Financial Frictions, Financial Shocks and Unemployment Volatility: Lessons from the Great Recession

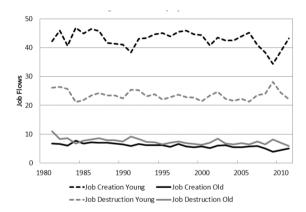
Tito Boeri, Pietro Garibaldi , Espen R. Moen

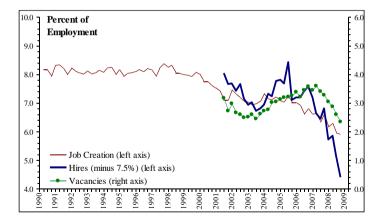
London, IFS-Bank of England Conference September 23, 2015

- Financial recessions are deeper and last longer than ordinary recessions. (IMF, 2010; Carmen and Rogoff, 2008; Boeri et al. 2013; Boissay et al. 2013)
- Financial recessions, or banking crises during recessions, are rare events. Boissay et al. (2013): once every 40 years.
- Not only job destruction: the 2007-2009 recession features an un-precedented decline in vacancies and firm entry (Siemer 2014)

Premise 1: Cross/Country Historical Evidence

Table: Unemployment and GDP during mancial recessions									
Country	Type of recession	du	du/u	dy/y	ϵ^{a}				
US	Financial rec	2.65	50%	-3.0%	16.66				
	Other rec	1.93	33%	-2.6%	12.69				
	Difference	0.72	17%	-0.4%	3.97				
UK	Financial rec	2.10	36%	-3.2%	11.25				
	Other rec	0.50	7%	-3.1%	2.25				
	Difference	1.60	28%	0.0%	9.00				


Table: Unemployment and GDP during financial recessions


^a Apparent elasticity of unemployment with respect to GDP.

Notes: Episodes of recessions with financial crises: UK 1975, 1990, 2008; US 1990, 2008.

Sources: OECD, US Bureau of Labor Statistics.

JC and JD in young and old US firms during GR

- Two interlinks between labor and finance:
 - **(**) Financial frictions may propagate and *amplify* standard (productivity) fluctuations.
 - Negative productivity shocks may increase financial frictions and exacerbate their adverse effects on unemployment
 - **2** *Pure financial shocks* may influence aggregate labor market conditions.
- This paper addresses both channels in a tractable DSGEM with frictions in *both* labor and finance.

- Firms operate in a Diamond-Mortensen-Pissarides (DMP) labor market
 - Simple matching model (Pissarides 1985) with competitive search (Moen, 1997)
- Firms obtain funding in an imperfect financial market
 - Firms borrow to finance investments in capital and search
 - Limited pledgeability of future income flows: investors need to share part of firm's income with insiders. Holmstrom and Tirole (2011)

Amplification effects of pure productivity shocks induced by limited pledgeability

- Amplification effects do exist
- Only the effects of productivity shocks on financial frictions are quantitatively important (*pleadgeability effect*).
- Financial frictions by themselves have small amplification effects (collateral effect)
- 2 Real effects of financial shocks
 - A very adverse (and unlikely) financial shock can have a strong *adverse impact* on the aggregate labor market.

Macro labor and finance: A Vibrant Research Area

- Early literature
 - (i) risk adjustment effect: Greenwald and Stiglitz, 1993;
 - ii) financing of quasi-fixed costs (Oi, 1962; Farmer, 1985);
 - iii) sticky bank/firm relationship (Sharpe, 1990; Homstrom and Tirole, 1987);
- Post Great recession research:
 - Labor impact of shocks to consumers and firms' discount rate (Hall, 2014, Keho et al. 2014)
 - Real Effects of financial shocks as (borrowing spreads) (Christiano et al., 2015)
 - Search and asset price theory (Kuhen et al. 2014)
- Search with financial imperfections
 - Double friction (Wasmer and Weil, 2005)
 - Wage setting with financial imperfections Quadrini and Trigari, 2013; Michelacci and Quadrini, 2009
 - Job Composition effect (Petroksy-Nadeu, 2013)
 - Liquidity as war chest, Boeri Garibaldi and Moen, 2014

