rank(f) <r <K, the Ander-
son test statistic is

=T % In(1—pD)%2(K-rN-r) (€30)
i 1

i=r+

We can also test for the presence of unspanned or
useless factors by checking whether particular columns of
B are equal to zero. This is straightforward to do based on
the asymptotic distribution of the factor risk exposures g
from Eq. (20). Let g; be the ith column of g’. Then, under

3 See Kleibergen (2009) and Burnside (2012) for a related discussion
in the context of static Fama and MacBeth equity pricing models.

the null that g; = Oy, the Wald statistic is
A A—1n
Wy =BV, B~ (N). (32)

Table 1 displays the results of both test statistics for
model specifications with three to five factors using
various combinations of Treasury return and yield data.
In particular, we report the Anderson test for the hypoth-
esis that the rank of g in a K factor model is less than or
equal to K-1 (denoted rkx_;) and the Wald statistic for the
null that the Kth column of g’ is equal to zero. In Panel A of
Table 1, we provide the test statistics for our benchmark
specification, which uses both GSW returns and yields.
Panel B reports tests for the number of factors using the
same yield data as Duffee (2010), who merges Fama and
Bliss yields of n=3,12, 24, ...,60 months with GSW yields
of maturities n=72 and n=120 months. Panel C uses
principal components extracted from the Federal Reserve
H.15 release, selecting maturities n=6, 12, 24, 36, 60, 84,
and 120 months.? Finally, the Panel D extracts factors from
the CRSP constant maturity Treasury yield database using
maturities n=12, 24, 60, 84, and 120 to which we append the
three-month and six-month T-bill from the CRSP Fama and
Bliss discount bond yield data. The specifications on the left-
hand side are estimated using excess returns on zero coupon
bonds calculated from the GSW data set. The specifications
on the right hand side are estimated using excess returns on
Fama maturity-sorted Treasury portfolios.

The tests unanimously support a five-factor specifica-
tion across the different data sets. The Wald tests over-
whelmingly reject that the last column of g’ equals zero in
the five-factor specification. The Anderson rank statistics
also broadly support a five-factor model. We conclude
from these results that a five-factor specification of an
affine term structure model is likely to provide a better fit
of bond returns and, hence, bond risk premiums than
specifications with fewer factors. Importantly, this result is
obtained for the different combinations of US Treasury
yield and return data that have been used in the extant
literature and is, therefore, not driven by the particular
data set we use in our preferred five-factor specification.

3.3. Estimation of a five factor model

Following the evidence in favor of a five-factor model
from the tests above, we use it as our baseline specifica-
tion. We now show that this specification fits the yield
curve close to perfectly and gives rise to substantial time
variation in the prices of risk. Because traditional term
structure models are estimated imposing nonlinear cross-
equation restrictions, estimation of these models with more
than three factors becomes computationally demanding. In
contrast, adding factors to the regression-based approach
comes at no computational cost.

Table 2 reports the time series properties of the yield
pricing errors implied by the five-factor specification of
the model. We set u = 0 because principal components are

4 Joslin, Singleton, and Zhu (2011) also use H.15 yields but first
extract the implied zero coupon yield curve. Our estimation procedure
does not require this additional step.
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Table 1
Identification tests.

This table reports the results of the identification tests described in Section 3.2. rk;_; is the Anderson (1951) statistic for the hypothesis that the rank of g
in a K factor model is K—1 or smaller. Wy is the Wald statistic for the hypothesis that the last row of g equals zero. These test statistics follow y>(N-K + 1)
and x%(N) distributions, respectively. Corresponding p-values are reported in parentheses. The four panels present alternative models estimated using
different numbers of yield principal components as pricing factors. Panel A reports test results for specifications using Gurkaynak, Sack, and Wright (2007,
GSW) yields to extract principal components. Panel B is based on a combination of Fama and Bliss and GSW yields, as in Duffee (2010). Panel C uses Federal
Reserve H.15 yields. Panel D uses Center for Research in Security Prices (CRSP) constant-maturity Treasury yields. Specifications in the left column are
estimated using excess returns from GSW zero coupon yields. Specifications in the right column are estimated using excess returns on Fama maturity-

sorted portfolios.

GSW returns

CRSP Fama returns

Number of Factors ki1 Wy rky_1 Wy
Panel A: GSW yields
K=3 577.580 11216.622 333.092 2176.506
(p-value) (0.000) (0.000) (0.000) (0.000)
K=4 629.077 4643.528 104.281 231.140
(p-value) (0.000) (0.000) (0.000) (0.000)
K=5 885.261 21831.991 34.991 25.139
(p-value) (0.000) (0.000) (0.000) (0.009)
Panel B: Fama and Bliss yields + GSW six- and ten-year
K=3 228.202 9105.729 103.634 2090.322
(p-value) (0.000) (0.000) (0.000) (0.000)
K=4 155.195 6194.862 86.344 889.096
(p-value) (0.000) (0.000) (0.000) (0.000)
K=5 34.348 166.716 32.952 86.717
(p-value) (0.000) (0.000) (0.000) (0.000)
Panel C: H.15 yields
K=3 242.768 384.954 189.816 454,848
(p-value) (0.000) (0.000) (0.000) (0.000)
K=4 61.473 279.181 101.817 44.675
(p-value) (0.000) (0.000) (0.000) (0.000)
K=5 18.845 55.866 63.757 68.442
(p-value) (0.009) (0.000) (0.000) (0.000)
Panel D: CRSP constant-maturity yields
K=3 164.237 1154.031 68.376 1328.303
(p-value) (0.000) (0.000) (0.000) (0.000)
K=4 152.737 462.968 61.836 728.340
(p-value) (0.000) (0.000) (0.000) (0.000)
K=5 22.550 72.438 23.945 188.009
(p-value) (0.002) (0.000) (0.001) (0.000)

extracted from demeaned yields. The average yield pricing
errors are very small, not exceeding 0.4 basis points in
absolute value. Moreover, the standard deviation of the
yield pricing errors is tiny, remaining below 1 basis point
for all maturities. Finally, consistent with our decomposi-
tion of yield pricing errors in Eq. (29), we find evidence of
strong serial correlation in yield pricing errors while the
return pricing errors have essentially no autocorrelation.

The upper two panels of Fig. 1 show the time series
of observed and fitted yields for the two- and ten-year
Treasury notes. These plots show that the five-factor
specification provides an extremely tight fit to yields. It
is worth emphasizing that the model has been fitted to
returns. All parameters have been obtained via linear
regressions, without imposing the cross-equation recur-
sions in Egs. (25) and (26). These equations have been
used only ex post, to allow the computation of all matu-
rities of the yield curve. Our results, therefore, suggest that
traditional estimation approaches in which latent pricing
factors are jointly estimated with the model parameters by
explicitly imposing the cross-equation constraints provide
little or no gains in terms of fitting the yield curve.

The bottom two charts in Fig. 1 show the observed and
fitted one-month excess holding returns on the same two
maturities. The actual excess returns are shown as solid
lines. The fitted excess returns are given by the expres-
sion B'y_1(do +41X0)—3(B'n_1ZByq +6%) + B'y1Veyq and
are shown as dashed lines. Both are almost indistinguish-
able from one another, suggesting that the dynamics of
excess bond returns are close to perfectly captured by the
five-factor model. We superimpose as dash-dotted lines
the expected excess return component B’p_1(lg + A1X:)—
1(B'412B, 1 + 6%, which captures the risk premium
investors demand for holding a bond with n months to
maturity for one month. The charts show that risk pre-
miums in the five-factor specification exhibit substantial
time variation.

We now investigate the role of each of the factors in
pricing the various components of interest rate risk in the
five-factor model. To that end, Table 3 reports the esti-
mated elements of Ao and A, as well as the corresponding
t-statistics. Note that here and throughout, the standard
errors are calculated under the assumption that u is
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Table 2
Five-factor model: fit diagnostics.
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This table summarizes the time series properties of the pricing errors implied by the five-factor specification. The sample period is 1987:01-2011:12.
Reported are the sample mean, standard deviation, skewness, and kurtosis of the errors; p(1), p(6) denote their autocorrelation coefficients of order one and
six. Panel A reports properties of the yield pricing errors i1, and Panel B reports properties of the return pricing errors é. n = 12, ..., 120 denotes the maturity

in months.
Summary Statistics n=12 n=24 n = 36 n = 60 n =384 n = 120
Panel A: Yield pricing errors
Mean —-0.001 0.000 -0.001 —-0.003 —-0.003 -0.004
Standard deviation 0.004 0.006 0.006 0.004 0.004 0.008
Skewness -0.342 0.420 —0.086 -0.069 0.305 -0.133
Kurtosis 3.245 2,932 2414 2.205 2.545 2.726
p(1) 0.793 0.803 0.879 0.936 0.853 0.818
p(6) 0.565 0.526 0.745 0.718 0.657 0.442
Panel B: Return pricing errors
Mean 0.000 —-0.002 -0.007 -0.007 —-0.003 -0.026
Standard deviation 0.081 0.092 0.151 0.132 0.179 0.617
Skewness 4183 1.000 3.016 1310 0.396 0.248
Kurtosis 46.489 9.708 40.674 12.555 5.685 7.981
p(1) -0.001 0.175 —-0.140 0.001 -0.162 -0.157
p(6) 0.104 0.098 0.083 -0.014 0.015 0.012
a Yield fitting and term premium estimates b Yield fitting and term premium estimates
of maturity n = 24 months of maturity n = 120 months
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Fig. 1. Five-factor model: observed and model-implied time series. This figure provides plots of the yields and excess one-month holding returns for the
two-year and ten-year maturities as observed and implied by the five factor specification. The observed yields and returns are plotted by solid lines, and
dashed lines correspond to model-implied yields and returns. Dash-dotted lines show model-implied term premiums in the upper two charts and

expected excess holding period returns in the lower two charts.
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Table 3
Five-factor model: market prices of risk.

