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1. Introduction

Affine models of the term structure of interest rates are
a popular tool for the analysis of bond pricing. The models
typically start with three assumptions: (1) the pricing
kernel is exponentially affine in the shocks that drive the
economy, (2) prices of risk are affine in the state variables,
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and (3) innovations to state variables and log yield observation
errors are conditionally Gaussian (for examples, see Chen
and Scott, 1993; Dai and Singleton, 2000; Collin-Dufresne
and Goldstein, 2002; Duffee, 2002; Kim and Wright, 2005).
These assumptions give rise to yields that are affine in the
state variables and whose coefficients on the state vari-
ables are subject to constraints across maturities (for
overviews, see Duffie and Kan, 1996; Piazzesi, 2003;
Singleton, 2006). Empirically, the affine term structure
literature has primarily used maximum likelihood (ML)
methods to estimate coefficients and pricing factors, thus
exploiting the distributional assumptions as well as the
no-arbitrage constraints.

In this paper, we propose an alternative, regression-
based approach to the pricing of interest rates. We start
with observable pricing factors and develop a three-step
ordinary least squares (OLS) estimator. In the first step,
we decompose pricing factors into predictable compo-
nents and factor innovations by regressing factors on their
lagged levels. In the second step, we estimate exposures of
Treasury returns with respect to lagged levels of pricing
factors and contemporaneous pricing factor innovations.
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In the third step, we obtain the market price of risk
parameters from a cross-sectional regression of the expo-
sures of returns to the lagged pricing factors onto expo-
sures to contemporaneous pricing factor innovations. We
provide analytical standard errors that adjust for the
generated regressor uncertainty. We also discuss the advan-
tages of our method with respect to the recently suggested
approaches by Joslin, Singleton, and Zhu (2011) and
Hamilton and Wu (2012). In particular, we point out that
the assumption of serially uncorrelated yield pricing errors
underlying these likelihood-based methods imply excess
return predictability not captured by the pricing factors. In
contrast, because our approach is based on return regres-
sions, we do not need to make assumptions about serial
correlation in yield pricing errors.

We report a specification with five principal compo-
nents of zero coupon yields as pricing factors. We show
that models with fewer factors are rejected in specification
tests. The pricing errors in the five-factor specification are
remarkably small and return pricing errors do not exhibit
autocorrelation. We further find that level risk is priced
and that the time variation of level risk is best captured by
the second (the slope factor) and fifth principal compo-
nents. The five-factor specification exhibits substantial
variation in risk premiums and at the same time gives
reasonable maximal Sharpe ratios.

We next present a four-factor specification following
Cochrane and Piazzesi (2008, CP) which includes the first
three principal components of Treasury yields and a linear
combination of forward rates designed to predict Treasury
returns (the CP factor) as pricing factors. Unlike Cochrane
and Piazzesi (2008), we allow for unconstrained prices
of risk and find that the CP factor significantly prices all
factors except slope. The magnitude and time pattern of
the price of risk specification of the four-factor CP model is
akin to that of the five-factor model, indicating that the
two models capture term premium dynamics in a similar
way. However, in-sample yield pricing errors are some-
what larger in the four-factor model.

To compare the four- and five-factor models, we per-
form two out-of-sample exercises. In the first, we use the
model-implied term premiums to infer the future path
of average short-term interest rates. In the second, we
estimate the models using returns on bonds maturing in
less than or equal to ten years and then impute the model-
implied yields of bonds with longer maturities. In both of
these exercises, the five-factor model outperforms the
four-factor specification. Hence, we choose the five-factor
model to be our preferred specification.

Our procedure can potentially be applied to any set of
fixed income securities. In this paper, we use our approach
to estimate an affine term structure model from returns on
maturity-sorted portfolios of coupon-bearing Treasury
securities. The availability of a zero coupon term structure is,
therefore, not necessary to estimate the model. Yet, estimation
from the returns on maturity sorted bond portfolios with
pricing factors extracted from coupon bearing yields gen-
erates a zero coupon curve that is very similar to the Fama
and Bliss discount bond yields.

We present a number of extensions. First, we show
how to estimate the model in the presence of unspanned

factors. Such factors do not improve the cross-sectional fit
of yields but do affect the time variation of prices of risk
through their predictive power for the yield curve factors.
In contrast to the four- and five-factor specifications,
incorporating an unspanned real activity factor produces
a significant price of slope risk. Second, we show how to
impose linear restrictions on risk exposures and market
prices of risk in the estimation of the model. Third, we
show that the maximal Sharpe ratios implied by the four-
and five-factor specifications are very reasonable, with an
average level below one and peaks below 2.5. Fourth, we
explain how the model can be used to fit the yield curve at
the daily frequency. Finally, we show that the implied
principal component loadings from the term structure
model are statistically indistinguishable from the actual
principal component loadings.

