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The proposal and study of dependent nonparametric priors has been a major research focus
in the recent Bayesian nonparametric literature. In this paper we introduce a flexible class
of dependent nonparametric priors, investigate their properties and derive a suitable sampling
scheme which allows their concrete implementation. The proposed class is obtained by normaliz-
ing dependent completely random measures, where the dependence arises by virtue of a suitable
construction of the Poisson random measures underlying the completely random measures. We
first provide general distributional results for the whole class of dependent completely random
measures and then we specialize them to two specific priors, which represent the natural can-
didates for concrete implementation due to their analytic tractability: the bivariate Dirichlet
and normalized �–stable processes. Our analytical results, and in particular the partially ex-
changeable partition probability function, form also the basis for the determination of a Markov
Chain Monte Carlo algorithm for drawing posterior inferences, which reduces to the well–known
Blackwell MacQueen Pólya urn scheme in the univariate case. Such an algorithm can be used
for density estimation and for analyzing the clustering structure of the data and is illustrated
through a real two–sample dataset example.
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1. Introduction

The construction of dependent random probability measures for Bayesian inference has
attracted considerable attention in the last decade. The seminal contributions of MacEach-
ern [27, 28], who introduced a general class of dependent processes including a popular
dependent version of the Dirichlet process, paved the way to a burst in the literature on
(covariate) dependent processes and their application in a variety of frameworks such as,
e.g., nonparametric regression, inference on time series data, meta-analysis, two–sample
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problems. Reviews and key references can be found in, e.g., [29, 7, 39]. Most contri-
butions to this line of research rely on random probability measures defined by means
of a stick–breaking procedure, a popular method set forth in its generality for the first
time in [17]. Dependence among di↵erent stick–breaking priors is created by indexing
either the stick–breaking weights or the locations or both to relevant covariates. To be
more specific, if Z denotes the covariate space and {(!

j,z

)
j�1

: z 2 Z} is a collection
of sequences of independent non–negative weights, the stick–breaking procedure con-
sists in defining p

1,z

= !
1,z

and p
j,z

= !
j,z

Q
j�1

i=1

(1 � !
i,z

). A typical choice is then
!
i,z

⇠ Beta(a
i,z

, b
i,z

) with parameters (a
i,z

, b
i,z

) such that
P

j�1

p
j,z

= 1, almost surely.
If one further considers collections of sequences {(X

i,z

)
i�1

: z 2 Z} with the X
i,z

, for
i � 1, taking values in a space X and i.i.d. from a non–atomic probability measure P

0,z

,
a covariate dependent random probability measure p̃

z

=
P

j�1

p
j,z

�
Xj,z is obtained. The

dependence between weights !
i,z

and !
j,z

0 and/or between the support points X
i,z

and
X

j,z

0 , for z 6= z0, induces dependence between p̃
z

and p̃
z

0 . This general framework is
then tailored to the specific application at issue. One of the main reasons of the success
of stick–breaking constructions is their attractiveness from computational point of view
along with their flexibility since, as shown in [3], they have full weak support under mild
assumptions. On the other hand, a drawback is represented by the di�culty of study-
ing their distributional properties due to their analytical intractability. In this paper we
propose a radically di↵erent approach to the construction of dependent nonparametric
priors that relies on completely random measures (CRMs) introduced by Kingman [21].
For the case of exchangeable setting, in [24] it has been shown that CRMs represent
a unifying concept of the Bayesian Nonparametrics given most discrete nonparametric
priors can be seen as transformations of CRMs. Our general plan consists in defining a
broad class of dependent CRMs thus obtaining a vector of dependent random probability
measures via a suitable transformation. A relevant motivation for undertaking such an
approach is represented by the consideration that the study of distributional properties
of the models are essential for their deep understanding and sound applications. In this
respect, even though CRMs are infinite–dimensional objects, they can be summarized by
a single measure, i.e. their intensity, which allows to derive key distributional properties.

1.1. Dependent Poisson random measures

A key idea of our approach consists in defining dependent CRMs by creating dependence
at the level of the underlying Poisson random measures (PRM). To this end, we resort to
a class of bivariate dependent PRMs devised by Gri�ths and Milne in [15]. In particular,
let Ñ be a PRM on Y with intensity measure ⌫̄. The corresponding Laplace functional
transform, which completely characterizes the PRM, is then given by

E
h
e�

R
f d

˜

N

i
= e�⌫̄(1�e

�f
).

for any measurable function f : Y ! R such that
R
|f | dÑ < 1 (a.s.). Recall also

that a Cox process is a PRM with random intensity. See [6] for an exhaustive account.
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Consider now a vector of (possibly dependent) PRMs (Ñ
1

, Ñ
2

) on Y with the same
marginal intensity measure ⌫̄. Gri�ths and Milne [15] prove that the Ñ

i

’s admit an
additive representation

Ñ
i

= M
i

+M
0

i = 1, 2 (1)

where M
1

, M
2

and M
0

are independent Cox processes with respective random intensities
⌫, ⌫ and ⌫

0

such that ⌫
0

 ⌫̄ (a.s.) and ⌫ = ⌫̄ � ⌫
0

if and only if the Laplace transform
admits the following form

E
h
e�

˜

N1(f1)� ˜

N2(f2)

i
= e�

P2
i=1 ⌫̄(1�e

�fi
) '((1� e�f1)(1� e�f2)), (2)

for some functional '. Such a result is appealing for at least two reasons. From an intuition
point of view it provides a neat additive representation (1) of the Ñ

i

’s with a common and
idiosyncratic component,M

0

andM
i

, for i = 1, 2, respectively. From an operational point
of view it yields a well identified structure (2) for the Laplace functional, which becomes
completely explicit in the cases where one is able to determine the form of '. In fact,
when working with PRM and CRMs, the Laplace functional is the main operational tool
for deriving analytical results useful for Bayesian inference and such a relatively simple
structure is actually quite surprising for the dependent case.

The pair of PRMs constructed according to (1) is, then, used to define a vector of
dependent CRMs (µ̃

1

, µ̃
2

). Recall that CRMs are random measures giving rise to mutu-
ally independent random variables when evaluated on pairwise disjoint measurable sets.
Moreover, they can always be represented as functionals of an underlying PRM, which
in the particular case of Y = R+⇥Rd corresponds to the celebrated Lévy–Ito decomposi-

tion. Therefore, by setting Y = R+ ⇥X, from (Ñ
1

, Ñ
2

) one can define the corresponding
vector of CRMs (µ̃

1

, µ̃
2

) with components given by µ̃
i

(dx) =
R
R+ s Ñ

i

(ds, dx).
Finally a vector of dependent random probability measures on X is obtained as

(p̃
1

, p̃
2

)
d

= (T (µ̃
1

), T (µ̃
2

)) where T is a transformation of the CRM such that T (µ̃
i

)(X) = 1
a.s. Here we focus on one of the most intuitive transformations, namely “normalization”,
which corresponds to T (µ̃) = µ̃/µ̃(X). Such a normalization procedure is widely used
in the univariate case. Already Ferguson [11] showed that the Dirichlet process can be
defined as normalization of a gamma CRM. Such a procedure has then been extended
and analyzed for general univariate CRMs in [38, 19, 20]. More recently an interesting
construction of a subclass of normalized CRMs has been proposed in [33]. See [24] for a
review of other possible transformations T exploited in the literature.

In the literature there are already some proposals, although not in a general frame-
work and analytical depth as set forth here, making use of dependent CRMs for defining
dependent random probability measures. For example in [22] and in [37] one can find
a model that coincides with a special case we consider in this paper, namely a version
of the bivariate Dirichlet process. In these two papers, the authors devise samplers that
take advantage of a mixture representation of p̃

1

and of p̃
2

whose weights are, only for
their special case, independent from the p̃

i

’s. In a similar fashion, [30] proposes dependent
convex linear combinations of Dirichlet processes as a tool for examining data originated
from di↵erent experiments. Vector CRMs, whose dependence is induced by suitable Lévy
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copulas, are proposed in [8] for defining a vector of dependent neutral to the right pro-
cesses and in [23] in order to introduce a bivariate two–parameter Poisson–Dirichlet
process. In addition to the great generality of our results, two important features of our
proposal are to be highlighted: it preserves computational e�ciency since we are able to
deduce a generalization of the Blackwell–MacQueen urn scheme for the dependent setting
implementable in real–world applications, and it sheds light on theoretical properties of
the vector of random probability measures we are proposing, therefore improving the
understanding of the model.

1.2. Goals and outline of the paper

As mentioned above, we will investigate vectors of random probabilities (p̃
1

, p̃
2

) obtained
by normalizing pairs of dependent CRMs (µ̃

1

, µ̃
2

). The distribution of (p̃
1

, p̃
2

) plays the
role of mixing measure in the representation of the law of a pair of partially exchangeable
sequences or, in other terms, of prior distribution for a partially–exchangeable observation
process. We will determine an expression for the probability distribution of the partially
exchangeable partition induced by (p̃

1

, p̃
2

). Such a result will also lead us to achieve an
extension of the univariate Blackwell–MacQueen Pólya urn scheme. The corresponding
Gibbs sampler is then implemented to draw a full Bayesian analysis for density estimation
and cluster analysis in two–sample problems. The general results will, then, be specialized
to two specific priors where: (i) the µ̃

i

’s are gamma CRMs thus yielding a vector of
dependent Dirichlet processes; (ii) the µ̃

i

’s are �–stable CRMs that give rise to a vector
of dependent normalized �–stable processes.

The outline of the paper is as follows. In Section 2 we introduce some notation and
formalize the form of dependence we briefly touched upon before. In Section 3 we con-
sider pairs of partially exchangeable sequences directed by the distribution of (p̃

1

, p̃
2

) and
describe some of their distributional properties. Section 4 considers dependent mixtures
and introduces the main distributional tools that are needed for their application to
the analysis of partially exchangeable data. Section 5 provides a description of the prior
specification we adopt and the sampler we resort to. Finally Section 6 contains an illustra-
tion with a real dataset which is analyzed through mixture models with both dependent
Dirichlet and normalized �–stable. The proofs are postponed to the Appendix. A key tool
for proving our results is represented by an extension to the partial exchangeable case
of a technique introduced and subsequently refined in [36, 19, 20]. Such a technique was
originally developed for deriving conditional distributions of normalized random mea-
sures [38] but, as highlighted in [24], it can be actually applied to any exchangeable
model based on completely random measures. Therefore, it is worth remarking that the
extension to the partial exchangeable setup is also of independent interest.