This table summarizes the estimates of the market price of risk parameters 1o and A; for the five factor specification. t-Statistics are reported in
parentheses. The standard errors have been computed according to the formulas from Section 2.3. Wald statistics for tests of the rows of A and of 4; being
different from zero are reported along each row, with the corresponding p-values in parentheses below. PC1,..., PC5 denote the first through fifth principal
components of Treasury yields. Bolded coefficients represent significance at the 5% level.

Factor Ao A1 12 M3 Aa M5 W, W,
PC1 -0.019 -0.003 -0.016 -0.005 0.012 0.030 30.367 23.705
(t-statistic) (~2.566) (~0.443) (~2.160) (~0.648) (1.605) (3.987) (0.000) (0.000)
PC2 0.013 0.027 -0.011 -0.003 -0.011 0.015 7.097 6.167
(t-statistic) (0.951) (1.914) (-0.818) (=0213) (=0.792) (1.077) (0.312) (0.290)
PC3 -0.030 -0.077 —0.001 -0.093 -0.132 —0.056 37170 36.277
(t-statistic) (~0.951) (=2.466) (~0.029) (~2.987) (—4.244) (~1.783) (0.000) (0.000)
PC4 0.042 0.064 -0.007 0.015 -0.058 —0.086 10.444 9.374
(t-statistic) (1.062) (1.594) (-0.189) (0.367) (~1.461) (=2.147) (0.107) (0.095)
PC5 0.005 -0.105 0.012 —0.004 -0.073 -0.324 45.691 45.688
(t-statistic) (0.097) (~2.028) (0.243) (~0.070) (~1431) (~6.287) (0.000) (0.000)

unknown to accommodate the sampling uncertainty from
using demeaned yields. The price of level risk has a
significant negative constant component (the top element
in the vector /). Excess return betas are negative multi-
ples of the yield loadings b, =-(1/n)B,, implying that
investors on average require a positive expected excess
return for holding the level portfolio. In addition to level
risk being nonzero unconditionally, we find that it varies
significantly as a function of the slope and the fifth factor.
The loading of level risk on the slope factor has a negative
sign. The model, therefore, implies that a higher slope is
associated with higher expected excess returns. As can be
seen in the lower right-hand panel of Fig. 2, expected
excess returns load positively on the slope factor with
coefficients more or less linearly increasing in maturity.
This is in line with prior evidence on the predictive power
of yield spreads for bond returns as, e.g., in Campbell
and Shiller (1991). We further find that the fifth principal
component enters the price of level risk with a strongly
significant positive coefficient. This underscores that fac-
tors with negligible contemporaneous effects on the yield
curve can have strong predictive power for future excess
returns, consistent with the findings of, e.g., Cochrane and
Piazzesi (2008) and Duffee (2011). The estimated price
of risk coefficients are also economically important. For
example, the coefficient of the fifth principal component in
the price of level risk is estimated to be 0.03. This implies
that a 1 standard deviation decline in the fifth principal
component increases the annualized expected excess
return on the ten-year Treasury bond by about 6%.

We can conveniently summarize the pricing implica-
tions of the model by testing the null hypothesis that the
different rows of A (which combines 1y and 4;) are equal to
zero. Given the asymptotic distribution of the estimator
derived in Section 2.3, a Wald test can be used to that
effect. In particular, let 1’;. be the ith row of A. Then, under
the null that 4'; = 01xk+1), the Wald statistic

Wi, =109, 32K + 1) (33)

has an asymptotic chi-square distribution with K +1
degrees of freedom. In a similar vein, we can test whether

the price of risk associated with a given factor features
significant time variation by testing if the corresponding
row of 1 is jointly equal to zero. Let 1'q;. be the ith row of
A1. Then, under the null that 1';. = 01,k, the Wald statistic

PO TN
Wi, =11V, At (K) (34)

has an asymptotic chi-square distribution with K degrees
of freedom. The last two columns in Table 3 provide
these Wald statistics as well as the corresponding p-values
for the rows of A and 4, respectively. In line with the
individual significance of the price of risk parameters,
these Wald statistics show that level risk is priced sig-
nificantly both unconditionally and conditionally.

Slope risk is not priced in the five-factor model. None of
the individual elements of the second row of A is sig-
nificantly different from zero, and both Wald statistics
indicate that these coefficients are also jointly indistin-
guishable from zero. This result appears surprising given
that slope captures the second largest share of the cross-
sectional variation of yields. We return to this issue in
Section 4.1.

While slope risk is not priced in the five-factor model,
curvature risk, as measured by the exposure to the third
principal component of Treasury yields, carries a signifi-
cant price of risk. The level factor, the curvature factor
itself, as well as the fourth principal component of yields
all significantly affect the price of curvature risk over time.
The coefficient of the price of curvature risk on the level
factor is negative, indicating that expected excess returns
on a portfolio that is long in short-term and long-term
government bonds and short in intermediate maturities
tend to be increasing in the level of rates. While the price
of level risk is significantly determined by the fifth
principal component, the price of curvature risk strongly
varies with the fourth principal component, which again
highlights the role of higher-order principal components
for expected bond returns.

The upper two panels of Fig. 2 provide a plot of
unconditional first and second moments of yields across
maturities as observed and fitted by the five-factor model.
The charts show that the specification fits both moments
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Cross sectional fit, average observed and
model-implied yields

Unconditional standard deviation of observed and
model-implied yields
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Fig. 2. Five-factor model: cross-sectional diagnostics. This figure provides graphs exhibiting the cross-sectional fit and interpretation of the factors in the
five factor specification. The upper two panels plot unconditional means and standard deviations of yields against those implied by the model. The lower
left panel plots the implied yield loadings —(1/n)B,. These coefficients can be interpreted as the response of the n-month yield to a contemporaneous shock
to the respective factor. The lower right panel plots the expected return loadings B'n4;. These coefficients can be interpreted as the response of the expected
one-month excess holding return on an n-month bond to a contemporaneous shock to the respective factor. PC1,..., PC5 denote the first through fifth

principal components of Treasury yields.

very well. The lower left panel of Fig. 2 provides a plot
of the estimated yield loadings b,. While these graphs
reinforce the common interpretation of the first three
principal components of yields as level, slope, and curva-
ture, they also highlight why higher order principal
components of yields have been given much less attention
in the literature. The lower left panel of Fig. 2 shows that
the loadings of yields on the fourth and fifth principal
components are very small. This is in sharp contrast to the
lower right panel of Fig. 2, which shows the loadings B’ 14
of expected excess returns on all model factors. The
loadings on the fourth and fifth principal components
exhibit strong variation across maturities. In fact, expected
returns are explained nearly entirely by the second, fourth,
and fifth principal components, while yields are explained
almost exclusively by the first three principal components.

We can assess the economic significance of the various
risk prices by computing their contribution to the variability

of the pricing kernel. Recalling that

In MH—] = —r[—%ﬂ’[ﬂt—l'tzil/zbf_ﬂ N (35)

it is straightforward to decompose the conditional volatility
of the pricing kernel into the contributions due to each price
of risk according to

K
Var(In Mey) = Vide= Y A (36)
j=1

Doing so, we find that risk prices of all five factors contribute
to the time variation of the pricing kernel (see the upper left
chart in Fig. 3). However, given that the exposure of long
term bonds to risks other than level risk is fairly small, the
statistical significance of their market prices of risk does not
translate into a sizable impact on expected excess returns on
those bonds. As the lower left chart in Fig. 3 shows, it is
primarily, but not exclusively, the time variation of level risk
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Decomposition of pricing kernel variance,
five—factor model

Decomposition of pricing kernel variance,
four-factor model
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Fig. 3. Pricing kernel variance decomposition. This figure shows decompositions of the conditional volatility of the pricing kernel and the expected excess
return in the four- and five-factor specification for the ten-year Treasury note. The upper two panels decompose A'+4; into its K components. The lower
panels decompose expected excess returns, f'AZ; = (A1 + - + pigAr)Ze, where p; is the jth element of g; and A, denotes the kth row of A. PC1,...,PC5
denote the first through fifth principal components of Treasury yields. CP denotes the Cochrane and Piazzesi (2008) return forecasting factor.

that contributes to time-varying expected excess returns on
the ten-year Treasury bond. This time variation in turn is
largely, but not exclusively, driven by movements in the slope
and the fifth principal component, as shown in the lower
right chart of Fig. 2.

We derive the recursive pricing formulas in Eqgs. (25)
and (26) by equating our return generating process in
Eq. (12) with the definition of excess returns in Eq. (6)
under the assumption that log bond prices are linear in the
state variables X. The matching of terms implies that our
recursive bond pricing parameters By, which are functions
of the parameters @, X, 5, 59, 81, A0, and 11, must be equal to
the coefficients g™ from the time series regressions of
excess returns on the estimated factor innovations ¥ for all
maturities n. The restriction is not imposed in the estima-
tion. The difference between the imputed recursive pricing
parameters B, and the regression coefficients ﬁ(m can serve
as a diagnostic of how well the affine model can replicate
Treasury return dynamics.

Fig. 4 provides plots of the two sets of coefficients. They
are visually indistinguishable for all maturities for the first

three factors. While they differ slightly for the fourth and
fiftth factors, that difference is economically negligible.
Analytic standard error bands for g are plotted in gray.
The tight intervals indicate that these elements are esti-
mated very precisely. To summarize, the five-factor speci-
fication of our affine term structure model appears to
be able to replicate the dynamics of Treasury yields and
returns very well.