Our paper is organized as follows. In Section 2, we
present the model and our three-step estimator, and
we show how to obtain model-implied yields from the
estimated parameters. We further discuss the relation
between our approach and other estimation methods in
the literature. In Section 3, we present our main empirical
findings. Section 4 discusses extensions and robustness
checks. Section 5 concludes.

2. The model

In this section, we derive the data generating process
for arbitrage-free excess holding period returns from a
dynamic asset pricing model with an exponentially affine
pricing kernel. We then show how to estimate the model
parameters via three-step linear regressions, present
their asymptotic distributions, and derive the no-arbitrage
cross-equation constraints for bond yields.

2.1. State variables and expected returns

We assume that the dynamics of a K x 1 vector of state
variables X; evolve according to the following vector
autoregression (VAR):

Xep1 =p + OX¢ + Veyr. (M

This specification of the dynamic evolution of the state
variables can be interpreted as a discrete time analog to
the intertemporal capital asset pricing model (ICAPM)
state variable dynamics of Merton (1973) or the general
equilibrium setup of Cox, Ingersoll, and Ross (1985). We
assume that the shocks v, conditionally follow a Gaussian
distribution with variance-covariance matrix X:

Vet |{Xs}§ _o~N(0,2), (2)

where {X;s}!_, denotes the history of X,. We denote P\ the
zero coupon Treasury bond price with maturity n at time t.
The assumption of no-arbitrage implies (see Dybvig and Ross,
1987) that there exists a pricing kernel M, such that

P{” =Ed[Me1 P13") 3)

We assume that the pricing kernel M., is exponentially
affine:

M = exp(—r[—%ﬂ’tit—ﬂ’tZ‘l/zth ), 4)
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where 1, =In P“) is the continuously compounded risk-free
rate. We further assume that market prices of risk are of the
essentially affine form as suggested in Duffee (2002):

Ae =220 + 1 Xo). 6)
We denote rx"}" the log excess holding return of a bond
maturing in n periods:

1 1
1) =In PV —In PV —r. (6)

Using Egs. (4) and (6) in Eq. (3) yields

1= Efexp(rx; " =32 cde=2/ 27 v )], 7

Assuming that {rx(";
we then find

1 D ve,q) are jointly normally distributed,

Edlrx(};"1 = Covelrx{3", Ve =7 223 vardx{13"L - (®)
We denote
BV = CoveX P, viea12 7 9)

and using Eq. (5) we obtain

BV g + X ]-Var "1, (10)

Eelrx(1;"]1=

t+1
We can decompose the unexpected excess return into a
component that is correlated with v,,; and another compo-
nent that is conditionally orthogonal. Then we find

=Bl 1= A" Ve + e, (1n
It is straightforward to show that 7"~V = "D using Eq. (9).
We assume that the return pricing errors eﬁ’ill) are condi-
tionally independently and identically distributed (i.i.d.) with
variance ¢2.

In our baseline specifications, we use linear combina-
tions of log yields (such as principal components) as
observable factors X; and estimate the model parameters
using holding period returns based on the same set of
yields. Per construction, this implies that g, = g vt. We thus
proceed with the assumption that g is constant.

The return generating process for log excess holding
period returns is then

() ="V o+ X)) 3"V +6?)

Expected Convexity
return adjustment

+H Vv el (12)
— e —

Priced return

Return pricing
innovation error

Stacking this system across maturities and time periods,
we rewrite it as

X =p'(Aot't + 21X_)—3B* vec(Z) + Pyt +pV+E  (13)

where rx is an NxT matrix of excess returns,
p=pV p? ... pN] is a Kx N matrix of factor loadings,
i and 1y are a Tx 1 and N x 1 vectors of ones, X_ =
[Xo X7 -+ X7_1] is a K x T matrix of lagged pricing factors,
B* = [vec(8VpVy .. vec(pN M) is an N x K? matrix, V is
a K x T matrix, and E is an N x T matrix.

2.2. Estimation

Based on Eq. (13), we propose the following simple
three-step regression-based estimator for the parameters
of the model.!

1. We begin by estimating Eq. (1) via ordinary least
squares. This allows the decomposition of X;,; into a
predictable component and an estimate of the innova-
tion V.. 1. We stack these innovations into the matrix V
and construct an estimator of the state variable var-
iance-covariance matrix £ =VV//T.

2. Next we regress excess returns on a constant, lagged
pricing factors and contemporaneous pricing factor
innovations according to

rx=ar’r +pV +cX_ +E (14)

Collecting the regressors into the (2K + 1) x T matrix
Z =iy V' X'_], our estimators become

[ap €=mxZ2ZZ)". (15)

We collect the residuals from this regression into the
N> T matrix E. We then estimate 62 =tr(EE")/NT. We
construct B* from f.