2. Dependent completely random measures

Let us start by stating more precisely some of the concepts sketched in the Introduction.
Consider a probability space (⌦,F ,P) and denote by MX the set of boundedly finite
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measures on a complete and separable metric space X. Further, the Borel �–algebras
on MX and X are denoted by MX and X, respectively. A completely random measure
(CRM) µ on (X,X) is a measurable function on (⌦,F ,P) taking values in (MX,MX)
such that for any pair of disjoint sets A and B in X the random variables µ(A) and µ(B)
are independent. It is well–known that if N is a Poisson random measure on R+ ⇥ X,
then

µ(B) =

Z

R+⇥B

sN(ds, dx) 8B 2 X (3)

is a CRM on (X,X). See [21, 6] and, e.g, [18] for uses of representation (3) for Bayesian
modeling. If ⌫̄ is the intensity of N and for brevity µ(f) :=

R
fdµ, the Laplace exponent

of µ(f) is of the form

� log
⇣
E
h
e�µ(f)

i⌘
=

Z

R+⇥X
[1� e�sf(x)] ⌫̄(ds, dx) =:  (f) (4)

for any measurable function f : X ! R such that µ(|f |) =
R
|f | dµ < 1, almost surely.

By virtue of (3), we can construct dependent CRMs as linear functionals of dependent
PRMs determined according to (1). To state it more precisely, let P

0

be a non–atomic
probability measure on (X,X) and r(ds) = ⇢(s) ds a (possibly infinite) measure on R+.
Suppose, further, that Ñ

1

and Ñ
2

are defined as in (1), where M
1

, M
2

and M
0

are three
independent Cox processes with respective random intensities ⌫, ⌫ and ⌫

0

such that
⌫ + ⌫

0

= ⌫̄, almost surely. Henceforth, we shall assume ⌫̄(ds, dx) = cP
0

(dx) ⇢(s) ds.

Definition 1. Let (Ñ
1

, Ñ
2

) be a vector of Gri�ths–Milne (GM) dependent PRMs as in
(1) and define the CRMs µ̃

i

(dx) =
R
R+ s Ñ

i

(ds, dx), for i = 1, 2. Then (µ̃
1

, µ̃
2

) is said to
be a vector of GM–dependent CRMs. The marginal intensity of µ̃

i

coincides with ⌫̄.

In the sequel we will focus on a simple class of Cox processes defined through an intensity
of the form

⌫(ds, dx) = cZP
0

(dx) ⇢(s) ds, (5)

for some [0, 1]–valued random variable Z. To ease the exposition, and with no loss of
generality, we will work conditionally on a fixed value Z = z which makes the Cox
processes in (1) coincide with PRMs. According to the definition above, the marginals
of a vector of GM–dependent CRMs are equally distributed and

µ̃
i

(dx) =

Z

R+

sM
i

(ds, dx) +

Z

R+

sM
0

(ds, dx) = µ
i

(dx) + µ
0

(dx) (6)

where µ
i

, with i = 1, 2, and µ
0

are independent CRMs with Laplace functional transforms

E
h
e�µi(f)

i
= e�cz (f) E

h
e�µ0(f)

i
= e�c(1�z) (f)

where  is defined as in (4). Given the simple form of the intensities specified in (5), one
can determine the form of ' in (2) explicitly and straightforwardly obtains a tractable
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expression for the joint Laplace functional transform of (µ̃
1

, µ̃
2

) given by

E
h
e�µ̃1(f1)�µ̃2(f2)

i
= e�cz[ (f1)+ (f2)]�c(1�z) (f1+f2) (7)

for any pair of measurable functions f
i

: X ! R, for i = 1, 2, such that P[µ̃
i

(|f
i

|) < 1] =
1. In order to further clarify the above concepts and construction, let us consider two
special cases involving well–known CRMs.

Example 1. (Gamma process). Set ⇢(s) = e�s s�1 in (5) which results in µ being a
gamma CRM. The corresponding Laplace exponent reduces to  (f) =

R
log(1 + f) dP

0

for any measurable function f such that
R
log(1 + |f |) dP

0

< 1. The bivariate Laplace
functional transform of the vector of dependent gamma CRMs, then, coincides with

E
h
e�µ̃1(f1)�µ̃2(f2)

i
= e�c

R
log(1+f1+f2)dP0�cz

R
log

(1+f1)(1+f2)
(1+f1+f2) dP0

Example 2. (�–stable process). Set ⇢(s) = � s�1��/�(1 � �), with � 2 (0, 1), in (5)
which results in µ being a �–stable CRM. Let f

i

: X ! R be such that
R
|f

i

|� dP
0

< 1,
for i = 1, 2. Then

E
h
e�µ̃1(f1)�µ̃2(f2)

i
= e�cz

R
(f

�
1 +f

�
2 )dP0�c(1�z)

R
(f1+f2)

�
dP0

The final step needed for obtaining the desired vector of dependent random probability
measures consists in normalizing the previously constructed CRMs, in the same spirit as
in [38] for the univariate case. To perform the normalization we need to ensure P[µ

i

(X) 2
(0,1)] = 1, for i = 0, 1, 2, which is guaranteed by requesting

R1
0

⇢(s) ds = 1 (see [38])
and corresponds to considering CRMs which jump infinitely often on any bounded set.
By normalizing µ̃

1

and µ̃
2

, we can then define the vector of dependent random probability
measures

(p̃
1

, p̃
2

)
d

= (µ̃
1

/µ̃
1

(X), µ̃
2

/µ̃
2

(X)) (8)

to be termed GM–dependent normalized CRM in the following.
Having described the main concepts and tools we are resorting to, our next goal is the

application of (p̃
1

, p̃
2

) as a nonparametric prior for the statistical analysis of partially
exchangeable data.

3. Partially exchangeable sequences

For our purposes, we resort to the notion of partial exchangeability as set forth by
de Finetti in [12] and described as follows. Let X = (X

n

)
n�1

and Y = (Y
n

)
n�1

be two
sequences of X–valued random elements defined on some probability space (⌦,F ,P) and
PX is the space of probability measures on (X,X). If X(n1) = (X

1

, . . . , X
n1) and Y

(n2) =
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(Y
1

, . . . , Y
n2) are the first n

1

and n
2

values of the sequences X and Y , respectively, we
have

P
h
X

(n1) 2 A
1

, Y (n2) 2 A
2

i
=

Z

P

2
X

pn1
1

(A
1

) pn2
2

(A
2

)�(dp
1

, dp
2

) (9)

for any A
1

2 Xn1 , A
2

2 Xn2 , with pni
i

being the n–fold product measure p
i

⇥ · · · ⇥ p
i

and � is a probability distribution on P 2

X = PX ⇥ PX which acts as nonparametric prior
for Bayesian inference. We also denote as �

i

the marginal distribution of p̃
i

on PX. Since
p̃
i

is a normalized CRM, then the weak support of �
i

contains all probability measures
on X whose support is contained in the support of the base measure P

0

. Hence, if the
support of P

0

coincides with X, a GM–dependent normalized CRM (p̃
1

, p̃
2

) has full weak
support with respect to the product topology on P 2

X. Having a large support is a minimal
requirement a nonparametric prior must comply with in order to ensure some degree of
flexibility in statistical analysis.

It should be also noted that the dependence structure displayed in assumption (9)
is also the starting point in [4] where the authors propose an example (the first we are
aware of in the literature) of nonparametric prior for partially exchangeable arrays which
coincides with a mixture of products of Dirichlet processes. Furthermore, (9) defines the
framework in which recent proposals of dependent nonparametric priors can be embed-
ded.

3.1. Dependence between p̃1 and p̃2

An important preliminary result we state concerns the mixed moment of (p̃
1

(A), p̃
2

(B))
for any A and B in X. To this end, define the following quantity

⌧
q

(u) :=

Z 1

0

sqe�us ⇢(s) ds (10)

for any q � 1. Moreover, to simplify the notation set  (u) =  (u1X) for any u > 0, where
1
A

is the indicator function on set A. One can, then, prove the following

Proposition 1. Let (p̃
1

, p̃
2

) be a vector of GM–dependent normalized CRM defined in

(8). For any A and B in X one has

E [p̃
1

(A) p̃
2

(B)] = P
0

(A)P
0

(B) + [P
0

(A \B)� P
0

(A)P
0

(B)]

⇥ c(1� z)

Z

(0,1)

2

e�cz[ (u)+ (v)]�c(1�z) (u+v)⌧
2

(u+ v) dudv (11)

Moreover, it follows that

Corr(p̃
1

(A), p̃
2

(B)) =
(1� z) [P

0

(A \B)� P
0

(A)P
0

(B)]p
P
0

(A)[1� P
0

(A)]
p

P
0

(B)[1� P
0

(B)]
I(c, z) (12)
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where

I(c, z) :=
R1
0

R1
0

e�cz[ (u)+ (v)]�c(1�z) (u+v) ⌧
2

(u+ v) dudv
R1
0

u e�c (u) ⌧
2

(u) du

It can be easily seen that if A = B, then the correlation in (12) reduces to (1� z)I(c, z)
and does not depend on the specific set where the two random probabilities p̃

1

and p̃
2

are evaluated. This fact is typically used to motivate (1 � z)I(c, z) as a measure of the
(overall) dependence between p̃

1

and p̃
2

. Coherently with our construction p̃
1

and p̃
2

are uncorrelated if z = 1, and the same can be said if A and B are independent with
respect to the baseline probability measure P

0

. The previous expression is structurally
neat and, as will be shown in the following illustrations, in some important special cases
the double integral I(c, z) can be made su�ciently explicit so to allow a straightforward
computation.

