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1. Introduction

In this chapter we concentrate on modelling heteroscedasticity and non-normality. By doing so

we shall provide the reader with a number of alternative to the basic GARCH model used in

the previous chapter to derive VaR of a given portfolio. The basic procedure which we have

illustrated which uses a GARCH forecasting model for volatility and a simple specification for

returns to derive by simulation the VaR of interest can then be used with alternative models

for volatility, specifications of standardized returns that allow for deviations from normality and

simpler methods than simulation to derive VaR.

2. Computing Measures of Risk without simulation

VaR simply answers the question “What percentage loss on a given portfolio  is such that it

will only be exceeded ×100% of the time in the next  trading periods (say, days)?” Formally:

   0 is such that Pr(
  − ) = 

where 
 is a continuously compounded portfolio return between time  and +, i.e.,


 ≡ ln 

+ − ln 
 , where  

 is the portfolio value.

It is well known that even though it is widely reported and discussed, the key shortcoming of

VaR is that it is concerned only with the range of the outcomes that exceed the VaR measure and

not with the overall magnitude (for instance, as captured by an expectation) of these losses. This

magnitude, however, should be of serious concern to a risk manager: large VaR exceedances–

outcomes below the VaR threshold–are much more likely to cause financial distress, such as

bankruptcy, than are small exceedances, and we therefore want to entertain a risk measure that

accounts for the magnitude of large losses as well as their probability.1 The challenge is to come

up with a portfolio risk measure that retains the simplicity of the VaR but conveys information

regarding the shape of the tail. Expected shortfall (ES), or TailVaR as it is sometimes called, does

exactly this.2 Expected shortfall (ES) is the expected value of tomorrow’s return, conditional

on it being worse than the VaR at given size :

+1() = −[

+1|

+1  − +1()]

1Needless to say, the most complete measure of the probability and size of potential losses is the entire shape of

the tail of the distribution of losses beyond the VaR. Reporting the entire tail of the return distribution corresponds

to reporting VaRs for many different coverage rates, say  ranging from .001% to 1% in increments of .001%. It

may, however, be less effective as a reporting tool to senior management than is a single VaR number, because

visualizing and discussing a function is always more complex than a single number that answers a rather simple

question such as “What’s the loss so that only 1% of potential losses will be worse over the relevant horizon?”
2Additionally, Artzner et al. (1999) define the concept of a coherent risk measure and show that expected

shortfall (ES) is coherent whereas VaR is not.
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In essence, ES is just (the opposite of) a truncated conditional mean of portfolio returns, where

the truncation is provided by VaR. In particular, the negative signs in front of the expectation

and the VaR are needed because ES and VaR are defined as positive numbers.

In the previous chapter we have derived VaR via simulation, however the calculation of

 1 =  +1 is trivial in the univariate case, when there is only one asset ( = 1) or one

considers an entire portfolio, and 
1 has a Gaussian density:3

 = Pr(
+1  − +1) = Pr

Ã

+1 − +1

+1
 − +1 + +1

+1

!

= Pr

µ
+1  −

 +1() + +1
+1

¶
= Φ

µ
− +1() + +1

+1

¶


where +1 ≡ [

+1] is the conditional mean of portfolio returns predicted for time  + 1 as

of time , +1 ≡
q
 [


+1] is the conditional volatility of portfolio returns predicted for

time  + 1 as of time  (e.g., from some ARCH of GARCH model), and Φ(·) is the standard
normal CDF. Call now Φ−1() the inverse Gaussian CDF, i.e., the value of  that solves

Φ() =  ∈ (0 1); clearly, by construction, Φ−1(Φ()) = .
4 It is easy to see that from the

expression above we have

Φ−1() = Φ−1
µ
Φ

µ
− +1()− +1

+1

¶¶
= − +1 + +1

+1

=⇒  +1() = −Φ−1()+1 − +1.

Note that  +1  0 if   05 and when +1 is small (better, zero); this follows from the

fact that if   05 (as it is common; as you know typical VaR “levels” are 5 and 1 percent, i.e.,

0.05 and 0.01), then Φ−1()  0 so that −Φ−1()+1  0 as +1  0 by construction. +1 is
indeed small or even zero–as we have been assuming so far–for daily or weekly data, so that

 +1  0 typically obtains.
5 For example, if ̂+1 = 0% ̂+1 = 25% (daily), then

[ +1(1%) = −0025(−233)− 0 = 5825%

which means that between now and the next period (tomorrow), there is a 1% probability of

recording a percentage loss of 5.85 percent or larger.

3This chapter focusses on one-day-ahead distribution modeling and VaR calculations. Outside, the Gaussian

benchmark, predicting multi-step distributions normally requires Monte Carlo simulation, which will be covered

in chapter 8.
4The notation  Ä Φ() =  emphasizes that if you change  ∈ (0 1) then  ∈ (−∞+∞) will change as

well. Note that lim→0+  = −∞ and lim→1−  = +∞. Here the symbol ‘Ä’ means “such that”.
5What is the meaning of a negative VaR estimate between today and next period? Would it be illogical or

mathematically incorrect to find and report such an estimate?
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3. Simple Models for Volatility

In this section we discuss simpler specification for Volatility than the Benchmark GARCH.

These specifications come with the benefit of easier computations and at the cost of potential

mis-prediction of volatility.

3.1. Rolling window variance model

The easiest way to capture volatility clustering is by letting tomorrow’s variance be the simple

average of the most recent  squared observations, as in

2+1 =
1



X
=1

2+1− =
X

=1

1


2+1−  (1)

This variance prediction function is simply a constant-weight sum of  past squared returns.6

This is called a rolling window variance forecast model. However, the fact that the model puts

equal weights (equal to 1) on the past  observations often yields unwarranted and hard

to justify results. Predicted rolling window variance exhibits box-shaped patterns: An extreme

return (positive or negative) today will bump up variance by 1 times the return squared for

exactly  periods after which variance immediately drops back down. However, such extreme

gyrations–especially the fact that predicted variance suddenly declines after m periods–does

not reflect the economics of the underlying financial market. It is instead just caused by the

mechanics of the volatility model postulated in (1). This brings us to the next issue: given that

 has such a large impact on the dynamics of predicted variance, one wonders how  should

be selected and whether any optimal choice may be hoped for. In particular, it is clear that

a high  will lead to an excessively smoothly evolving 2+1, and that a low  will lead to an

excessively jagged pattern of 2+1. Unfortunately, in the financial econometrics literature no

compelling or persuasive answer has been yet reported.

3.2. Exponential variance smoothing: the RiskMetrics model

Another reason for dissatisfaction is that typically the sample autocorrelation plots/functions

of squared returns suggest that a more gradual decline is warranted in the effect of past returns

on today’s variance. A more interesting model that takes this evidence into account when

6Because we have assumed that returns have zero mean, note that when predicting variance we do not need

to worry about summing or weighing squared deviations from the mean, as in general the definition of variance

would require.
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computing forecasts of variance is JP Morgan’s RiskMetrics system:

2+1 = (1− )

∞X
=1

−12+1−  ∈ (0 1) (2)

In this model, the weight on past squared returns declines exponentially as we move backward in

time: 1, , 2, . . . 7 Because of this rather specific mathematical structure, the model is also called

the exponential variance smoother. Exponential smoothers have a long tradition in econometrics

and applied forecasting because they are known to provide rather accurate forecasts of the level

of time series. JP Morgan’s RiskMetrics desk was however rather innovative in thinking that

such a model could also provide good predictive accuracy when applied to second moments of

financial time series.

(2) does not represent either the most useful or the most common way in which the Risk-

Metrics model is presented and used. Because for  = 1 we have 0 = 1, it is possible to re-write

it as:

2+1 = (1− )2 + (1− )

∞X
=2

−12+1− = (1− )2 + (1− )

∞X
=1

2− 

Yet it is clear that

2 = (1− )

∞X
=1

−12− =
1


(1− )

∞X
=1

2− 

Substituting this expression into 2+1 = (1− )2 + (1− )
P∞

=1 
2− , gives

2+1 = (1− )2 +



(1− )

∞X
=1

2−

= (1− )2 + 

⎡⎢⎢⎢⎢⎢⎣
1


(1− )

∞X
=1

2−| {z }
=2

⎤⎥⎥⎥⎥⎥⎦
= (1− )2 + 2  (3)

(3) implies that forecasts of time  + 1 variance are obtained as a weighted average of today’s

variance and of today’s squared return, with weights  and 1− , respectively.8 In particular,

7However, the weights do sum to 1, as you would expect them to do. In fact, this is the role played by the

factor (1 − ) that multiplies the infinite sum
∞

=1
−12

+1− . Noting that because the sum of a geometric

series is
∞

=0 
 = 1(1− ), we have

∞
=1

 =

∞
=1

(1− )
−1

= (1− )

∞
=1


−1

= (1− )

∞
=0



= (1− )

1

(1− )
= 1

where  ≡ (1− )−1 for  ≥ 1.
8One of your TAs has demanded that also the following, equivalent formulation be reported: 2+1| = (1 −

)2
 + 2  where 

2
+1| emphasizes that this is the forecast of time + 1 variance given the time  information

set. This notation will also appear later on in the chapter.
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notice that

lim
→1−

2+1 = 2 

i.e., as → 1− (a limit from the left, given that we have imposed the restriction that  ∈ (0 1))
the process followed by conditional variance becomes a constant, in the sense that 2+1 = 2 =

2−1 =  = 20 The naive idea that one can simply identify the forecast of time + 1 variance

as the squared return of  corresponds instead to the case of → 0+.

The RiskMetrics model in (3) presents a number of important advantages:

1. (2) is a sensible formula as it implies that recent returns matter more for predicting to-

morrow’s variance than distant returns do; this derives from  ∈ (0 1) so that  gets
smaller when the lag coefficient,  , gets bigger. Figure 1 show the behavior of this weight

as a function of  .
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Figure 1 Weights of Past Observations as a function of 

2. (3) only contains one unknown parameter,  that we will have to estimate. In fact, after

estimating  on a large number of assets, RiskMetrics found that the estimates were quite

similar across assets, and therefore suggested to simply set  for every asset and daily data

sets to a typical value of 0.94. In this case, no estimation is necessary.9

3. Little data need to be stored in order to calculate and forecast tomorrow’s variance; in

fact, for values of  close to the 0.94 originally suggested by RiskMetrics, it is the case

that after including 100 lags of squared returns, the cumulated weight is already close to

100%. This is of course due to the fact that, once 2 has been computed, past returns

9We shall see later in this chapter that maximum likelihood estimation of  tends to provide estimates that

hardly fall very far from the classical RiskMetrics  = 094
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beyond the current squared return 2 , are not needed. Figure 2 shows the behavior of the

cumulative weight for a fixed number of past observations as a function of .
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Figure 2 Cumulative Weight on Past Information as a Function of 

Given all these advantages of the RiskMetrics model, why not simply end the discussion

on variance forecasting here?

3.3. Are GARCH(1,1) and RiskMetrics different?

On the one hand, RiskMetrics and GARCH are not that radically different: comparing (??)

with (3) you can see that RiskMetrics is just a special case of GARCH(1,1) in which  = 0 and

 = 1−  so that, equivalently, (+ ) = 1. On the other hand, this simple fact has a number

of important implications:

1. Because  = 0 and +  = 1, under RiskMetrics the long-run variance does not exist as

gives an indeterminate ratio “0/0”:

̄2 =
0

1− − 
=
0

0


Therefore while RiskMetrics ignores the fact that the long-run, average variance tends to

be relatively stable over time, a GARCH model with (+ )  1 does not. Equivalently,

while a GARCH with ( + )  1 is a stationary process, a RiskMetrics model is not.

This can be seen from the fact that ̄2 does not even exist (do not spend much time

trying to figure out the value of 00).

2. Because under RiskMetrics (+ ) = 1, it follows that

(2+|) − ̄2 = (1)−1(2+1| − ̄2) = 2+1| − ̄2 =⇒ (2+|) = 2+1|
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which means that any shock to current variance is destined to persist forever: If today

is a high (low)-variance day, then the RiskMetrics model predicts that all future days

will be high (low)- variance days, which is clearly rather unrealistic. In fact, this can be

dangerous: assuming the RiskMetrics model holds despite the data truly look more like

GARCH will give risk managers a false sense of the calmness of the market in the future,

when the market is calm today and 2
+1|  ̄2.10 A GARCH more realistically assumes

that eventually, in the future, variance will revert to the average value ̄2.

3. Under RiskMetrics, the variance of long-horizon returns is:

(2+1:+) =

X
=1

2+| =
X
=1

2+1| = 2+1

= (1− )2 +2 

which is just  times the most recent forecast of future variance. Consequently, the

per-period long-run variance is:

(2+1:+)


= (1− )2 + 2 = 2+1|

Figure 3 illustrates this difference through a practical example in which for the RiskMetrics

we set  = 094
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Figure 3: Per-period variance forecasts as a function of  under GARCH(1,1) vs. RiskMetrics

10Clearly this point cannot be appreciated by such a risk-manager: under RiskMetrics ̄2 does not exist.
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4. Beyond GARCH

4.1. Asymmetric GARCH Models (with Leverage) and Predetermined Variance Factors

A number of empirical papers have emphasized that for many assets and sample periods, a

negative return increases conditional variance by more than a positive return of the same mag-

nitude does, the so-called leverage effect. Although empirical evidence exists that has shown

that speaking of a leverage effect with reference to corporate leverage may be slightly abusive of

what the data show, the underlying idea is that because, in the case of stocks, a negative equity

return implies a drop in the equity value of the company, this implies that the company becomes

more highly levered and thus riskier (assuming the level of debt stays constant). Assuming that

on average conditional variance represents an appropriate measure of risk–which, as we shall

discuss, requires rather precise assumptions within a formal asset pricing framework–the logical

flow of ideas implies that negative (shocks to) stock returns ought to be followed by an increase

in conditional variance, or at least that negative returns ought to affect subsequent conditional

variance more than positive returns do.11 More generally, even though a leverage-related story

remains suggestive and a few researchers in asset pricing have indeed tested this linkage directly,

in what follows we shall write about an asymmetric effect in conditional volatility dynamics,

regardless of whether this may actually be a leverage effect or not.

Returns on most assets seem to be characterized by an asymmetric news impact curve (NIC).

The NIC measures how new information is incorporated into volatility, i.e., it shows the rela-

tionship between the current return  and conditional variance one period ahead 
2
+1, holding

constant all other past and current information.12 Formally, 2+1 = (|2 = 2) means

that one investigates the behavior of 2+1 as a function of the current return, taking past variance

as given. For instance, in the case of a GARCH(1,1) model we have:

(|2 = 2) =  + 2 + 2 = + 2

where the constant  ≡  + 2 and   0 is the convexity parameter. This function is a

11These claims are subject to a number of qualifications. First, this story for the existence of asymmetric

effects in conditional volatility only works in the case of stock returns, as it is difficult to imagine how leverage

may enter the picture in the case of bond, real estate, and commodities’ returns, not to mention currency log-

changes. Second, the story becomes fuzzy when one has to specify the time lag that would separate the negative

shock to equity returns and hence the capital structure and the (subsequent?) reaction of conditional volatility.

Third, as acknowledged in the main text, there are potential issue with identifying the (idiosyncratic) capital

structure-induced risk of a company with forecasts of conditional variance.
12In principle the NIC should be defined and estimated with reference to shocks to returns, i.e., news. In general

terms, news are defined as the unexpected component of returns. However, in this chapter we are working under

the assumption that +1 = 0 so that in our view, returns and news are the same. However, some of the language

in the text will still refer to news as this is the correct thing to do.
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quadratic function of 2 and therefore symmetric around 0 (with intercept ). Figure 4 shows

such a symmetric NIC from a GARCH(1,1) model.
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Figure 4: Symmetric NIC from a GARCH model

However, from empirical work, we know that for most return series, the empirical NIC fails to

be symmetric. As already hinted at, there is now massive evidence that negative news increase

conditional volatility much more than positive news do.13 Figure 5 compares a symmetric

GARCH-induced NIC with an asymmetric one.

How do you actually test whether there are asymmetric effects in conditional heteroskedas-

ticity? The simplest and most common way consists of using (Lagrange multiplier) ARCH-type

tests similar to those introduced before. After having fitted to returns data either a ARCH or

GARCH model, call {̂} the corresponding time series of standardized residuals. Then simple
13Intuitively, both negative and positive news should increase conditional volatility because they trigger trades

by market operators. This is another flaw of our earlier presentation of asymmetries in the NIC as leverage effects:

in this story, positive news ought to reduce company leverage, reduce risk, and volatility. In practice, all kinds

of news tend to generate trading and hence volatility, even though negative news often bump variance up more

than positive news do.
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regressions may be performed to assess whether the NIC is actually asymmetric.
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Figure 5: Symmetric and asymmetric NICs

If tests of the null hypothesis that the coefficients 1, 2, ..., , 1, 2, ...,  are all equal to

zero (jointly or individually) in the regressions (1̂0 is the notation for a dummy variable that

takes a value of 1 when the condition   0 is satisfied, and zero otherwise)

̂2 = 0 + 1̂−1 + 2̂−2 + + ̂− + 

or

̂2 = 0 + 11̂−10 + + 1̂−20 + 11̂−10̂−1 + + 1̂−0̂− + 

lead to rejections, then this is evidence of the need of modelling asymmetric conditional variance

effects. This occurs because either the signed level of past estimated shocks (̂−1, ̂−2, ..., ̂−),

dummies that capture such signs, or the interaction between their signed level and dummies that

capture theirs signs, provide significant explanation for subsequent squared standardized returns.