3. We estimate the price of risk parameters /g and 1; via
cross-sectional regression. We know from Eq. (13) that
a=p'%—3(B* vec(X) + oiy) and ¢ = f'A;. We use these
expressions to obtain the following estimators for Ag
and Aq:

lo=@BB) PG + 1B vec(E) + 62)) (16)
and
21 =(Bp)"pe. (17)

2.3. Inference

Denoting the matrix A =[1g 4], we can write the price
of risk estimator in the single expression

A=@B) ' BIx +1B" vecEy'r + 16% i MyZ_(Z_MyZ' )Y,
(18)

where Z_=[ir X'_]' and My, =I;-V'(VV")'V. The equiva-
lence of Eq. (18) with Eq. (16) and Eq. (17) follows from
observing that /tMyZ_(Z-MyZ'_)"" = ¢'1, where ¢; is a
(K+ 1) x 1 vector with first element equal to one and
zeros elsewhere and because [a €]=rxMyZ_(Z-MyZ'_)7".

We show in the Appendix that g and A have the joint
limiting distribution:

vec(B-p) | 4 0 Vi Cap’
ﬁ[VEC(A—A)]—)N<<O)’ |:CA,/} Va ])’ (19

! For a regression-based approach using a linear pricing kernel
specification, see Adrian, Crump, and Moench (2012).
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with
V=) (20)

We provide the analytical expressions for V, and C,y
in the Appendix. The asymptotic variance of the factor risk
exposures g depends only on the variance of the return
pricing errors in the regression of excess returns on lagged
factors and factor innovations as well as on the variance
of the VAR innovations of the pricing factors, but not on g
or A. This implies that we could conduct inference about
whether a given pricing factor is a significant explanatory
variable for bond returns without estimating the full set of
model parameters.

2.4. Affine yields

From the estimated model parameters, we can generate
a zero coupon yield curve. Under the assumptions we have
made so far, we can show that bond prices are exponen-
tially affine in the vector of state variables:

In PV = Ay + B'nX; + ul™. (1)
By substituting Eq. (21) into Eq. (6), we see that
rx(tz__]l) :An—l + B,n—1Xt+l + Ui'l_ll)—An—B’an—uim

+A; + B'1 X, + ulD. (22)

Equating this expression for excess returns with the return
generating expression in Eq. (12), we find

Anc1 + Bl (p+ DX + Vegr) + U7 —An—B/nXe—uy”

+A1 + B 1 X¢ + up) (23)

=" (G0 + M Xe + Ve )=V Zp + 6?) + 7.
24)

This equation has to hold state by state. Let A; = -y and
By = —81. Matching terms, we obtain the following system
of recursive linear restrictions for the bond pricing para-
meters:

An=An_1 + B'y1(u=20) + XB'n-1ZBy_1 + *)—do, (25)
B'n =B'n_1(P—-241)-6"1, (26)
Ap=0, By=0, 27)
and

M =By, (28)

We also obtain the following expression for the log bond
pricing errors:

(n-1)_, (m) 1 _ =1
Uppp —Up U = €y 29)
—_— ——

Log yield return pricing
pricing- error r

Several remarks are in order. First, the derivation of log
bond prices is exact, provided that g™ = B’,,. Second, the
recursions in Egs. (25) and (26) are the standard linear
difference equations for affine term structure models with
homoskedastic shocks. The only difference with respect to
the standard formulation is the appearance of the term 1 2
in Eq. (25). This arises due to the fact that we allow for a
maturity-specific return fitting error that is conditionally

orthogonal to the state variable innovations. Our approach
thus incorporates pricing errors explicitly into the no-
arbitrage recursions.

Eq. (29) implies that if yield pricing errors are i.i.d., then
return pricing errors are cross-sectionally and serially
correlated. Likelihood-based estimation approaches for
affine term structure models typically assume serially
uncorrelated yield pricing errors and, thus, implicitly
assume return pricing errors to be serially correlated.

Setting the price of risk parameters g and 1; to zero in
the recursions in Eq. (25) and Eq. (26; generates the
risk-adjusted bond pricing parameters Aﬁ and BEF. These
parameters have the property that —(1/m)(AR + Bf'X,)
equals the time t expectation of average future short rates
over the next n periods. These risk-neutral yields are of
independent economic interest, as the term premium can
be calculated as the difference between the risk neutral
yield and model-implied fitted yield.

2.5. Discussion of related literature

While Gaussian affine term structure models have
historically been estimated using computationally inten-
sive maximum likelihood techniques, Joslin, Singleton,
and Zhu (2011, JSZ) and Hamilton and Wu (2012, HW)
have recently proposed alternative, faster, estimation
approaches. We now briefly compare these approaches with
the method introduced here.