Example 1. (continued). If µ̃
1

, µ̃
2

are two dependent CRMs, one has ⌧
q

(u) = �(q) (1 +
u)�q and the correlation between the corresponding GM–dependent Dirichlet processes
coincides with (12) where

I(c, z) = c

c+ 1
3

F
2

(c� cz + 2, 1, 1; c+ 2, c+ 2; 1) (13)

where
3

F
2

is the generalized hypergeometric function

3

F
2

(↵,�, ⇢; �,�;x) =
X

j�0

(↵)
j

(�)
j

(⇢)
j

j!(�)
j

(�)
j

xj (14)

The above series converges if |x| < 1 and it does for x = 1 provided that Re(� + ��↵�
� � ⇢) > 0, with Re(z) denoting the real part of a complex number z.

Example 2. (continued). If µ̃
1

, µ̃
2

are �–stable dependent CRMs, one has ⌧
q

(u) =
�(1 � �)

q�1

u��q and the correlation between the corresponding dependent normalized
�–stable processes is equal to (12) with

I(c, z) = 1

�

Z
1

0

w1/��1

[1 + z(1� w1/�)� � z(1� w)]
dw

Even if we are not able to evaluate the above integral analytically, a numerical approxi-
mation can be easily determined.

3.2. Partition probability function

The procedure adopted for determining an expression for the mixed moments of p̃
1

and
p̃
2

can be extended to provide a form for the partially exchangeable partition probability
function (pEPPF) for the n

1

+n
2

random variables (r.v.’s) X(n1) and Y

(n2). It is worth
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recalling that the concept of EPPF plays an important role in modern Probability Theory
(see [35] and references therein) and, implicitly, in numerous MCMC algorithms one ends
up “sampling from the partition” as well. First, note that if z < 1

P[X
i

= Y
j

] = c

Z 1

0

u e�c (u) ⌧
2

(u) du > 0

for any i and j: hence, with positive probability any of the elements of the first sample
X

(n1) can coincide with any element from Y

(n2). This leads us to address the issue of
determining the probability that the two samples are partitioned into K = K

1

+K
2

+K
0

clusters of distinct values where

(a) K
1

is the number of distinct values in the first sample X

(n1) not coinciding with
any of the Y

j

’s
(b) K

2

is the number of distinct values in the second sample Y (n2) not coinciding with
any of the X

j

’s
(c) K

0

is the number of distinct values that are shared by both samples X

(n1) and
Y

(n2).

Moreover, we denote by N

(i) = (N
1,i

, . . . , N
Ki,i) the vector of frequencies for the K

i

unshared clusters and with Q

(i) = (Q
1,i

, . . . , Q
K0,i) the vector of frequencies the sample

X

(n1), if i = 1, or the sample Y

(n2), if i = 2, contributes to each of the shared clusters.
Correspondingly, we introduce the sets of vectors of positive integers

�
ni,ki,k0 :=

(
(n(i), q(i)) :

kiX

l=1

n
l,i

+
k0X

r=1

q
r,i

= n
i

)

where we the more concise notation n

(i) = (n
1,i

, . . . , n
ki,i) and q

(i) = (q
1,i

, . . . , q
k0,i)

is used, for i = 1, 2. The result we are going to state provides the probability distri-
bution of the random partition of (X(n1),Y (n2)) as encoded by the vector of positive
integers (K

1

,K
2

,K
0

,N (1),N (2),Q(1),Q(2)). Such a distribution has masses at points

(k
1

, k
2

, k
0

,n(1),n(2), q(1), q(2)) that we denote as ⇧(n1+n2)

k

(n(1),n(2), q(1), q(2)), where
k = k

1

+ k
2

+ k
0

.

Proposition 2. Let (p̃
1

, p̃
2

) be a GM–dependent normalized CRM defined in (8). For
any (n(i), q(i)) 2 �

ni,ki,k0 , with i = 1, 2, and for any non-negative integers k
1

, k
2

and

k
0

such that k
l

+ k
0

2 {1, . . . , n
l

}, for l = 1, 2, one has

⇧(n1+n2)

k

(n(1),n(2), q(1), q(2)) =
ck

�(n
1

)�(n
2

)

X

(⇤)

(1� z)k0+|i|+|l|zk1+k2�|i|�|l|

⇥
Z 1

0

Z 1

0

un1�1vn2�1 e�cz[ (u)+ (v)]�c(1�z) (u+v)

k1Y

j=1

⌧
nj,1(u+ i

j

v)
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⇥
k2Y

j=1

⌧
nj,2(lju+ v)

k0Y

r=1

⌧
qr,1+qr,2(u+ v) du dv

where the sum runs over the set of all vectors of integers i = (i
1

, . . . , i
k1) 2 {0, 1}k1

and

l = (l
1

, . . . , l
k2) 2 {0, 1}k2

, whereas |i| =
P

k1

j=1

i
j

and |l| =
P

k2

j=1

l
j

.

The expression, though in closed form and of significant theoretical interest, is quite
di�cult to evaluate due to the presence of the sum with respect to the integer vectors i
and l. Nonetheless, Proposition 2 is going to be a fundamental tool for the derivation of
the MCMC algorithm we adopt for density estimation and for inferring on the clustering
structure of the two samples. We will be able to skip the evaluation of the sum by
resorting to suitable auxiliary variables whose full conditionals can be determined and
evaluated. To clarify this point, consider the first sample X

(n1), fix i 2 {0, 1}k1 and
denote by n

0

(i) the vector of cluster frequencies that correspond to labels in i equal to

0 whereas n

1

(i) is the vector of cluster frequencies corresponding to labels in i equal to

1. In a similar fashion, for the second sample X

(n2), for l 2 {0, 1}k2 , set n

0

(l) and n

1

(l).

Finally, let n

(i,l) = (n1

(i),n
1

(l), q1,1 + q
1,2

, . . . , q
k0,1 + q

k0,2). From these definitions it is

obvious that n

0

(i), n
0

(l) and n

(i,l) are vectors with k
1

� |i|, k
2

� |l| and k
0

+ |i| + |l|
coordinates, respectively. Moreover, let �

1

, �
2

and �
0

be permutations of the coordinates
of the vectors n0

(i), n
0

(l) and n

(i,l). We shall further denote

⇧(n1+n2)

k,i,l (n0

(i),n
0

(l),n(i,l))

as the pEPPF conditional on independent random variables i and l whose distribution is

Bernoulli with parameter (1�z). Moreover, note that the pEPPF⇧(n1+n2)

k

depends on the
vectors q(i), for i = 1, 2, through their componentwise sum q

⇤ = (q
1,1

+ q
1,2

, . . . , q
k0,1 +

q
k0,2). Hence we can also write

⇧(n1+n2)

k

(n(1),n(2), q(1), q(2)) = ⇧(n1+n2)

k

(n(1),n(2), q⇤)

and shall denote as �0
1

, �0
2

and �0
0

permutations of the components in n

(1), n(2) and q

⇤,
respectively. Therefore, as a straightforward consequence of Proposition 2 we obtain the

following invariance property for ⇧(n1+n2)

k

and for ⇧(n1+n2)

k,i,l whose proof is omitted since
it is immediate.

Proposition 3. Let (p̃
1

, p̃
2

) be a GM–dependent normalized CRM defined in (8).
Then

⇧(n1+n2)

k

(n(1),n(2), q⇤) = ⇧(n1+n2)

k

(�0
1

n

(1),�0
2

n

(2),�0
0

q

⇤) (15)

⇧(n1+n2)

k,i,l (n0

(i),n
0

(l),n(i,l)) = ⇧(n1+n2)

k,i,l (�
1

n

0

(i),�2n
0

(l),�0n(i,l)) (16)
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The invariance property in (15) entails that exchangeability holds true within three
separate groups of clusters: those with non–shared values and the clusters shared by the
two samples. Such a finding is not a surprise since it reflects the partial exchangeability
assumption. On the other hand, (16) implies that, conditional on a realization of i and l

whose components are i.i.d. Bernoulli random variables with parameter 1� z, a similar
partially exchangeable structure is revealed even if it now involves di↵erent groupings
of the clusters that are still three: two groups with non–shared values that are labeled
either by i

j

or l
j

equal to 0, and the group containing both observations shared by the two
samples and non–shared values labeled by either i

j

or l
j

equal to 1. Moreover, unlike (15)
these three groups of clusters are governed by independent random probability measures.
The invariance structure displayed in (16) corresponds to a mixture decomposition for p̃

1

and p̃
2

that is going to be displayed in the next Section and is also relevant in simplifying
the MCMC sampling scheme we are going to devise. Note that (15) holds true since

the sum appearing in the representation of ⇧(n1+n2)

k

is over all possible {0, 1}–valued
indices i

j

and l
j

: hence a permutation of the frequency vectors within the three groups
simply yields a permutation of the summands in Proposition 2. On the contrary, fixing

the indices i
j

and l
j

as in (16) corresponds to dropping the sum in ⇧(n1+n2)

k

and, then,
the invariance is restricted to those frequencies that correspond to the same index values.

Example 1. (continued). Let (µ̃
1

, µ̃
2

) be a vector of GM–dependent gamma CRMs. If

i = (i
1

, . . . , i
k1) 2 {0, 1}k1 and l = (l

1

, . . . , l
k2) 2 {0, 1}k2 define n̄

1

=
P

k1

j=1

(1 � i
j

)n
j,1

,

n̄
2

=
P

k2

j=1

(1� l
j

)n
j,2

, n̄
1,0

=
P

k1

j=1

i
j

n
j,1

. Moreover, to further simplify notation, set

⇠
�

(n(1),n(2), q⇤) =
k1Y

j=1

(1� �)
nj,1�1

k2Y

i=1

(1� �)
ni,2�1

mY

r=1

(1� �)
qr,1+qr,2�1

,

↵0 = c+ cz + |q⇤| and �0 = c+ n̄
1,0

+ |q⇤|. It can then be shown that the pEPPF of the
GM–dependent Dirichlet process is then given by

⇧(n1+n2)

k

(n(1),n(2), q⇤) = ck ⇠
0

(n(1),n(2), q⇤)

⇥
X

(⇤)

zk1+k2�|i|�|j|(1� z)k0+|i|+|j|

(↵0)
n1(�

0)
n2

3

F
2

(cz + n̄
2

,�0, n
1

;n
1

+ ↵0, n
2

+ �0; 1)

for any (n(i), q(i)) 2 �
ni,ki,k0 , for i = 1, 2, and for any k

1

 n
1

, k
2

 n
2

and k
0

such that
k = k

1

+ k
2

+ k
0

2 {1, . . . , n
1

+ n
2

}. Note also that if there is only one sample, namely
n
1

n
2

= 0, the previous pEPPF reduces to the EPPF of the Dirichlet process determined
in [10, 1].