3.4. Four-factor specification

The results above show that the predominant share of
the variation of expected excess bond returns in the five-
factor specification is driven by the second, fourth, and
fiftth principal components of Treasury yields. However,
Cochrane and Piazzesi (2008, CP) find that a single return
forecasting factor is able to explain the bulk of the
predictability in excess returns. They augment this factor
with the first three principal components of orthogona-
lized yields and estimate an affine term structure model,
positing a highly restricted form for the price of risk matrix
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B versus B for Factor 1
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B versus B for Factor 2
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Fig. 4. Regression Coefficients ™ versus recursive pricing parameters B,. This figure provides plots of the coefficients B(m from the regression equation (15)
of log excess holding period returns on the state variable innovations versus the recursive pricing parameters B, used to generate fitted yields given in Eq. (26)

for the five factor specification. The diamonds represent the former, and the solid lines correspond to the latter. The confidence intervals for fi(") are plotted as

shaded bands.

A. In their model, only the upper element of 4o and the
loading of level risk on the return forecasting factor are
allowed to be nonzero. These restrictions effectively imply

that only level is allowed to be a priced risk factor and only
the return forecasting factor drives time variation in bond
risk premiums.
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We estimate a four-factor model similar to the one in
Cochrane and Piazzesi (2008) within our regression-based
framework. This allows us to directly assess the statistical
and economic evidence toward such a specification. We
compare the results obtained from the four-factor model
with that obtained from our baseline five-factor model and
discuss the interpretation of the price of risk estimates.

To generate a factor that summarizes one-month excess
return predictability optimally in-sample among linear
combinations of bond yields, we calculate our version of
the CP factor by regressing monthly GSW excess returns
onto the vector of ten one month lagged GSW one-year
forward rates F, according to

Xer1 =70+ TFe +neyq (37)

The average R? across these individual predictive return
regressions is 7.5%. Following Cochrane and Piazzesi
(2008), we define the CP factor x, to be the first principal
component of the fitted values I'F;, standardized to zero
mean and unit variance. The first principal component
explains 94.65% of the cross-sectional variance of all fitted
one-month excess returns. We estimate the model by
augmenting this factor with the first three principal
components extracted from the cross section of Treasury
yields.

Our approach differs in a few regards from that employed
by Cochrane and Piazzesi (2008). Most important, their factor
is constructed by placing one-year excess holding period
returns on the left hand side of the regression. However,
because the specification in Eq. (12) holds exactly only for
monthly excess returns, we prefer to extract a factor that best
predicts returns at this frequency. Also in contrast to CP, we
use ten annual GSW forward rates instead of five Fama and
Bliss annual forward rates. This is because we find that the
GSW data provide a better in-sample fit for excess returns at
the monthly frequency. Finally, unlike CP, we do not ortho-
gonalize yields with respect to the return forecasting factor
before extracting principal components. Instead, we define
level, slope, and curvature as the first three principal com-
ponents of the Treasury yields in our data set. We do so to

Table 4
Four-factor model: fit diagnostics.

guarantee that the three factors are identical across the
model specifications that we compare.

Table 4 reports summary statistics for the yield and
return pricing errors of the four-factor model. These
indicate that the in-sample fit is somewhat less precise
in the four-factor model than in the five-factor model, but
with average pricing errors no larger than 2.9 basis points
in absolute value, and standard deviations of these errors
of less than 5 basis points, the fit is good. The return
pricing errors continue to display little serial correlation,
whereas yield pricing errors are highly autocorrelated. The
upper panels of Fig. 5 plot the observed and fitted values of
the two- and ten-year Treasuries, showing that the fitting
error is economically negligible. The lower panels of Fig. 5
plot the observed and fitted excess returns as well as
the predicted excess returns. The predicted excess returns
display significant time variation, comparable to the
dynamics observed in the five-factor model.

Table 5 shows that the CP factor is a significant deter-
minant of the prices of risk of all pricing factors except for
slope. In fact, for level risk, the CP factor is the only
significant pricing factor, driving out the significance of
the slope factor that had been present in the five-factor
specification. This is in line with the specification in
Cochrane and Piazzesi (2008), who restrict this coefficient
to be the only nonzero element in 1;. As in the five-factor
model, the estimated price of risk coefficients are econom-
ically important in the four-factor specification. In parti-
cular, the —0.043 coefficient of the CP factor in the price
of level risk implies that a positive 1 standard deviation
shock to the CP factor increases the annualized expected
excess return on the ten-year Treasury bond by 8.7%.
The slope factor is not significant for any of the price
of risk parameters in the four-factor specification, also in
line with CP. However, the level and curvature factors
continue to remain significant determinants of the price of
curvature risk. This implies that the CP factor does not
entirely subsume the variation of expected bond returns
that is captured by the principal components in the five-
factor specification.

This table summarizes the time series properties of the pricing errors implied by the four factor specification. The sample period is 1987:01-2011:12.
Reported are the sample mean, standard deviation, skewness, and kurtosis of the errors; p(1), p(6) denote their autocorrelation coefficients of order one and
six. Panel A reports properties of the yield pricing errors i1, and Panel B reports properties of the return pricing errors é. n =12, ..., 120 denotes the maturity

in months.

Summary Statistics n=12 n=24 n = 36 n = 60 n=_84 n = 120
Panel A: Yield pricing errors

Mean 0.028 0.010 —-0.013 -0.029 —-0.018 0.015
Standard deviation 0.048 0.030 0.026 0.029 0.021 0.028
Skewness 0.653 0.179 —-0.358 -0.995 -0.399 0.662
Kurtosis 6.540 2.638 2.842 4.282 3.605 3.718
p(1) 0.769 0.843 0.912 0.858 0.877 0.748
p(6) 0.612 0.532 0.780 0.606 0.630 0.478
Panel B: Return pricing errors

Mean 0.025 —-0.041 —-0.074 —-0.037 0.024 0.142
Standard deviation 0.539 0.509 0.382 0.896 0.924 2.445
Skewness 2.042 0.384 0.566 0.126 0.592 —-0.308
Kurtosis 18.013 5.534 5.386 4411 5.144 6.829
p(1) -0.073 —-0.055 0.027 —-0.147 -0.128 -0.337
p(6) 0.228 0.142 0.171 0.057 0.072 -0.017
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Fig. 5. Four-factor model: observed and model-implied time series. This figure provides plots of the yields and excess one-month holding returns for the
two-year and ten-year zero coupon maturities as observed and implied by the four-factor specification. The observed yields and returns are plotted by solid
lines, and dashed lines correspond to model-implied yields and returns. Dash-dotted lines show model-implied term premiums in the upper two charts
and expected excess holding period returns in the lower two charts.

Table 5

Four-factor model: market prices of risk.
This table summarizes the estimates of the market price of risk parameters 1o and A; for the four factor specification. t-Statistics are reported in
parentheses. The standard errors have been computed according to the formulas from Section 2.3. Wald statistics for tests of the rows of A and of 1, being

different from zero are reported along each row, with the corresponding p-values in parentheses below. PC1

components of Treasury yields. Bolded coefficients represent significance at the 5% level.

AAAAA PC5 denote the first through fifth principal

Factor Ao AMa M2 A3 M4 Wy W,
PC1 -0.019 -0.001 0.003 0.003 -0.043 37.239 30.393
(t-statistic) (=2.597) (=0.195) (0.325) (0.420) (=5.002) (0.000) (0.000)
PC2 0.012 0.026 0.000 0.002 -0.025 6.746 5.981
(t-statistic) (0.865) (1.801) (0.005) (0.113) (~1.524) (0.240) (0.201)
PC3 -0.015 -0.063 —0.051 -0.109 0.111 18.326 18.110
(t-statistic) (=0.454) (~1.862) (~1.366) (~3.186) (2.861) (0.003) (0.001)
CcP -0.087 0.019 0.098 -0.010 -0.291 27.851 25.546
(t-statistic) (-1.728) (0.374) (1.753) (~0.188) (—4.872) (0.000) (0.000)

These results suggest that the parameterization chosen
by Cochrane and Piazzesi (2008) for the price of risk
dynamics might be overly restrictive. Using a Wald statis-
tic akin to Eq. (33), we can explicitly test for the joint

significance of the elements of A that CP restrict to be zero.
We overwhelmingly reject the null that these elements
are jointly equal to zero with a p-value of 107°. Hence, we
find that the tight restrictions imposed by Cochrane and



124

Piazzesi (2008) on the price of risk dynamics are clearly
not supported in the model on statistical terms. Moreover,
imposing the CP restriction on A using the minimum
distance estimator discussed in Section 4.2, we find that
the fit of the four-factor model deteriorates, with yield
pricing errors increasing substantially across all maturities
but especially at the long end of the yield curve.

That being said, the predictability in excess returns is
clearly dominated by the CP factor within the four-factor
specification. As can be seen in the lower right panel of
Fig. 6, the CP factor predicts positive excess returns across
the yield curve in a manner increasing in maturity. This
closely matches the pattern shown by Cochrane and
Piazzesi (2008) for one-year excess returns.

Given these findings and the results from the five-
factor model, it is instructive to study the relation between
the CP factor and the principal components of Treasury
yields. Interestingly, we find that even five principal
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components fail to entirely span the CP factor: A regres-
sion of x; on the five PCs from our benchmark model yields
an R? of only 65.6%. This is especially striking given that
99.99% of variation in yields are explained by the first five
principal components, considering that x; is constructed as
a linear combination of these yields. The pairwise correla-
tions between the return forecasting factor and the first
five principal components of Treasury yields in our data
set are 5%, 45%, 19%, —17%, and —62%, respectively. This
corroborates the findings of Section 3.3 where we show
that the fifth principal component is a predominant driver
of risk premiums in the five-factor specification, followed
by the second, third, and fourth principal components.

Finally, the curvature and CP factors are both found to
be priced in the four-factor specification, as indicated by
the corresponding Wald statistics. This is in contrast to the
restrictions imposed by Cochrane and Piazzesi (2008), who
force these risk prices to be zero.