Market operators will care of the presence of any asymmetric effects because this may mas-

sively impact their forecasts of volatility, depending on whether recent market news have been

positive or negative. GARCH models can be cheaply modified to account for asymmetry, so that

the weight given to current returns when forecasting conditional variance depends on whether

past returns were positive or negative. In fact, this can be done in some many effective ways to

have sparked a proliferation of alternative asymmetric GARCH models currently entertained by

a voluminous econometrics literature. In the rest of this section we briefly present some of these

models, even though a Reader must be warned that several dozens of them have been proposed

and estimated on all kinds of financial data, often affecting applications, such as option pricing.
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The general idea is that–given that the NIC is asymmetric or displays other features of

interest–we may directly incorporate the empirical NIC as part of an extended GARCH model

specification according to the following logic:

Standard GARCH model + asymmetric NIC component.

where the NIC under GARCH (i.e., the standard component) is (|2 = 2) =  + 2

= +22 . In fact, there is an entire family of volatility models parameterized by 1, 2, and

3 that can be written as follows:

() = [| − 1|− 2( − 1)]
23 

One retrieves a standard, plain vanilla GARCH(1,1) by setting 1 = 0, 2 = 0, and 3 = 1. In

principle the game becomes then to empirically estimate 1, 2, and 3 from the data.

4.2. Exponential GARCH

EGARCH is probably the most prominent case of an asymmetric GARCH model. Moreover,

the use of EGARCH–where the “E” stands for exponential–is predicated upon the fact that

while in standard ARCH and GARCH estimation the need to impose non-negativity constraints

on the parameters often creates numerical as well as statistical (inferential, when the estimated

parameters fall on a boundary of the constraints) difficulties in estimation, EGARCH solves

these problems by construction in a very clever way: even though (θ) : R → R can take any

real value (here θ is a vector of parameters to be estimated and (·) some function, for instance
predicted variance), it is obviously the case that

exp((θ))  0 ∀θ ∈R 

i.e., “exponentiating” any real number gives a positive real. Equivalently, one ought to model

not (θ) but directly log (θ) knowing that (θ) = exp(log (θ)): the model is written in

log-linear form.

Nelson (1990) has proposed such a EGARCH in which positivity of the conditional variance

is ensured by the fact that log2+1 is modeled directly:
14

log 2+1 =  +  log 2 +  ()  () =  + (||−||)
14This EGARCH(1,1) model may be naturally extended to a general EGARCH( ) case:

log
2
+1 = +


=1

 log 
2
+1−+ ( −1  −)  ( −1   − ) =


=1

[+1− + (|+1−|−|+1−|)] 

However on a very few occasions these extended EGARCH( ) models have been estimated in the literature,

although their usefulness in applied forecasting cannot be ruled out on an ex-ante basis.
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and recall that  ≡ . The sequence of random variables { ()} is a zero-mean, IID
stochastic process with the following features: (i) if  ≥ 0, as  () =  + ( − ||) =
−||+(+),  () is linear in  with slope +; (ii) if   0, as  () = +(−−
[−]) = −||+ (−),  () is linear in  with slope −. Thus,  () is a function of
both the magnitude and the sign of  and it allows the conditional variance process to respond

asymmetrically to rises and falls in stock prices. Indeed,  () can be re-written as:

 () = −||+ ( + )1≥0 + ( − )10

where 1≥0 is a standard dummy variable. The term (|| − ||) represents a magnitude
effect:

• If   0 and  = 0, innovations in the conditional variance are positive (negative) when

the magnitude of  is larger (smaller) than its expected value;

• If  = 0 and   0, innovations in the conditional variance are positive (negative) when

returns innovations are negative (positive), in accordance with empirical evidence for stock

returns.15

4.3. Threshold (GJR) GARCH model

Another way of capturing the leverage effect is to directly build a model that exploits the

possibility to define an indicator variable,  , to take on the value 1 if on day  the return is

negative and zero otherwise. For concreteness, in the simple (1,1) case, variance dynamics can

now be specified as:

2+1 =  + 2 + 
2
 + 2  ≡

(
1 if   0

0 if  ≥ 0
or

2+1 =

(
 + (1 + )2 + 2 if   0

 + 2 + 2 if  ≥ 0
 (4)

A   0 will again capture the leverage effect. In fact, note that in (4) while the coefficient on

the current positive return is simply  i.e., identical to a plain-vanilla GARCH(1,1) model when

 ≥ 0 this becomes (1 + )   when   0 just a simple and yet powerful way to capture

asymmetries in the NIC. This model is sometimes referred to as the GJR-GARCH model–from

Glosten, Jagannathan, and Runkle’s (1993) paper–or threshold GARCH (TGARCH) model.

Also in this case, extending the model to encompass the general ( ) case is straightforward:

2+1 =  +

X
=1

(1 + )
2
+1− +

X
=1


2
+1− .

15 () =   0 when   0 represents no problem thanks to the exponential transformation.
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In this model, because when 50% of the shocks are assumed to be negative and the other

50% positive, so that [] = 12, the long-run variance equals:
16

̄2 ≡ [2+1] =  + [2 ] + [
2
 ] + [2 ] =  + ̄2 + []̄

2 + ̄2

=  + ̄2 +
1

2
̄2 + ̄2 =⇒ ̄2 =



1− (1 + 05)− 


Visibly, in this case the persistence index is (1 + 05) + . Formally, the NIC of a threshold

GARCH model is:

(|2 = 2) =  + 2 + 
2
 + 2 = + (1 + )

2


where the constant  ≡ +2 and   0 is a convexity parameter that is increased to (1+)

for negative returns. This means that the NIC will be a parabola with a steeper left branch, to

the left of  = 0.

4.4. NAGARCH model

One simple choice of parameters in the generalized NIC in (??) yields an increasingly common

asymmetric GARCH model: when 2 = 0 and 3 = 1, the NIC becomes () = (|−1|)2 =
( − 1)

2 and an asymmetry derives from the fact that when 1  0,
17

( − 1)
2 =

(
( − 1)

2  2 if  ≥ 0
( − 1)

2  2 if   0


Written in extensive form that also includes the standard GARCH(1,1) component in (??), such

a model is called a Nonlinear (Asymmetric) GARCH, or N(A)GARCH:

2+1 =  + ( − )
2 + 2 =  + 2 ( − )2 + 2

=  + 2 
2
 + 22 − 22  + 2

=  + 2 + ( + 2 − 2)2 =  + 2 + 02 − 22 

where 0 ≡  + 2  0 if   0. As you can see, NAGARCH(1,1) is:

• Asymmetric, because if  6= 0, then the NIC (for given 2 = 2) is: + 22 − 22
which is no longer a simple, symmetric quadratic function of standardized residuals, as

16Obviously, this is the case in the model +1 = +1+1, +1 ∼IID N (0 1) as the density of the shocks is
normal and therefore symmetric around zero (the mean) by construction. However, this will also apply to any

symmetric distribution +1 ∼IID D(0 1) (e.g., think of a standard t-student). Also recall that [2+1] = [2 ] =

̄2 by the definition of stationarity.
17(|− 1|)2 = (− 1)

2 because squaring an absolute value makes the absolute value operator irrelavant, i.e.,

|()|2 = (())2.
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under a plain-vanilla GARCH(1,1); equivalently, and assuming   0, while  ≥ 0 impacts
conditional variance only in the measure ( − )

2  2 ,   0 impacts conditional

variance in the measure ( − )
2  2 .

18

• Non-linear, because NAGARCH may be written in the following way:

2+1 =  + 2 + [
0 − 2]2 =  + 2 + ()

2


where () ≡ 0−2 is a function that makes the beta coefficient of a GARCH depend
on a lagged standardized residual.19 Here the claim of non-linearity follows from the fact

that all models that are written under a linear functional form (i.e., () =  + ) but

in which some or all coefficients depend on their turn on the conditioning variables or

information (i.e., () =  + , in the sense that  = () and/or  = ()) is also a

non-linear model.20

NAGARCH plays key role in option pricing with stochastic volatility because, as we shall see

later on, NAGARCH allows you to derive closed-form expressions for European option prices in

spite of the rich volatility dynamics. Because a NAGARCH may be written as

2+1 =  + 2 ( − )2 + 2

and, if  ∼IID N (0 1)  is independent of 2 as 2 is only a function of an infinite number of
past squared returns, it is possible to easily derive the long-run, unconditional variance under

18When   0 the asymmetry remains, but in words it is stated as: while   0 impacts conditional variance

only in the measure (−)
2  2

 ,  ≥ 0 impacts conditional variance in the measure (−)
2  2

 . This

means that   0 captures a “left” asymmetry consistent with a leverage effect and in which negative returns

increase variance more than positive returns do;   0 captures instead a “right” asymmetry that is sometimes

observed for some commodities, like precious metals.
19Some textbooks emphasize non-linearity in a different way: a NAGARCH implies


2
+1 =  + 

2
 ( − )

2
+ 

2
 =  + 



2



[ − ]

2
+ 

2
 

where it is the alpha coefficient that now becomes a function of the last filtered conditional variance, 

2
 ≡

2  0 if   0. It is rather immaterial whether you want to see a NAGARCH as a time-varying coefficient

model in which 0 depends on 2 or in which 
0 depends on , although the latter view is more helpful in defining

the NIC of the model.
20Technically, this is called a time-varying coefficient model. You can see that easily by thinking of what you

expect of a derivative to be in a linear model: () = , i.e., a constant indenpendent of  In a time-varying

coefficient model this is potentially not the case as () = [()] +[()] ·  + () which is not a

constant, at least not in general. NAGARCH is otherwise called a time-varying coefficient GARCH model, with

a special structure of time-variation.
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NAGARCH and the assumption of stationarity:21

[2+1] = ̄2 =  + [2 ( − )2] + [2 ]

=  + [2 ][
2
 + 2 − 2] + [2 ] =  + ̄2(1 + 2) + ̄2

where ̄2 = [2 ] and [2 ] = [2+1] because of stationarity. Therefore

̄2[1− (1 + 2)− ] =  =⇒ ̄2 =


1− (1 + 2)− 

which is exists and positive if and only if (1 + 2) +   1. This has two implications:

(i) the persistence index of a NAGARCH(1,1) is (1 + 2) +  and not simply  + ; (ii) a

NAGARCH(1,1) model is stationary if and only if (1 + 2) +   1.

4.5. GARCH with exogenous (predetermined) factors

There is also a smaller literature that has connected time-varying volatility as well asymmetric

NICs not only to pure time series features, but to observable economic phenomena, especially

at daily frequencies. For instance, days where no trading takes place will affect the forecast of

variance for the days when trading resumes, i.e., days that follow a weekend or a holiday. In

particular, because information flows to markets even when trading is halted during weekends

or holidays, a rather popular model is

2+1 =  + 2 + 2 + +1 =  + 2 
2
 + 2 + +1

where  is a dummy that takes a unit value in correspondence of a day that follows a weekend.

Note that in this model, the plain-vanilla GARCH(1,1) portion (i.e.,  + 2 + 2 ) has been

re-written in a different but completely equivalent way, exploiting the fact that 2 = 2 
2
 by

definition. Moreover, this variance model implies that it is +1 that affects 
2
+1 which is

sensible because  is deterministic (we know the calendar of open business days on financial

markets well in advance) and hence clearly pre-determined. Obviously, many alternative models

including predetermined variables different from  could have been proposed. Other predeter-

mined variables could be yesterday’s trading volume or pre-scheduled news announcement dates

such as company earnings and FOMC (Federal Open Market Committee at the U.S. Federal

Reserve) meeting dates.22 For example, suppose that you want to detect whether the terrorist

attacks of September 11, 2001, increased the volatility of asset returns. One way to accomplish

21The claim that 2 is a function of an infinite number of past squared returns derives from the fact that under

GARCH, we know that the process of squared returns follows (under appropriate conditions) a stationary ARMA.

You know from the first part of your econometrics sequence that any ARMA has an autoregressive representation.
22See also the Spline-GARCH model with a deterministic volatility component in Engle and Rangel (2008).
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the task would be to create a dummy variable 
0911
 that equals 0 before September 11 and

equals 1 thereafter. Consider the following modification of the GARCH(1,1) specification:

2+1 =  + 2 + 2 + 
0911
 

If it is found that   0, it is possible to conclude that the terrorist attacks increased the mean

of conditional volatility.

More generally, consider the model

+1 = +1,

where +1 is IID D(0 1) and +1 is a random variable observable at time . Note that while

if  = 0  0 ∀ ≥ 1, then  [+1] = 20 [+1] = 20 · 1 = 20 and +1 is also D(0 20)
so that returns are homoskedastic, when the realizations of the {} process are random, then
 [+1] = 2 ; because we can observe  at time , one can forecast the variance of returns

conditioning on the realized value of . Furthermore, if {} is positively serially correlated,
then the conditional variance of returns will exhibit positive serial correlation. The issue is

what variable(s) may enter the model with the role envisioned above. One approach is to try

and empirically discover what such a variable may be using standard regression analysis: you

might want to modify the basic model by introducing the coefficients 0 and 1 and estimate

the regression equation in logarithmic form as23

log(1 ++1) = 0 + 1 log  + +1

This procedure is simple to implement since the logarithmic transformation results in a linear

regression equation; OLS can be used to estimate 0 and 1 directly. A major difficulty with this

strategy is that it assumes a specific cause for the changing variance. The empirical literature has

had a hard time coming up with convincing choices of variables capable to affect the conditional

variance of returns. For instance, was it the oil price shocks, a change in the conduct of monetary

policy, and/or the breakdown of the Bretton-Woods system that was responsible for the volatile

exchange rate dynamics during the 1970s?

Among the large number of predetermined variables that have been proposed in the empirical

finance literature, one (family) of them has recently acquired considerable importance in exercises

aimed at forecasting variance: option implied volatilities, and in particular the (square of the)

CBOE’s (Chicago Board Options Exchange) VIX as well as other functions and transformations

23Here +1 = ln +1 which will require however +1  0. Moreover, note that the left-hand side is now the log

of (1++1) to keep the logarithm well defined. If +1 is a net returns (i.e., +1 ∈ [−1+∞)), then (1++1)

is a gross returns, (1 ++1) ∈ [0+∞).
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of the VIX. In general, models that use explanatory variables to capture time-variation in

variance are represented as:

2+1 =  + (X) + 2 
2
 + 2 

where X is a vector of predetermined variables that may as well include VIX. Note that

because this volatility model is not written in log-exponential form, it is important to ensure that

the model always generates a positive variance forecast, which will require that restrictions–

either of an economic type or to be numerically imposed during estimation–must be satisfied,

such as (X)  0 for all possible values of X, besides the usual , ,   0.

4.5.1. One example with VIX predicting variances

Consider the model

+1 = +1+1 with +1 ∼ IID N (0 1)
2+1 =  + 2 + 2 +  

where   follows a stationary autoregressive process,   = 0 + 1 −1 +  with

[] = 0 The expression for the unconditional variance remains easy to derive: if the process

for   is stationary, we know that |1|  1 Moreover, from

[ ] = 0 + 1[ −1] =⇒ [ ] = [ −1] =
0

1− 1

which is finite because |1|  1. Now

[2+1] =  + [2 ] + [2 ] + [ ]

=  + (+ )[2 ] + 
0

1− 1
=⇒ [2 ] =

 +  0
1−1

1− − 


One may actually make more progress by imposing economic restrictions. For instance,

taking into account that, if the options markets are efficient, then [ ] = [2 ] may obtain,

one can establish a further connection between the parameters 0 and 1 and  , and :24

[2+1] =  + [2 ] + [2 ] + [ ]

=  + (+ )[2 ] + [2 ] =⇒ [2 ] =


1− −  − 


Because [2 ] = 0(1− 1) and also [
2
 ] = (1− −  − ) we derive the restriction that

0(1− 1) =


(1− −  − )

should hold, which is an interesting and testable restriction.

24For the asset pricing buffs, [ ] = [2 ] may pose some problems, as VIX is normally calculated under

the risk-neutral measure while [2 ] refers to the physical measure. If this bothers you, please assume the two

measures are the same, which means you are assuming local risk-neutrality.
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4.6. Component GARCH Models: Short- vs. Long Run Variance Dynamics

Engle and Lee (1999) have proposed a novel component GARCH model that expands the pre-

viously presented volatility models in ways that have proven very promising in applied option

pricing (see e.g., Christoffersen, Jacobs, Ornthanalai, and Wang, 2008). Consider a model in

which there is a distinction between the short-run variance of the process, , that is assumed

to follow a GARCH(1,1) process,

+1 = +1 + 1(
2
 − ) + 1( − ) (5)

and the time-varying long-run variance, , which also follows a GARCH(1,1) process

+1 = 0 + ( − 0) + (2 − ) (6)

The distinction between +1 and +1 has been introduced to avoid any confusion with 2+1

when there is only one variance scale (you can of course impose +1 = 2+1 without loss of

generality). This process implies that there is one conditional variance process for the short-run,

as shown by (5), but that this process tends to evolve around (and mean-revert to) +1 which

follows itself the process in (6), which is another GARCH(1,1).