Example 2. (continued). When (µ̃
1

, µ̃
2

) is a vector of GM–dependent �–stable CRMs,
one obtains a pEPPF of the form
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⇧(n1+n2)

k

(n(1),n(2), q⇤) =
�(k)

�(n
1

)�(n
2

)
�k�1 ⇠

�

(n(1),n(2), q⇤)

⇥
X

(⇤)

zk1+k2�|i|�|l| (1�z)k0+|i|+|l|
Z

1

0

wn1�n̄1+(k1�|i|)��1(1� w)n2�n̄2+(k2�|l|)��1

[1� z + zw� + z(1� w)�]k
dw

where n̄
1

, n̄
2

, n̄
1,0

are defined as in Example 1. Note that the one–dimensional integral
above has the same structure as the one appearing in I(c, z) and can be evaluated
numerically. Also in this case, if n

1

n
2

= 0 the above expression reduces to the EPPF of
the normalized �–stable process. See, e.g., [35].

Remark 1. Following a request of the referees, we also sketch the extension to more
than a pair of dependent random probability measures the most natural being µ̃

i

=
µ
i

+ µ
0

, for each i = 1, . . . , N and N > 2. If the mutually independent CRMs µ
i

are
identical in distribution, for i = 1, . . . , N , and independent from the common source of
randomness µ

0

, one immediately obtains that the joint Laplace transform of the vector
(µ̃

1

, . . . , µ̃
N

) evaluated at a vector function (f
1

, . . . , f
N

) is given by

E
h
e�

PN
i=1 µ̃i(fi)

i
= e�c(1�z) (|f |)�cz

PN
i=1  (fi)

where  is the Laplace exponent defined in (4) and shared by the µ
i

’s (i = 0, 1, . . . , N)

and |f | =
P

N

i=1

f
i

. This expression can be used to mimic the proof of Proposition 2 thus
yielding a straightforward generalization of the pEPPF associated to the vector (p̃

1

, p̃
2

)
to the N–dimensional case obtaining an expression of the form

ck
Q

N

j=1

�(n
j

)

X

(⇤)

(1� z)k0+
PN

j=1 |ij | z
PN

j=1(kj�|ij |)
Z

(0,1)

N

NY

j=1

u
nj�1

j

⇥ e�c(1�z) (|u|)�cz

PN
i=1  (ui)

NY

j=1

kjY

l=1

⌧
il,j (uj

) ⌧
nl,j�il,j (|u|)

⇥
k0Y

l=1

⌧
ql(|u|) du1

, . . . , du
N

where the (⇤) is the set of all vectors i
j

= (i
1,j

, . . . , i
kj ,j) 2 ⇥kj

l=1

{0, n
l,j

}, for j = 1, . . . , N ,

|u| =
P

N

i=1

u
i

and |i
j

| =
P

kj

l=1

i
l,j

. Moreover, the definition of ⌧
q

in (10) is extended to
cover the case with q = 0 as ⌧

0

(u) = 1 for any u > 0. The previous expression provides
the probability of observing an array of N samples, with respective sizes n

1

, . . . , n
N

, with
observations partitioned into k

j

clusters specific to the j–th sample and k
0

groups shared
by two or more samples. The exact evaluation of the above N–dimensional integral poses
some additional challenges and its implementation within a sampling scheme is more
demanding. A notable exception is given by the GM–dependent Dirichlet process where
for computational purposes one can avoid the use of the pEPPF and rely on a mixture
representation of p̃

i

and p̃
0

that will be detailed at the beginning of the next section.
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4. Dependent mixtures

We now apply the general results for GM–dependent normalized CRMs (p̃
1

, p̃
2

) to mix-
ture models with random dependent densities. In fact, we consider data that are generated
from random densities f̃

1

and f̃
2

defined by f̃
i

(x) =
R
⇥

h
i

(x; ✓) p̃
i

(d✓), for i = 1, 2, with
⇥ being a complete and separable metric space equipped with the corresponding Borel
�–algebra. If ✓

(i) = (✓
1,i

, . . . , ✓
ni,i), for i = 1, 2, stand for vectors of latent variables

corresponding to the two samples, the mixture model can be represented in hierarchical
form as

X
i,1

| (✓(1),✓(2))
ind⇠ h

1

( · ; ✓
i,1

) i = 1, . . . , n
1

Y
j,2

| (✓(1),✓(2))
ind⇠ h

2

( · ; ✓
j,2

) j = 1, . . . , n
2

(X
i,1

, Y
j,2

) | (✓(1),✓(2))
ind⇠ h

1

( · ; ✓
i,1

)h
2

( · ; ✓
j,2

)

✓
j,i

| (p̃
1

, p̃
2

)
iid⇠ p̃

i

j = 1, . . . , n
i

; i = 1, 2

(p̃
1

, p̃
2

)
d

= GM–dependent normalized CRM

(17)

Henceforth, we will set h
1

= h
2

= h; the case of h
1

6= h
2

can be handled in a similar
fashion, with the obvious variants. The investigation of distributional properties of the
model is eased by rewriting p̃

1

and p̃
2

in the following mixture form

p̃
i

= w
i

p
i

+ (1� w
i

)p
0

i = 1, 2 (18)

where w
i

= µ
i

(X){µ
i

(X) + µ
0

(X)}�1, the p
i

’s and p
0

are independent normalized CRMs
with Lévy intensities czP

0

(dx) ⇢(s)ds and c(1 � z)P
0

⇢(s)ds, respectively. Obviously w
1

and w
2

are dependent. In general, the weights w
i

and the p
i

’s are dependent, the only
exception being the case in Example 1 where the p

i

’s are independent Dirichlet processes.
Details about this special case will be provided later.

Remark 2. An interesting aspect of (18) is that each p̃
i

can be decomposed into two
independent sources of randomness: an idiosyncratic one, p

i

, and a common one, p
0

. This
is close in spirit to the model of Müller, Quintana and Rosner [30], which is based on a
vector of dependent random probability measures (p̃

1

, . . . , p̃
n

) defined as

p̃
i

= !p
i

+ (1� !)p
0

, (19)

where p
i

and p
0

are independent Dirichlet processes and the distribution of ! is a mixture
with point masses ! = 0 and ! = 1 and the remaining mass spread on (0, 1) through a
beta density. Despite their similarity, there are however some crucial di↵erences among
GM–dependent normalized CRMs and the model in (19) so that it is not possible to
interpret one as the generalization of the other, nor viceversa. The first thing to note is
that (19) assumes common weights, ! and 1�!, for each p̃

i

whereas in our proposal the
weights of the mixtures w

i

in (18) do not coincide for di↵erent i even if they have the
same marginal distributions. More importantly, the random probability measures defined
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in [30] via (19) are, in general, marginally not Dirichlet processes. In our framework,
preserving the marginal Dirichlet structure or, in general, a normalized CRM structure
is relevant: it guarantees the degree of analytical tractability we need for determining
distributional results and devising suitable sampling strategies. The latter can then be
thought of as alternative to the existing algorithms for dependent random probability
measures such as, e.g., the one proposed in [30].

On the basis of the decomposition displayed in (18), one can introduce two collections
of auxiliary random variables, (⇣

j,1

)
j�1

and (⇣
j,2

)
j�1

, defined on (⌦,F ,P) and taking
values in {0, 1}1 and {0, 2}1, and provide an useful alternative representation of the
mixing measure in (17) in terms of these auxiliary variables as

✓
i,1

| ⇣
i,1

, µ
1

, µ
2

, µ
0

ind⇠ p
⇣i,1 i = 1, . . . , n

1

✓
j,2

| ⇣
j,2

, µ
1

, µ
2

, µ
0

ind⇠ p
⇣j,2 j = 1, . . . , n

2

(20)

(⇣
i,1

, ⇣
j,2

) |µ
1

, µ
2

, µ
0

ind⇠ bern (w
1

; {0, 1})⇥ bern (w
2

; {0, 2})

where X ⇠ bern(w; {a, b}) means that P[X = b] = 1 � P[X = a] = w for w 2 [0, 1]
and a, b 2 R. The latent variables ✓(i) are, then, governed by GM–dependent normalized
CRMs. Therefore, we can resort to results established in Section 3.2 to obtain the full
conditional distributions for all the quantities that need to be sampled in order to attain
posterior inferences. Given the structure of the model, the latent ✓

(i), i = 1, 2, might
feature ties which generate, according to the notation we have already introduced, k

1

+
k
2

+ k
0

clusters. Our analysis of the partition of the ✓

(i)’s will further benefit from the
following fact that is a straightforward consequence of Proposition 2.

Corollary 1. Let (p̃
1

, p̃
2

) be a GM–dependent normalized CRM defined in (8). Suppose
P
0

is a non–atomic probability measure on (X,X). Then

P[✓
i,1

= ✓
j,2

| ⇣
i,1

6= ⇣
j,2

] = 0. (21)

Hence, (21) entails that ties between the two groups ✓(1) and ✓

(2) may arise with positive
probability only if any two ✓

i,1

and ✓
j,2

share the same label ⇣
i,1

= ⇣
j,2

= 0. This is a
structural property of the model and it intuitively means that there cannot be overlaps
between the di↵erent sources of randomness involved, which seems desirable.