A crucial difference between our method and the
approaches in JSZ and HW is that we do not impose the
bond pricing recursions given in Section 2.4 in our estima-
tion procedure. This allows us to derive simple regression-
based estimators for all model parameters whereas both
JSZ and HW require numerical optimization for a subset of
the parameters in their models. We show in Section 3.3
that the risk exposures estimated via the regression approach
satisfy these additional restrictions to a very high degree
of precision without imposing them in the estimation.
Moreover, because we do not impose these restrictions, our
approach does not require the availability of a zero-coupon
yield curve, but can instead be readily used in applications
with returns on coupon-bearing bond portfolios as we
discuss in Section 3.6. Another important difference between
our approach and those in JSZ and HW is that we do not
impose the constraint that principal components (or other
linear combinations of yields) must be priced perfectly.
As a consequence, there is a potential inconsistency between
actual and model-implied principal components. However,
we show in Section 4.5 that any such inconsistency is nume-
rically negligible in our preferred five-factor specification.

Joslin, Singleton, and Zhu (2011) show that Gaussian
affine dynamic term structure models which impose these
constraints imply additional restrictions across parameters.
Under certain assumptions, linear combinations of yields can
be used as observable pricing factors and the model para-
meters can be split into two subsets. The first subset
summarizes the parameters governing the evolution of the
pricing factors under the historical measure. JSZ show that
for this subset, the ML estimator coincides with the OLS
estimator of a VAR(1) of the pricing factors. Hence, they
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suggest a two step estimation approach. In the first step, they
estimate the parameters of the VAR(1) via OLS. Then, in the
second step, they estimate the remaining model parameters
which govern the evolution of pricing factors under the risk-
neutral measure, via numerical solution of the likelihood
function taking as given the OLS estimates of the first step.

We see several advantages of our method with respect
to that of JSZ. First, ]SZ assume that the yield pricing errors
are conditionally independent of lagged values of yield
pricing errors. This assumption allows them to reduce
the computational complexity of the estimation. Eq. (29)
above shows that in affine models where bond prices are
exponentially affine functions of the pricing factors, seri-
ally uncorrelated yield pricing errors give rise to autocor-
relation of the return pricing errors. Serially correlated
return pricing errors, in turn, generate excess return
predictability not captured by the pricing factors. We think
that this is an undesirable assumption and indeed our
empirical results suggest that there is a strong level of
serial correlation in yield fitting errors while there is little
to no autocorrelation in return pricing errors. Second, the
estimation approach suggested by JSZ is tailored to affine
models that use linear combinations of yields (such as
principal components) as pricing factors. In contrast, our
approach does not require pricing factors to be linear
combinations of yields but can also be readily applied to
models that use observable (and economically interpre-
table) pricing factors such as macroeconomic variables.
Third, while the approach in JSZ estimates a subset of
parameters via OLS, it still requires estimation of a subset
of parameters via numerical methods. These could be
prone to issues related to the convergence to the global
maximum of the likelihood function. By contrast, our
approach relies exclusively on linear regressions which
greatly alleviates such concerns.

Hamilton and Wu (2012) have recently proposed
another multi-step estimation method for affine models
which combines OLS regressions with numerical optimi-
zation. While their method does not require a particular
normalization of the model, it is also based on the
assumption that exactly K linear combinations of yields
are observed and priced without error while the remain-
ing yields are observed with error. Based on this assump-
tion, HW first run an OLS regression of the vector of
observed yields on their contemporaneous and lagged
values. In further estimation steps, they then back out
the remaining model parameters by numerically minimiz-
ing a chi-squared objective function which summarizes
the deviations of the structural from the reduced form
parameters, an approach which is asymptotically equiva-
lent to full information maximum likelihood. As in JSZ, HW
require that yield fitting errors are not serially correlated,
which as we discuss above has strong implications for the
properties of the return pricing errors. Indeed, Hamilton
and Wu (forthcoming) show that popular affine term
structure models feature serially correlated yield fitting
errors. Moreover, it does not appear that the HW method
can be readily applied to specifications which feature
unspanned factors in the term structure of interest rates
which we show is easy in our setup. Finally, the HW approach
requires numerical optimization which our method avoids.

3. Empirical results

In this section, we provide estimation results from our
regression approach for different specifications of affine
term structure models. We start by testing for the number
of factors necessary to explain the time series and cross
section of Treasury returns. To demonstrate the robustness
of these results with respect to the choice of data, we do so
using different combinations of Treasury yield and return
data that have previously been employed in the literature.
The results of this analysis, discussed in Section 3.2, show
that the first five principal components of Treasury yields
are needed to explain Treasury returns. We, therefore,
choose a K=5 factor specification as our baseline example
and discuss its properties and implications in Section 3.3.
We also estimate a model with K=4 factors in the style of
Cochrane and Piazzesi (2008), which employs the first
three principal components of Treasury yields and a return
forecasting factor as pricing factors. This model is pre-
sented in Section 3.4. We compare the two model speci-
fications in Section 3.5 and find that the five-factor model
outperforms the four-factor model in economically impor-
tant dimensions.