One interesting feature of this component GARCH model is it can re-written (and it is often

estimated) as a GARCH(2,2) process. This interesting because as you may have been wondering

about the actual use of GARCH( ) when  ≥ 2 and  ≥ 2. In fact, higher-order GARCH
models are rarely used in practice, and this GARCH(2,2) case represents one of the few cases

in which–even though it will be subject to constraints coming from the structure of (5) and

(6)–implicitly a (2,2) case has been used in many practical applications. To see that (5)-(6)

can be re-written as a GARCH(2,2), note first that the process for long-run variance may be

written as +1 = (1− )0 +  +(
2
 − ). At this point, plug the expression of +1 from

(6) in (5):

+1 = (1− 1)+1 + 1
2
 + (1 − 1)

= (1− 1)(1− )0 + (1− 1) + (1− 1)(
2
 − ) + 1

2
 + (1 − 1)

= (1− 1)(1− )0 + (1− 1) + [(1− 1)+ 1]
2
 +

+[1 − 1 − (1− 1)]

= (1− 1)(1− 2)0 + (1− 1)
2−1 + [(1− 1)+ 1]

2
 + (1− 1)

2
−1 +

+[1 − 1 − (1− 1)] − (1− 1)−1

=  + 01
2
 + 02

2
−1 + 01 + 02−1
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where we have exploited the fact that [−1] = 0 and set

 = (1− 1)0 01 = (1− 1)+ 1

02 = (1− 1) 01 = [1 − 1 − (1− 1)]

02 = −(1− 1)

One example may help you familiarize with this new, strange econometric model. Suppose

that at time  the long-run variance is 0.01 above short-run variance, it is equal to (0.15)2 and is

predicted to equal (0.16)2 at time . Yet, at time  returns are subject to a large shock,  = −02
(i.e., a massive -20%). Can you find values for 1 ≥ 0 and 1 ≥ 0 such that you will forecast at
time  short-run variance of zero? Because we know that  −  = −001 +1 = 00225, and
2 = 004,

+1 = 00225 + 1(004− 00125) + 1(−001) = 00225 + 002751 − 0011

and we want to find a combination of 1 ≥ 0 and 1 ≥ 0 that solves

00225 + 002751 − 0011 = 0 or 1 = 225 + 2751

This means that such a value in principle exists but for 1 ≥ 0 this implies that 1 ≥ 225.
Empirical, component GARCH models are useful because they capture the slow decay of

auto-correlations in squared returns . The rate of decay in the level and significance of squared

daily returns is very slow (technically, the literature often writes about volatility processes with

a long memory, in the sense that shocks take a very long time to be re-absorbed). Component

GARCH(1,1) models–also because of their (constrained) GARCH(2,2) equivalence–have been

shown to provide an excellent fit to data that imply long memory in the variance process.

5. Modelling Non-Normality

So far we have emphasized that dynamic models of conditional heteroskedasticity imply (un-

conditional) return distributions that are non-normal. However, for most data sets and types

of GARCH models, the latter do not seem to generate sufficiently strong non-normal features

in asset returns to match the empirical properties of the data, i.e., the strength of deviations

from normality that are commonly observed. Equivalently, this means that only a portion–

sometimes well below their overall “amount”–of the non-normal behavior in asset returns may

be simply explained by the times series models of conditional heteroskedasticity that we have

introduced so far. For instance, most GARCH models fail to generate sufficient excess kurtosis

in asset returns, when we compare the values they imply with those estimated in the data. This
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can be seen from the fact that the standardized residuals from most GARCH models fail to be

normally distributed. Starting from the most basic model

+1 = +1+1 +1 ∼ IID N (0 1)

when one computes the standardized residuals from such typical conditional heteroskedastic

framework, i.e.,

̂+1 =
+1

̂+1


where ̂+1 is predicted volatility from some conditional variance model, ̂+1 fails to be IID

N (0 1) contrary to the assumption often adopted in estimation.25 One empirical example can
already be seen in Figure 6 where we assess over the sample of daily data January 2006-June

2008 the QQ plots of returns and on standardized (using GARCH and GJR-GARCH volatilities)

returns on our portfolio.
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Figure 6: The non-normality of asset returns and standardized residuals from a GARCH model

The Figure illustrates that the standardized residuals originated from fitting a Gaussian

GARCH(1,1) model and a GARCH-GJR : ̂+1 = +1̂

+1 still deviate from normality. If the

Gaussian GARCH(1,1) model were correctly specified, then the hypothesis that ̂

+1 ∼ IID

N (0 1) should not be rejected.
These results tends to be typical for most financial return series sampled at high (e.g., daily

or weekly) and intermediate frequencies (monthly). For instance, stock markets exhibit occa-

sional, very large drops but not equally large up moves. Consequently, the return distribution

25Some (better) textbooks carefully denote such prediction of volatility as +1 To save space and paper

(in case you print), we shall simply define +1 ≡ +1 and trust your memory to recall that we are dealing

with a given, fixed-weight portfolio return series, as already explained above.
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is asymmetric or negatively skewed. However, some markets such as that for foreign exchange

tend to show less evidence of skewness. For most asset classes, in this case including exchange

rates, return distributions exhibit fat tails, i.e., a higher probability of large losses (and gains)

than the normal distribution would allow.

Note that Figure 6 is not only bad news: the improvement when one moves from the left

to the right is obvious. Even though we lack at the moment a formal way to quantify this

impression, it is immediate to observe that the “amount” of non-normalities declines when one

goes from the raw (original) returns to the Gaussian GARCH-induced standardized residuals and

the Gaussian GARCHGJR standardized residulas. Yet, the improvement is insufficient to make

the standardized residuals normally distributed, as the model assumes. In the following sections

, we also ask how the GARCH models can be extended and improved to deliver unconditional

distributions that are distributed in the same way as their original assumptions imply.

5.1. t-Student Distributions for Asset Returns

An obvious question is then: if all (most) financial returns have non-normal distributions, what

can we do about it? More importantly, this question can be re-phrased as: if most financial series

yield non-normal standardized residuals even after fitting many (or all) of the GARCH models

analyzed in chapter 4, that assume that such standardized residuals ought to have a Gaussian

distribution, what can be done? Notice one first implication of these very questions: especially

when high-frequency (daily or weekly) data are involved, we should stop pretending that asset

returns “more or less” have a Gaussian distribution in many applications and conceptualizations

that are commonly employed outside econometrics: unfortunately, it is rarely the case that

financial returns do exhibit a normal distribution, especially if sampled at high frequencies (over

short horizons).26

When it comes to find remedies to the fact that plain-vanilla, Gaussian GARCH models

cannot quite capture the key properties of asset returns, there are two main possibilities that have

been explored in the financial econometrics literature. First, to keep assuming that asset returns

are IID, but with marginal, unconditional distributions different from the Normal; such marginal

distributions will have to capture the fat tails and possibly also the presence of asymmetries.

In this chapter we introduce the leading example of the -Student distribution. Second, to stop

26One of the common explanations for the financial collpse of 2008-2009, is that many prop trading desks

at major international banks had uncritically downplayed the probability of certain extreme, systematic events.

One reason for why this may happen even when a quant is applying (seemingly) sophisticated techniques is that

Gaussian shocks were too often assumed to represent a sensible specification, ignoring instead the evidence of

jumps and non-normal shocks. Of course, this is just one aspect of why so many international institutions found

themselves at a loss when faced with the events of the Fall and the Winter of 2008/09.
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assuming that asset returns are IID and model instead the presence of rich–richer than it has

been doneso far–dynamics/time-variation in their conditional densities. Indeed, it turns out

that both approaches are needed by high frequency (e.g., daily) financial data, i.e., one needs

ARCH and GARCH models extended to account for non-normal innovations (see e.g., Bollerslev,

1987).

Perhaps the most important type of deviation from a normal benchmark for  (or ) are

the fatter tails and the more pronounced peak around the mean (or the model) for (standardized)

returns distribution as compared with the normal one, see Figures 1, 2, and 4. Assume the

instead that financial returns are generated by

+1 = +1+1 +1 ∼ IID () (7)

where +1 follows some dynamic process that is left unspecified. The Student t distribution,

() parameterized by  (stands for “degrees of freedom”) is a relatively simple distribution that

is well suited to deal with some of the features discussed above:27

()(; ) =
Γ
¡
+1
2

¢
Γ
¡

2

¢p
(− 2)

∙
1 +

2

− 2
¸− +1

2

 (8)

where   2 and Γ (·) is the standard gamma function,

Γ () ≡
Z +∞

0

−−1

that is possible to compute not only by numerical integration, but also recursively (but Matlab
R°

will take care of that, no worries). This expression for ()(; ) gives a non-standardized density,

i.e., its mean is zero but its variance is not necessarily 1.28 Note that while in principle the

parameter  should be an integer, in practice quant users accept that in estimation  may turn

out to be a real number. It can be shown that first  moments of () will exist, so that   2

is a way to guarantee that at least the variance exists, which appears to be crucial given our

applications to financial data.29 Another salient property of (8) is that it is only parameterized

27Even though in what follows we shall discuss the distribution of  it is obvious that you can replace that

with  and discuss instead of the distribution of asset returns and not of their standardized residuals.
28Christoffersen’s book also defines a standardized Student t ̃()(; ) with unit variance. Because this may

be confusing, we shall only work with the non-standardized case here. A standardized Student  has  [̃; ] = 1

(note the presence of the tilda again). However, in subsequent VaR calculations, Christoffersen then uses the fact

that

Pr







− 2  
−1
 ()


= 

which means that the empirical variance must be taken into account.
29Technically, for the th moment to exist, it is necessary that  equals  plus any small number, call it . This

is important to understand a few claims that follow.
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by  and one can prove (using a few tricks and notable limits from real analysis) that

lim
→∞

()(; ) = N ()

as  diverges, the Student- density becomes identical to a standard normal. This plays a

practical role: even though you assume that (8) holds, if estimation delivers a rather large ̂

(say, above 20, just to indicate a threshold), this will represent indication that either the data are

approximately normal or that (8) is inadequate to capture the type of departure from normality

that you are after. What could that be? This is easily seen from the fact that in the simple case

of a constant variance, (8) is symmetric around zero, and its mean, variance, skewness (1), and

excess kurtosis (2) are:

[; ] =  = 0  [; ] = 2 =


− 2
[; ] = 1 = 0 [; ] = 2 =

6

− 4  (9)

The skewness of (8) is zero (i.e., the  Student is symmetric around the mean), which makes it

unfit to model asymmetric returns: this is the type of departure from normality that (8) cannot

yet capture and no small  can be used to accomplish this.30

The key feature of the () density is that the random variable, , is raised to a (negative)

power, rather than a negative exponential, as in the standard normal distribution:

N () =
1√
2

−
1
2
2 

This allows () to have fatter tails than the normal, that is, higher values of the density ()(; )

when  is far from zero. This occurs because the negative exponential function is known to decline

to zero (as the argument goes to infinity, in absolute value) faster than negative power functions

may ever do. For instance, observe that for  = 4 (which may be interpreted as meaning four

standard deviations away from the mean) while

−
1
2
42 = 00003355

under a negative power function with  = 10 (later you shall understand the reason of this

choice), ∙
1 +

42

8

¸− 11
2

= 00023759

30Let’s play (as we shall in do in the class lectures): what is the excess kurtosis of the t-student if  = 3?

Same question when  = 4. What if instead  = 400001 (which is 4 plus that small  mentioned in a previous

footnote)? Does the intution that as →∞ the density becomes normal fit with the expression for 2 reported

above?
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Notice that the second probability value is (0.0023759/0.0003355) = 7.08 times larger. If you

repeat this experiment considering a really large, extreme realization, say some (standardized)

return 12 times away from the sample mean (say a -9.5% return on a given day), then exp(−05 ·
122) = 53802−32 which is basically zero (impossible, but how many -10% did we really see in

the Fall of 2008?), while ∙
1 +

122

8

¸− 11
2

= 92652−8

Although also the latter number is rather small,31 the ratio between the two probability as-

sessments (92652−853802−32) is now astronomical (1.72224): events that are impossible

under a Gaussian distribution become rare but billions of times more likely under a fat-tailed,

t-Student distribution. This result is interesting in the light of the comments we have expressed

about the left tail of the density of standardized residuals in Figure 5.

In this section, we have introduced (8) as a way to take care of the fact that, even after

fitting rather complex GARCH models, (standardized) returns often seemed not to conform to

the properties–such as zero skewness and zero excess kurtosis–of a normal distribution. How

do you now assess whether the new, non-normal distribution assumed for  actually comes from

a Student ? In principle, one can easily deploy two of the methods reviewed in Section 3 and

apply them to the case in which we want to test the null of  IID (): first, extensions of

Jarque-Bera exist to formally test whether a given sample has a distribution compatible with

non-normal distributions, e.g., Kolmogorov-Smirnov’s test (see Davis and Stephens, 1989, for

an introduction); second, in the same way in which we have previously informally compared

kernel density estimates with a benchmark Gaussian density for a series of interest, the same

can be accomplished with reference to, say, a Student- density. Finally, we can generalize Q-Q

plots to assess the appropriateness of non-normal distributions. For instance, we would like to

assess whether the same 500 daily returns standardized by a GARCH(1,1) model in Figure 5

may actually conform to a t() distribution in Figure 6. Because the quantiles of t() are usually

not easily found, one uses a simple relationship with a standardized ̃() distribution, where the

tilde emphasizes that we are referring to a standardized t:

Pr

Ã
  −1 ()

r
− 2


!
= Pr

¡
  ̃−1 ()

¢
where the critical values of ̃−1 () are tabulated. Figure 6 shows that assuming -Student

conditional distributions may often improve the fit of a GARCH model.

31Please verify that such probability increases becoming not really negligible if you lower the assumption of

 = 10 towards  = 2
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QQ Plot of NGARCH Standardized Residuals vs. Standardized t(d) Distribution (ML Method)

Figure 6: Q-Q plots of Gaussian vs. t-Student GARCH(1,1) standardized daily returns

Although some minor issues with the right tail of the standardized residuals remain, many

users may actually judge the left-most QQ plot as completely satisfactory and favorable to a

Student  GARCH(1,1) model capturing the salient features of daily returns.

5.2. Estimation: method of moments vs. (Q)MLE

We can estimate the parameters of (7)–when we estimate (8) directly on the standardized

residuals, we can speak of  only–using MLE or the method of moments (MM). As you know

from chapter 4, in the MLE case, we will exploit knowledge (real or assumed) of the density

function of the (standardized) residuals. Nothing needs to be added to that, apart the fact that

the functional form of the density function to be assumed is now given by (8). The method of

moments relies instead on the idea of estimating any unknown parameters by simply matching

the sample moments in the data with the theoretical (population) moments implied by a t-

Student density. The intuition is simple: if the data at hand came from the Student-t family

parameterized by ,  and 2 (say), then the best among the members of such a family will be

characterized by a choice of ̂ ̂ and ̂2 that generates population moments that are identical

or at least close to the observed sample moments in the data.32 Technically, if we define the

non-central and central sample moments of order  ≥ 1 (where  is a natural number) as33

̂ ≡ 1



X
=1

()
 b̄ ≡ 1



X
=1

( − ̂1)


32In what follows, we will focus on the simple case in which  is itself a constant and as such it directly becomes

one of the parameters to be estimated. This means that (7) is really considered to be+1 =  + +1

+1 ∼IID () where a mean parameter is added, just in case.
33Notice that sample moments are sample statistics because they depend on a random sample and as such

they are estimators. Instead the population moments are parameters that characterize the entire data generating

process. Clearly, ̂1 = ̄ = ̂[], while ̄2 =  []. The expressions that follow still refer to  but there is
little problem in extending them to raw portfolio returns (, as in the lectures) or to any other time series.
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respectively, in the case of (7), it is by equating sample and theoretical moments that we get

the following system to be solved with respect to the unknown parameters:

 = ̂1 (population mean = sample mean)

2


− 2 = b̄2 (population variance = sample variance)

2 =
6

− 4 =
b̄4 − 3b̄2

2

(population excess kurtosis = sample excess kurtosis).