Unconditional standard deviation of observed
and model-implied yields
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Fig. 6. Four-factor model: cross-sectional diagnostics. This figure provides graphs exhibiting the cross-sectional fit and interpretation of the factors in the
four factor specification. The upper two panels plot the unconditional means and standard deviations of observed yields against those implied by the
model. The lower left panel plots the implied yield loadings —(1/n)B,. These coefficients can be interpreted as the response of the n-month yield to a
contemporaneous shock to the respective factor. The lower right panel plots the expected return loadings B',;. These coefficients can be interpreted as the

response of the expected one-month excess holding return on an n-month bond to a contemporaneous shock to the respective factor. PC1,...,

PC5 denote

the first through fifth principal components of Treasury yields. CP denotes the Cochrane and Piazzesi (2008) return forecasting factor.
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We again assess the economic significance of the
various risk prices by computing their contribution to the
variability of the pricing kernel. We find that risk prices of
all four factors contribute to the volatility of the pricing
kernel (see the upper right chart in Fig. 3). Yet, as in the
five-factor model, only the exposure of long term bonds
to level risk is sizable. Hence, the market prices of risk of
the remaining factors have a modest impact, at best, on
expected excess returns. As Fig. 3 shows, it is primarily the
time variation of level risk that contributes to time varying
expected excess returns on the ten-year Treasury bond.
This time variation, in turn, is largely but not exclusively
driven by movements in the CP factor, as highlighted in
the lower right panel of Fig. 6.

To summarize, the results in this subsection have
shown that strong support exists for the importance of a
Cochrane and Piazzesi-type return forecasting factor in
explaining Treasury return dynamics. However, the tight
parametric restrictions that CP impose on risk price
dynamics are statistically not supported by our estimates.
Finally, comparing the term premium implied by the four-
factor specification with that of the five-factor model, we
conclude that the unrestricted four-factor CP specification
captures similar term premium dynamics as the five
principal component specification but implies somewhat
larger in-sample yield fitting errors.

3.5. Comparing the five- and four-factor specifications

The evidence presented thus far does not appear
sufficient to designate which of the two models provides
a better representation of the data. In this subsection, we
consider their out-of-sample performance both in the
cross section and in the time series. We find that the
five-factor model outperforms the four-factor model
across both dimensions. To provide an additional bench-
mark, we report results for a four-factor model with CP
treated as an unspanned factor and a five-factor model
with PC4 and PC5 treated as unspanned factors (Section 4.1
explains how to impose the unspanning restriction in the
estimation). The upper-left panel of Fig. 7 shows that the
in-sample term premium dynamics are very similar across
all specifications. In particular, the five-factor models and
the four-factor models exhibit closely aligned term pre-
miums. Term premiums are of economic interest because
they allow inference of risk-adjusted expectations of the
path of future short-term interest rates. Thus, a natural
way to compare the different models is to investigate their
ability to predict future short-term interest rates. To
generate these forecasts, we begin by using the period
1987:01-1991:12 as a training sample and then proceed to
reestimate each model at monthly intervals with an
expanding estimation window and compare their average
short-rate predictions up to five years ahead with the
realized data. For comparison, we also include the average
forecast error from a simple random walk of the one-
month T-bill. In the upper-right panel of Fig. 7, we display
the root mean square prediction error of average short
rates at forecast horizons from one month through five
years. The chart shows that the five-factor model and the
model with PC4 and PC5 treated as unspanned factors

outperform the random walk across all horizons. In con-
trast, the four-factor model and the model with CP treated
as an unspanned factor display somewhat larger forecast
errors, most notably at longer horizons. This short rate
prediction exercise thus suggests that the five-factor model
provides a better forecast performance in the time series
than the four-factor model.

To assess the cross-sectional performance of the differ-
ent model specifications we perform the following exer-
cise. We continue to estimate each model using returns on
bonds with maturities up to ten years. We then compare
the model-implied yields on bonds with maturities up to
20 years relative to their actual values. In the lower-left
panel of Fig. 7 we plot the results from this analysis.
Although the four-factor model produces a good in-sample
fit to maturities up to ten years, the chart shows that the
model-implied yields for longer maturities are far below
their realized values. This is not the case for the five-factor
specification, which produces slightly higher average
yields than in the realized data, but closer to the realized
data than either of the specifications using unspanned
factors. This suggests that the four-factor model strongly
understates the degree of persistence of the pricing factors
under the risk-neutral measure, whereas the five-factor
model only slightly overstates it. Interestingly, Joslin,
Singleton, and Zhu (2011), using their likelihood-based
estimation approach, find that a model using all of the first
five principal components of yields as pricing factors and
estimated without observations on longer maturity bonds
produces implausible average bond yields on very long
maturity bonds. Here we show, using our methodology, that
this is not a general feature of five-factor models. As a
robustness check, the lower-right panel of Fig. 7 displays
the in-sample fit when each model is estimated using returns
on bonds with maturities up to 20 years. In this case, the five-
factor model is very close to the observed yields, whereas the
four-factor model exhibits more pronounced deviations.

In sum, the results presented in this subsection suggest
that relative to the four-factor model with three principal
components of yields and the CP factor, the five-factor
model produces better out-of-sample forecasts of future
short rates and is more robust to the choice of maturities
used in estimation. While all of these specifications cap-
ture term premium dynamics in similar ways, the superior
out-of-sample performance of the five-factor model leads
us to designate it as our preferred specification.

3.6. Estimation using maturity-sorted portfolios

So far, we have seen that different specifications of
multi-factor affine models estimated using our regression-
based approach are able to tightly match data obtained
from a smooth zero coupon yield curve. However, an
important feature of our estimation approach is that the
availability of a wide cross section of zero coupon bonds is
not necessary for the estimation of the term structure. The
only data required for our procedure are a panel of excess
returns and a corresponding set of return spanning factors.
Our third benchmark specification highlights this attractive
feature of the regression-based approach. Here, we generate
a no-arbitrage zero coupon yield curve from a cross section of



126 T. Adrian et al. / Journal of Financial Economics 110 (2013) 110-138

Ten-year term premium comparison

1| —Five factors
— Four factors
0.5 | ---PC4, PC5 unspanned
- - CP unspanne
0 1 1
1990 1995 2000 2005 2010
Time
Out-of-sample cross—sectional fit, fitted and
model-implied yields for n = 1-240 months
7 : : : :
6.5
6 I Y A -<.
55}
5T —Five factors
- - -Four factors
45 | —PC4, PC5 unspanned ||
: - = CP unspanned
— Observed
4 . . . .
0 50 100 150 200 250

Maturity (in months)

Root mean square average short rate forecast error

st = ==
16 |
14 |
12}
1}
0.8 — Five factors
0.6 - - - Four factors |
’ --- PC4, PC5 unspanned
0.4 —— CP unspanned i
— Random walk
0.2} .
5 10 15 20 25 30 35 40 45 50 55 60
Horizon (months)
In-sample cross—sectional fit, fitted and
model-implied yields for n = 1-240 months
6.5 - - - -
6t P> :
55 .
5t .
— Five factors
45 | - - - Four factors |
) — PC4, PC5 unspanned
- - CP unspanned
— Observed
4 . . n n
0 50 100 150 200 250

Maturity (in months)

Fig. 7. Model comparison. This figure shows the model comparison diagnostics discussed in Section 3.5. The upper left panel plots the ten-year Treasury
term premium implied by the five-factor model, the four-factor model, a five-factor model in which PC4, PC5 are restricted to be unspanned, and a four-
factor model in which the CP factor is restricted to be unspanned. The upper right panel shows the out-of-sample root mean squared forecast error (RMSE)
for average future short rates up to five years in the future as implied by the four model specifications. It also provides the RMSE for a simple random walk
model of the short rate. The lower left panel shows the average yields implied by the four models for maturities up to 20 years, where the models have
been estimated using only maturities up to ten years. The lower right chart shows the average yields implied by the four models when maturities up to 20
years have been used in the estimation. PC1, ..., PC5 denote the first through fifth principal components of Treasury yields. CP denotes the Cochrane and

Piazzesi (2008) return forecasting factor.

K=5 principal components extracted from the Federal
Reserve's H.15 Treasury yield data and N=11 excess returns
on Fama maturity sorted bond portfolios from CRSP. Both
sets of data are constructed from coupon bearing bonds. This
reduces estimation error with respect to the standard prac-
tice of fitting term structure models to zero coupon yields.

Given the excess holding period returns as well as
the pricing factors, we estimate the model parameters
(®,%,0,20,41) using our three-step estimation approach.
We further estimate 6o and §; by regressing the log Fama
one-month T-bill on the pricing factors. Based on these
parameters, we can then use Egs. (25) and (26) to compute
the loadings A, and B,, which, along with the pricing
factors X, allow us to impute zero coupon yields for bonds
of any maturity.

The upper panels of Fig. 8 plot the two-year and five-
year maturities implied by the model against the corre-
sponding Fama and Bliss discount bond yields, displaying a
visually close fit. It is important to note that this is not by
construction, as the two sets of zero coupon yields have
been estimated using different methodologies. The Fama
and Bliss discount bond yields are fitted to the cross
section of Treasury bonds period by period. Instead, our
estimated zero curve is directly implied by a no-arbitrage
term structure model, which imposes internal consistency
between the time series and the cross section of yields.
The lower panels of Fig. 8 show that the model-implied
excess returns for zero coupon bonds closely match the
observed excess returns of Fama maturity sorted port-
folios. In sum, we see it as a particular strength of our
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Five—year fitted versus five-Year Fama-Bliss
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Fig. 8. Fama maturity-sorted portfolio model: observed and model-implied time series. This figure provides plots of the model-implied yields for the two-
year and five-year maturities from the Fama maturity-sorted portfolio specification detailed in Section 3.6. Excess returns on maturity-sorted Fama bond
portfolios are regressed on a set of spanning factors extracted from principal components of Federal Reserve H.15 bond yields. The top two panels plot the
fitted yields from this specification against the Fama and Bliss zero coupon yields. The bottom two panels plot the observed excess returns on Fama
maturity-sorted Treasury portfolios (solid lines) against the model-implied fitted returns (dashed lines). The dash-dotted lines show model-implied term
premiums in the upper two charts and expected excess holding period returns in the lower two charts.

estimation approach to generate a model-based zero
coupon yield curve from returns on coupon-bearing
securities.