イロン イボン イモン トモ

- Real effects of borrowing spreads. (Eckstein et al., 2014)
- Double search frictions (Wasmer and Perosky-Nadeu, 2013)
- Financing of vacancy costs (Petrosky-Nadeu, 2013)
- Shocks to collateral and Kiotaky and Moore (Garin, 2015; Iliopolus et al. 2014)

Our model

Basics

- Discrete time. Risk neutral firms and workers, discount rate β
- Workers infinitely lived.
- Firms die at rate λ , in which case the employees become unemployed and earn z.
- Cobb-Douglas matching function. The probability of job filling in a period is $q(\theta) = M\theta^{-\alpha}$, where θ is vacancy/unemployment ratio.

• Production technology: Leontief in Labor and Capital

- Entrepreneurs pay an entry cost K as *effort*. Then they invest A units in *physical* capital.
- Price of capital is ϕ
- A is measure of jobs.
- **Output** is $y_t A_t$. Productivity is stochastic $y_t = y e^{\epsilon_t}$.
 - $\epsilon_t = \rho_{\epsilon} \epsilon_{t-1} + u_t$. Discrete approximation to N states
 - stochastic matrix P: $p_{ij} = prob [y_t = i | y_{t-1} = j]$

• Matching.

- Firms post vacancies with wages attached to them (rents over unemployment) at cost *c*.
- Firms pay c/q in search cost per worker hired, and get workers immediately

• Funding and Borrowing Constraint

- Upfront investments in machines and search have to be financed
- Set-up cost K is an effort cost, and is not financed.
- Two sources of income
 - External liquidity: exogenous income flow originated outside the corporate sector $y_o(y_t)$ -fully pledgeable.
 - Internal liquidity: income from production limited pledgeability à la Holmostrom and Tirole

Asset Values and Profits

Joint Income M(y):

$$M(y) = yA + \beta \left\{ (1 - \lambda)M(y'|y) + \lambda AU(y'|y) \right\}$$

Joint surplus : S(y) = M(y) - AU

$$S(y) = (y - \rho U)A + \beta(1 - \lambda)S(y'|y)$$
$$\rho(y) = \frac{U(y) - \beta U(y|y')}{U(y)}$$

Profits V:

$$V(U(y), y) = [S(y) - \phi - C(U(y))] A$$

where C(U) are all labor related costs

- Competitive Search: Firms choose wages (rents R) to speed up hiring
- Firms trade-off optimal wage and search costs.
- Minimize total labor related costs

$$C = \min [c\theta(U)^{\alpha} + R]$$
 S.T. $\rho(y)U = z + p(\theta)R$

• Total Labor Cost per Worker:

$$C = rac{c heta^{lpha}}{1-lpha}; \quad C(U) = \kappa \left[
ho(y)U - z
ight]^{lpha}$$

 κ is a constant

Finance (I): The financial structure

- Start-up cost K is effort and needs not be financed.
- External liquidity
 - External liquidity: flow $y_t y_o$ fully pledgeable
 - External liquidity depends on output the collateral effect of productivity
- Internal liquidity
 - Internal liquidity: net revenues from the investment can be borrowed upon
 - Not fully pledgeable (Holmstrom and Tirole 2011)
 - Part of total income x(y)A is not pledgeable
 - $x'(y) \leq 0$, the *pledgeability effect* of productivity
 - Idea: Geneakoplos, the Leverage Cycle, 2010.
- No savings of non-pledgeable income

Finance (II): Borrowing limits and The Financial Multiplier

The NPV of pledgeable income:

$$\tilde{P}(y) = y_0 y + (y - w) A_t - x(y) A + (1 - \lambda) \beta P(y'|y)
= Y_0(y) + A(S(y) - R - X(y))$$
(1)

where

$$X(y) = x(y) + (1 - \lambda)\beta X(y'|y)$$

$$Y_0(y) = yy_0 + \beta Y_0(y'|y)$$
(2)

Borrowing constraint: financing machines and search costs

$$\tilde{P} = A(\phi + c/q)$$

Firm Size:

$$A(y) = \frac{Y_0(y)}{\phi + C + X(y) - S}; \quad A(y) = k(y)Y_0(y)$$
(3)

k(y) is the financial multiplier (units of worker-machine the firm can invest in per unit of external liquidity).