Both models use bond returns inferred from fitted zero
coupon yield curves. However, a distinguishing feature of
our estimation approach is that it does not require the
availability of zero coupon yield data. Instead, given a risk-
free short-term rate as well as a set of pricing factors
that span the cross section of bond yields, we can obtain
estimates of fitted zero coupon yield curves without
observing these curves. To illustrate this capability, our
third specification combines excess returns obtained from
maturity-sorted portfolios of coupon bearing bonds with
the first five principal components extracted from the set
of Treasury yields published in the Federal Reserve Board's
H.15 release. We discuss estimation results for this speci-
fication in Section 3.6.

3.1. Data

We estimate our baseline four- and five-factor specifi-
cations using the zero coupon yield data constructed by
Gurkaynak, Sack, and Wright (2007, GSW).? These data are
based on fitted Nelson-Siegel-Svensson curves, the para-
meters of which are published along with the estimated
zero coupon curve. We use these parameters to back out
the cross section of yields for maturities n=3,...,120
months. From these yields we extract principal compo-
nents. Taking as the risk-free rate the n=1 month yield, we
calculate excess returns for n=6,12, 18,24, ...,60, 84, and
120 month zero coupon bonds directly from Eq. (6), giving
a cross section of N=12 maturities.

Our third specification uses factors extracted from the
constant maturity yields from the Federal Reserve Board's
H.15 release and excess returns of Fama maturity-sorted
bond portfolios and the Fama one-month risk-free rate,

2 We thank the authors for making these data available for down-
load, on the website http://www.federalreserve.gov/Pubs/feds/2006/200628/
feds200628.xls.
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available from the Center for Research in Security Prices
(CRSP). The Fama bond portfolios are sorted into six-
month maturity buckets with n=1-6,7-12,...,55-60
months in addition to a portfolio grouping maturities
61-120 months, for a total of N=11 maturity groups. From
the Fama risk-free rate Rf and the monthly portfolio

returns R(t”ﬁ”. we calculate log excess returns according to

") =log (1 + R";")-log (1 + RY). (30)

We estimate all models over the sample period 1987:01-
2011:12, which provides a total of T=300 monthly observa-
tions. Taken as given the set of pricing factors, we estimate
the parameters (@, X, g, 3,19, A1) using our three-step esti-
mation approach. We further obtain estimates of the short
rate parameters 5o and &; by regressing the one-month
T-bill on the pricing factors. We then feed all parameter
estimates into Eqs. (25) and (26) to obtain the recursive
pricing parameters and use the latter to compute model-
implied yields of the maturities of interest.

3.2. Model specification tests and identification

We start by testing for the number of pricing factors.
While early research by Scheinkman and Litterman (1991)
and Garbade (1996, Chapter 16) pointed out that three
factors are enough to explain the cross-sectional variation
of yields, more recent papers such as Cochrane and Piazzesi
(2005, 2008) and Duffee (2011) emphasize the importance of
additional factors to explain Treasury returns.

Our estimation approach uses return regressions to fit
the cross section of yields and allows for direct tests of the
number of pricing factors. Whether the pricing factors
explain return variation is important for the identification
of the price of risk parameters. This is easy to see in the
three-step regression approach. Recall from Egs. (16) and
(17) that the market price of risk parameters are obtained
via regressions onto the matrix of factor risk exposures.
Identification of prices of risk thus requires that the
stacked factor loadings g’ are of full column rank.?

Because the asymptotic variance of g is of a simple OLS
form [see Eq. (20)], we can apply standard tools to assess
the rank of . We test for the possible rank deficiency
using the Anderson (1951) canonical correlations test. We
denote the sample partial canonical correlation between V
and rx conditional on X_ by p; for i =1, ...,K factors. Then,
under the null hypothesis that rank(f) <r <K, the Ander-
son test statistic is

=T % In(1—pD)%2(K-rN-r) (€30)
i 1

i=r+

We can also test for the presence of unspanned or
useless factors by checking whether particular columns of
B are equal to zero. This is straightforward to do based on
the asymptotic distribution of the factor risk exposures g
from Eq. (20). Let g; be the ith column of g’. Then, under

3 See Kleibergen (2009) and Burnside (2012) for a related discussion
in the context of static Fama and MacBeth equity pricing models.

the null that g; = Oy, the Wald statistic is
A A—1n
Wy =BV, B~ (N). (32)