The use of excess returns from maturity-sorted portfo-
lios could cause problems due to the changing composi-
tion of underlying securities. To address this concern, we
first employ the test of parameter stability described by
Andrews (1993). The generalized method of moments
(GMM) framework of Andrews (1993) is easily applied to
the OLS regression in Eq. (15). We obtain a value of 31.70
for the sup—LM statistic [we choose a standard calculation
window of z=(15%,85%)], which is well below the
corresponding 90% critical value. In addition to assessing
the stability of estimated betas for each portfolios' return,
we approximate the portfolios' betas at every point by the
weighted average of the betas corresponding to the
individual cash flows of the underlying securities (princi-
pal and coupon payments). Doing so, we see that the betas

at the portfolio level are very stable for maturities up to
ten years but exhibit pronounced time variation for the
portfolio containing bonds that mature in ten years or
more. This latter result is not surprising as large differ-
ences exist in duration between the different securities in
that portfolio and, hence, the interest rate sensitivity of
that portfolio can vary considerably over time. Conse-
quently, we use the maturity-sorted portfolios up to ten
years and drop the Fama portfolio with maturities above
ten years in the estimation.

4. Extensions

In this section we present a number of extensions and
further results. First, we explain how to estimate the
model in the presence of unspanned factors. Second, we
show how to impose linear restrictions on risk exposures
and market prices of risk in the estimation of the model.
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Third, we show that the maximal Sharpe ratios implied by
the four- and five-factor specifications are very reasonable,
with an average level below one and peaks below 2.5.
Fourth, we explain how the model can be used to fit the
yield curve at the daily frequency. Finally, we show that
the implied principal component loadings from the term
structure model are statistically indistinguishable from the
actual principal component loadings.

4.1. Unspanned factors

Recent models of the yield curve have featured
unspanned factors that do not affect the dynamics of
bonds under the pricing measure, but do affect them
under the historical measure (see Joslin, Priebsch, and
Singleton, 2012; Duffee, 2011; Wright, 2011). The predict-
ability under the historical measure is consistent with
previous work that finds that macroeconomic factors have
forecasting power for the term structure (see, e.g.,
Moench, 2008; Ludvigson and Ng, 2009). The assumption
that a given factor does not affect bond yields under the
pricing measure can be implemented by imposing the
restriction that the corresponding elements of
{Bn,n=1,...,N} be exactly equal to zero.

This restriction can be readily incorporated in our
regression-based setting. Partition the factors into
spanned factors X; with nonzero risk exposures and
unspanned factors X;, which have zero risk exposures.
The factors continue to follow a joint VAR process under
the historical measure

Xt @ Xiq vi (38)
=pu+ + .

Xy | THTE X vi
where X; is of dimension K; x 1, X; is of dimension K, x 1,
and p and @ are partitioned accordingly. The spanning
restriction is that the risk exposures of the unspanned
factors are equal to zero, i.e., g™ = [ 0] foralln=1,...,N.
Using Egs. (26) and (28), this restriction implies 8’1 =[5 0],
so that the short rate does not load on any unspanned

factors. It further implies that the upper right Ks x K, block
of the risk-neutral transition matrix @* = (®—41;) is zero, i.e.,
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DA Py |
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With this restriction, the return generating process can be
rewritten as
XD ="V (o + 1 Xe + Vi) =3V 20 + 6%)

+ef" (40)
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where x4 denotes the upper Ks x 1 subvector of the risk-
neutral mean u* = (u—4p), @% denotes the upper left K x K
block of @*, and X is equal to the upper left K x K block
of X. Estimation of this model proceeds with only a slight

modification of the three-step procedure. As before, we
obtain estimates of the VAR parameters and innovations in
Eq. (38) V41 using OLS. Denote X* and X° as the stacked
lagged and contemporaneous values of spanned factors. We
then estimate the regression

X=as't + ¢X° +p/X° +E, (43)

where a; is an N x 1 vector and g’s and ¢ are N x K;
matrices. We see from Eq. (40) that now as=—f'su¥—
1(B* vec(Ess) + o%y) with B*S the first K columns of B*.
We can also see that ¢; = —f's@%. We can then estimate the
parameters governing the risk-neutral dynamics of the pri-
cing factors according to

it = =B Bo(@s +1B” vec(Eg) + 6%n)) (44)
and
by =—(Bp's) " Bsks. (45)

Denoting ¥, = [4¥ ], we can write these estimators in the
single expression

YAI; = _¢sﬁ/5)7lﬁs(m + %(E*s Vec(iss)
+62 ) IMYZE(ZEMAZE ) (46)

where Z° =[ir X*] and M =Ir—X*(X°X*)"'X*. We then
obtain

Ass = 5;ISS—YAI:S (47)
We further set

=g, (48)
in accordance with the spanning restriction in Eq. (39). The
parameters ;¢ and @ are not identified in this model. They
do not matter for bond pricing, so we adopt the convention

of setting the corresponding prices of risk 23 and ilf' equal to
zero. This is equivalent to setting the risk neutral parameters
equal to the physical VAR estimates 7, and &,,.

We can see from Egqs. (47) and (48) above that the
estimator of market prices of risk in the unspanned factor
case is a linear combination of estimated parameters
governing the historical and risk-neutral dynamics of
pricing factors. We show that the two estimators have
the joint limiting distribution

SS SS,SU

d 0 > Vi CA,M
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where V¥, Vi and 3} are provided in the Appendix.
We illustrate estimation of an affine model with
unspanned macroeconomic factors by using the specifica-
tion in Joslin, Priebsch, and Singleton (2012). Their model
features as pricing factors the first three principal compo-
nents of Treasury yields as well as the first principal
component of monthly core consumer price index infla-
tion and monthly core personal consumption expenditures
inflation and the Federal Reserve Bank of Chicago National
Activity Index (CFNAI) as unspanned macroeconomic
factors. According to a Wald test of the significance of
columns of beta obtained by including the additional
factors in the regression in Eq. (15), we do not reject the
null that the inflation factor has zero betas with p=88.63.

~su

VEC(A ss—Ass)
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Similarly, we do not reject that the betas for the exponen-
tially smoothed CFNAI equal zero with p=96.81. These
findings, thus, justify the assumption of treating these
macroeconomic factors as unspanned in a specification
that also features the first three principal components of
Treasury yields.

Unreported results show that the unspanned macro factor
specification provides a somewhat poorer fit to the cross
section of Treasury yields than the four- and five-factor
specifications. Estimates of the market prices of risk and
the corresponding test statistics are provided in Table 6. They
differ in some ways from the ones already discussed. As in
the five-factor specification, the second principal component
significantly drives time variation in slope risk. Nonetheless,
we can reject only that the first row of 4, is equal to zero at a
10% level. This is at odds with the implications of the five-
and four-factor models which show substantial amounts of
time variation in level risk that are largely due to movements
in higher order principal components or the CP factor,
respectively. This suggests that the specification proposed
by Joslin, Priebsch, and Singleton (2012), which uses the first
three principal components of yields and two macroeco-
nomic variables as pricing factors, does not fully capture the
dynamics of the price of level risk implied by the yield factor-
based specifications. Furthermore, the coefficient of the price
of slope risk on the CFNAI series is highly statistically
significant and, as a consequence, slope risk is priced in this
model specification. This is consistent with the results of
Joslin, Priebsch, and Singleton (2012) but is in contrast to the
pricing implications of the four- and five-factor models. This
can be interpreted as indicating that the information con-
tained in the yield curve is insufficient to completely char-
acterize the time variation in the price of slope risk. Due to
the ease of estimation of the term structure model in the
regression-based approach, alternative specifications with
other unspanned factors are straightforward to estimate.

4.2. Restricted market prices of risk

Numerous authors have considered affine term struc-
ture models in which certain elements of A are set equal to
zero. These models could be easily estimated in our
framework using a minimum distance procedure as fol-
lows. Let 0= (vec(A),vec(B),vec(®), o2, vech(X)) and 0
similarly, where vech(-) is the vector-half operator.
Let H be a g x p known matrix with full row rank, where
p=(KEK+1)+NK+K>+1+KK+1)/2). This matrix

Table 6
Macro factor model: market prices of risk.

contains the linear restrictions we would like to place on
A. For example, if we wanted to impose a linear restriction
only on the second element of 1y, we would choose
H=[01 0---0].