General equilibrium is a set of value functions U(y), C(U), V(U, y), a firm size A(y, U) such that

- C(U) minimizes total labor costs
- **2** A(y, U) satisfies the borrowing constraint without slack
- V(U(y), y) = K for all y.

Equilibrium unemployment

$$u_{t+1} = \lambda (1 - u_t) - \theta(U)^{1 - \alpha} u_t \tag{4}$$

Deterministic Equilibrium (I)

y'|y is degenerate, so that y'|y = y with probability 1.

• Free Entry

$$K = \left[\frac{y - (1 - \beta)U}{1 - \beta(1 - \lambda)} - \phi - C(U)\right]A$$

• Optimal Size

$$A = \frac{\frac{y_0 y}{1 - \beta(1 - \lambda)}}{\phi + C(U) - \frac{y - x(y) - (1 - \beta)U}{1 - \beta(1 - \lambda)}}$$

• Search Capital

$$C(U) = \kappa \left[\rho(y) U - z \right]^{\alpha}$$

Result

The following holds:

- If the economy is sufficiently productive, the equilibrium exists and it is unique.
- Financial frictions reduce the value of unemployment and increase the unemployment rate.
- An increase in productivity increases firm size A (and reduces profit per worker)

Deterministic Equilibrium (II): unemployment volatility and financial frictions

We compare our model with a benchmark model with constant firm size $A = \bar{A}$

Result

- Compared with the fixed-size case, our model exhibits excess volatility
- The excess volatility of financial frictions is the sum of two effects, the pledgeability effect and the collateral effect

Intuition: An increase in y increases firm size in our model. Financial frictions become less important. Hence unemployment responds more.

Calibration: 10 steady.s parameters+ productivity shocks

- **Basic Values** β , *y*, *z*, α Set from literature
 - unemployed income z = 0.5 (Shimer versus Hagedorn Manovski)
 - matching elasticity $\alpha = 0.5$
- Key Labor Market Moments matched m, c, λ
 - i) job finding probability; ii) market tightness; iii) average unemployment
- Leverage K / yo, x, ϕ

•
$$lev = \frac{\text{Total Asset}}{\text{equity}} = \frac{(C(U) + \phi)A + K}{K}$$

• Kalemili-Ozcan (2013), leverage in non-listed non-financial firms in 2006

Productivity, Pleadgeability and Collateral Effects

- Pure productivity ye^{ϵ_t} : Standard BC literature ρ , σ^2
- Pledgeability effect $x(y_t) = xye^{-\gamma\epsilon_t}$
 - γ is the elasticity of x wrt y, $\eta(y)$.
- How large is the change in pledgeability?
 - Relative pledgeable income $\nu(y=1) = \frac{y-x(y)}{y} = .9$ in s.s.

•
$$\nu(y = 0.96, \gamma = 6) = \frac{0.96 - 0.13}{0.96} = 0.87$$

- Collateral effect $\frac{yoye^{\epsilon_t}}{1-\beta} = ye^{\epsilon_t}$
 - Pure productivity effect on collateral

Table: Matching the Calibration Target

	Target	Source	Value						
			<u>Data</u>	<u>Model</u>					
1.	Average Job Finding Rate,	Shimer (2005)	0.8336	0.8366					
2.	Average Market tightness, $ heta$	Hagedorn Manovski (2008)	0.634	0.6634					
3.	Firm Leverage , <i>lev</i>	Kalemli-Ozcan et al. (2011)	2.4	2.3990					
Based on Shimer (2005) monthly probability of not finding a job set at 0.55									
Sou	Source: Authors' calculation								