Note that all quantities on the right-hand side of this system will turn into numbers when

you are given a sample of data. Why these 3 moments? They make a lot of sense given our

characterization of (7)-(8) and yet, these are selected, by us, rather arbitrarily (see below). This

is a system of 3 equations in 3 unknown (with a recursive block structure) that is easy to solve

to find:34

̂ = 4 +
6̄4

( ̄2)2
− 3

̂2 = b̄2
̂ − 2
̂

̂ = ̂1

In practice, one first goes from the sample excess kurtosis to estimate the number of degrees

of freedom of the Student , ̂ ; then to the estimate of the variance coefficient (also called

diffusive coefficient), and finally as well as independently, to compute an estimate of the mean

(which is just the sample mean). Interestingly, while under MLE we are used to the fact that

one possible variance estimator is ̂2 = b̄2 in the case of MM applied to the t-Student, we

have

̂2 = b̄2
̂ − 2
̂

 ̂2

because (̂ − 2)̂  1 for any ̂  2. This makes intuitive sense because in the

case of a t-Student, the variability of the data is not only explained by their “pure” variance,

but also by the fact that their tails are thicker than under a normal: as ̂ → 2 (from the

right), you see that (̂ − 2)̂ goes to zero, so that for given b̄2, ̂
2
 can be much

smaller than the sample variance; in that case, most of the variability in the data does come

from the thick tails of the Student . On the contrary, as ̂ →∞ we know that this means

that the Student  becomes indistinguishable from a normal density, and as such we have that

(̂ − 2)̂ → 1 and ̂2 → b̄2 = ̂2 .
35 Additionally, note that as intuition would

suggest, as ̂2 ≡ ( b̄4( b̄2)
2)− 3 gets larger and larger, then

lim
̂2→∞

̂ = lim
̂2→∞

4 +
6

̂2
= 4

34In the generalized MM case (called GMM) in which one has more moments than parameters to estimate, it

will be possible to select weighting schemes across different moments that guarantee that GMM estimators may

be as efficient as MLE ones. But this is an advanced topic, good for one of your electives.
35Even though at first glance it may look so, please do not use this example to convince yourself that MLE

only works when the data are normally distributed. This is not true (under MLE one needs to know or assume

the density of the data, and this can be also non-normal).
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where 4 represents the limit of the minimal value for  that one may have with the fourth central

moment remaining well-defined under a Student . Moreover, based on our earlier discussion,

we have that

lim
̂2→0

̂ = lim
̂2→0

4 +
6

̂2
= +∞

which is a formal statement of the fact that a Student  distribution fitted on data that fail

to exhibit fat tails, ought to simply become a normal distribution characterized by a diverging

number of degrees of freedom, . Finally, MM uses no information on the sample skewness of

the data for a very simple reason: as we have seen, the Student  in (8) fails to accommodate

any asymmetries.

Besides being very intuitive, is MM a good estimation method? Because MM does not

exploit the entire empirical density of the data but only a few sample moments, it is clearly not

as efficient as MLE. This means that the Cramer-Rao lower bound–the maximum efficiency

(the smallest covariance matrix of the estimators) that any estimator may achieve–will not

be attained. Practically, this means that in general MM tends to yield standard errors that

are larger than those given by MLE. In some empirical applications, for instance when we are

assessing models on the basis of tests of hypotheses of some of their parameter estimates, we shall

care for standard errors. This result derives from the fact that while MLE exploits knowledge of

the density of the data, MM does not, relying only on a few, selected moments (as a minimum,

these must be in a number identical to the parameters that need to be estimated). Because

while the density () (or the CDF  ()) has implications for all the moments (an infinity of

them), but the moments fail to pin down the density function–equivalently, () =⇒ (),

but the opposite does not hold so that it is NOT true that ()⇐⇒ ()–MM potentially

exploits much less information in the data than MLE does and as such it is less efficient.36

Given these remarks, we could of course estimate  also by MLE or QMLE. For instance, ̂

could be derived from maximizing

L1()(1 2   ; ) =

X
=1

log ()(; ) = 

½
logΓ

µ
+ 1

2

¶
− logΓ

µ


2

¶
− log 

2
− log − 2

2

¾
+

−1
2

X
=1

(1 + ) log

∙
1 +

2
− 2

¸


Given that we have already modeled and estimated the portfolio variance ̂2+1 and taken it as

given, we can maximize L1() with respect to the parameter, , only. This approach builds
again on the quasi-maximum likelihood idea, and it is helpful in that we are only estimating

36Here  () is the moment generating function of the process of  Please review your statistics

notes/textbooks on what a MGF is and does for you.
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few parameters at a time, in this case only one.37 The simplicity is potentially important as

we are exploiting numerical optimization routines to get to ̂ ≡ argmaxL1(). We could also
estimate the variance parameters and the  parameter jointly. Section 4.2 details how one would

proceed to estimate a model with  Student innovations by full MLE and its relationship with

QMLE methods.

5.3. ML vs. QML estimation of models with Student  innovations

Consider a model in which portfolio returns, defined as  ≡
P

=1 , follow the time

series dynamics

+1 = +1+1 +1 ∼ IID ()

where () is a t-Student. As we know, if we assume that the process followed by +1 is known

and estimated without error, we can treat standardized returns as a random variable on which

we have obtained sample data ({}=1), calculated as  = . The  parameter can then

be estimated using MLE by choosing the  which maximizes:38

L1()(1 2   ; ) =

X
=1

ln (; ) =

X
=1

ln
Γ
¡
+1
2

¢
Γ
¡

2

¢p
(− 2) −

1 + 

2

X
=1

ln

µ
1 +

2
− 2

¶
=  lnΓ

µ
+ 1

2

¶
−  lnΓ

µ


2

¶
− 1
2
 ln − 1

2
 ln(− 2)+

−1 + 

2

X
=1

ln

µ
1 +

2
− 2

¶


On the contrary, if you ignored the estimate of either  (if it were a constant) or of the process

for +1 (e.g., a GARCH(1,1) process) and yet you proceeded to apply the method illustrated

above (incorrectly) taking some estimate of either  or of the process for +1 as given and free

of estimation error, you would obtain a QMLE estimator of . As already discussed in chapter

4, QML estimators have two important features. First, they are not as efficient as proper ML

estimators because they ignore important information on the stochastic process followed by the

estimator(s) of either  or of the process followed by +1.
39 Second, QML estimators will be

37However, recall that also QMLE implies a loss of efficiency. Here one should assess whether it is either QMLE

or MM that implies that mimimal loss of efficiency.

38Of course, Matlab
R°
will happily do this for you. Please see the Matlab workout in Appendix B. See also the

Excel estimation performed by Christoffersen (2012) in his book. Note that the constraint   2 will have to be

imposed.
39In particular, you recognize that either  or the process of +1 will be estimated with (sometimes considerable)

uncertainty (for instance, as captured by the estimate standard errors), but none of this uncertainty is taken into

account by the QML maximization. Although the situation is clearly different, it is logically similar to have

a sample of size  but to ignore a portion of the data available: that cannot be efficient. Here you would be
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consistent and asymptotically normal only if we can assume that any dynamic process followed

by +1 has been correctly specified. Practically, this means that when one wants to use QML,

extra care should be used in making sure that a “reasonable” model for +1 has been estimated

in the first step, although you see that what may be reasonable is obviously rather subjective.

If instead you do not want to ignore the estimated nature of the process for +1 and pro-

ceed instead to full ML estimation, for instance when portfolio variance follows a GARCH(1,1)

process,

2 =  + 2−1 + 2−1

the joint estimation of , , , and  implies that the density in the lectures,

(; ) =
Γ
¡
+1
2

¢
Γ
¡

2

¢p
(− 2)

µ
1 +

2
− 2

¶−1+
2

,

must be replaced by

(; ) =
Γ
¡
+1
2

¢
Γ
¡

2

¢p
(− 2)2

µ
1 +

()
2

− 2
¶− 1+

2

where the 2 in

Γ
¡
+1
2

¢
Γ
¡

2

¢p
(− 2)2

comes from (; ) = () so that (; ) = () (this is called the Jacobian of the

transformation, please review your Statistics notes or textbooks). Therefore, the ML estimates

of , , , and  will maximize:

L2()(1 2   ;    ) =

X
=1

log (;    ) =

X
=1

log

⎧⎨⎩ Γ
¡
+1
2

¢
Γ
¡

2

¢q
(− 2)( + 2−1 + 2−1)

Ã
1 +

2

(− 2)( + 2−1 + 2−1)

!− 1+
2

⎫⎬⎭ 

(10)

This looks very hard because the parameters enter in a highly non-linear fashion. Of course

Matlab
R°
can take care of it, but there is a way you can get smart about maximizing (10).

Define  ≡ 
q
 + 2−1 + 2−1. Call L1()() the likelihood function when the

standardized residuals are the  s and L
2()

(   ) the full log-likelihood function defined

above. It turns out that L
2()

(   ) may be decomposed as

L2()(   ) = L1()()−
1

2

X
=1

ln( + 2−1 + 2−1)

potentially ignoring important sample information that the data are expressing through the sample distribution

of either  or the process of +1.
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This derives from the fact that in (10),

L2()(   ) =  lnΓ

µ
+ 1

2

¶
−  lnΓ

µ


2

¶
− 1
2
 ln − 1

2
 ln(− 2) +

−1
2

X
=1

ln( + 2−1 + 2−1)−
1 + 

2

X
=1

ln

∙
1 +

( )2

− 2
¸

= L1()()−
1

2

X
=1

ln( + 2−1 + 2−1)

This decomposition helps us in two ways. First, it shows exactly in what way the estimation

approach simply based on the maximization of L
1()

() is at best a QML one:

argmax


L1()() ≤ argmax


"
L1()()−

1

2

X
=1

ln( + 2−1 + 2−1)

#


This follows from the fact that the maximization problem on the right-hand side also exploits

the possibility to select the GARCH parameters , , and , while the one of the left-hand side

does not. Second, it suggests a useful short-cut to perform ML estimation, especially under a

limited computational power:

• Given some starting candidate values for [  ]0 maximize L
1()

() to obtain ̂(1);

• Given ̂(1), maximize L1()()− 1
2

P
=1 ln( + 2−1 + 2−1) by selecting [̂(1) ̂(1)

̂(1)]
0 and compute

n

(1)
 ≡ 

q
̂(1) + ̂(1)

2
−1 + ̂(1)

2
−1
o
=1
;

• Given [̂(1) ̂(1) ̂(1)]0 maximize L1()() to obtain ̂(2);

• Given ̂(2), maximize L(2)1()
(̂(2)) − 1

2

P
=1 ln( + 2−1 + 2−1) by selecting [̂(2)

̂(2) ̂(2)]
0 and compute

n

(2)
 ≡ 

q
̂(1) + ̂(1)

2
−1 + ̂(1)

2
−1
o
=1
.

At this point, proceed iterating following the steps above until convergence is reached on

the parameter vector [   ]0.40 What is the advantage of proceeding in this fashion? Notice

that you have replaced a (constrained) optimization in 4 control variables ([   ]0) with

an iterative process in which there is a constrained optimization in 1 control followed by a

constrained optimization in 3 controls. These may seem small gains, but the general principle

may find application to cases more complex than a t-Student marginal density of the shocks, in

which more than one additional parameter (here ) may be featured.

40For instance, you could stop the algorithm when the Euclidean distance between [̂(+1) ̂(+1) ̂(+1) ̂(+1)]
0

and [̂() ̂() ̂() ̂()]
0 is below some arbitrarily small threshold  (e.g.,  = 1− 04).
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5.4. A simple numerical example

Consider extending the moment expressions in (9) to the simple time homogeneous dynamics

 =  +   ∼ IID (). (11)

Because we know that if  ∼ IID () then [] = 0,  [] = (− 2), [] = 0, and
[] = 3 + 6(− 4), it follows that

[] =  + [] = 

 [] = 2 [] =


− 2
2

[( −[])
3] = 3[3 ] = 0

() ≡ [( −[])
4]

( [])2

=
4

4( [])2
[4 ] =

[4 ]

( [])2
= () = 3 +

6

− 4 

Interestingly, while mean and variance are affected by the structure of (11), skewness and kur-

tosis, being standardized central moments, are not.

Clearly, if you had available sample estimates for mean, variance, and kurtosis from a data

set of asset returns defined as

̂1 ≡ ̄1 =
1



X
=1

, ̄2 ≡ 1



X
=1

( − ̂1)
2, ̄4 ≡ 1



X
=1

( − ̂1)
4

̄4

(̄2)2
=

P
=1( − ̂1)

4hP
=1( − ̂1)2

i2 
it would be easy to recover an estimate of  from sample kurtosis, an estimate of 2 from sample

variance, and an estimate of  from the sample mean. Using the method of moments, we have

also in this case 3 moments and 3 parameters to be estimated, which yields the just identified

MM estimator (system of equations):

̂[] = ̂ = ̄1d [] =


− 2 ̂
2 = ̄2 =⇒ ̂2 =

− 2


̄2

[() =
̄4

(̄2)2
= 3 +

6

− 4 =⇒ ̂ = 4 +
6

[̄4(̄2)2]− 3 

Suppose you are given the following sample moment information on monthly percentage

returns on 4 different asset classes (sample period is 1972-2009):
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Asset Class/Ptf. Mean Volatility Skewness Kurtosis

Stocks 0.890 4.657 -0.584 5.226

Real estate 1.052 4.991 -0.783 11.746

Government bonds 0.670 2.323 0.316 4.313

1m Treasury bills 0.465 0.257 0.818 4.334

Calculations are straightforward and lead to the following representations:

Asset/Ptf. Mean Vol. Skew Kurtosis Process

Stocks 0.890 4.657 -0.584 5.226 = 0890 + 3900

 


∼ (670)

Real estate 1.052 4.991 -0.783 11.746 = 1052 + 3780

  ∼ (469)

Government bonds 0.670 2.323 0.316 4.313 = 0670 + 2034

 


∼ (857)

1m Treasury bills 0.465 0.257 0.818 4.334 = 0465 + 0225

  ∼ (850)

Clearly, the fit provided by this process cannot be considered completely satisfactory be-

cause [] = 0 for any of the three return series, while sample skewness coefficients–in

particular for real estate and 1-month Treasury bill–present evidence of large and statistically

significant asymmetries. It is also remarkable that the estimates of  reported for all four asset

classes are rather small and always below 10: this means that these monthly time series are

indeed characterized by considerable departures from normality, in the form of thick tails. In

particular, the ̂ = 469 illustrates how fat tails are for this return time series.

5.5. A generalized, asymmetric version of the Student 

The Student  distribution in (8) can accommodate for excess kurtosis in the (conditional) dis-

tribution of portfolio/asset returns but not for skewness. It is possible to develop a generalized,

asymmetric version of the Student  distribution that accomplishes this important goal. The

price to be paid is some degree of additional complexity, i.e., the loss of the simplicity that

characterizes the implementation and estimation of (8) analyzed early on this Section. Such an

asymmetric  Student is defined by pasting together two distributions at a point − on the
horizontal axis. The density function is defined by:

()(; 1 2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ

1+1

2


Γ

1
2

√
(1−2)


h
1 +

(+)2

(1−2)2(1−2)
i−1+1

2
if   −

Γ

1+1

2


Γ

1
2

√
(1−2)


h
1 +

(+)2

(1+2)2(1−2)
i−1+1

2
if  ≥ −

(12)

where  ≡ 42

Γ
³
1+1
2

´
Γ
³
1
2

´p
(1 − 2)

1 − 2
1 − 1  ≡

q
1 + 322 − 2
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1  2, and −1  2  1.
41 Because when 2 = 0  = 0 and  ≡ √1 + 3× 0− 0 = 1 so that

()(; 1 2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Γ

1+1

2


Γ

1
2

√
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2
if   0
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2
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´
Γ
³
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2

´p
(1 − 2)

∙
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2

(1 − 2)
¸−1+1

2

= ()(; )

we have that in this case, the asymmetry disappears and we recover the expression for (8) with

 = 1. Yes, (12) does not represent a simple extension, as the number of parameters to be

estimated in addition to a Gaussian benchmark goes now from one (only ) to two, both 1

and 2, and the functional form takes a piece-wise nature. Although also the expression for

the (population) excess kurtosis implied by (12) gets rather complicated, for our purposes it is

important to emphasize that (12) yields (for 1  3, which implies that existence of the third

central moment depends on the parameter 1 only):
42
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[3]

3
=

1

3

q
1 + 322 − 2

⎡⎣162 Γ
³
1+1
2

´
Γ
³
1
2

´p
(1 − 2)

(1 + 22)
(1 − 2)2

(1 − 1)(1 − 3)+

−342
Γ
³
1+1
2

´
Γ
³
1
2

´p
(1-2)

1 − 2
1 − 1(1 + 3

2
2) + 128

3
2

⎛⎝ Γ
³
1+1
2

´
Γ
³
1
2

´p
(1-2)

1 − 2
1 − 1

⎞⎠3
⎤⎥⎦ 6= 0

It is easy to check that skewness is zero if 2 = 0 is zero.43 Moreover, skewness is a highly

nonlinear functions of both 1 and 2, even though it can be verified (but this is hard, do not

try unless you are under medical care), that 1 ≶ 0 if 2 ≶ 0 i.e., the sign of 2 determines the
sign of skewness. The asymmetric  distribution is therefore capable of generating a wide range

of skewness and kurtosis levels.