Under these restrictions, the minimum distance esti-
mator solves

minT - O-0yWr(6-0) s.t. HO=0, (50)

where Wr is a p x p positive definite weighting matrix.
Because the restrictions on @ are linear, the solution to this
optimization problem is

Oma = 0-W7 H'HWZ'H)Ho. (51)

Then, by construction Hd,,q =0, so we have new estima-
tors for the parameters that satisfy the desired restrictions.
The optimal choice of weighting matrix is a consistent
estimator of the inverse of the asymptotic variance of the
unconstrained estimator @ (i.e., if V, is the asymptotic
variance of @, then Wr—,V;'). In the Appendix we
provide the elements of V. Under this choice of weighting
matrix,

VT(0a=0) -5 N (0, Vo—VoH (HVH') T HV,). (52)

4.3. Sharpe ratios

From Eq. (8), the conditional Sharpe ratio can be
expressed as

t+1 t+1 t+1 °
n-1 (n-1 :
\/Vargrx{i 3V \/Vardrx{V]

The Sharpe ratio in Eq. (53) is maximized for a hypothe-
tical return to a portfolio of bonds that replicates the
payoff to the log pricing kernel exactly. The model-implied
maximal Sharpe ratio is, therefore,

vVar(In Mey1) = /2'tAs. (54)

The maximal Sharpe ratio provides a useful diagnostic of
the validity of the stochastic discount factor. Duffee (2010)
argues that five-factor affine models of the term structure
can give rise to excessively high maximal Sharpe ratios due
to overfitting. However, we do not find unreasonable
maximal Sharpe ratios in our four- and five-factor speci-
fications, as can be seen in Fig. 9. For the five-factor
specification, the peak in the maximal Sharpe ratio is

Eefrx{y"1 + 3 Vardm'3") _ Covilrx;". In Mea) 53,

This table summarizes the estimates of the market price of risk parameters 1o and 2 for the unspanned macro specification. t-Statistics are reported in
parentheses. Standard errors have been computed according to the formulas from Section 4.1. Wald statistics for tests of the rows of A and of 1; being
different from zero are reported along each row, with the corresponding p-values in parentheses. PC1,..., PC5 denote the first through fifth principal
components of Treasury yields. Bolded coefficients represent significance at the 5% level.

Factor Ao M A2 M3 M4 s Wy W,
PC1 -0.019 -0.028 -0.018 -0.005 -0.022 0.017 15.746 9.423
(t-statistic) (-2.492) (~1.719) (=2.062) (~0.541) (~1.360) (1.835) (0.015) (0.093)
PC2 0.010 0.025 -0.028 -0.030 -0.028 —0.057 18.764 18.264
(t-statistic) (0.700) (0.850) (~1.837) (~1.853) (~0.975) (=3.412) (0.005) (0.003)
PC3 0.000 -0.093 -0.019 -0.099 -0.057 —0.030 9.972 9.972

(t-statistic) (0.000) (-1.373) (-0.528) (-2.621) (-0.865) (-0.797) (0.126) (0.076)
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2.30, with a sample average maximal Sharpe ratio below
one.

As Eq. (54) shows, the maximal Sharpe ratio implied by
an affine term structure model depends on the inner
product of the market prices of risk and, hence, on the
price of risk parameters Jg and 2;. As discussed in Section
4.1, a subset of the latter is not identified in the presence of
unspanned factors. We know that the fourth and fifth
principal components are weakly spanned only by bond
yields because level, slope, and curvature explain almost
all of the cross-sectional variation of yields. Accordingly,
the rows of /g and A; corresponding to the fourth and fifth
principal component in the five-factor specification of the
model could only be weakly identified, thus potentially
resulting in somewhat higher maximal conditional Sharpe
ratios than what one can perceive as reasonable.

To assess whether this weak spanning of the fourth
and fifth principal component is a potential concern in
the model, we perform the following robustness check.

Five—factor model, model-implied maximal Sharpe ratio
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We make the extreme assumption that the fourth and fifth
principal components are entirely unspanned and, hence,
the corresponding market price of risk parameters is
unidentified. We then reestimate the five-factor specifica-
tion of the model by imposing the spanning restrictions
outlined above to the fourth and fifth principal compo-
nents, effectively setting to zero the lower two rows of 1y
and 2; and fixing the upper right block of /; to be equal to
the respective block of &. As can be seen in the lower left
panel of Fig. 9, the resulting Sharpe ratio is estimated at
slightly lower values. However, as in Section 3.5, the term
premium implied by the restricted five-factor model is
very similar when the fourth and fifth principal compo-
nents are treated as unspanned. In unreported results, we
also computed the maximal Sharpe ratio of the five-factor
model in which we impose the restriction that the second
and fourth principal components are not priced. Consis-
tent with our finding that the prices of risk of these two
factors are statistically indistinguishable from zero in the

Four-factor model, model-implied maximal Sharpe ratio

3 . . . . . 3 . . . . .
25} {1 25+ .
2t { 2t 1
15} 1 15+ .
1 {1 1t
05} 05 |
0 . . . . . 0 . . . . .
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Five—factor model, PC4 and PC5 unspanned, Unspanned macro factor model,
3 ' model—ifnplied max'imal Sharp'e ratio ' 3 ' model—ifnplied max'imal Sharp'e ratio '
25 ¢t {1 25+ .
2t i
15+ i
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0 . . . . . 0 . . . . .
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Fig. 9. Model-implied maximal Sharpe ratios. This figure provides plots of the time series of the Sharpe ratio diagnostic +/2’:/; as described in Section 4.3.
The upper left panel plots the Sharpe ratio for the standard five factor specification and the upper right panel plots the Sharpe ratio for the four factor
specification. The lower left panel plots the Sharpe ratio for a specification using five principal components as factors but with the fourth and fifth principal
components estimated as unspanned factors. The lower right panel plots the Sharpe ratio for the unspanned macro factor specification. PC1,..., PC5 denote
the first through fifth principal components of Treasury yields. CP denotes the Cochrane and Piazzesi (2008) return forecasting factor.
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full five-factor model, this specification produces a very
similar time series of the maximal Sharpe ratio as in the
upper left panel of Fig. 9.

We also show the Sharpe ratio of the four-factor CP
specification in the upper right panel of Fig. 9. While it is
comparable in magnitude to that of the five-factor model,
the time series patterns of the two Sharpe ratios do at
times differ substantially. For example, during the financial
crisis, the Sharpe ratio implied by the four-factor model
tends to be higher than that of the five-factor model, while
that of the five-factor model is higher during the late 1980s.
The lower right-hand panel of Fig. 9 shows the Sharpe ratios
of the unspanned macro factor model. This time series of
maximal Sharpe ratios is somewhat smoother than the ones
implied by the five- and four-factor specifications but other-
wise shows similar dynamics.

4.4. Term structure estimation in real time

As we fit the model using simple linear regressions,
estimation is extremely fast. This is in sharp contrast to
traditional likelihood-based estimation of such models
subject to nonlinear cross-equation restrictions, which
typically require a long numerical optimization process.
The simplicity and the speed at which it is estimated
makes our approach particularly appealing for the real
time analysis of term structure dynamics. In this subsec-
tion, we show how we fit an affine model to the US
Treasury yield curve at the daily frequency. This allows us
to interpret yield curve movements in terms of risk-
neutral yield versus term premiums dynamics in real time.

Estimation at the daily frequency requires a slight
modification of the empirical approach outlined so far. In
the daily application of the model, we use the daily yields
of maturities from n=3,...,120 months obtained from
Gurkaynak, Sack, and Wright (2007). We aggregate the
daily yields to the monthly frequency by selecting end-of-
month values and extract principal components from
these monthly yields. We then apply the weights from
the monthly principal components to the daily yields to
obtain daily estimates of our pricing factors.”

We continue to compute log excess holding period
returns at the monthly frequency and obtain estimates of
the parameters of the model as outlined in Sections 2.2
and 2.4. Finally, we use the estimated parameters and the
daily yield factors to impute model-implied yields and
term premiums at the daily frequency. To illustrate the
ability of the model to fit daily term structures, Fig. 10
shows for the K=5 factor specification the daily observed
and model-implied yields for the two-year, five-year, and
ten-year Treasury notes since August 2009. The model
prices all three maturities precisely.

Perhaps more interesting is an analysis of term pre-
miums over this sample period. As discussed in Section 2.4,
we can use the model to achieve a decomposition of

5 Because we extract the principal components from demeaned
monthly yields, we need to make an adjustment to the daily factors.
We apply the monthly principal components weights to the sample
average of the monthly yields and then subtract this vector from the daily
factors obtained as described before.

interest rates into risk neutral yields and term premiums.
The lower right panel of Fig. 10 displays the estimated
term premium for the ten-year Treasury along with the
one-month Merrill Lynch Option Volatility Estimate
(MOVE) index. The latter is a measure of implied volati-
lities from options on Treasury futures. The plot shows that
our term premium estimate and the MOVE index exhibit a
strong correlation. This is striking because the model is
estimated without using any option data. We interpret the
correlation between the two time series as evidence that
our term premium estimate reflects the risk of holding
Treasury securities.

4.5. Consistency of principal components as observable
factors

Traditional estimation methods for affine term struc-
ture models typically treat pricing factors as latent vari-
ables that are backed out from observed yields using
filtering or observation equation inversion techniques.
Our estimation approach is different in that it requires
the pricing factors X to be observed. We treat principal
components extracted from yields as observed, thus ignor-
ing the fitting error associated with the principal compo-
nent extraction. This potentially gives rise to an
inconsistency between actual and model-implied principal
components. However, this inconsistency is negligible.

Let X be the K x T matrix of principal components of
yields y. We can write

X =PyM,. (55)

where M, = I, r—(1/T)irt/'t is the T x T time series demean-
ing operator and P is the KxN matrix of principal
component loadings. Actual observed yields can be
decomposed into fitted yields and fitting errors: y™ =
9 +2™. Then, because model-implied yields are
assumed to be affine in the pricing factors X, we have
Y =Gy + b'pX; + 2" = —(1/n)Ay + B'nX, + 0). We can
thus expand Eq. (55) to find

X=PyM, =P - /' + b'’X + &M, = Pb'X + PeM,, (56)

where we have used the fact that /7M, =0 and that X
is mean zero by construction. For equality to hold over
arbitrary values of X, the model must thus satisfy the
consistency conditions

Pb'=I¢ and P&M,=0. (57)

We find that PéM, is extremely close to zero because the
yield fitting error ¢ is tiny, as shown in Table 2. Moreover,
the condition Ph'=Iy is satisfied to a high degree of
precision in the five-factor specification of the model.