Table 1 displays the results of both test statistics for
model specifications with three to five factors using
various combinations of Treasury return and yield data.
In particular, we report the Anderson test for the hypoth-
esis that the rank of g in a K factor model is less than or
equal to K-1 (denoted rkx_;) and the Wald statistic for the
null that the Kth column of g’ is equal to zero. In Panel A of
Table 1, we provide the test statistics for our benchmark
specification, which uses both GSW returns and yields.
Panel B reports tests for the number of factors using the
same yield data as Duffee (2010), who merges Fama and
Bliss yields of n=3,12, 24, ...,60 months with GSW yields
of maturities n=72 and n=120 months. Panel C uses
principal components extracted from the Federal Reserve
H.15 release, selecting maturities n=6, 12, 24, 36, 60, 84,
and 120 months.? Finally, the Panel D extracts factors from
the CRSP constant maturity Treasury yield database using
maturities n=12, 24, 60, 84, and 120 to which we append the
three-month and six-month T-bill from the CRSP Fama and
Bliss discount bond yield data. The specifications on the left-
hand side are estimated using excess returns on zero coupon
bonds calculated from the GSW data set. The specifications
on the right hand side are estimated using excess returns on
Fama maturity-sorted Treasury portfolios.

The tests unanimously support a five-factor specifica-
tion across the different data sets. The Wald tests over-
whelmingly reject that the last column of g’ equals zero in
the five-factor specification. The Anderson rank statistics
also broadly support a five-factor model. We conclude
from these results that a five-factor specification of an
affine term structure model is likely to provide a better fit
of bond returns and, hence, bond risk premiums than
specifications with fewer factors. Importantly, this result is
obtained for the different combinations of US Treasury
yield and return data that have been used in the extant
literature and is, therefore, not driven by the particular
data set we use in our preferred five-factor specification.

3.3. Estimation of a five factor model

Following the evidence in favor of a five-factor model
from the tests above, we use it as our baseline specifica-
tion. We now show that this specification fits the yield
curve close to perfectly and gives rise to substantial time
variation in the prices of risk. Because traditional term
structure models are estimated imposing nonlinear cross-
equation restrictions, estimation of these models with more
than three factors becomes computationally demanding. In
contrast, adding factors to the regression-based approach
comes at no computational cost.

Table 2 reports the time series properties of the yield
pricing errors implied by the five-factor specification of
the model. We set u = 0 because principal components are

4 Joslin, Singleton, and Zhu (2011) also use H.15 yields but first
extract the implied zero coupon yield curve. Our estimation procedure
does not require this additional step.
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Table 1
Identification tests.

This table reports the results of the identification tests described in Section 3.2. rk;_; is the Anderson (1951) statistic for the hypothesis that the rank of g
in a K factor model is K—1 or smaller. Wy is the Wald statistic for the hypothesis that the last row of g equals zero. These test statistics follow y>(N-K + 1)
and x%(N) distributions, respectively. Corresponding p-values are reported in parentheses. The four panels present alternative models estimated using
different numbers of yield principal components as pricing factors. Panel A reports test results for specifications using Gurkaynak, Sack, and Wright (2007,
GSW) yields to extract principal components. Panel B is based on a combination of Fama and Bliss and GSW yields, as in Duffee (2010). Panel C uses Federal
Reserve H.15 yields. Panel D uses Center for Research in Security Prices (CRSP) constant-maturity Treasury yields. Specifications in the left column are
estimated using excess returns from GSW zero coupon yields. Specifications in the right column are estimated using excess returns on Fama maturity-

sorted portfolios.

GSW returns

CRSP Fama returns

Number of Factors ki1 Wy rky_1 Wy
Panel A: GSW yields
K=3 577.580 11216.622 333.092 2176.506
(p-value) (0.000) (0.000) (0.000) (0.000)
K=4 629.077 4643.528 104.281 231.140
(p-value) (0.000) (0.000) (0.000) (0.000)
K=5 885.261 21831.991 34.991 25.139
(p-value) (0.000) (0.000) (0.000) (0.009)
Panel B: Fama and Bliss yields + GSW six- and ten-year
K=3 228.202 9105.729 103.634 2090.322
(p-value) (0.000) (0.000) (0.000) (0.000)
K=4 155.195 6194.862 86.344 889.096
(p-value) (0.000) (0.000) (0.000) (0.000)
K=5 34.348 166.716 32.952 86.717
(p-value) (0.000) (0.000) (0.000) (0.000)
Panel C: H.15 yields
K=3 242.768 384.954 189.816 454,848
(p-value) (0.000) (0.000) (0.000) (0.000)
K=4 61.473 279.181 101.817 44.675
(p-value) (0.000) (0.000) (0.000) (0.000)
K=5 18.845 55.866 63.757 68.442
(p-value) (0.009) (0.000) (0.000) (0.000)
Panel D: CRSP constant-maturity yields
K=3 164.237 1154.031 68.376 1328.303
(p-value) (0.000) (0.000) (0.000) (0.000)
K=4 152.737 462.968 61.836 728.340
(p-value) (0.000) (0.000) (0.000) (0.000)
K=5 22.550 72.438 23.945 188.009
(p-value) (0.002) (0.000) (0.001) (0.000)