Suppose ✓

(i)

⇤ = (✓⇤
1,i

, . . . , ✓⇤
ki,i

), for i = 1, 2, and ✓⇤ = (✓⇤
1

, . . . , ✓⇤
k0
) denote the vectors

of unique distinct values associated to the K = K
1

+K
2

+K
0

clusters. The corresponding
partition is

e
⇡

n1,n2 =
2[

i=1

{C
j,i

: j = 1, . . . ,K
i

} [ {C
j,i,0

: j = 1, . . . ,K
0

} (22)

where r, s 2 C
j,i

means that ✓
r,i

= ✓
s,i

= ✓⇤
j,i

, whereas r
1

2 C
j,1,0

and r
2

2 C
j,2,0

implies
that ✓

r1,1 = ✓
r2,2 = ✓⇤

j

. It is clear, from the specification of the model (17), that the
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conditional density of the data (X(n1),Y (n2)), given the partition e
⇡

n1.n2 = ⇡

n1,n2 and

the distinct latent variables ✓⇤ = (✓(1)

⇤ ,✓
(2)

⇤ ,✓⇤), coincides with

f(x,y |✓⇤,⇡
n1,n2) =

k1Y

j=1

Y

i2Cj,1

h(x
i

; ✓⇤
j,1

)

k2Y

`=1

Y

i2C`,2

h(y
i

; ✓⇤
`,2

)
k0Y

r=1

Y

i2Cr,1,0

h(x
i

; ✓⇤
r

)
Y

`2Cr,2,0

h(y
`

; ✓⇤
r

) (23)

Finally, set
L⇤(dx, dy, d⇡, d✓, d⇣) (24)

as the distribution of the data (X(n1),Y (n2)), the partition e
⇡

n1,n2 in (22), the vector of
unique values in ✓ = (✓(1),✓(2)) and the labels ⇣ = (⇣(1), ⇣(2)). If n = n

1

+ n
2

, then L⇤

is a probability distribution on the product space Xn ⇥ P
n

⇥ ⇥n ⇥ {0, 1}n1 ⇥ {0, 2}n2 ,
where P

n

is the space of all possible realizations of the random partition e
⇡

n1,n2 in (22).
The determination of L⇤ will be first given for any pair of GM–dependent normalized
CRMs. The specific expressions valid for dependent mixtures of the Dirichlet and the
normalized �–stable processes will be established as straightforward corollaries. In the
sequel, we also denote as g

0

a density of P
0

with respect to some �–finite dominating
measure H on ⇥, namely g

0

= dP
0

/dH.

Proposition 4. Let (p̃
1

, p̃
2

) be a GM–dependent normalized CRM defined in (8).
Moreover, let ⇣

⇤
i

= (⇣⇤
1,i

, . . . , ⇣⇤
ki,i

) be the vectors of labels corresponding to the distinct la-

tent variables ✓

(i)

⇤ , with i = 1, 2. For the dependent mixture model in (17), the distribution
L⇤

in (24) has density given by

g(n(1),n(2), q(1), q(2), ⇣⇤) f(x,y |✓⇤,⇡
n1,n2)

kY

i=1

g
0

(✓⇤
i

) (25)

where

g(n(1),n(2), q(1), q(2), ⇣⇤) =
ck z

˜

k1+
˜

k2(1� z)k1+k2�˜

k1�˜

k2

�(n
1

)�(n
2

)

⇥
Z 1

0

Z 1

0

un1�1vn2�1e�cz[ (u)+ (v)]�c(1�z) (u+v)

⇥
k1Y

j=1

⌧
nj,1(u+ (1� ⇣⇤

j,1

)v)
k2Y

j=1

⌧
nj,2((1� ⇣⇤

j,2

/2)u+ v)

⇥
k0Y

r=1

⌧
qr,1+qr,2(u+ v) du dv (26)
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where k̃
1

= |⇣(1)

⇤ | and k̃
2

= |⇣(2)

⇤ |/2 identify the number of clusters with label 1 and 2,
respectively.

Before examining the details of the models we will refer to for illustrative purposes,
it should be recalled that our approach yields posterior estimates of f̃

1

and f̃
2

and of
the number of clusters KX and KY into which one can group the two sample data.
Another interesting issue concerns the estimation of statistical functionals of f̃

1

and of
f̃
2

, which has been addressed in the exchangeable case by Gelfand and Kottas [13]. Their
approach is based on a suitable truncation of the stick-breaking representation of the
Dirichlet process. In order to extend their techniques to this setting, a representation of
the posterior distribution of a pair of GM–dependent normalized CRMs is still missing.

4.1. Dependent mixtures of Dirichlet processes

If the vector (p̃
1

, p̃
2

) is a GM–dependent Dirichlet process as in Example 1, then one
finds out that the weights (w

1

, w
2

) in (18) and the Dirichlet process components p
i

, for
i = 0, 1, 2, are independent and the density function of the vector (w

1

, w
2

) is

f(w
1

, w
2

) =
�(c+ cz)

�2(cz)�(c� cz)

(w
1

w
2

)cz�1[(1� w
1

)(1� w
2

)]c�1

(1� w
1

w
2

)c+cz

1
[0,1]

2(w
1

, w
2

) (27)

This corresponds to the bivariate beta distribution introduced [32]. This model is ana-
lyzed in [22, 37], where independence between (w

1

, w
2

) and (p
0

, p
1

, p
2

) is used to devise a
sampler that includes sampling the weights w

i

. Here we marginalize with respect to both
the weights (w

1

, w
2

) and the random independent Dirichlet processes p
i

, for i = 0, 1, 2.
The first marginalization is trickier and is achieved by virtue of the results in Section 3.2.

Corollary 2. Let (p̃
1

, p̃
2

) be a GM–dependent Dirichlet process. A density of the prob-

ability distribution L⇤
defined in (24) coincides with

ckz
˜

k1+
˜

k2(1� z)k1+k2�˜

k1�˜

k2

(↵)
n1(�)n2

3

F
2

(↵� cz + n
1

� n̄
1

, n
1

, n
2

;↵+ n
1

,� + n
2

; 1)

⇥ ⇠
0

(n(1),n(2), q⇤) f(x,y |✓⇤,⇡
n1,n2)

kY

i=1

g
0

(✓⇤
i

)

where n̄
1

= |⇣(1)|, n̄
2

= |⇣(2)|/2, ↵ = c+ n
2

� n̄
2

and � = c+ n
1

� n̄
1

.

As for the actual implementation of the model, a Gibbs sampler easily follows from
Corollary 2. A key issue is the sampling of the labels. This can be done by first observing
the following facts: (i) if ✓

i,1

= ✓
j,2

then, by Corollary 1, the corresponding labels are
zero, namely ⇣

i,1

= ⇣
j,2

= 0; (ii) given the partition ⇡, the dimensions of label vectors
can be shrunk so that one basically has k labels corresponding to the k = k

1

+ k
2

+ k
0
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clusters of the partition. Remark (i) implies that we do not need to sample the labels
associated to ✓

i,1

values coinciding with any of the ✓
j,2

’s and viceversa. Moreover, Remark
(ii) implies that for any r, s 2 C

j,i

one has ⇣
r,i

= ⇣
s,i

and, thus, we need to sample only
labels ⇣⇤

j,i

corresponding to distinct values ✓⇤
j,i

. Finally, there might be ✓
j,1

’s (or ✓
j,2

’s)
associated to ⇣

j,1

= 0 (or ⇣
j,2

= 0) that do not coincide with any of the ✓
i,2

’s (or of the
✓
i,1

’s): the corresponding labels are not degenerate and must be sampled from their full

conditionals. If ⇣(1)

�j,⇤ stands for the vector ⇣

(1)

⇤ with the j–th component removed, we
use the short notation

⇡
j,1

(x) := P[⇣⇤
j,1

= x | ⇣(1)

�j,⇤, ⇣
(2)

⇤ ,✓⇤,X(n1),Y (n2)].

Hence, if ✓⇤
j,1

does not coincide with any of the distinct values of the latent variables for
the second sample, it can be easily deduced that

⇡
j,1

(x) / 1{0,1}(x)
zx (1� z)1�x

(↵)
n2(�x)n2

⇥
3

F
2

(↵� cz + n
1

� n̄�j,1

� xn
j,1

, n
1

, n
2

;↵+ n
1

,�
x

+ n
2

; 1) (28)

where n̄�j,1

:=
P

i 6=j

n
i,1

⇣⇤
i,1

with n
i,1

denoting the size of the cluster identified by ✓⇤
i,1

.
Moreover, �

x

= c+n
1

� n̄�j,1

�xn
j,1

. Obviously, the normalizing constant is determined
by ⇡

j,i

(0) + ⇡
j,i

(1) = 1. The full conditionals for the ⇣⇤
j,2

can be determined analogously.
As for the full conditionals of the ✓

j,i

’s, these reduce to the ones associated to the
univariate mixture of the Dirichlet process, since one is conditioning on the labels ⇣

j,i

as
well. Hence, one can sample ✓

j,1

from

w
0

P ⇤
j,1

(d✓) +
X

l2J�j,⇣j,1

w
l

�
˜

✓l,⇣j,1
(d✓) (29)

where ✓̃
l,⇣j,1 are the distinct ✓ values in the urn labeled ⇣

j,1

and J�j,⇣j,1 is the set of
indices of distinct values from the urn labeled ⇣

j,1

after excluding ✓
j,1

. Moreover

w
0

/ c (1� z)1�⇣j,1 z⇣j,1
Z

⇥

h (x
j

; ✓)P
0

(d✓)

w
l

/ n
(�j)

l,1

h(x
j

; ✓̃
l,⇣j,1).