While in Section 4.1, MM offered a convenient and easy-to-implement estimation approach,

this is no longer the case when either returns or innovations are assumed to be generated by (12).

The reason is that the moment conditions (say, 4 conditions including skewness to estimate 4

parameters, , 2, 1, and 2) are highly non-linear in the parameters and solving the resulting

system of equations will anyway require that numerical methods be deployed. Moreover, the

existence of an exact solution may become problematic, given the strict relationship between 1

41Christoffersen’s book (p. 133) shows a picture illustrating how the asymmetry in this density function depends

on the combined signs of 1 and 2. It would be a good time to take a look.
42The expression for 2 is complicated enough to advise us to omit it. It can be found in Christoffersen (2012).
43This is obvious: when 2 = 0 then the generalized asymmetric  Student reduces to the standard, symmetric

one.
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and 2 implied by (12). In this case, it is common to estimate the parameters by either (full)

MLE or at least QMLE (limited to 1, and 2).

5.6. Cornish-Fisher Approximations to Non-Normal Distributions

The t() distributions are among the most frequently used tools in applied time series analysis

that allow for conditional non-normality in portfolio returns. However, they build on only few

(or one) parameters and in their simplest implementation in (8) they do not allow for conditional

skewness in either returns or standardized residuals. As we have seen in Section 2, time-varying

asymmetries are instead typical in finance applications. Density approximations represent a

simple alternative in risk management that allow for both non-zero skewness and excess kurtosis

and that remain simple to apply and memorize. Here, one of the easiest to remember and

therefore widely applied tools is represented by Cornish-Fisher approximations (see Jaschke,

2002):44

 
+1() = −−1 +1 − +1

−1 ≡ Φ−1 +
1
6

£
(Φ−1 )

2 − 1¤+ 2
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£
(Φ−1 )

3 − 3Φ−1
¤− 21

36
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3 − 5Φ−1
¤


where Φ−1 ≡ Φ−1() to save space and 1, 2 are population skewness and excess kurtosis,

respectively. The Cornish-Fisher quantile, −1 , can be viewed as a Taylor expansion around

a normal, baseline distribution. This can be easily seen from the fact that if we have neither

skewness nor excess kurtosis so that 1 = 2 = 0, then we simply get the quantile of the normal

distribution back, −1 = Φ−1 , and  
+1() =  +1().

For instance, for our monthly data set on U.S. stock portfolio returns, ̂+1 = 089%, ̂+1 =

466%, ̂1 = −0584, and ̂2 = 2226. Because Φ
−1
 = −2326, we have:

̂1
6

£
(Φ−1 )

2 − 1¤ = −0423 ̂2
24

£
(Φ−1 )

3 − 3Φ−1
¤
= −0520 −

2
1

36

£
2(Φ−1 )

3 − 5Φ−1
¤
= 0128

Therefore −1001 = −3148 and [ 


+1(1%) = 1377% per month. You can use the difference

between [ 


+1(1%) = 1377% and [ 


+1(1%) = 1095% to quantify the importance of

negative skewness for monthly risk management (2.82% per month).45 Figure 8 plots 1% VaR

44This way of presenting CF approximations takes as a given that many other types of approximations exist

in the statistics literature. For instance, the Gram-Charlier’s approach to return distribution modeling is rather

popular in option pricing. However, CF approximations are often viewed as the basis for an approximation to

the value-at-risk from a wide range of conditionally non-normal distributions.

45Needless to say, our earlier Gaussian VaR estimate of [ +1(1%) = 994% looks increasingly dangerous, as

in a single day it may come to under-estimate the VaR of the U.S. index by a stunning 400 basis points!
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for monthly US stock returns data (i.e., again ̂+1 = 089%, ̂+1 = 466%) when one changes

sample estimates of skewness (̂1) and excess kurtosis (̂2), keeping in mind that ̂2  −3.

Figure 8: 1% Value-at-Risk estimates as a function of skewness and excess kurtosis

The dot tries to represent in the three-dimensional space the Gaussian benchmark. On the one

hand, Figure 8 shows that is easy for a CF VaR to exceed the normal estimate. In particular,

this occurs for all combinations of negative sample skewness and non-negative excess kurtosis.

On the other hand, and this is rather interesting as many risk managers normally think that

accommodating for departures from normality will always increase capital charges, Figure 8 also

shows the existence of combinations that yield estimates of VaR that are below the Gaussian

estimate. In particular, this occurs when skewness is positive and rather large and for small or

negative excess kurtosis, which is of course what we would expect.

5.7. A numerical example

Consider the main statistical features of the daily time series of S&P 500 index returns over

the sample period 1926-2009. These are characterized by a daily mean of 0.0413% and a daily

standard deviation of 1.1521%. Their skewness is -0.00074 and their excess kurtosis is 17.1563.

Figure 9 computes the 5% VaR exploiting the CF approximation on a grid of values for daily

skewness built as [-2 -1.9 -1.8 ... 1.8 1.9 2] and on a grid of values for excess kurtosis built as
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[-2.8 -2.6 -2.4 ... 17.6 17.8 18].
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Figure 9: 5% Value-at-Risk estimates as a function of skewness and excess kurtosis

Let’s now calculate a standard Gaussian 5% VaR assessment for S&P 500 daily returns: this

can be derived from the two-dimensional Cornish-Fisher approximation setting skewness to 0

and excess kurtosis to 0: VaR005 = 185% This implies that a standard Gaussian 5% VaR will

over -estimate the VaR005: because S&P500 skewness is -0.00074 and excess kurtosis is 17.1563,

your two-dimensional array should reveal an approximate VaR005 of 1.46%. Two comments are

in order. First, the mistake is obvious but not as bad as you may have expected (the difference is

0.39% which even at a daily frequency may seem moderate). Second, to your shock the mistake

does not have the sign you expect: this depends on the fact that while in the lectures, the 1%

VaR surface is steeply monotonic increasing in excess kurtosis, for a 5% VaR surface, the shape

is (weakly) monotone decreasing. Why this may be, it is easy to see, as the term

2
24
[(Φ−1005)

3 − 3Φ−1005] ' 0484
2
24

 0

Because  
+1() = −500−1005, i.e., the Cornish-Fisher percentile is multiplied by a −1

coefficient, a positive
2
24
[(Φ−1005)

3 − 3Φ−1005] term means that the higher excess kurtosis is, the

lower the VaR005 is. Now, the daily S&P 500 data present an enormous excess kurtosis of 17.2.

This lowers VaR005 below the Gaussian VaR005 benchmark of 1.85%. Finally,

 
+1(005) = −500[(̂− 2)̂]12−1 (̂)

= −11521[235435]12(−20835) = 1764%

where ̂ comes from the method of moment estimation equation

̂ = 4 +
6

[()− 3
= 4 +

6

20156− 3 = 435
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Notice that also the t-Student estimate of VaR005 (1.76%) is lower than the Gaussian VaR

estimate, although the two are in this case rather close.

If you repeat this exercise for the case of  = 01% you get Figure 10:
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Figure 10: 0.1% Value-at-Risk estimates as a function of skewness and excess kurtosis

Let’s now calculate a standard Gaussian 0.1% VaR assessment for S&P 500 daily returns: this

can be derived from the two-dimensional Cornish-Fisher approximation setting skewness to 0

and excess kurtosis to 0: VaR0001 = 352% This implies that a standard Gaussian 5% VaR will

severely under -estimate the VaR001: because S&P500 skewness is -0.00074 and excess kurtosis is

17.1563, your two-dimensional array should reveal an approximate VaR005 of 20.50%. Both the

three-dimensional plot and the comparison between the CF and the Gaussian VaR0001 conform

with your expectations. First, a Gaussian VaR0001 gives a massive underestimation of the S&P

500 VaR0001 which is as large as 20.5% as a result of a huge excess kurtosis. Second, in the

diagram, the CF VaR0001 increases in excess kurtosis and decreases in skewness. In the case of

excess kurtosis, this occurs because the term

2
24
[(Φ−10001)

3 − 3Φ−10001] ' −2024
2
24

 0

which implies that the higher excess kurtosis is, the higher is VaR0001. Now, the daily S&P

500 data present an enormous excess kurtosis of 17.2. This increases VaR0001 well above the

Gaussian VaR0001 benchmark of 3.67%. Finally,

 
+1(0001) = −500[(̂− 2)̂]12−1 (̂)

= −11521[235435]12(−6618) = 5604%

where ̂ = 465. Even though such estimate certainly exceeds the 3.52% obtained under a

Gaussian benchmark, this  
+1(0001) pales when compared to the 20.50% full CF VaR.
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Finally, some useful insight may be derived from fixing the first four moments of S&P 500

daily returns to be: mean of 0.0413%, standard deviation of 1.1521%, skewness of -0.00074,

excess kurtosis of 17.1563. Figure 11 plots the VaR() measure as a function of  ranging on the

grid [0.05% 0.1% 0.15%... 4.9% 4.95% 5%] for four statistical models: (i) a standard Gaussian

VaR; (ii) a Cornish-Fisher VaR with CF expansion arrested to the second order, i.e.,

 2
 = −

∙
Φ−1 +

1
6

¡
Φ−1

¢2 − 1
6

¸
;

(iii) a standard four-moment Cornish-Fisher VaR as presented above; (iv) a t-Student VaR.
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Figure 11: VaR for different coverage probabilities  and alternative econometric models

For high , there are only small differences among different VaR measures, and a Gaussian

VaR may even be higher than VaRs computed under different models. For low values of  the

Cornish-Fisher VaR largely exceeds any other measure because of the large excess kurtosis of

daily S&P 500 data. Finally, as one should expect, S&P 500 returns have a skewness that is so

small, that the differences between Gaussian VaR and Cornish-Fisher VaR measures computed

from a second-order Taylor expansion (i.e., that reflects only skewness) are almost impossible to

detect in the plot (if you pay attention, we plotted four curves, but you can detect only three

of them).

It is also possible to use the results in Figure 11 to propose one measure of the contribution

of skewness to the calculation of VaR and two measures of the contribution of excess kurtosis to

the calculation of VaR. This is what Figure 12 does. Note that different types of contributions
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are measured on different axis/scales, to make the plot readable.
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Figure 12: Measures of contributions of skewness and excess kurtosis to VaR

The measure of skewness is obvious, the difference between the second-order CF VaR and the

Gaussian VaR measure. On the opposite, for kurtosis we have two possible measures: the

difference between the standard CF VaR and the Gaussian VaR, net of the effect of skewness (as

determined above); the difference between the symmetric t-Student VaR and the Gaussian VaR,

because in the case of t-Student, any asymmetries cannot be captured. Figure 12 shows such

measures, with the skewness contribution plotted on the right axis. Clearly, the contribution

of skewness is very small, because S&P 500 returns present very modest asymmetries. The

contribution of kurtosis is instead massive, especially when measured using CF VaR measures.

6. Direct Estimation of Tail Risk: A Quick Introduction to Extreme Value Theory

The approach to risk management followed so far was a bit odd: we are keen to model and obtain

accurate estimates of the left tail of the density of portfolio returns; however, to accomplish this

goal, we have used time series methods to (mostly, parametrically) model the time-variation

in the entire density of returns. For instance, if you care for getting a precise estimate of

[ +1(1%) and use a -Student GARCH(1,1) model (see Teräsvirta, 2009),

&
+1 = (

q
 + (&

 )2 + 2 )+1 +1 ∼ IID ()

you are clearly modelling the dynamics–as driven by changes in 2 induced by the GARCH–

over the entire density over time. But given that your interest is in [ +1(1%) one wonders

when and how it can be optimal for you to deal with all the data in the sample and their

distribution. Can we do any differently? This is what extreme value theory (EVT) accomplishes

for you (see McNeil, 1998).
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Typically, the biggest risks to a portfolio are represented by the unexpected occurrence of

a single large negative return. Having an as-precise-as-possible knowledge of the probabilities

of such extremes is therefore essential. One assumption typically employed by EVT greatly

simplifies this task: an appropriately scaled version of asset returns–for instance, standard-

ized returns from some GARCH model–must be IID according to some distribution, it is not

important the exact parametric nature of such a distribution:46

+1 =
+1

̂+1
IID D(0 1)

Although early on this will appear to be odd, EVT studies the probability that, conditioning

that they exceed a threshold , the standardized returns  less a threshold  are below a value

:

() ≡ Pr{ −  ≤ |  } (13)

where   0. Admittedly, the probabilistic object in (13) has no straightforward meaning and

it does trigger the question: why should a risk or portfolio manager care for computing and

reporting it? Figure 13 represents (13) and clarifies that this represents the probability of a

“slice” of the support for . Figure 13 marks a progress in our understanding for the fascination

of EVT experts for (13). However, in Figure 13, what remains odd is that we apparently care

for a probability slice from the right tail of the distribution of standardized returns.

u

x+u

‐

Figure 13: Graphical representation of () ≡Pr { −  ≤ |  }

Yet, if you instead of conditioning on some positive value of  you condition on −, the negative
46Unfortunately, the IID assumption is usually inappropriate at short horizons due to the time-varying variance

patterns of high-frequency returns. We therefore need to get rid of the variance dynamics before applying EVT,

which is what we have assumed above.
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of a given standardized return, then, given    0,

1− () ≡ 1− Pr{− −  ≤ |−   }
= 1− Pr{− ≤ + |  −}
= 1− Pr{  −(+ )|  −}
= Pr{ ≤ −(+ )|  −}

where we have repeatedly exploited the fact that if −   then −1 · (−)  −1 ·  or   −
and that that 1− Pr{  |} = Pr{ ≤ |}. At this point, the finding that

() = 1− Pr{ ≤ −(+ )|  −}

is of extreme interest: () represents the complement to 1 of Pr{ ≤ −(+)|  −} which
is the probability that the standardized return does not exceed a negative value −(+ )  0

conditioning on the fact that such a standardized return is below a threshold −  0 For

instance, if you set  = 0 and  to be some large positive value, 1−() equals the probability
that standardized portfolio returns are below − conditioning on the fact that these returns
are negative and hence in the left tail: this quantity is clearly relevant to all portfolio and risk

managers. Interestingly then, while  is the analog to defining the tail of interest through a

point in the empirical support of ,  acts as a truncation parameter: it defines how far in the

(left) tail our modelling effort ought to go.

In practice, how do we compute ()? On the one hand, this is all we have been doing in

this set of lecture notes: any (parametric or even non-parametric) time series model will lead to

an estimate of the PDF and hence (say, by simple numerical integration) to an estimate of the

CDF  (; θ̂) from which (; θ̂) can always be computed as

() =
Pr{   ≤ + }

Pr{  } =
 (+ )−  ()

1−  ()
 (14)

that derives from the fact that for two generic events  and ,

 (|) =  ( ∩)
 ()

 ()  0

and the fact that over the real line, Pr{    } =  () −  (). In principle, as many of

our models have implied, such an estimate of the CDF may even be a conditional one, i.e.,

+1(; θ̂|F). However, as we have commented already, this seems rather counter-intuitive:

if we just need an estimate of +1(; θ̂|F), it seems a waste of energies and computational

power to first estimate the entire conditional CDF, +1(; θ̂|F) to then compute +1(; θ̂|F)
which may be of interest to a risk manager. In fact, EVT relies one very interesting–once more,
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almost “magical”–statistical result: if the series  is independently and identically distributed

over time (IID), as you let the threshold, , get large ( → ∞ so that one is looking at the

extreme tail of the CDF), almost any CDF distribution, (), for observations beyond the

threshold converges to the generalized Pareto (GP) distribution, (;  ), where   0 and47

()
→ (;  ) =

⎧⎨⎩ 1−
³
1 + 



´− 1

if  6= 0

1− exp
³
−



´
if  = 0

where

(
 ≥  if  ≥ 0
 ≤  ≤ − 


if   0



 is the key parameter of the GPD. It is also called the tail-index parameter and it controls

the shape of the distribution tail and in particular how quickly the tail goes to zero when the

extreme, , goes to infinity.   0 implies a thick-tailed distribution such as the -Student;

 = 0 leads to a Gaussian density;   0 to a thin-tailed distribution. The fact that for  = 0

one obtains a Gaussian distribution should be no surprise: when tails decay exponentially, the

advantages of using a negative power function (see our discussion in Section 4) disappear.