extracted from demeaned yields. The average yield pricing
errors are very small, not exceeding 0.4 basis points in
absolute value. Moreover, the standard deviation of the
yield pricing errors is tiny, remaining below 1 basis point
for all maturities. Finally, consistent with our decomposi-
tion of yield pricing errors in Eq. (29), we find evidence of
strong serial correlation in yield pricing errors while the
return pricing errors have essentially no autocorrelation.

The upper two panels of Fig. 1 show the time series
of observed and fitted yields for the two- and ten-year
Treasury notes. These plots show that the five-factor
specification provides an extremely tight fit to yields. It
is worth emphasizing that the model has been fitted to
returns. All parameters have been obtained via linear
regressions, without imposing the cross-equation recur-
sions in Egs. (25) and (26). These equations have been
used only ex post, to allow the computation of all matu-
rities of the yield curve. Our results, therefore, suggest that
traditional estimation approaches in which latent pricing
factors are jointly estimated with the model parameters by
explicitly imposing the cross-equation constraints provide
little or no gains in terms of fitting the yield curve.

The bottom two charts in Fig. 1 show the observed and
fitted one-month excess holding returns on the same two
maturities. The actual excess returns are shown as solid
lines. The fitted excess returns are given by the expres-
sion B'y_1(do +41X0)—3(B'n_1ZByq +6%) + B'y1Veyq and
are shown as dashed lines. Both are almost indistinguish-
able from one another, suggesting that the dynamics of
excess bond returns are close to perfectly captured by the
five-factor model. We superimpose as dash-dotted lines
the expected excess return component B’p_1(lg + A1X:)—
1(B'412B, 1 + 6%, which captures the risk premium
investors demand for holding a bond with n months to
maturity for one month. The charts show that risk pre-
miums in the five-factor specification exhibit substantial
time variation.

We now investigate the role of each of the factors in
pricing the various components of interest rate risk in the
five-factor model. To that end, Table 3 reports the esti-
mated elements of Ao and A, as well as the corresponding
t-statistics. Note that here and throughout, the standard
errors are calculated under the assumption that u is
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Table 2
Five-factor model: fit diagnostics.

117

This table summarizes the time series properties of the pricing errors implied by the five-factor specification. The sample period is 1987:01-2011:12.
Reported are the sample mean, standard deviation, skewness, and kurtosis of the errors; p(1), p(6) denote their autocorrelation coefficients of order one and
six. Panel A reports properties of the yield pricing errors i1, and Panel B reports properties of the return pricing errors é. n = 12, ..., 120 denotes the maturity

in months.
Summary Statistics n=12 n=24 n = 36 n = 60 n =384 n = 120
Panel A: Yield pricing errors
Mean —-0.001 0.000 -0.001 —-0.003 —-0.003 -0.004
Standard deviation 0.004 0.006 0.006 0.004 0.004 0.008
Skewness -0.342 0.420 —0.086 -0.069 0.305 -0.133
Kurtosis 3.245 2,932 2414 2.205 2.545 2.726
p(1) 0.793 0.803 0.879 0.936 0.853 0.818
p(6) 0.565 0.526 0.745 0.718 0.657 0.442
Panel B: Return pricing errors
Mean 0.000 —-0.002 -0.007 -0.007 —-0.003 -0.026
Standard deviation 0.081 0.092 0.151 0.132 0.179 0.617
Skewness 4183 1.000 3.016 1310 0.396 0.248
Kurtosis 46.489 9.708 40.674 12.555 5.685 7.981
p(1) -0.001 0.175 —-0.140 0.001 -0.162 -0.157
p(6) 0.104 0.098 0.083 -0.014 0.015 0.012
a Yield fitting and term premium estimates b Yield fitting and term premium estimates
of maturity n = 24 months of maturity n = 120 months
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Fig. 1. Five-factor model: observed and model-implied time series. This figure provides plots of the yields and excess one-month holding returns for the
two-year and ten-year maturities as observed and implied by the five factor specification. The observed yields and returns are plotted by solid lines, and
dashed lines correspond to model-implied yields and returns. Dash-dotted lines show model-implied term premiums in the upper two charts and

expected excess holding period returns in the lower two charts.
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Table 3
Five-factor model: market prices of risk.