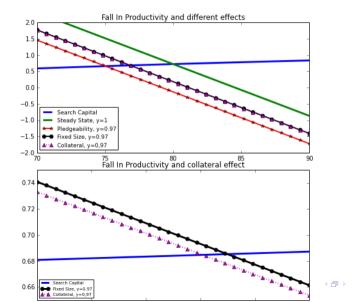
Parameter	Notation	Value
Pure Discount Rate	β	0.990
Baseline productivity	y. Y	1.000
Unemployed income	Z	0.500
Exit rate	λ	0.053
Matching function elasticity	α	0.500
Matching function parameter	m	1.027
Search cost parameter	с	0.457
Own income flow	Уо	0.010
Financial friction	x	0.100
Entry cost	k	4.878
Price of capital	ϕ	1.137
Productivity Values		
Persistence of productivity process	ρ	0.970
Variance of innovation in productivity process	σ	0.007
Number of states	п	3.000
Withd of the state space	Ь	1.200
Maximum pledgeability effect	$\gamma(\textit{max})$	6.000
Equilibrium Values		
Value of unemployment	U	80.000
Firm size	A	3.695
Labor market frictions	C(U)	0.724
Job finding probability	$p(\theta(U))$	0.837
Vacancy unemployment ratio	$\theta(U)$	0.663
Unemployment rate	и	0.060 <
Leverage	lev	2.410

≣ • つ ⊂ (• 25 / 36

	Model	Effect	$\Psi_{U,y}$ Welfare vs Productivity	$\Psi_{u,y}$ Unemployment Rate vs productivity
(1)	Fixed Size ^a	$rac{1}{1-eta}$	1.25	1.01
(2)	Endog. Lev ^b	$rac{ ilde{\kappa}}{(y+ ilde{\kappa})^2}y^2x$	0.001	0.002
(3)	Endog. Lev ^c Total Effect	$rac{ ilde{\kappa}}{(y+ ilde{\kappa})}rac{\gamma ilde{x}y}{1-eta}$	0.62 1.872	0.50 1.521

Table: Amplification with Endogenous Leverage

^a Model with fixed and maximum capacity of new firms $A = \overline{A}$


 b Model with endogenous leverage and and capacity of new firms A=A(U)

and fixed non pledgeable income x. Pure collateral effect

- ^{*b*} Model with endogenous leverage and and capacity of new firms A = A(U)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Figure: Decomposition of Productivity Effects: Steady State

E ► < E ► E < <> < <> <</p>

Financial Shocks and Unemployment

- Productivity is constant at its steady state value y.
- Financial shocks in the form of pledgeability shock.

$$x_t = x e^{z_t} \tag{5}$$

$$z_t = \rho_z z_t + \omega_t$$

• A discrete approximation of x_t ; x_1, \ldots, x_n and a stochastic matrix P^x

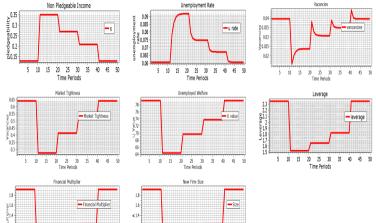
$$p_{if}^{x} = prob[x_t = i | x_{t-1} = j]$$

• Financial shocks affect directly the financial multiplier and the firm size (and indirectly U and S).

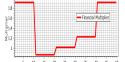
- ρ_z , the persistence of the liquidity shock
 - Most severe adverse financial conditions take place at very low frequencies. Systemic financial crises take place every 45 years.
- σ_{ω}^2 , the variance of the innovation of the financial shock.
 - A firm (and the economy) is in financial distress when internal funding completely dries up.
 - There exist a distress level of pledgeability x_d such that internal liquidity is zero

$$x_d: \frac{y - (1 - \beta)U - x_d}{1 - \beta(1 - \lambda)} \approx 0$$
(6)