At this point, even though for any CDF we have that ()→ (;  ) it remains the fact

that the expression in (14) is unwieldy to use in practice. Therefore, let’s re-write it instead as

(for  ≡ +  a change of variable that helps in what follows):

( − ) =
 ()−  ()

1−  ()
=⇒ [1−  ()]( − ) =  ()−  ()

=⇒  () =  () + [1−  ()]( − ) = 1− 1 +  () + [1−  ()]( − )

= 1− [1−  ()] + [1−  ()]( − ) = 1− [1−  ()][1− ( − )]

Now let  denote the total sample size and let  denote the number of observations beyond

the threshold, :  ≡
P

=1 (  ). The term 1− () can then be estimated simply by the

proportion of data points beyond the threshold, , call it

1− ̂ () =





( − ) can be estimated by MLE on the standardized observations in excess of the chosen

threshold . In practice, assuming  6= 0, suppose we have somehow obtained ML estimates of
 and  in

(;  ) =

⎧⎨⎩ 1−
³
1 + 



´− 1

if  6= 0

1− exp
³
−



´
if  = 0



which we know to hold as →∞. Then the resulting ML estimator of the CDF  () is:

̂ () = 1− 


[1− ̂( − )] = 1− 



⎡⎣1− 1 +Ã1 + ̂

̂

!− 1

̂

⎤⎦ = 1− 



⎡⎣Ã1 + ̂

̂

!− 1

̂

⎤⎦
47Read carefully: (;  ) approximates the truncated CDF beyond the threshold  as →∞.
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so that

lim
→∞ ̂() =

1− 


∙³
1 + ̂

̂

´− 1

̂

¸
− 1 + 






= 1−
⎡⎣Ã1 + ̂

̂

!− 1

̂

⎤⎦ 
This way of proceeding represents the “high” way because it is based on MLE plus an application

of the GPD approximation result for IID series (see e.g., Huisman, Koedijk, Kool, and Palm,

2001). However, in the practice of applications of EVT to risk management, this is not the most

common approach: when   0 (the case of fat tails is obviously the most common in finance,

as we have seen in Sections 2 and 3 of this chapter), then a very easy-to-compute estimator

exists, namely Hill’s estimator. The idea is that a rather complex ML estimation that exploits

the asymptotic GPD result may be approximated in the following way (for   ):

Pr{  } = 1−  () = ()
− 1
 ≈ 

− 1
 

where () is an appropriately chosen, slowly varying function of  that works for most distri-

butions and is thus (because it is approximately constant as a function of  ) set to a constant,

.48 Of course, in practice, both the constant  and the parameter  will have to be estimated.

We start by writing the log-likelihood function for the approximate conditional density for all

observations  as:

( ) =
Q
=1

(|  ) =
Q
=1

()

1−  ()
= −

Q
=1

1



− 1

−1



1


− 1




The expression ()1−  () in the product involving only observations to the right of the 

threshold derives from the fact that

(|  ) =
()

Pr(  )
=

()

1−  ()

for   . Moreover,

() =
 ()


=



∙
1− 

− 1




¸


=
1



− 1

−1

 

Therefore the log-likelihood function is

L( ) = log( ) = −
P
=1

½
− log  − (1


+ 1) log  +

1


log 

¾


Taking first-order conditions and solving, delivers a simple estimator for :49

̂


=
1



X
=1

ln
³


´
  

48Formally, this can be obtained by developing in a Taylor expansion ()−1 and absorbing the parameter

 into the constant  (which will non-linearly depend on ).

49In practice, the Hill’s estimator ̂


is an approximate MLE in the sense that it is derived from taking an

approximation of the conditional PDF under the EVT (as  → ∞) and developing and solving FOCs of the
corresponding approximate log-likelihood function.
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which is easy to implement and remember. At this point, we can also estimate the parameter 

by ensuring that the fraction of observations beyond the threshold  is accurately captured by

the density as in ̂ () = 1−  :

1− ̂
− 1

̂


= 1−  =⇒ ̂ =





1

̂




from the fact that we have approximated  () as 1− −1. At this point, collecting all these

approximation/estimation results we have that

̂ () = 1− ̂
− 1

̂


= 1− 




1

̂



− 1

̂


= 1− 



³


´− 1

̂


= 1− 



³


´− 1



=1 ln(


 )
−1

where the first line follows from  () ≈ 1− 
−1
 and the remaining steps have simply plugged

estimates in the original equations. Because we had defined  ≡ +  equivalently we have:

̂(+ ) = 1− 



³
1 +





´− 1



=1 ln(1+


 )
−1



which is a Hill/ETV estimator of the CDF when  → ∞ i.e., of the extreme right tail of

distribution of (the negative of) standardized returns. This seems rather messy, but the pay-off

has been quite formidable: we now have a closed-form expression for the shape of the very far

CDF of portfolio percentage losses which does not require numerical optimization within ML

estimation. Such an estimate is therefore easy to calculate and to apply within (14), knowing

that if ̂(+ ) is available, then

̂
 () =

̂(+ )− ̂()

1− ̂()


Obviously, and by construction, such an approximation is increasingly good as →∞.
How do you know whether and how your EVT (Hill’s) estimator is fitting the data well

enough? Typically, portfolio and risk managers use our traditional tool to judge of this achieve-

ment, i.e., a (partial) QQ plots. A partial QQ plot consists of a standard QQ plot derived and

presented only for (standardized) returns below some threshold loss −  0 It can be shown

that the partial QQ plot from EVT can be built representing in a classical Cartesian diagram

the relationship

{ } =
(


∙
− 05


· 


¸−̂
 

)


where  is the th standardized loss sorted in descending order (i.e., for negative standardized

returns ). The first and basic logical step consists in taking a time series of portfolio returns

and analyzing their (standardized) opposite, i.e.,  ≡ −. This way, one formally looks
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at the right-tail conditioning on some threshold   0 even though the standard logical VaR

meanings obtain. In a statistical perspective, the first and initial step is to set the estimated

cumulative probability function equal to 1−  so that there is only a  probability of getting a

standardized loss worse than the quantile, (̂−11−), which is implicitly defined by (̂
−1
1−) = 1−

or

1− 



Ã
̂−11−


!−1̂
= 1−  =⇒ ̂−11−


=

∙





¸−̂
=⇒ ̂−11− = 

∙





¸−̂


At this point, the Q-Q plot can be constructed as follows: First, sort all standardized returns,

, in ascending order, and call the th sorted value   . Second, calculate the empirical

probability of getting a value below the actual as ( − 5) , where  is the total number of

observations.50 We can then scatter plot the standardized and sorted returns on the Y-axis

against the implied ETV quantiles on the X-axis as follows:

{ } =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎣ (− 05)
| {z }

̂ matching s quantile





⎤⎥⎥⎦
−̂

 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ 

If the data were distributed according to the assumed EVT distribution for   , then the

scatter plot should conform roughly to the the 45-degree line.

Because they are representations of partial CDF estimators–limited to the right tail of

negative standardized returns, that is the left tail of actual standardized portfolio returns–

ETV-based QQ plots are frequently excellent, which fully reflects the power of EVT methods

to capture in extremely accurate ways the features of the (extreme) tails of the financial data,

see the example in Figure 14. Clearly, everything works in Figure 14, as shown by the fact that

all the percentiles practically fall on the left-most branch of the 45-degree line. However, not

all is as good as it seems: as we shall see in the worked-out Matlab
R°
session at the end of this

chapter, these EVT-induced partial QQ plots obviously suffer from consistency issues, as the

same quantile may strongly vary with the threshold . In fact, and with reference to the same

identical quantiles, if one changes , plots that are very different (i.e., much less comforting)

than Figure 14 might be obtained and this is logically problematic, as it means that the same

method and estimator (Hill’s approximate MLE) may give different results as a function of the

50The subtraction of .5 is an adjustment allowing for a continuous distribution.
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nuisance parameter represented by .

– u

Figure 14: Partial QQ plot for an EVT tail model of () ≡Pr { −  ≤ |  }

In itself, the choice of  appears problematic because a researcher must balance a delicate

trade-off between bias and variance. If  is set too large, then only very few observations are

left in the tail and the estimate of the tail parameter, , will be very uncertain because it is

based on a small sample. If on the other hand  is set to be too small, then the EVT key

result that all CDFs may be approximated by a GPD may fail, simply because this result held

as  → ∞ ; this means that the data to the right of the threshold do not conform sufficiently

well to the generalized Pareto distribution to generate unbiased estimates of . For samples of

around 1,000 observations, corresponding to about 5 years of daily data, a good rule of thumb

(as shown by a number of simulation studies) is to set the threshold so as to keep the largest 5%

of the observations for estimating –that is, we set  = 50. The threshold  will then simply

be the 95th percentile of the data.

In a similar fashion, Hill’s -percent VaR can be computed as (in the simple case of the

one-step ahead VaR estimate):

 
+1 (;) = −11−+1 + 


+1 = 

∙





¸−
+1 + 


+1

where 

+1 = −+1 represents the conditional mean not for returns but for the negative of

returns,  ≡ −.
51 The reason for using the (1− )th quantile from the EVT loss distribution

in the VaR with coverage rate  is that the quantile such that (1 − ) × 100% of losses are

smaller than it is the same as minus the quantile such that × 100% of returns are smaller than

it. Note that the VaR expression remains conditional on the threshold ; this an additional

parameter that tells the algorithm how specific (tailored) to the tail you want your VaR estimate

to be. However, as already commented above with reference to the partial QQ plots, this

51The use of the negative of returns explains the absence of negative signs in the expression.
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may be a source of problems: for instance one may find that  
+1 (1%; 2%) = 456% but

 
+1 (1%; 3%) = 504%: even though they are both sensible (as  

+1   which is a

minimal consistency requirement), which one should we pick to calculate portfolio and risk

management capital requirements?

In the practice of risk management, it is well known that normal and EVT distributions

often lead to similar 1% VaRs but to very different 0.1% VaRs due to the different tail shapes

that the two methods imply, i.e., the fact that Gaussian models often lead to excessively thin

estimates of the left tail. Figure 15 represents one such case: even though the 1% VaR under

normal and EVT tail estimates are identical, the left tail behavior is sufficiently different to

potentially cause VaR estimates obtained for   1% to differ considerably. The tail of the

normal distribution very quickly converges to zero, whereas the EVT distribution has a long

and fat tail.

EVT based on  = 0.5 

Very different tail behavior

Figure 15: Different tail behavior of normal vs. EVT distribution models

Visually, this is due to the existence of a crossing point in the far left tail of the two different

distributions. Therefore standard Basel-style VaR calculations based on a 1% coverage rate

may conceal the fact that the tail shape of the distribution does not conform to the normal

distribution: in Figure 15, VaRs below 1% will differ by a factor as large as 1 million! In this

example, the portfolio with the EVT distribution is much riskier than the portfolio with the

normal distribution in that it implies non-negligible probabilities of very large losses. What can

we do about it? The answer is to supplement VaR measures with other measures such as plots in

which VaR is represented as a function of  (i.e., one goes from seeing VaR as an estimate of an

unknown parameter to consider VaR as an estimate of a function of , to assess the behavior of

the tails) or to switch to alternative risk management criteria, for instance the Expected Shortfall

(also called TailVaR), see Appendix A for a quick review of the concept.

How can you compute ES in practice? For the remainder of this Section, assume +1 = 0%

Let’s start with the bad news: it is more complex than in the case of the plain-vanilla VaR

48



because ES actually conditions on VaR. In fact, usually one has to perform simulations under

the null of a given econometric model to be able to compute an estimate of ES. Now it is time

for the good news: at least in the Gaussian case, one can find a (sort of) closed form expression:

+1() = −[

+1|

+1  − +1()] = +1


³
− +1()

+1

´
Φ
³
− +1()

+1

´ = +1

¡
Φ−1

¢


where the last equality follows from  +1() = −+1Φ−1 and Φ
¡−Φ−1 ¢ =  Here  (·)

denotes the standard normal PDF, while Φ (·) is, as before, the standard normal CDF. For
instance, if +1 = 12%, +1() = 0012{[(−2)−12 exp(−(−233)22)]001} = 317% from

 () = (−2)−12 exp
µ
−

2

2

¶


Interestingly, the ratio between +1() and  +1() possesses two key properties. First,

under Gaussian portfolio returns, as  → 0+, +1() +1() → 1 and so there is little

difference between the two measures. This makes intuitive sense: the ES for a very extreme

value of  basically reduces to the VaR estimate itself as there is very little probability mass left

to the left of VaR. In general, however, the ratio of ES to VaR for fat-tailed distribution will

be higher than 1, which was already the intuitive point of Figure 15 above. Second, for EVT

distributions, when  goes to zero, the ES to VaR ratio converges to

lim
→0+

+1()

 +1()
=

1

1− 


so that as  → 1 (which is revealing of fat tails, as claimed above), +1() +1() →
+∞.52 Moreover, the larger (closer to 1) is   1 the larger is +1() for given  +1().

Appendix 1 – A Matlab
R°
Workout on Modelling

Volatility

Suppose you are a German investor. Unless it is otherwise specified, you evaluate the prop-

erties and risk of your equally weighted stock portfolio on a daily basis. Using daily data in the

file “data daily.txt”, construct daily portfolio returns. Please pay attention to the exchange rate

transformations required by the fact that you are a German investor who measures portfolio

payoffs in euros.53

52For instance, in Figure 15, where  = 05, the ES to VaR ratio is roughly 2, even though the 1% VaR is the

same in the two distributions. Thus, the ES measure is more revealing than the VaR about the magnitude of

losses larger than the VaR.
53In case there is any residual confusion: a portfolio is just a choice of weights (in this case, a 3 × 1 vector)

summing to one. 3× 1 implies that you should be investing 100% in stocks. Equivalently, we are dealing with an

equity diversification problem and not with a strategic asset allocation one. You can pick any real values, but it

may be wise, to keep the current lab session sufficiently informative, to restrict weights to (0 1) possibly avoiding

zeroes.
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1. Estimate a RiskMetrics exponential smoother (i.e., estimate the RiskMetrics parame-

ter ) and plot the fitted conditional volatility series against those obtained from the

GARCH(1,1).

2. Compute and plot daily one-day ahead recursive forecasts for the period 01/01/2011-

31/01/2013 given the ML estimates for the parameters of the models in questions 4 and

5.

3. To better realize what the differences among GARCH(1,1) and RiskMetrics are when it

comes to forecast variances in the long term, proceed to a 300-day long simulation exercise

for four alternative GARCH(1,1) models: (i) with  = 1,  = 075,  = 02; (ii) with

 = 1,  = 02,  = 075; (iii) with  = 2,  = 075,  = 02; (iv) with  = 2,  = 02,

 = 075. Plot the process of the conditional variance under these alternative four models.

In the case of models 1 and 2 ((i) and (ii)), compare the behavior of volatility forecasts

between forecast horizons between 1- and 250-days ahead with the behavior of volatility

forecasts derived from a RiskMetrics exponential smoother.

4. Estimate the 1% Value-at-Risk under the alternative GARCH(1,1) and RiskMetrics models

with reference to the OOS period 01/01/2011-31/01/2013, given the ML estimates for the

parameters of the models in questions 4 and 5. Compute the number of violations of the

VaR measure. Which of the two models performed best and why?

5. Using the usual sample of daily portfolio returns, proceed to estimate the following three

“more advanced” and asymmetric GARCH models: NGARCH(1,1), GJR-GARCH(1,1),

and EGARCH(1,1). In all cases, assume that the standardized innovations follow an IID

(0 1) distribution. Notice that in the case of the NGARCH model, it is not implemented

in the Matlab
R°
garchfit toolbox and as a result you will have to develop and write the log-

likelihood function in one appropriate procedure. After you have performed the required

print on the Matlab
R°
screen all the estimates you have obtained and think about the

economic and statistical strength of the evidence of asymmetries that you have found.

Comment on the stationarity measure found for different volatility models. Finally, plot

the dynamics of volatility over the estimation sample implied by the three alternative

volatility models.

6. For the sample used in questions 4, 5, and 9, use the fitted variances from GARCH(1,1),

RiskMetrics’ exponential smoothed, and a GJR-GARCH(1,1) to perform an out-of-sample

test for the three variance models inspired by the classical test that in the regression

2 = + b2−1 + 
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 = 0 and  = 1 to imply that −1[2 ] = 2 = b2−1, where b2−1 is the the time − 1
conditional forecast of the variance from model ; moreover, as explained in the lectures,

we would expect the 2 of this regression to be high if model  explains a large portion of

realized stock variance. In your opinion, which model performs best in explaining observed

variance (assuming that the proxies for observed variances are squared returns )?

Solution

This solution is a commented version of the MATLAB code Ex GARCH 2012.m posted on

the course web site. Please make sure to use a “Save Path” to include jplv7 among the directories

that Matlab
R°
reads looking for usable functions. The loading of the data is performed by the

lines of code:

1. Here we proceed to estimate a RiskMetrics exponential smoother (i.e., estimate the Risk-

Metrics parameter ) by ML. Note that this is different from the simple approach men-

tioned in the lectures where  was fixed at the level suggested by RiskMetrics.

parm=0.1;

logL= maxlik(‘objfunction’,parm,[],port ret(ind(1):ind(2)+1));

lambda=logL.b;

disp(‘The estimated RiskMetrics smoothing coefficient is:’)

disp(lambda)

parm=0.1 sets an initial condition for the estimation (a weird one, indeed, but the point

is to show that in this case the data have such a strong opinion for what is the appropriate

level of  that such an initial condition hardly matters; try to change it and see what happens).