We reach this conclusion using the following Monte
Carlo procedure. Because their standard errors do not
have a simple closed form, we compute bootstrapped
distributions of the recursive pricing parameters B,. We
construct the bootstrap by saving the residuals v and é from
the three-step regression estimation of the model parameters
as well as the residuals from the regression of the one-month
T-bill on the pricing factors. We resample all three sets of
residuals using the same random time indexation to obtain an
artificial sample of pricing factors and log excess holding
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Fig. 10. Five-factor model: observed and model-implied daily yields. This figure provides plots of daily yields for the two-, five- and ten-year maturities as
outlined in Section 4.4 fitted by the five-factor specification. Loadings from monthly principal components are applied to daily yields to obtain daily factors.
Solid lines plot observed yields, and dashed lines plot yields as implied by the model. The lower right panel compares the standardized five-factor model-
implied ten-year term premium to the standardized one-month Merrill lynch Option Volatility Estimate (MOVE) index.

period returns. Based on these, we reestimate the model
parameters using the three-step regression approach and
compute recursive pricing parameters B, from Eq. (26). We
repeat this procedure one thousand times. We find that the
identity matrix is well within the 1 standard deviation
confidence interval around the mean of the empirical dis-
tribution of Ph'. To illustrate this graphically, Fig. 11 plots the
five principal components used as pricing factors along with
the bootstrapped 95% confidence interval of the quantity
Pb’X. As the plots show, these distributions are extremely
tight. The principal components are visually almost indistin-
guishable from their model-implied 95% confidence intervals.
The sampling error of the principal components is comparable
in magnitude to the error that arises due to fitting zero
coupon curves to actual bond data. We, therefore, believe that
the inconsistency that is implied by treating pricing factors as

observed is numerically negligible. These results suggest that
deviations from Eq. (56) in the model are fully explained by
observation error in yields and excess returns.

5. Conclusion

We outline an empirical approach to the estimation of
dynamic term structure models. Our approach is compu-
tationally fast, gives rise to small pricing errors, and
provides asymptotic standard errors for the model para-
meters of interest. Our method can be used for applica-
tions with observable factors and allows for unspanned
factors.

Our empirical analysis uncovers a number of new
results and revisits certain controversies. First of all, we
show in specification tests that the first three principal
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First factor, PC1: bootstrapped Second factor, PC2: bootstrapped
confidence interval confidence interval
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confidence interval confidence interval
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Second factor, PC5: bootstrapped
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Fig. 11. Consistency of observed factors. This figure provides plots of bootstrapped 95% confidence intervals around the yield principal components.
Principal components from the fitted yields are constructed according to the bootstrap procedure in Section 4.5. PC1,..., PC5 denote the first through fifth
principal components of Treasury yields.
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components of Treasury yields are not sufficient to span
the cross section of Treasury returns. We, therefore, study
a baseline specification that uses the first five principal
components as pricing factors. Second, we show that the
five-factor model gives rise to similar risk premiums and
pricing kernel dynamics as a specification with three
principal components and the Cochrane and Piazzesi
(2008) forecasting factor. In both specifications, we find
that practically all of the time variation in risk premiums is
associated with level risk. However, the dynamics of the
risk premium are mainly explained by the second and fifth
principal component in the five-factor model and by the
CP factor in the four-factor model. Nevertheless, we reject
the restriction that the CP factor influences only the price
of risk of the level shock and find that it significantly prices
other sources of risk as well. For both the five-factor and
the four-factor specifications, we find that slope risk is not
priced. When comparing the two models based on out-of-
sample predictions, we find that the five-factor model
outperforms the four-factor model. We, therefore, desig-
nate it as our preferred specification.

We also allow for certain factors to be unspanned and
provide asymptotic standard errors in this case. Once we
add unspanned macroeconomic factors to a model with
the first three principal components as pricing factors,
we find that slope risk is significantly time varying as a
function of a real activity indicator. This result suggests
that there is time variation in the pricing kernel that is not
spanned by the yield curve.

Our estimation method can be easily adapted and
extended, as it solely relies on linear regressions. We
present several examples of such extensions in the paper.
First, we demonstrate that affine term structure models
can be estimated even if zero coupon yields are not
available. We estimate such a model by using five principal
components of coupon bearing yields to price the cross
section of maturity sorted returns. The resulting zero
coupon yield curve is very similar to the Fama and Bliss
discount curve, even though the estimation methods are
vastly different. We furthermore present estimation
results at the daily frequency, which are readily computed
due to the ease of our estimation method. We leave it to
future work to adapt the model to further applications,
such as the estimation of inflation risk premiums, or to
credit risk models.

Appendix A
A.1. Asymptotic variance: no unspanned factors

Here we derive explicit expressions for V,, V; and
Cap given in Eq. (19) and the remaining variances and
covariances required for the minimum distance esti-
mator of Section 4.2. Before proceeding, we require
some definitions. Let f=[ac] and define the NKxN
matrix A; as Az =diag(g,...,pM). Also, define r,=
plim;_, (Z-Z'_/T) and Yy =plim;_ (X_X'_/T). For an
mxn matrix A the mnxmn commutation matrix xmpn
satisfies vec(A’) = kmn vec(A). For a symmetric n x n matrix
A, the n? x (n(n+ 1)/2) duplication matrix G, satisfies

vec(A)= Gy vech(A). Finally, denote the Moore-Penrose
inverse of G, by G,

We first focus on V,. We could decompose the estima-
tor as

NTA=T  +T2+ T3, (58)
where
T =~TBB) ' Blrx + 1B* vec()

+a? W tIMyZ' —(Z-MyZ' )7, (59)
Ty =3 BB BIVTB” vecE)-B*vec(Z)le's. (60)
and
T3 =1 BB B[V =D me'r. (61)
Let us first consider 7. We could further decompose 7 as
T1=T11+T12+T13+T14+7T5, (62)
where
T11=+TA, (63)
T12=VTVMyZ'-(Z_-MyZ'_)"", (64)
Tr3=VT@E) PEMyZ (Z-MyZ')", (65)
Tra=—VTBE)'BB-B) A, (66)
and
Trs=—~TBB) BB-H'VMZ' - (Z-MyZ' ). (67)

71, is already simplified. The properties of 7, depend on
whether the assumption that x =0 is imposed. When the
assumption is not imposed, then M,Z'_=Z’'_ and

T2, =VZ_/NT)YZ +0p(1). (68)
When the assumption that x =0 is imposed, we have
T120=10a (VX'-/NT)IYZ +0p(1). (69)
This follows because
(VMVZ’_ /ﬁ) = (vz'_ /ﬁ) (VY TV T (VZ VT
(70)

(VMVZ’_ /ﬁ) =[0k1 (VX'_/NT)] + 0p(1) (71)
and
Z-MyZ'_)T)=(ZZ'-/T)-ZV'/TYVV" /T \(VZ'_/T) (72
(Z-MyZ'_|T) =Tz + op(1). (73)
Next,
T1s =By "B (EMyZ' - /VT)Z-MyZ' /1)

= (B BIVT(E-D)] + 0p(1). (74)
by our assumptions. Similarly,
Tra=—VTBE)'BB-B)A

=B BIVTB-BI'A + 0p(1). (75)
Finally, it is straightforward to show that 715 = 0,(1).
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We now consider 7. First, note that
VT(B™ vec($)-B* vec(z)) (76)
= VT(B" vec($)-B" vec()
+B” vec(2)-B* vec(s)), (77)
=B* («/T (vec(VV'/ T)—vec(Z)))
+VT(B =B*)vec(Z) + 0p(1), (78)

because VV'/T =VV'/T 4+ Op(T~!) under our assumptions.
Thus,

To=1- @) BIVTB™ vec(3)-B* vec(Z)le'1, (79)

To=1- BB ' BIVTB" vec(E)-B* vec(X))e's + 0p(1), (80)

To2=T21+ T2+ 0p(1), 81
where

To1=1-BB) ' BIVT(B —B*)vec(Z)o's, (82)
and

Tr2=1%-(B) ' BB* (VT(vec(VW'/T)-vec(2))e's. (83)

The ith element of the interior matrix of 7, is
\/T('é(i)’iﬁ(i) _ﬂ(j)rzﬂ(i)) _ zﬁ/}(,‘)/z([}(i)

Thus,

-0 +op(1).  (84)

VT(B"-B*vec(Z) = 24"y (In@Z)vec(vVT(B—p)) + 0p(1)  (85)
and
Ta1 =BB) ' PA (IN®Z)Vec(VT(B—p))e'1 + 0p(1). (86)

T, does not require any further simplification. Finally,
consider 7. Because EE’/T = EE'/T + Op(T™"),

Ts3=1-Bp) ' BIVT(G*—cH)ine's 87)
T3 =1 () ' BIVT(6>=cH)me'1 + 0p(1) (88)
T3 =13 () ' BIVT(tr(EE')/NT-0?)lie'1 + 0p(1). (89)

Combining these results, we have

VT(vec(A)-vec(A) =vec(T 12+ T13+T1a+T21
+7T 22+ T3)+ 0p(1), (90)

where

vec(T12,) = (Yy ®lx)vec(VZ'_/v/T) + op(1), 91)
ved(T120) = (Y7 ®lx)vec([Oka (VX' VD) + 0p(1),  (92)
vec(T13) = (I 1®(B) ™' B) vec(VT(E ) + 0p(1), 93)
ve(T14) =—(A'®BB) ' PrinvecVTB—) + 0p(1),  (94)

vec(T21) = (o1 ®(BB) ' BA s(IN®Z))Vec(V T(B—B)) + 0p(1),
(95)

vec(T23) =3 (01®BB) ' BBINT vec(W'/T)-2)] + op(1),
(96)

and
vec(T3) = Ho1®BB) " By - VT(tr(EE') /NT-?) + op(1).
97)