(30)

In the weights above, P ⇤
j,1

(d✓) = h(x
j

; ✓)P
0

(d✓)/
R
⇥

h(x
j

; ✓)P
0

(d✓) and n�j

l,1

is the size of

the cluster containing ✓̃
l,⇣j,1 , after deleting ✓j,1. With obvious modifications one also ob-

tains the full conditional for generating ✓
j,2

. This last point suggests that, conditional on
the labels, one needs to run three independent Blackwell–MacQueen Pólya urn schemes:
two are related to the idiosyncratic (and independent) components and one is related to
the common component. Given this, the only di�culty in implementing the algorithm is
due to the generalized hypergeometric function

3

F
2

(a, b, c; e, f ;x). Indeed, when such a
function is evaluated at x = 1, as in our case, the convergence of the series defining it
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can be very slow, depending on the magnitude of e+ f � a� b� c > 0: the lower such a
value, the slower the convergence of the series. The e�ciency of the algorithm can, thus,
be improved by suitably resorting to identities that involve generalized hypergeometric
functions in order to obtain equivalent expressions with a larger value of e+f �a� b� c.
In particular, in the examples considered here we have been able to considerably speed
up the implementation of the algorithm by applying an identity that can be found in [2,
p.14].

4.2. Dependent mixtures of normalized �–stable processes

Consider a GM–dependent normalized �–stable CRM vector (p̃
1

, p̃
2

) as in Example 2.
The corresponding model is somehow more complicated to deal with, but at the same time
it is more representative of what happens in the general case given the simplifications
typical of the Dirichlet process do not occur. Specifically, the weights (w

1

, w
2

) are no
longer independent from the normalized �–stable processes p

i

in (18). Moreover, the
density of (w

1

, w
2

) is not available in closed form for any � 2 (0, 1), but only for � = 1/2.
Nonetheless, it is still possible to obtain analytic forms for the full conditionals allowing
to estimate the marginal densities f̃

i

and to analyze the clustering structure featured by
the two–sample data. Indeed, one can show the following

Corollary 3. Let (p̃
1

, p̃
2

) be a GM–dependent normalized �–stable CRM. A density of

the probability distribution L⇤
defined in (24) coincides with

z
˜

k1+
˜

k2(1� z)k1+k2�˜

k1�˜

k2

�(n
1

)�(n
2

)
�k�1 �(k) f(x,y |✓⇤,⇡

n1,n2)
kY

i=1

g
0

(✓⇤
i

)

⇥ ⇠
�

(n(1),n(2), q⇤)

Z
1

0

wn�n̄1+
˜

k1��1(1� w)n2�n̄2+
˜

k2��1

{1� z + zw� + z(1� w)�}k
dw

where n̄
1

= |⇣(1)| and n̄
2

= |⇣(2)|/2.

In a similar fashion to the dependent Dirichlet process case, from Corollary 3 one can

deduce the full conditionals for both the labels ⇣(i)

⇤ and the ✓(i)

⇤ . As for the former, if ⇣⇤
j,1

corresponds to a distinct value ✓⇤
j,i

not coinciding with any value ✓
l,2

from the second
sample, then

⇡
j,1

(x) / 1{0,1}(x) z
x(1� z)1�x

⇥
Z

1

0

wn�n̄�j,1�xnj,1+(

˜

k�j,1+x)��1(1� w)n2�n̄2+
˜

k2��1

{1� z + zw� + z(1� w)�}k
dw (31)

where n̄�j,1

=
P

i 6=j

n
i,1

⇣⇤
i,1

and k̃�j,1

= |⇣(1)

�j,⇤|.
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Interestingly, the full conditionals for the latent random variables are as simple as
in the Dirichlet process case. Since we are again conditioning on the labels ⇣

(1), it is
apparent that one just needs to run three independent Blackwell-MacQueen Pólya urn
schemes. For ✓

j,1

the full conditional coincides with (29) with di↵erent weights

w
0

/ k�j,⇣j,1� (1� z)1�⇣j,1 z⇣j,1
Z

⇥

h(x
j

; ✓)P
0

(d✓),

w
l

/ (n(�j)

l,1

� �)h(x
j

; ✓̃
l,⇣j,1),

(32)

where k�j,⇣j,1 above is the number of clusters associated to p
⇣j,1 after excluding ✓

j,1

.

5. Full conditional distributions

The results in Sections 3 and 4 form the basis for the concrete implementation of the
model (17) to both synthetic and real datasets in the following section. Here we provide
a detailed description of the algorithm set forth in Section 4 for specific choices of the
kernel h( · ; · ) and of the random probability measures p̃

1

and p̃
2

. In particular, we make
the standard assumption of h( · ;M,V ) being Gaussian with mean M and variance V and
consider GM–dependent Dirichlet and normalized �–stable processes as mixing measures.
As for the specification of the base measures P

0

of such mixing measures (see (5)), we
propose a natural extension to the partially exchangeable case of the quite standard
specification of Escobar and West [9], which greatly contributed to popularizing the
mixture of Dirichlet process model. In particular, we take P

0

to be a normal/inverse–
Gamma distribution

P
0

(dM, dV ) = P
0,1

(dV )P
0,2

(dM |V )

with P
0,1

being an inverse–Gamma probability distribution with parameters (s, S) and
P
0,2

is Gaussian with mean m and variance ⌧V . Moreover, the corresponding hyperpriors
are of the form

⌧�1 ⇠ Ga(w/2,W/2)

m ⇠ N(a,A)

z ⇠ U(0, 1)

c ⇠ Ga(a
0

, b
0

)

(33)

for some w > 0, W > 0, A > 0, a
0

> 0, b
0

> 0 and real a. In the following we focus
on the two special cases and provide the analytic expressions for the corresponding full
conditional distributions. In terms of the notation set in Section 4 the latent variables
now become ✓

j,i

= (M
j,i

, V
j,i

) 2 R ⇥ R+, for any j = 1, . . . , n
i

and i = 1, 2. Moreover
✓̃
j,i

= (M̃
j,i

, Ṽ
j,i

), for i = 0, 1, 2, represent the j–th distinct value of the latent variables
with label i. Also recall that the number of distinct values with label i, for i = 1, 2, is
equal to k̃

i

and set k̃
0

= k
1

+ k
2

� k̃
1

� k̃
2

.
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5.1. GM–dependent Dirichlet processes

Let us first deal with the hierarchical mixture model (17) with (p̃
1

, p̃
2

) a vector of GM–
dependent Dirichlet processes with parameters (c, z;P

0

), which we will denote by GM–
D(c, z;P

0

) in the sequel. With this specification and the auxiliary variable representation
of the mixing measure laid out in (20), the weights of the predictive (29) are similar to
those described in [9], the only di↵erences being related to the bivariate structure, which
results in the dependence on z (see (5)) and on the label ⇣

j,i

. These identify the full
conditional for the latent ✓

j,i

.
In order to determine the full conditionals for the other parameters to be sampled,

let D�r

stand for the set of all (hyper)parameters of the model but r. As for the full
conditional for z, one has


z

(z |X(n1),Y (n2),D�z

) / 
z

(z) z
˜

k1+
˜

k2(1� z)
˜

k0

⇥
3

F
2

(↵� cz + n
1

� n̄
1

, n
1

, n
2

;↵+ n
1

,� + n
2

; 1) ,

where 
z

is the prior distribution of z, which in our specification coincides with the
uniform on (0, 1). On the other hand, an expression for the full conditional for c is
obtained as follows


c

(c |X(n1),Y (n2),D�c

) / 
c

(c)
ck

(↵)
n1(�)n2

⇥
3

F
2

(↵� cz + n
1

� n̄
1

, n
1

, n
2

;↵+ n
1

,� + n
2

; 1) ,

where 
c

is the prior distribution of c that is supposed coincide with Ga(a
0

, b
0

). Moreover,
note that both the coe�cients ↵ and � appearing in the generalized hypergeometric
function

3

F
2

above depend on c. See Corollary 2. Finally, ⌧ and m are sampled from the
following distributions

⌧ | (X(n1),Y (n2),D�⌧ ) ⇠ IG

✓
w + k

2
,
W +W 0

2

◆
, (34)

m | (X(n1),Y (n2),D�m

) ⇠ N(RT, T ), (35)

where IG(a, b) denotes the inverse–gamma distribution with density function g(s) /
s�a�1 e��/s 1R+(s), W 0 =

P
2

i=0

P
˜

ki

l=1

(M̃
l,i

�m)2/Ṽ
l,i

and

T =

2

4 1

A
+

1

⌧

0

@
˜

k1X

i=1

1

Ṽ
i,1

+

˜

k2X

j=1

1

Ṽ
j,2

+

˜

k0X

r=1

1

Ṽ
r,0

1

A

3

5
�1

,

R =

2

4 a

A
+

1

⌧

0

@
˜

k1X

i=1

M̃
i,1

Ṽ
i,1

+

˜

k2X

j=1

M̃
j,2

Ṽ
j,2

+

˜

k0X

r=1

M̃
r,0

Ṽ
r,0

1

A

3

5
�1

.
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5.2. GM–dependent �–stable normalized random measures

When (p̃
1

, p̃
2

) is a vector of GM–dependent normalized �–stable processes with param-
eters (z, P

0

) we set the short notation GM–st(�, z, P
0

). The full conditionals are then
derived from Corollary 3. In particular, explicit expressions for the weights in (32) can
be deduced and the full conditional for z which coincides with


z

(z |X(n1),Y (n2),D�z

) / 
z

(z) z
˜

k1+
˜

k2(1� z)
˜

k0

⇥
Z

1

0

wn1�n̄1+
˜

k1��1(1� w)n2�n̄2+
˜

k2��1

{1� z + zw� + z(1� w)�}k
dw,

where 
z

is, as in Section 5.1, uniform on (0, 1). Moreover, if a prior on (0, 1) is assigned
to the parameter �, the corresponding full conditional is given by


�

(� |X(n1),Y (n2),D��) / 
�

(�) �k�1 ⇠
�

(n(1),n(2), q⇤)

⇥
Z

1

0

wn1�n̄1+
˜

k1��1(1� w)n2�n̄2+
˜

k2��1

{1� z + zw� + z(1� w)�}k
dw

Finally, the full conditionals for ⌧ and m coincide with those displayed in (34) and (35)
since they depend only on h and P

0

and not on the specific vector of random probabilities
(p̃

1

, p̃
2

) driving the respective dependent mixtures.