	Model	Plead. income	profits	Size	Welfare	Int Liq	Mkt Tightness	
		$\nu(\mathbf{x})$	π	Α	U		θ	
(4)	Average liquidity ^a	0.90	1.320	3.69	80	0.10	0.66	
(5)	Financial Distress ^b	0.57	5.62	0.86	55.51	0.01	0.12	

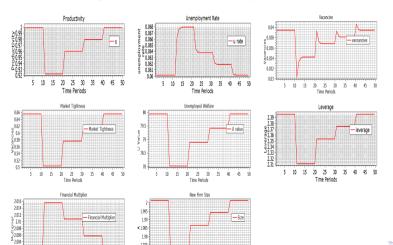

Table: Steady States with average liquidity and with Financial Distress

^a Model with endogenous leverage and pledgeable income calibrated as in the baseline model of Table ??
 ^b Model with endogenous leverage and a pledgeable income to distress level.
 See main text for steady state equations


Sources: Author's calculation.

Impulse Response Function to an Extreme Financial Shock

Figure: One Time Financial Shock


문에 비용에 э 31 / 36

One Time Productivity Shock

2 012

1.975

1.97

Figure: One Time Productivity Shock

문어 세 문어 3 32 / 36

- We introduced financial frictions a-lá Holmstrom and Tirole into a DMP model.
- Financial frictions increase unemployment volatility, through two channels
 - The collateral channel
 - The pledgeability channel
 - Only the second one is important quantitatively
- Financial frictions shocks increase unemployment drammatically
- Many issues to be explored
 - Calibration of financial shocks
 - Calibration to Europe

	У	U	C(.)	A	k	v	θ	u	$\boldsymbol{p}(\theta)$	lev
У	1.00	1.00	1.00	0.86	-0.75	0.90	1.00	-0.71	1.00	0.99
U		1.00	1.00	0.85	-0.77	0.90	1.00	-0.71	1.00	0.99
С			1.00	0.85	-0.76	0.90	1.00	-0.71	1.00	0.99
A				1.00	-0.31	0.76	0.85	-0.61	0.85	0.92
k					1.00	-0.69	-0.76	0.55	-0.76	-0.66
v						1.00	0.90	-0.35	0.90	0.89
θ							1.00	-0.71	1.00	0.99
и								1.00	-0.71	-0.71
$p(\theta)$									1.00	0.99
Stand	Standard Deviations (%)									
	0.99	0.34	1.52	0.19	0.16	2.23	3.04	1.38	0.99	0.19
Source:	Source: Authors' calculation									

Table: Simulation Statistics: Baseline Model

	У	U	C(.)	А	k	v	θ	u	$\boldsymbol{p}(\theta)$	lev
У	1.00	1.00	1.00	-0.02		0.90	1.00	-0.71	1.00	1.00
U		1.00	1.00	-0.02		0.90	1.00	-0.71	1.00	1.00
С			1.00	-0.02		0.90	1.00	-0.71	1.00	1.00
A				1.00		-0.02	-0.02	0.01	-0.02	-0.02
k										
V						1.00	0.90	-0.34	0.90	0.90
θ							1.00	-0.71	1.00	1.00
u								1.00	-0.71	-0.71
$p(\theta)$									1.00	1.00
Stand	Standard Deviations (%)									
	0.99	0.33	1.51	0.00		2.24	3.02	1.38	0.99	0.00
Source: Authors' calculation										

Table: Simulation Statistics: Baseline Model with Fixed Size

- Job openings: fell from 3.2 percent in 2007(II) to 1.8 percent in 2009.
- Unemployment: rose from 5.2 in 2007(II) to 9% in 2009 and 10% in 2010.
- Productivity: did not fall;
- Financial crisis time line starts in 2007(I)
 - February 2007: Freddie Mac announced that was no longer buying sub-prime mortgages
 - April 2007 New Century Financial Corporation, a leading sub-prime lender, filed for Chapter 11.
 - June 2007 Bear Stearns suspended redemptions from one of its Structured Leveraged Funds.