This table summarizes the estimates of the market price of risk parameters 1o and A; for the five factor specification. t-Statistics are reported in
parentheses. The standard errors have been computed according to the formulas from Section 2.3. Wald statistics for tests of the rows of A and of 4; being
different from zero are reported along each row, with the corresponding p-values in parentheses below. PC1,..., PC5 denote the first through fifth principal
components of Treasury yields. Bolded coefficients represent significance at the 5% level.

Factor Ao A1 12 M3 Aa M5 W, W,
PC1 -0.019 -0.003 -0.016 -0.005 0.012 0.030 30.367 23.705
(t-statistic) (~2.566) (~0.443) (~2.160) (~0.648) (1.605) (3.987) (0.000) (0.000)
PC2 0.013 0.027 -0.011 -0.003 -0.011 0.015 7.097 6.167
(t-statistic) (0.951) (1.914) (-0.818) (=0213) (=0.792) (1.077) (0.312) (0.290)
PC3 -0.030 -0.077 —0.001 -0.093 -0.132 —0.056 37170 36.277
(t-statistic) (~0.951) (=2.466) (~0.029) (~2.987) (—4.244) (~1.783) (0.000) (0.000)
PC4 0.042 0.064 -0.007 0.015 -0.058 —0.086 10.444 9.374
(t-statistic) (1.062) (1.594) (-0.189) (0.367) (~1.461) (=2.147) (0.107) (0.095)
PC5 0.005 -0.105 0.012 —0.004 -0.073 -0.324 45.691 45.688
(t-statistic) (0.097) (~2.028) (0.243) (~0.070) (~1431) (~6.287) (0.000) (0.000)

unknown to accommodate the sampling uncertainty from
using demeaned yields. The price of level risk has a
significant negative constant component (the top element
in the vector /). Excess return betas are negative multi-
ples of the yield loadings b, =-(1/n)B,, implying that
investors on average require a positive expected excess
return for holding the level portfolio. In addition to level
risk being nonzero unconditionally, we find that it varies
significantly as a function of the slope and the fifth factor.
The loading of level risk on the slope factor has a negative
sign. The model, therefore, implies that a higher slope is
associated with higher expected excess returns. As can be
seen in the lower right-hand panel of Fig. 2, expected
excess returns load positively on the slope factor with
coefficients more or less linearly increasing in maturity.
This is in line with prior evidence on the predictive power
of yield spreads for bond returns as, e.g., in Campbell
and Shiller (1991). We further find that the fifth principal
component enters the price of level risk with a strongly
significant positive coefficient. This underscores that fac-
tors with negligible contemporaneous effects on the yield
curve can have strong predictive power for future excess
returns, consistent with the findings of, e.g., Cochrane and
Piazzesi (2008) and Duffee (2011). The estimated price
of risk coefficients are also economically important. For
example, the coefficient of the fifth principal component in
the price of level risk is estimated to be 0.03. This implies
that a 1 standard deviation decline in the fifth principal
component increases the annualized expected excess
return on the ten-year Treasury bond by about 6%.

We can conveniently summarize the pricing implica-
tions of the model by testing the null hypothesis that the
different rows of A (which combines 1y and 4;) are equal to
zero. Given the asymptotic distribution of the estimator
derived in Section 2.3, a Wald test can be used to that
effect. In particular, let 1’;. be the ith row of A. Then, under
the null that 4'; = 01xk+1), the Wald statistic

Wi, =109, 32K + 1) (33)

has an asymptotic chi-square distribution with K +1
degrees of freedom. In a similar vein, we can test whether

the price of risk associated with a given factor features
significant time variation by testing if the corresponding
row of 1 is jointly equal to zero. Let 1'q;. be the ith row of
A1. Then, under the null that 1';. = 01,k, the Wald statistic

PO TN
Wi, =11V, At (K) (34)

has an asymptotic chi-square distribution with K degrees
of freedom. The last two columns in Table 3 provide
these Wald statistics as well as the corresponding p-values
for the rows of A and 4, respectively. In line with the
individual significance of the price of risk parameters,
these Wald statistics show that level risk is priced sig-
nificantly both unconditionally and conditionally.

Slope risk is not priced in the five-factor model. None of
the individual elements of the second row of A is sig-
nificantly different from zero, and both Wald statistics
indicate that these coefficients are also jointly indistin-
guishable from zero. This result appears surprising given
that slope captures the second largest share of the cross-
sectional variation of yields. We return to this issue in
Section 4.1.

While slope risk is not priced in the five-factor model,
curvature risk, as measured by the exposure to the third
principal component of Treasury yields, carries a signifi-
cant price of risk. The level factor, the curvature factor
itself, as well as the fourth principal component of yields
all significantly affect the price of curvature risk over time.
The coefficient of the price of curvature risk on the level
factor is negative, indicating that expected excess returns
on a portfolio that is long in short-term and long-term
government bonds and short in intermediate maturities
tend to be incr