5.3. Accelerated algorithm

It is well–known that univariate Pólya urn samplers like the one proposed in [9] tend to
mix slowly when the probability of sampling a new value, w

0

, is much smaller than the
probability to sample an already observed one. When this occurs, the sampler can get
stuck at the current set of distinct values and it may take many iterations before any new
value is generated. Such a concern clearly extends also to our bivariate Pólya urn sampler
and, in particular, to (29) and (32) leading the algorithm to get stuck in some specific
{✓̃

i,l

: l = 0, 1, 2; i = 1, . . . , k̃
l

}. To circumvent this problem we resort to the the method
suggested in [40] and [26]: it consists in resampling, at the end of every iteration, the
distinct values ✓̃

l,i

from their conditional distribution. Since this distribution depends on
the choice of p̃

1

and p̃
2

only through their base measure P
0

, it is the same for the Dirichlet
and �–stable cases. In particular, for every i = 1, . . . , k̃

1

, the required full conditional
density of ✓̃

i,1

is

L⇤(✓̃
i,1

|X(n1),Y (n2),D�˜

✓i,1
) / g

0

(✓̃
i,1

)
Y

j2Ci,1

h(x
j

, ✓̃
i,1

), (36)
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where L⇤ is the joint law defined in (24). With our specification, the full conditional
distribution of ✓̃

i,1

in (36) becomes normal/inverse–Gamma with

Ṽ �1

i,1

⇠ Ga

 
s+

n
i,1

2
, S +

P
x2

j

2
+

m2n
i,1

�
P

x
j

(2m+ ⌧
P

x
j

)

2(1 + ⌧n
i,1

)

!
,

M̃
i,1

| Ṽ
i,1

⇠ N

✓
m+ ⌧

P
x
j

1 + ⌧n
i,1

, Ṽ
i,1

⌧

1 + ⌧n
i,1

◆

where
P

x
j

is a shortened notation for
P

j2Ci,1
x
j

. Analogous expressions, with obvious

modifications, hold true for ✓̃
i,2

and ✓̃
i,0

.

6. Illustration

In this section we illustrate the inferential performance of the proposed model on a two–
sample dataset and to this end we implement the Gibbs sampling algorithm devised in
the previous section for (17). We shall consider (p̃

1

, p̃
2

) being either a GM–D(c, z, P
0

)
or a GM–st(�, z, P

0

). In terms of computational e�ciency, we note in advance that the
algorithm with the GM–st mixture is remarkably faster than the one associated to the
GM–D mixture. As already pointed out in the previous sections this is due to the need
of repeated evaluations of generalized hypergeometric function

3

F
2

in the GM–D case.
In contrast, the numerical evaluation of the one–dimensional integral in Corollary 3, for
the GM-st mixture, is straightforward.

We shall analyze the well–known Iris dataset, which contains measures of 4 features
of 3 di↵erent species of Iris flowers: Setosa, Versicolor and Virginica. For each of these
species 150 records of sepal length, sepal width, petal length and petal width of flowers
are available. These data are commonly used in the literature as an illustrative example
for discriminant analysis. Indeed, it has been noted that Setosa is very well separated
from the other two species, which partially overlap. Of the 4 measured features, here we
consider the petal width expressed in millimeters. A total number of 50 observations per
species have been recorded. The 150 observations are, then, used to form two samples
X

(n1) and Y

(n2) as follows. We set n
1

= 90 and let the first sample consist of 50
observations of Setosa and 40 of Versicolor. Correspondingly n

2

= 60 and includes 50
observations of Virginica and the remaining 10 observations of Versicolor. The particular
design of the experiment is motivated by the idea that the Versicolor species identifies
the shared component between the two mixtures, thus making our approach for modeling
dependence appropriate. Moreover, on the basis of previous considerations it is expected
that the two species in the first dataset are more clearly separated than the two species
forming the second sample.

Our statistical analysis has the following two goals: on the one hand we wish to
estimate the densities generating the two samples and, on the other, we aim at obtaining
an approximation of the posterior distribution of the number of clusters in each sample.
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(a) f1 (b) f2

Figure 1. GM–D(c, z, P0) (solid line) vs. GM–st(�, z, P0) (dashed line) mixture with random c and �,
respectively: posterior estimates of the densities f1 and f2. The displayed histograms are generated by

the actual two–sample data.

This allows to draw a direct comparison of the inferential outcomes produced by the GM–
D(c, z, P

0

) and GM–st(�, z, P
0

) mixtures. As for the specifications of the hyperparameters
in (33) we essentially adopted the quite standard specifications of [9]. Hence, we have set
(w,W ) = (1, 100), (s, S) = (1, 1), (a,A) = ((n

1

X̄ + n
2

Ȳ )/(n
1

+ n
2

), 2) and (a
0

, b
0

) =
(2, 1) where X̄ and Ȳ are the sample means for X

(n1) and Y

(n2), respectively. As for
the other parameters involved, we suppose that c ⇠Ga(2, 1), whereas � and z are both
uniform on [0, 1]. Moreover, these three parameters are independent. All estimates will
be based on 80000 iterations of the algorithm after 20000 burn–in sweeps.

Table 1. GM–D(c, z, P0) vs. GM–st(�, z, P0) mixture with random c and �, respectively: estimated

number of clusters (Col. 1 and 2), maximum a posteriori values (

ˆKX and

ˆKY ) and probability of more

than 4 clusters per sample (Col. 5 and 6).

E[KX | . . .] E[KY | . . .] ˆKX
ˆKY P(KX � 4) P(KY � 4)

GM-D(c, z, P0) 3.72 3.15 3 2 0.50 0.31

GM–st(�, z, P0) 2.70 2.30 2 2 0.13 0.05

The estimated densities are displayed in Figure 1 and there seem to be no signifi-
cant di↵erences. However, regardless the particular mixture model specification, the two
species forming each sample are clearly better separated in the first sample. This is not
surprising, given that the second sample is formed by two overlapping species. See also
the histogram in the background of Figure 1. The results on the clustering structure are
reported in Figure 2 and in Table 1. Figure 2 shows that the posterior distributions of
the number of clusters corresponding to the GM–st mixture is characterized by a lower
variability than in the GM–D mixture case. Moreover, if one roughly thinks of each
species of flowers in a sample as forming a single cluster, then it is apparent that the
GM–st mixture better estimates both KX and KY . See also Table 1. These results seems
to suggest that the parameter �, associated to the stable CRM, has a benefical impact
on the estimation of the clustering structure. This is in line with the findings of [25] in
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(a) f1, GM–D (b) f2, GM–D

(c) f1, GM–st (d) f2, GM–st

Figure 2. GM–D(c, z, P0) (top row) vs. GM–st(�, z, P0) (bottom row) mixture with random c and �,
respectively: posterior distributions of the number of clusters KX and KY .
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the exchangeable case, where it is pointed out that � induces a reinforcement mechanism
which improves the capability of learning the clustering structure from the data. We
believe this aspect is of great relevance and, hence, deserves further investigation.

Appendix

A.1. Proof of Proposition 1

By combining the definition of GM–dependent normalized CRMs given in (8) with the
gamma integral, it is possible to write

E [p̃
1

(A) p̃
2

(B)] =

Z 1

0

Z 1

0

E
h
e�uµ̃1(X)�vµ̃2(X) µ̃
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(A) µ̃
2

(B)
i
dudv

Since µ̃
i

= µ
i

+ µ
0

for i = 1, 2, with µ
0

, µ
1

and µ
2

independent, one has

E
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0
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i

= E
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i
E
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0
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i

= c2z(1� z)P
0

(A)P
0

(B) e�cz (u)�c(1�z) (u+v) ⌧
1

(u) ⌧
1

(u+ v)

Use the symbol Ai to denote A if i = 1 and Ac if i = 0. Hence {Ai \ Bj : i, j = 0, 1} is
the partition of X generated by {A,B}. Hence

E
h
e�(u+v)µ0(X) µ

0

(A)µ
0

(B)
i
=

1X

i,j=0

E
h
e�(u+v)µ0(X) µ

0

(A \Bi)µ
0

(Aj \B)
i

This implies that

E
h
e�(u+v)µ0(X) µ

0

(A)µ
0

(B)
i
= e�c(1�z) (u+v) c(1� z) {P

0

(A \B) ⌧
2

(u+ v)

+ c(1� z)⌧2
1

(u+ v)
1X

i,j=0

P
0

(A \Bi)P
0

(Aj \B)}

= e�c(1�z) (u+v) c(1� z) {P
0

(A \B) ⌧
2

(u+ v)

+ c(1� z)P
0

(A)P
0

(B)⌧2
1

(u+ v)}.

Summing up, it follows that

E [p̃
1

(A) p̃
2

(B)] =

Z 1

0

Z 1

0

e�z( (u)+ (v))�c(1�z) (u+v)
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⇥ c {(1� z)P
0

(A \B) ⌧
2

(u+ v) + c2P
0

(A)P
0

(B)[(1� z)2⌧2
1

(u+ v)

+ z(1� z)⌧
1

(u+ v)(⌧
1

(u) + ⌧
1

(v)) + z2⌧
1

(u)⌧
1

(v)]} dudv

If in the previous expression one sets A = B = X, then the following identity holds true

c2
Z 1

0

Z 1

0

e�cz( (u)+ (v))�c(1�z) (u+v)) [(1� z)2 ⌧2
1

(u+ v)

+ z(1� z)⌧
1

(u+ v)(⌧
1

(u) + ⌧
1

(v)) + z2⌧
1

(u)⌧
1

(v)] du dv

= 1� c(1� z)

Z 1

0

Z 1

0

e�c(1�z) (u+v) ⌧
2

(u+ v) dudv

The results in (11) and in (12) then follows.