Note next that under our assumptions vec(VZ'_/vT)—g4
N(0,Y®%), VT vec(VW'/T)=2) - 4N (0, (2 + xk k)(ERX)),
and VT(tr(EE’)/NT—a2)— 4N (0,2¢*). These are all asymp-
totically independent of

vec(v/T(f—f)) , ([rz} o
{vec(ﬂ(ﬁ—ﬁ)')] wa (0’ . ( { U ] ®IN> > O

because

. 77’ Yz O
plim <T) = { 0 2}. 99)

T—>oo

Thus, the only asymptotic covariance term we need to
consider is between 714 and 7,3, which implies that

VT vec((A-A)) - ¢N(0,V,), where Vy =V, 7 + Caz + Cax'
Cag =asycovr, (T14,721), (100)

Car =—(N'®BF) Prnle? - IN®Z (01 @B A s(INDZ))',
(101)

and Var =Vari1+Vaz2+Var3 +Vaza+Vars+Vaze.
If =0 is imposed, then

Vaza =asyvary, o(T120) = (Y7 ®Ik)
0 O
* Okx1 T

and otherwise

®Z> (7 ®lxy (102)

Vaza =asyvary, (T12,) = (V5 L) z@2) (Y ®Ik)’

=(r,}®X2). (103)
The other terms are
Vara=asyvary_ (T13) =0 - (X @B, (104)
Vars=asyvarr, (T14) =0 - (A'Z7AQBF) ), (105)

Vara=asyvarr,, (721)
=0 (010 1®BB) " BA s (INSZ)AB BB) ™). (106)

Vazs =asyvarr_, (T22) (107)

Vazs =5 (0101®BF) ' BB* (I + ki k)
x(Z®X)B* B/ (Bp)"). (108)
and

Va6 =asyvarr_, (73)
4
= 5 (@11 @B pint B B, (109)

It is clear from Eq. (98) that Vs = ¢? - (Iy®@="1). Finally, we
need only calculate C, 4. From our above results we have

that the only asymptotic covariance term between A and g
comes from 714 and 7. Thus,

asycovy_, ., (vec(7 1.4), vec(f))
=—(A'®@BB) Bxknlo” - IN@Z )], (110)
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asycovy_, ., (vec(7 1 4), vec())
=—0” - xc1k((BB) 7 pRA'ZTY, (111
and

asycovy_, ., (vec(T 1), vec(B))
= (01®(B) A (IN®Z))[c? - (IN®Z1)], (112)

asycovy , ., (vec(T21),vec(B)) = o - (o1 ®(BB) 'pAp).  (113)
Thus,
Cap = asycovy_, . (vec(A), vec()), (114)

Cap=—0" kics1 k() BOA'ET)

+0% - (01®(BB) ' BA'p). (115)
Finally, we provide the remaining asymptotic variances
and covariances necessary to construct V, from Section 4.2.
Let C,,. and V,. be the asymptotic covariance between A

and 62 and the asymptotic variance of 62, respectively, and
similarly for the other parameters. Csy, Cp 52, Cp.s, Cy 42, Cy 5,
and C,. 5 are all equal to the zero matrix of the appropriate
dimensions. Because we impose the assumption that x =0
when estimating the VAR but not when we calculate the
asymptotic variance of A, then

VT vec(d—d) = (Y ®lx)vec(VX'_ /v/T) + 0p(1) (116)
and
Ca.p = asycovy_, , (vec(A), vec(d))

= (rz ®(rz®2)>(ry ®lk), (117
where [(Y,,®X)], is the K(K + 1) x K? sub-matrix formed

by extracting the last K* columns from the matrix (¥, ®X).
Next, we have that

Cj 2 = aASYCOVT , . (Vec(A), vec(62)) = o* (01 ®(BB) ' Bn.
(118)
and

Cp.s =asycovy_, . (vec(A), vech(2)) (119)
Crz =% (1®(BF) BB )Gk Gy (L + ki )(ERE)(G)  (120)

Crx = (1®(BB) " BB )Gk G (2R2)(G)', (121)
by properties of the duplication matrix. Because the assump-
tion that z = 0 is imposed when we estimate the VAR, then,
Voo = (Y ®Z). As given above, V,» = 2¢* and by properties
of the duplication matrix, Vs = 2G} (ZQX)(Gf)'.

A.2. Asymptotic variance: unspanned factors

Here we will derive explicit expressions for V¥, Vi and
Cia' given in Eq. (49). In the unspanned case, we can write

the equation as
x=FfZ° +p'sX°+E, fi=[as c], (122)

where Z® =[;r X*]. Under our assumptions, the OLS esti-
mators of fg and g’s satisfy

{ vec(fs—f;)

d S
vec((ﬁs—ﬂs)’)} —NO Ve, (123

where
V=0 (p lim (ZSZS//T)*@N), 7 =1 X7 (124
Our estimator is

Y= —Bo's) Byrx + 3B vec(Ess)

+6% W) IMRZE(ZEMRZE) T, (125)
which could be decomposed as
VT =T + T3, (126)
where

T3 = —VTBB's) Bs(rx + 3(B* vec(Zs)

+otin MZ(Z MZ2) ™! (127)
and
TS = —VTBB's) ' BUB™ vec(Ess)-B* vec(Zs)

+(62 =0 n))ef » (128)

where ¢§ =(1,0,...,0)" is (Ks+ 1) x 1. Then, 75 could be
further decomposed as

Ti=T1,+Ti,+ 733, (129)
where

Tia=VT¥, (130)
Ti2=~VTBB') BB~ (131)
and

T35 =—VT@p') 7 BEMZ (Z° M3ZT ). (132)

T, requires no further simplification. Next,
T§,2 = _ﬁ$sﬁ/8)7lﬁs$s_ﬂs)/yg

= =B’ BV T BBV 55 + 0p(1), (133)
and

$3=—VTBB') " BEMZS (22 M3ZE )

= ~(b:#'9) BV T —£)] + 0p(1). (134)
T3 could be decomposed as
Ty=T51+T5,+0p(1), (135)

where
TS, =3 B9 B(VT(B™ vec(Ss)-B* vec(Zy))es
(136)
and
52=—% BB B(VT(E*~0*)n)ef (137)

Similar to the derivation in Appendix A.1, we can show
that 75, =751 + 75, + 0p(1), where

T511=BB's) " BA 5, (IN®Zss)Vec(V T(Bs—B5)es . (138)

T512=—% BB's) BB [VT(vec(V'V* /T)-vec(Zss))lej
(139)
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and

S2=—3 (BB's) " B(~VT(tr(EE' /(NT))—*))e§ + 0p(1).
(140)

Putting all these results together, we have

~ox
VT vec(¥ (—¥3) = vec(Ti, +Ti3+ 7511+ To12+ T3,

(141)

where

vec(T3 5) = —(¥5 ®B:B's) " Bk, n vec(V T(Bs—py)) + op(1),
(142)

vec(T$ 5) = (1, ®Bs8's) ™ Bovec Tk s—£5)) + op(1),
(143)

Vee(T5 1 1) = —(05 ®BsB's) " BsA'5, (IN®ss)Vec(V T(Bs—B5))
+op(1), (144)

vee(T5,,) =5 (01 ®B:f'5) ' BB*)
x[VT(vec(V*VS /T)—vec(Zs))] + 0p(1),  (145)

and

veQ(T5,) = —1 - (@®(Bsf's) ™' Bs)n - VT(LH(EE' /(NT))—c?) + 0p(1).

(146)
Then,
VT vec(# 5—¥5) — ¢N (0, Vy), (147)
where
Vi = ];5:] Vorrj+ Corra+Coyr1) +Coyro

HCypr72) + Cyr 73+ (Cpr73) (148)
Let us partition V¢, conformably

Vf’/f,n V?/;,lz

= {v%ﬁ va] ’ (149

and
Vyr 71 =asyvary_, (T3 ,)
= (PRGBS PV n(FE®BS) '), (150)

Ve 72 =asyvarr_, (79 3), (151)

Vs 72 = Uk, ®@BsB's) B)Vis 11Uk, @BB'5) B's),
(152)

Vys 73 =asyvarr_ (T311); (153)
Vs 73 = (&3 ®B:B') ™ A5 IN®Zss)knic, Vig ook v, (154)

X (@1 ®BB') " BA s, (IN®Zss)) (155)
Vi 74 =asyVarr, (T3 ). (156)

Vi ra=14- (0101 @B BB (e + xi. i)
X(Z5s®Zss)B** B's(Bs's) ). (157)

Vyy 75 =asyvary_, o(T32)
4
5 (@B )T Bin'nB (BB, (158)

and

Cyr 11 =2aSyCOVT_, (792,77 3), (159)

Cosr1 = (PERBS') ™ BIViy 12Uy @B:B'5)'B).  (160)
Cys 72 =2aSyCOVr_, (792, T511)s (161)

C'I’;,T,Z = ('7”;3/®(ﬂ5ﬂ’s)_1ﬂs)v‘;ﬂ’22’</N,K§ (Qﬁ ®(ﬂsﬂ,s)_1ﬂsA,ﬂs (IN®ZSS))'s
(162)

C‘I’;S,T,?’ = aSyCOVTHm(Tisa 73,1,1 ), (163)

Cys 73 = (ks 1y®BsB's) BIVij 125 Nt (03 @Bsf's) ™ BA s (IN®Zss))'-
(164)

Recall that our estimators are Ag = ¥—% and i}' = dg,.
Under our assumptions, ‘P; and ¥ are asymptotically
independent and so

VEC(/LS)> (165)

asyvarr_, (vec @
1

Vyy + asyvary_, vec(¥ss) —asycovy_, . (vec(¥ss), vec(dsy))

B {—asycova(vec(éﬁsu),vec(%)) asyvary_, ,vec(dg,)

(166)

Thus we require only Vy = asyvary_, (%) = (Y] ®). When
u =0 is imposed, then (A, ;") should be adjusted accord-
ingly and Ve = (¥ ®Z) should be used for the analogous
result to Eq. (166).
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