This maxlik call is based on the maximization of the log-likelihood given in objfunction. That

procedure reads as

ret=y;

R=rows(ret);

C=cols(ret);

conditional var=NaN(R,C);

conditional var(1,1)=var(ret);

for i=2:R

conditional var(i,1)=(1-lambda)*ret(i-1,1).ˆ2+lambda*conditional var(i-1,1);

end
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z=ret./sqrt(conditional var);

y=-sum(-0.5*log(2*pi)-0.5*log(conditional var)-0.5*(z.ˆ2));

In figure A5 we plot the fitted (also called in-sample filtered) conditional volatility series

and compare it to that obtained from the GARCH(1,1) in the earlier question. Clearly, the

two models behave rather differently and such divergencies were substantial during the financial

crisis. This may have mattered to financial institutions and their volatility traders and risk

managers.
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Exponential Smoothing, lambda=0.94568

Figure A5:Comparing in-sample predictions of conditional volatility from GARCH vs. RiskMetrics

6. Using the following lines of code, we compute and plot daily one-day ahead, recursive

out-of-sample forecasts for the period 01/01/2011-01/01/2013 given the ML estimates for

the parameters of the models in questions 4,

spec pred=garchset(‘C’,coeff.C,‘K’,coeff.K,‘ARCH’,coeff.ARCH,‘GARCH’,coeff.GARCH);

garch pred=NaN(ind(3)-ind(2),1);

for i=1:(ind(3)-ind(2))

[SigmaForecast,MeanForecast,SigmaTotal,MeanRMSE] = ...

garchpred(spec pred,port ret(ind(1):ind(2)+i-1),1);

garch pred(i)=SigmaForecast(1);

end

and 5, using

52



for i=1:(ind(3)-ind(2)-1)

es pred(i+1)=lambda*es pred(i)+(1-lambda)*port ret(ind(2)+i)ˆ2;

end

es std pred=sqrt(es pred);

Here garchpred forecasts the conditional mean of the univariate return series and the standard

deviation of the innovations ind(3)-ind(2) into the future, a positive scalar integer representing

the forecast horizon of interest. It uses specifications for the conditional mean and variance of

an observed univariate return series as input. In both cases, note that actual returns realized

between 2011 and early 2013 is fed into the models, in the form of series {(−1−)2} sampled
over time. Figure A6 shows the results of this recursive prediction exercises and emphasizes

once more the existence of some difference across GARCH and RiskMetrics during the Summer

2011 sovereign debt crisis.
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Figure A6:Comparing out—of-sample predictions of conditional volatility from GARCH vs. RiskMetrics

7. To better realize what the differences among GARCH(1,1) and RiskMetrics are when it

comes to forecast variances in the long term, we proceed to a 300-day long simulation

exercise for four alternative GARCH(1,1) models, when the parameters are set by us

instead of being estimated: (i)  = 1,  = 075,  = 02; (ii)  = 1,  = 02,  = 075; (iii)

with  = 2,  = 075,  = 02; (iv) with  = 2,  = 02,  = 075. Importantly, forecasts

under RiskMetrics are performed using a value of  that makes it consistent with the first

variance forecast from GARCH. For all parameterizations, this is done by the following

lines of code:
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for j=1:length(alpha)

for i=2:dim

epsilon=sqrt(garch(i-1,j))*ut(i);

garch(i,j)=omega(1)+alpha(j)*epsilonˆ2+beta(j)*garch(i-1,j);

end

end

for j=3:length(alpha)+length(omega)

for i=2:dim

epsilon=sqrt(garch(i-1,j))*ut(i);

garch(i,j)=omega(2)+alpha(j-2)*epsilonˆ2+beta(j-2)*garch(i-1,j);

end

end

Figure A7 presents simulation results. Clearly, the blue models imply generally low variance

but frequent and large spikes, while the green models imply considerably more conditional

persistence of past variance, but a smoother temporal path. Try and meditate on these two

plots in relation to the meaning of your MLE optimization setting the “best possible” values of

 and  to fit the data.
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Model 1: a1=0.7 b1=0.2
Model 2: a1=0.2 b1=0.7
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Model 3: a1=0.7 b1=0.2
Model 4: a1=0.2 b1=0.7

Figure A7: Simulating 4 alternative GARCH models

The following code computes insteads true out-of-sample forecasts 250 periods ahead. Notice

that these forecasts are no long recursive, i.e., you do not feed the actual returns realized over

the out-of-sample periods, and this occurs for a trivial reason: you do not know them because
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this is a truly out-of-sample exercise. Initialization is done with reference to the last shock

obtained in the previous run of simulations:

horz=250;

A=NaN(horz,1);

garch sigma sq t plus one a=omega(1)+alpha(1)*epsilonˆ2+beta(1)*garch(end,1);

garch sigma sq t plus one b=omega(1)+alpha(2)*epsilonˆ2+beta(2)*garch(end,2);

(%Derives forecasts under Model 1)

A(1)=garch sigma sq t plus one a;

uncond var=omega(1)/(1-alpha(1)-beta(1));

for i=2:horz

A(i)=uncond var+((alpha(1)+beta(1))ˆ(i-1))*(garch sigma sq t plus one a-

uncond var);

end

garch forecast a=sqrt(A);

lambda a=(garch sigma sq t plus one a-epsilonˆ2)/(garch(end,1)-epsilonˆ2);

es forecast a=lambda*garch forecast a(1)+(1-lambda)*epsilonˆ2;

es forecast a=sqrt(es forecast a).*ones(horz,1);

Here the initial value for the variance in the GARCH model is set to be equal to the uncondi-

tional variance. The expression for lambda a sets a value for  that makes it consistent with the

first variance forecast from GARCH. Figure A8 plots the forecasts between 1- and 250-periods

ahead obtained under models (i) and (ii) when the RiskMetrics  is set in the way explained

above. As commented in the lectures, it is clear that while GARCH forecasts converge in the

long-run to a steady, unconditional variance value that by construction is common and equal

to 4.5 in both cases, RiskMetrics implies that the forecast is equal to the most recent variance
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estimate for all horizons  ≥ 1.
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GARCH(1,1) forecast, a1=0.75 b1=0.2
ES forecast, lambda=0.78133

GARCH(1,1) forecast, a1=0.2 b1=0.75
ES forecast, lambda=0.80602

Figure A8: Variance forecasts (250 daily) from two alternative GARCH models vs. RiskMetrics

8. We now estimate the 1% Value-at-Risk under the alternative GARCH(1,1) and RiskMetrics

models with reference to the OOS period 01/01/2011-31/01/2013, given the ML estimates

for the parameters of the models in questions 4 and 5. This is accomplished through the

following lines of code:

alpha=0.01;

Var garch=norminv(alpha,0,garch pred);

Var es=norminv(alpha,0,es std pred);

index garch=(port ret(ind(2)+1:ind(3))Var garch);

viol garch=sum(index garch);

index es=(port ret(ind(2)+1:ind(3))Var es);

viol es=sum(index es);

Figure A9 shows the results: because during parts of the Summer 2011 crisis, the RiskMetrics

one-step ahead variance forecast was below the GARCH(1,1), there are more violations of the

1% VaR bound under the former model than under the second, 11 and 8, respectively.54 Also

note that if a volatility model is correctly specified, then we should find that in a recursive back

testing period of 524 days (which is the number of trading days between Jan. 1, 2011 and Jan.

31, 2013), one ought to approximately observe 001× 524 = roughly 5 violations. Here we have
54These are easily computed simply using sum(viol garch) and sum(viol es) in Matlab.
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instead 8 and 11, and especially the latter number represents more than the double than the

total number one expects to see. This is an indication of misspecification of RiskMetrics and

probably of the GARCH model too. Even worse, most violations do occur in early August 2011,

exactly when you would have needed a more accurate forecasts of risk and hence of the needed

capital reserves! However, RiskMetrics also features occasional violations of the VaR bound in

the Summer of 2012.
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Figure A9: Daily 1% VaR bounds from GARCH vs. RiskMetrics

9. Next, we proceed to estimate three “more advanced” and asymmetric GARCH models:

NGARCH (1,1), GJR-GARCH(1,1), and EGARCH(1,1). While for GJR and EGARCH

estimation proceeds again using the Matlab
R°
garchfit toolbox in the same way we have

seen above, the GJR(1,1) (also called threshold GARCH) model is estimated by MLE,

using

GJRspec=garchset(‘VarianceModel’,‘GJR’,‘Distribution’,‘Gaussian’,‘P’,1,‘Q’,1);

[GJRcoeff, GJRerrors,GJRllf,GJRinnovation,GJRsigma,GJRsummary]=...

garchfit(GJRspec,port ret(ind(1):ind(2),:));

garchdisp(GJRcoeff,GJRerrors);

EGARCHspec=garchset(‘VarianceModel’,‘EGARCH’,‘Distribution’,‘Gaussian’,‘P’,1,‘Q’,1);

[EGARCHcoeff,

EGARCHerrors,EGARCHllf,EGARCHinnovation,EGARCHsigma,EGARCHsummary]=...

garchfit(EGARCHspec,port ret(ind(1):ind(2),:));

garchdisp(EGARCHcoeff,EGARCHerrors);
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In the case of the NGARCH model, estimation is not implemented through garchfit and as a

result you will have to develop and write the log-likelihood function in one appropriate procedure,

which is the appropriate function ngarch, initialized at par initial(1:4,1)=[0.05;0.1;0.05;0.85].

This procedure uses Matlab
R°
unconstrained optimization fminsearch (please press F1 over

fminsearch and read up on what this is):55

par initial(1:4,1)=[0.05;0.1;0.05;0.85];

function [sumloglik,z,cond var] = ngarch(par,y);

[mle,z ng,cond var ng]=ngarch(param ng,port ret(ind(1):ind(2),:));

ngarch takes as an input the 4x1 vector of NGARCH parameters (, , , and ) and the

vector y of returns and yields as an output sumloglik, the (scalar) value of likelihood function

(under a normal distribution), the vector of standardized returns z, and the conditional variance

(note) cond var. The various points requested by the exercise have been printed directly on the

screen:

55fminsearch finds the minimum of an unconstrained multi-variable function using derivative-free methods and

starting at a user-provided initial estimate.
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993All volatility models imply a starionarity index of approximately 0.98, which is indeed typical

of daily data. The asymmetry index  is large (but note that we have not yet derived standard

errors, which would not be trivial in this case) at 1.03 in the NAGARCH case, it is 0.14 with a

t-stat of 7.5 in the GJR case, and it is -0.11 with a t-stat 9 in the EGARCH case: therefore in

all cases we know or we can easily presume that the evidence of asymmetries in these portfolio

returns is strong. Figure A10 plots the dynamics of volatility over the estimation sample implied

by the three alternative volatility models. As you can see, the dynamics of volatility models

tends to be rather homogeneous, apart from the Fall of 2008 when NAGARCH tends to be above

the others while simple GJR GARCH is instead below. At this stage, we have not computed

VaR measures, but you can easily figure out (say, under a simple Gaussian VaR such as the

one presented in chapter 1) what these different forecasts would imply in risk management

applications.
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Figure A10: Comparing in-sample fitted volatility dynamics under GJR, EGARCH, and NAGARCH

10. We now compare the accuracy of the forecasts given by different volatility models. We

use the fitted/in-sample filtered variances from GARCH(1,1), RiskMetrics’ exponential

smoother, and a GJR-GARCH(1,1) to perform the out-of-sample test that is based on the

classical test that in the regression

2 = + b2−1 + 

 = 0 and  = 1 to imply that −1[2 ] = 2 = b2−1, where b2−1 is the the time − 1
conditional forecast of the variance from model . For instance, in the case of GARCH,

the lines of codes estimating such a regression and printing the relevant outputs are:
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result = ols((port ret(ind(1):ind(2),:).ˆ2),[ones(ind(2)-ind(1)+1,1)

(cond var garch)]);

disp(‘Estimated alpha and beta from regression test: GARCH(1,1) Variance forecast:’);

disp(result.beta’);

disp(‘With t-stats for the null of alpha=0 and beta=1 of:’);

disp([result.tstat(1) ((result.beta(2)-1)/result.bstd(2))]); fprintf(‘\n’);
disp(‘and an R-square of:’);

disp(result.rsqr)

The regression is estimated using the Matlab
R°
function ols that you are invited to review

from your first course in the Econometrics sequence. The results displayed on your screen are:

In a way, the winner is the NAGARCH(1,1) model: the null of  = 0 and  = 1 cannot be

rejected and the 2 considering that we are using noisy, daily data is an interesting 22.5%; also

GARCH gives good results, in the sense that  = 0 and  = 1 but the 2 is “only” 17%. Not

good news instead for RiskMetrics, because the null of  = 1 can be rejected: ̂ = 088  1

implies a t-stat of -2.06 (=(0.88-1)/std.err(̂)). Note that these comments assume that the

proxy for observed variances are squared returns, which–as seen in the lectures–may be a

questionable choice.

Appendix B – A Matlab
R°
Workout on Modelling

Non-Normality
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Suppose you are a European investor and your reference currency is the Euro. You evaluate

the properties and risk of your equally weighted portfolio on a daily basis. Using daily data

in STOCKINT2013.XLS, construct daily returns (in Euros) using the three price indices DS

Market-PRICE Indexes for three national stock markets, Germany, the US, and the UK.

1. For the sample period of 03/01/2000- 31/12/2011, plot the returns on each of the three

individual indices and for the equally weighted portfolio denominated in Euros. Just to

make sure you have correctly applied the exchange rate transformations, also proceed to

plot the exchange rates derived from your data set.

2. Assess the normality of your portfolio returns by computing and charting a QQ plot,

a Gaussian Kernel density estimator of the empirical distribution of data, and by per-

forming a Jarque-Bera test using daily portfolio data for the sample period 03/01/2000-

31/12/2011. Perform these exercises both with reference to the raw portfolio returns (in

euros) and with reference to portfolio returns standardized using the unconditional sample

mean standard deviation over your sample. In the case of the QQ plots, observe any differ-

ences between the plot for raw vs. standardized returns and make sure to understand the

source of any differences. In the case of the Kernel density estimates, produce two plots,

one comparing a Gaussian density with the empirical kernel for portfolio returns and the

other comparing a Gaussian density with the empirical kernel for portfolio returns stan-

dardized using the unconditional sample mean and standard deviation over your sample.

In the case of the Jarque-Bera tests, comment on the fact that the test results seem not

to depend on whether raw or standardized portfolio returns are employed. Are either the

raw portfolio or the standardized returns normally distributed?

3. Estimate a GARCH with leverage model over the same period and assess the normality of

the resulting standardized returns. You are free to shop among the asymmetric GARCH

models with Gaussian innovations that are offered by Matlab and the ones that have been

presented during the lectures. In any event make sure to verify that the estimates that

you have obtained are compatible with the stationarity of the variance process. Here it

would be useful if you were to estimate at least two different leverage GARCH models and

compare the normality of the resulting standardized residuals. Can you find any evidence

that either of the two volatility models induces standardized residuals that are consistent

with the assumed model, i.e., +1 = +1+1 with +1 IID (0 1)?

4. Simulate returns for your sample using at least one GARCH with leverage model, cali-

brated on the basis of the estimation obtained under the previous point with normally
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distributed residuals. Evaluate the normality properties of returns and standardized re-

turns using QQ plots and a Kernel density fit of the data.

5. Compute the 5% Value at Risk measure of the portfolio for each day of January 2012

(in the Excel file, January 2012 has 20 days) using, respectively, a Normal quantile when

variance is constant (homoskedastic), a Normal quantile when conditional variance follows

a GJR process, a t-Sstudent quantile with the appropriately estimated number of degrees

of freedom and a Cornish-Fisher quantile and compare the results. Estimate the number of

degrees of freedom by maximum likelihood. In the case of a conditional t-Student density

and of the Cornish-Fisher approximation, use a conditional variance process calibrated on

the filtered conditional GJR variance in order to define standardized returns. The number

of degrees of freedom for the t-Student process should be estimated by QML.

6. Using QML, estimate a ()-NGARCH(1,1) model. Fix the variance parameters at their

values from question 3. If you have not estimated a (Gaussian) NGARCH(1,1) in question

3, it is now time to estimate one. Set the starting value of  equal to 10. Construct a QQ

plot for the standardized returns using the standardized () distribution under the QML

estimate for . Estimate again the ()-NGARCH(1,1) model using now full ML methods,

i.e., estimating jointly the t-Student  parameter as well as the four parameters in the

nonlinear GARCH written as

2 =  + (−1 − −1)2 + 2−1.

Is the resulting GARCH process stationary? Are the estimates of the coefficients  different

across QML and ML methods and why? Construct a QQ plot for the standardized returns

using the standardized () distribution under the ML estimate for . Finally, plot and

compare the conditional volatilities resulting from your QML (two-step) and ML estimates

of the ()-NGARCH(1,1) model.

7. Estimate the EVTmodel on the standardized portfolio returns from a Gaussian NGARCH(1,1)

model using the Hill estimator. Use the 4% largest losses to estimate EVT. Calculate the

0.01% standardized return quantile implied by each of the following models: Normal, (),

Hill/EVT, and Cornish-Fisher. Notice how different the 0.01% VaRs would be under these

alternative four models. Construct the QQ plot using the EVT distribution for the 4%

largest losses. Repeat the calculations and re-plot the QQ graph when the threshold is

increased to be 8%. Can you notice any differences? If so, why are these problematic?