A.2. Proof of Proposition 2

We first determine the probability distribution of (⇡̃
n1,n2 ,X

(n1),Y (n2)). Here ⇡̃
n1,n2 de-

notes a random partition of {X(n1),Y (n2)} whose generic realization, ⇡
n1,n2 , splits the

n
1

+ n
2

observations into
P

2

i=0

k
i

groups of distinct values with respective frequencies

{n
j,1

}k1
j=1

, {n
`,1

}k2
`=1

and {q
r,1

+ q
r,2

}k0
r=1

. Henceforth, we shall use the shorter notation

⇤n,k(A) = (⇡̃
n1,n2 ,X

(n1),Y (n2))�1(⇡
n1,n2 ,A)

withA standing for the collection of pairwise disjoint sets {A
j,1

, A
`,2

, A
r

: j = 1, . . . , k
1

; ` =
1, . . . , k

2

; r = 1, . . . , k
0

}. Moreover, for any pair of set function m
1

and m
2

on (X,X ) we

set mn(i)

i

(A
i

) =
Q

ki

j=1

m
nj,i

i

(A
j,i

) and (mq(1)

1

⇥m

q(2)

2

)(A
0

) =
Q

k0

r=1

m
qr,1

1

(A
r

)m
qr,2

2

(A
r

).
By virtue of (9) one has

P [⇤n,k(A)] =

Z

P

2
X

p

n(1)

1

(A
1

)pn(2)

2

(A
2

) (pq(1)

1

⇥ p

q(2)

2

)(A
0

) �(dp
1

, dp
2

) (37)

Since each p̃
i

is equal, in distribution, to the normalized measure µ̃
i

/µ̃
i

(X) one can
proceed in a similar fashion as in the proof of Proposition 1 and write

P [⇤n,k(A)] =
1

�(n
1

)�(n
2

)

Z 1

0

du

Z 1

0

dv

E
h
e�uµ̃1(X)�vµ̃2(X)

µ̃

n(1)

1

(A
1

) µ̃n(2)

2

(A
2

) (µ̃q(1)

1

⇥ µ̃

q(2)

2

)(A
0

)
i
.

Since CRMs give rise to mutually independent random variables when evaluated on
disjoint sets, which identifies the so–called independence property of CRMs, the expected
value in the integral above is shown to coincide with
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E
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e�uµ̃1(X⇤

)�vµ̃2(X⇤
)

i 2Y
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kiY
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E
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qr,1

1

(A
r

) µ̃
qr,2

2

(A
r

)
i

where X⇤ = X \ {([2

i=1

[ki
j=1

A
j,i

)[ ([k0
r=1

A
r

)}. In the first product let us consider i = 1.
A similar line of reasoning holds for i = 2 as well. If we set h

z

(u, v) = z( (u) +  (v)) +
(1� z) (u+ v), by virtue of the Faà di Bruno formula the j–th factor coincides with

E
h
e�uµ̃1(Aj,1)�vµ̃2(Aj,1) µ̃

nj,1

1

(A
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)
i
= (�1)nj,1

@nj,1

@unj,1
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= e�G(Aj,1)hz(u,v) {G(A
j,1

)(z⌧
nj,1(u) + (1� z)⌧

nj,1(v)) +R
j

(A
j,1

)}

where R
j

(A
j,1

) is a polynomial in G(A
j,1

) of order greater than 1 and G = cP
0

. Moreover,
a multivariate version of the Faà di Bruno formula, see [5], leads to

E
h
e�uµ̃1(Ar)�vµ̃2(Ar) µ̃

qr,1

1

(A
r

) µ̃
qr,2

2

(A
r

)
i

= (�1)qr,1+qr,2
@qr,1+qr,2

@uqr,1@vqr,2
e�G(Ar)hz(u,v)

= e�G(Ar)hz(u,v) {G(A
r

)(1� z)⌧
qr,1+qr,2(u+ v) +R⇤

r

(A
r

)}

with R⇤
r

(A
r

) denoting a polynomial in G(A
r

) of degree greater than 1. Combining all
these facts together, one obtains

P [⇤n,k(A)] =

Q
j,`,r

G(A
j,1

)G(A
`,2

)G(A
r

)

�(n
1

)�(n
2

)

⇥
X

i2{0,1}k1

X

l2{0,1}k2

(1� z)k0+|i|+|l| zk1+k2�|i|�|l|
Z 1

0

Z 1

0

k1Y

j=1

⌧
nj,1(u+ i

j

v)

⇥
k2Y

l=1

⌧
nl,2(`lu+ v)

k0Y

r=1

⌧
qr,1+qr,2(u+ v) d dv +R⇤⇤

r

(A)

where R⇤⇤
r

(A) is a polynomial of order greater than k = k
1

+ k
2

+ k
0

in the variables
G(A

j,1

), with j = 1, . . . , k
1

, G(A
`,2

), with ` = 1, . . . , k
2

, and G(A
r

), with r = 1, . . . , k
0

.
It is apparent that the probability distribution of (X(n1),Y (n2)), conditional on ⇡̃

n1,n2 =
⇡
n1,n2 , is absolutely continuous with respect to P k

0

and recall that P
0

is non–atomic. In
order to determine a density of (X(n1),Y (n2)), conditional on ⇡̃

n1,n2 = ⇡
n1,n2 , define A"

as the collection of sets {A"
j,1

, A"
`,2

, A"
r

: j = 1, . . . , k
1

; ` = 1, . . . , k
2

; r = 1, . . . , k
0

} with

A"
j,1

# {x
j

} A"
`,2

# {y
`

} A"
r

# {z
r

}
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as " # 0. Hence, a version of the conditional density of (X(n1),Y (n2)), conditional on
⇡̃
n1,n2 = ⇡

n1,n2 , with respect to P k

0

and evaluated at (x,y, z) is proportional to

lim
"#0

P [⇤n,k(A")]
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P
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)
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P
0

(A"
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)

and, from previous expansion, it can be easily seen to coincide with 1. And this proves
the statement.

A.3. Proof of Proposition 4

The probability distribution L⇤ defined in (24) can be decomposed as follows

L(✓⇤,⇡
n1,n2 , ⇣)L(X(n1),Y (n2) |✓⇤,⇡

n1,n2 , ⇣).

In a similar fashion to the proof of Proposition 2 we use the notation

⇤n,k(A) = (⇡̃
n1,n2 ,✓

⇤)�1(⇡
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withA standing for the collection of pairwise disjoint sets {A
j,1

, A
`,2

, A
r

: j = 1, . . . , k
1

; ` =
1, . . . , k

2

; r = 1, . . . , k
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}. By virtue of (9) and by definition of ⇣ = (⇣(1), ⇣(2)) one has
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where �0 corresponds to the probability distribution of the random vector
✓

µ
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µ
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(X) ,
µ
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µ
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(X) ,
µ
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µ
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(X)

◆

on P 3

X and we have used vector notation to denote the inner products n
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n
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) for i = 1, 2. Moreover, note that
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for any a = (a(1),a(2)) 2 {0, 1}n1 ⇥ {0, 2}n2 . Thus, by similar arguments to those em-
ployed in the proofs of Propositions 1 and 2, we can write

P [⇤n,k(A) , ⇣ = a] =
1
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)�(n
2

)
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0
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where a is a vector such that a(i) contains k
i

labels ⇣⇤
j,i

such that
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2 A | p
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] = p
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(A).

Using the independence property of CRMs and the independence of µ
0

, µ
1

and µ
2

, the
expected value in the integral above can be rewritten as
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where X⇤ = X \ {([2

i=1

[ki
j=1

A
j,i

) [ ([k0
r=1

A
r

)}. In the first product consider i = 1, a
similar line of reasoning holds then for i = 2. The j–th factor coincides with
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In the previous expressions we have agreed that @0/@s0 is the identity operator and that
R

j,1

(A
j,1

) is some polynomial in P
0

(A
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) of order greater than 1. Thus, the product in
(39) is equal to
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Analogously, one has
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where R
r
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r

) is some polynomial in P
0

(A
r

) of order greater than 1. By combining the
expressions (40)–(42) we obtain that P [⇤n,k(A) , ⇣ = a] coincides with
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). It is apparent that the probability

distribution of (✓(1),✓(2)), conditional on e⇡
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probability distribution of the distinct values ✓⇤ = (✓(1)

⇤ ,✓
(2)
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and that

L(✓⇤,⇡
n1,n2 , ⇣) = g(n(1),n(2), q(1), q(2), ⇣⇤)

kY
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g
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Since the vector (X(n1),Y (n2)), given the partition ⇡̃
n1.n2 = ⇡

n1,n2 and the distinct

values (✓(1)

⇤ ,✓
(2)

⇤ ,✓⇤), is independent from the labels ⇣, the result follows from (23).

A.4. Proof of Corollary 2

If (µ̃
1

, µ̃
2

) are GM–dependent gamma CRMs, then one has ⌧
q

= �(q)(1 + u)�q and
 (u) = log(1 + u). By plugging these expressions into (26) and resorting to identity
3.197.1 in [14] we obtain that g(n(1),n(2), q(1), q(2), ⇣⇤) is equal to
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where we recall that k̃
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. The simple change of variable t = u/(1 + u)
and the transformation formula for hypergeometric functions
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let us rewrite the integral in (44) as
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The proof is then completed by resorting to identity 7.512.5 in [14]

A.5. Proof of Corollary 3

If (µ̃
1

, µ̃
2

) are GM–dependent �-stable CRMs, then one has ⌧
q

= �(1 � �)
q�1

u��q and
 (u) = u�. By plugging these expressions into (26) we obtain that g(n(1),n(2), q(1), q(2), ⇣⇤)
is equal to
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The proof is completed by carefully applying the change of variables w = u/(u+ v) and
s = u+ v.



32 A. Lijoi, B. Nipoti and I. Prünster

Acknowledgements.

The authors are grateful to an Associate Editor and three referees for their constructive
comments and valuable suggestions. This work was supported by the European Research
Council (ERC) through StG “N-BNP” 306406. Part of the material presented here is
contained in the PhD thesis [31] defended at the University of Pavia (Italy) in June
2011.

References

[1] Antoniak, C.E. (1974). Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems. Ann. Statist. 2, 1152–1174.

[2] Bailey, W.N. (1964). Generalized hypergeometric series. Cambridge University Press.
[3] Barrientos, A.F., Jara, A. and Quintana, F.A. (2012). On the support of MacEach-

ern’s dependent Dirichlet processes and extensions. Bayesian Analysis 7, 277–310.
[4] Cifarelli, D.M. and Regazzini, E. (1978). Problemi statistici non para-
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