8. Perform a simple asset allocation exercise under three alternative econometric specifica-
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tions using a Markowitz model, under a utility function of the type

( 
2
 ) =  −

1

2
2 ,

with  = 05, in order to determine optimal weights. Impose no short sale constraints on

the stock portfolios and no borrowing at the riskless rate. The alternative specifications

are:

(a) Constant mean and a GARCH (1,1) model for conditional variance, assuming nor-

mally distributed innovations.

(b) Constant mean and an EGARCH (1,1) model for conditional variance, assuming

normally distributed innovations.

(c) Constant mean and an EGARCH (1,1) model for conditional variance, assuming

t-Student distributed innovations.

Perform the estimation of the model parameters using a full sample of data until 02/01/2013.

Note that, just for simplicity (we shall relax this assumption later on) all models assume a

constant correlation among different asset classes, equal to sample estimate of their corre-

lations in pairs. Plot optimal weights and the resulting in-sample, realized Sharpe ratios of

your optimal portfolio under each of the three different frameworks. Comment the results.

[IMPORTANT: Use the toolboxes regression tool 1.m and mean variance multiperiod.m

that have been made available with this exercise set]

Solution

This solution is a commented version of the MATLAB code Ex CondDist VaRs 2013.m

posted on the course web site. Please make sure to use a “Save Path” to include jplv7 among

the directories that Matlab
R°
reads looking for usable functions. The loading of the data is

performed by:

filename=uigetfile(‘*.txt’);

data=dlmread(filename);

The above two lines import only the numbers, not the strings, from a .txt file.56 The following

lines of the codes take care of the strings:

56The reason for loading from a .txt file in place of the usual Excel is to favor usage from Mac computers that

sometimes have issues with reading directly from Excel, because of copyright issues with shareware spreadsheets.
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filename=uigetfile(‘*.txt’);

fid = fopen(filename);

labels = textscan(fid, ‘%s %s %s %s %s %s %s %s %s %s’);

fclose(fid);

1. The plot requires that the data are read in and transformed in euros using appropriate

exchange rate log-changes, that need to be computed from the raw data, see the posted

code for details on these operations. The following lines proceed to convert Excel serial

date numbers into MATLAB serial date numbers (the function x2mdate(·)), set the dates
to correspond to the beginning and the end of the sample, while the third and final dates

are the beginning and the end of the out-of-sample (OOS) period:

date=datenum(data(:,1));

date=x2mdate(date);

f=[‘02/01/2006’;‘31/12/2010’; ‘03/01/2013’];

date find=datenum(f,‘dd/mm/yyyy’);

ind=datefind(date find,date);

The figure is then produced using the a set of instructions that is not be commented in detail

because their structure closely resembles other plots proposed in Lab 1, see worked-out exercise

in chapter 4. Figure A1 shows the euro-denominated returns on each of the four indices.

Figure A1:Daily portfolio returns on four national stock market indices

Even though these plots are affected by the movements of the /$ and $/$ exchange rates,

the volatility bursts recorded in early 2002 (Enron and Worldcom scandal and insolvency), the
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Summer of 2011 (European sovereign debt crisis), and especially the North-American phase of

the great financial crisis in 2008-2009 are well-visible.

Figure A2:Daily portfolio indices and exchange rates

As requested, Figure A2 plots the values of both indices and implied exchange rates, mostly to

make sure that the currency conversions have not introduced any anomalies.

2. The calculation of the unconditional sample standard deviation and the standardization

of portfolio returns is simply performed by the lines of code:

unc std=std(port ret(ind(1):ind(2)));

std portret=(port ret(ind(1):ind(2))-mean(port ret(ind(1):ind(2))))./unc std;

Note that standardizing by the unconditional standard deviation is equivalent to divide by a

constant, which is important in what follows. The set of instructions that produces QQ plots

and displays them horizontally to allow a comparison of the plots of raw vs. standardized returns

iterates on the simple function:

qqplot(RET(:,i));

where qqplot displays a quantile-quantile plot of the sample quantiles of X versus theoretical

quantiles from a normal distribution. If the distribution of X is normal, the plot will be close

to linear. The plot has the sample data displayed with the plot symbol ‘+’.57 Figure A3

57Superimposed on the plot is a line joining the first and third quartiles of each distribution (this is a robust

linear fit of the order statistics of the two samples). This line is extrapolated out to the ends of the sample to help

evaluate the linearity of the data. Note that ‘qqplot(X,PD)’ would create instead an empirical quantile-quantile

plot of the quantiles of the data in the vector X versus the quantiles of the distribution specified by PD.
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displays the two QQ plots and emphasizes the strong, obvious non-normality of both raw and

standardized data.

Figure A3:Quantile-quantile plots for raw vs. standardized returns (under constant variance)

The kernel density fit comparisons occur between a normal distribution, that is simply rep-

resented by a simulation performed by the lines of codes

norm=randn(1000*rows(RET(:,1)),1);

norm1=mean(RET(:,1))+std(RET(:,1)).*norm;

norm2=mean(RET(:,2))+std(RET(:,2)).*norm;

[Fnorm1,XInorm1]=ksdensity(norm1,‘kernel’,‘normal’);

[Fnorm2,XInorm2]=ksdensity(norm2,‘kernel’,‘normal’);

To obtain a smooth Gaussian bell-shaped curve, you should generate a large number of values,

while the second and third lines ensure that the Gaussian random numbers will have the same

mean and variance as raw portfolio returns (however, by construction std(RET(:,2)) = 1).

[f,xi] = ksdensity(x) computes a probability density estimate of the sample in the vector x. f

is the vector of density values evaluated at the points in xi. The estimate is based on a normal

kernel function, using a window parameter (bandwidth) that is a function of the number of

points in x. The density is evaluated at 100 equally spaced points that cover the range of the

data in x. ‘kernel’ specifies the type of kernel smoother to use. The possibilities are ‘normal’

(the default), ‘box’, ‘triangle’, ‘epanechnikov’. The following lines of codes perform the normal

kernel density estimation with reference to the actual data, both raw and standardized:

[F1,XI1]=ksdensity(RET(:,1),‘kernel’,‘normal’);

[F2,XI2]=ksdensity(RET(:,2),‘kernel’,‘normal’);
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Figure A4 shows the results of this exercise. Clearly, both raw and standardized data deviate

from a Gaussian benchmark in the same ways commented early on: tails are fatter (especially

the left one); “bumps” in probability in the tails; less probability mass than the normal around

±115 standard deviations from the normal, but a more peaked density around the mean.

Figure A4:Kernel density estimates: raw and standardized data vs. Normal kernel

Finally, formal Jarque-Bera tests are performed and displayed in Matlab using the following

lines of code:

[h,p val,jbstat,critval] = jbtest(port ret(ind(1):ind(2),1));

[h std,p val std,jbstat std,critval std] = jbtest(std portret);

col1=strvcat(‘ ’,‘JB statistic: ’,‘Critical val:’,‘P-value:’,‘Reject H0?’);

col2=strvcat(‘RETURNS

’,num2str(jbstat),num2str(critval),num2str(p val),num2str(h));

col3=strvcat(‘STD. RETURNS’,num2str(jbstat std), ...

...num2str(critval std),num2str(p val std),num2str(h std));

mat=[col1,col2,col3];

disp([‘Jarque-Bera test for normality (5%)’]);

This gives the following results that, as you would expect, reject normality with a p-value that
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is very close to zero (i.e., simple bad luck cannot be responsible for deviations from normality:

3. In our case we have selected GJR-GARCH and NAGARCH with Gaussian innovations as

our models. Both are estimated with lines of codes that are similar or identical to those

already employed in Lab 1 (second part of the course) and chapter 4. he standardized

GJR GARCH standardized returns are computed as:58

z gjr= port ret(ind(1):ind(2),:)./sigmas gjr;

The estimate of the two models lead to the following printed outputs:

These give no surprises compared to the ones reported in chapter 4, for instance. Figure A5

compares the standardized returns from the GJR and NAGARCH models. Clearly, there are

58You could compute standardized residuals, but with an estimate of the mean equal to 0.0013, that will make

hardly any difference.
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differences, but these seem to be modest at best.

Figure A5: Standardized returns from GJR(1,1) vs. NAGARCH(1,1)

In Figure A6, the QQ plots for both series of standardized returns are compared. While both

models seem to fit rather well the right tail of the data, as the standardized returns imply high-

order percentiles that are very similar to the normal ones, in the left tail–in fact this concerns at

least the first, left-most 25 percentiles of the distribution–the issues emphasized by Figure A3

remain. Also, there is no major difference between the two alternative asymmetric conditional

heteroskedastic models.

Figure A6: QQ plots for standardized returns of GJR vs. NAGARCH models

Figure A7 shows the same result using kernel density estimators. The improvement vs.
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Figure A4 is obvious, but this does not seem to be sufficient yet.

Figure A7: Kernel density estimates of GJR vs. NAGARCH standardized returns

Finally, formal Jarque-Bera tests still lead to rejections of the null of normality of standardized

returns, with p-values that remain essentially nil.

4. The point of this question is for you to stop and visualize how “things should look like” if

you were to discover the true model that has generated the data. In this sense, the point

represents a sort of a break, I believe a useful one, in the flow of the exercise. The goal is

to show that if returns actually came from an assumed asymmetric GARCH model with

Gaussian innovations such as the ones estimated above, then the resulting (also simulated)

standardized returns would be normally distributed. Interestingly, Matlab provides a

specific garch-related function to perform simulations given the parameter estimates of a

given model:

spec sim=garchset(‘Distribution’,‘Gaussian’,‘C’,0,‘VarianceModel’,‘GJR’,‘P’,param gjr.P,

...‘Q’,param gjr.Q,‘K’,param gjr.K,‘GARCH’,param gjr.GARCH,‘ARCH’,param gjr.ARCH,

...‘Leverage’,param gjr.Leverage);

[ret sim, sigma2 sim]=garchsim(spec sim,length(z ng),[]);

z sim=ret sim./sigma2 sim;

70



Using [Innovations,Sigmas,Series] = garchsim(Spec,NumSamples,NumPaths), each

simulated path is sampled at a length of NumSamples observations. The output consists of the

NumSamples × NumPaths matrix ‘Innovations’ (in which the rows are sequential observations,
the columns are alternative paths), representing a mean zero, discrete-time stochastic process

that follows the conditional variance specification defined in Spec. The simulations from the

NAGARCH model are obtained using:

zt=random(‘Normal’,0,1,length(z ng),1);

[r sim,s sim]=ngarch sim(param ng,var(port ret(ind(1):ind(2),:)),zt);

where ‘random’ is the general purpose random number generator in Matlab and ‘ngarch sim(par,sig2 0,innov)’

is our customized procedure that takes the NGARCH 4x1 parameter vector (omega; alpha; theta;

beta), initial variance (sig2 0), and a vector of innovations to generate a number ind(1)-ind(2) of

simulations. Figure A8 shows the QQ plots for both returns and standardized returns generated

from the GJR GARCH(1,1) model.

Figure A8: QQ Plots for raw and standardized GJR GARCH(1,1) simulated returns

The left-most plot concerns the raw returns and makes a point already discussed in chapter 4:

if the model is

+1 =
³q

 + 2 + {0} + 2

´
+1 +1 IID N (0 1)

then you know that even though +1 IID N (0 1) +1 will not be normally distributed, as

shown to the left of Figure A8. The righ-most plot concerns instead

+1 ≡ +1q
 + 2 + {0} + 2

IID N (0 1)
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and shows that normality approximately obtains.59 Figure A9 makes the same point using not

QQ plots, but normal kernel density estimates.

Figure A9: Normal kernel density estimates applied to raw and standardized GJR simulated returns

Figures A10 and A11 repeat the experiment in Figures A8 and A9 with reference to simulated

returns and hence standardized returns from the other asymmetric model, a NAGARCH. The

lesson they teach is identical to Figures A8 and A9.

Figure A10: QQ Plots for raw and standardized NAGARCH(1,1) simulated returns

59Why only approximately? Think about it.
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Figure A11: Normal kernel density estimates applied to raw and standardized NAGARCH simulated returns

Formal Jarque-Bera tests confirm that while simulated portfolio returns cannot be normal un-

der an asymmetric GARCH model, they are–and by construction, of course–after these are

standardized.

5. Although the objective of this question is to compute and compare VaRs computed under

a variety of methods, this question implies a variety of estimation and calculation steps.

First, the estimation of the degrees of freedom for a standardized t-Student is performed

via quasi maximum likelihood (i.e., taking the GJR standardized residuals as given, which

means that the estimation is split in two sequential steps):

cond std=sigmas gjr;

df init=4; %This is just an initial condition

[df,qmle]=fminsearch(‘logL1’,df init,[],port ret(ind(1):ind(2),:),cond std);

VaR tstud=-for cond std gjr’.*q tstud;
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where df init is just an initial condition, and the QMLE estimation performed with fminsearch

calling the used-defined objective function logL1 asym that takes as an input df, the number

of degrees of freedom, the vector of returns ret, and sigma, the vector of filtered time-varying

standard deviations. You will see that Matlab prints on your screen an estimate of the number of

degrees of freedom that equals 10.342 which marks a non-negligible departure from a Gaussian

benchmark. The VaR is then computed as:

q norm=inv;

q tstud=sqrt((df-2)/df)*tinv((p VaR),df);

Note that the standardization adjustment discussed during the lectures,  () = ( − 2),
which means that z is not standardized; it is then obvious that if you produce inverse t-value

critical points from a standardized t-Student–as tinv((p VaR)) does–then you have to adjust

the critical value by de-standardizing it, which is done dividing it by (( − 2)), that is
multiplying by (( − 2))

The estimation of the Cornish-Fisher expansion parameters and the computation of VaR is

performed by the following portion of code:

zeta 1=skewness(z gjr);

zeta 2=kurtosis(z gjr)-3;

inv=norminv(p VaR,0,1);

q CF=inv+(zeta 1/6)*(invˆ2-1)+(zeta 2/24)*(invˆ3-3*inv)-(zeta 1ˆ2/36)*(2*(invˆ3)-

5*inv);

VaR CF=-for cond std gjr’.*q CF;

Figure A12 plots the behavior of 5 percent VaR under the four alternative models featured
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by this question.

Figure A12: 5% VaR under alternative econometric models

Clearly, VaR is constant under a homoskedastic, constant variance model. It is instead time-

varying under the remaining models, although these all change in similar directions. The high-

est VaR estimates are yielded by the GJR GARCH(1,1) models, quite independently of the

assumption made on the distribution of the innovations (normal or t-Student). The small dif-

ferences between the normal and t-Student VaR estimates indicate that at a 5% level, the type

of non-normalities that a t-Student assumption may actually pick up remain limited, when the

estimated number of degrees of freedom is about 10.60 Finally, the VaR computed under a CF

approximation is considerably higher than the GJR GARCH VaR estimates: this is an indica-

tion of the presence of negative skewness in portfolio returns that only a CF approximation may

capture. Figure A12 emphasizes once more the fact that adopting more complex, dynamic time

series models is not always leading to higher VaR estimates and more prudent risk management:

in this example–also because volatility has been declining during early 2012, after the Great

Financial crisis and European sovereign debt fears–constant variance models imply higher VaR

estimates than richer models do.61

6. Starting from an initial condition df init=10, QML estimates of a NAGARCH with

standardized t(d) innovations is performed by:

[df,qmle]=fminsearch(’logL1’,df init,[],port ret(ind(1):ind(2),:),sqrt(cond var ng));

60This also derives from the fact that a 5 percent VaR is not really determined by the behavior of the density

of portfolio returns in the deep end of the left tail. Try and perform calculations afresh for a 1 percent VaR and

you will find interesting differences.
61Of course, lower VaR, lower capital charges and capital requirements.
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where cond var ng is taken as given from question 3 above. The QML estimate of the number

of degrees of freedom is 10.342. The resulting QQ plot is shown in Figure A13: interestingly,

compared to Figure A6 where the NAGARCH innovations were normally distributed, marks

a strong improvement in the left tail, although the quality of the fit in the right tail appears

inferior to Figure A6.

Figure A13: QQ plot of QML estimate of t-Student NAGARCH(1,1) model

Interestingly, Figure A13 displays a QQ plot built from scratch and not using the Matlab func-

tion, using the following code:

z ngarch=sort(z ng);

z=sort(port ret(ind(1)-1:ind(2)-1,:));

[R,C]=size(z);

rank=(1:R)’;

n=length(z);

quant tstud=tinv(((rank-0.5)/n),df);

cond var qmle=cond var ng;

qqplot(sqrt((df-2)/df)*quant tstud,z ngarch);

set(gcf,‘color’,‘w’);

title(‘Question 6: QQ Plot of NGARCH Standardized Residuals vs. Standardized

t(d) Distribution (QML Method)’,‘fontname’,‘garamond’,‘fontsize’,15);

The full ML estimation is performed in ways similar to what we have already described above.
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The results are:

and shows that the full ML estimation yields a 10.17 estimate that does not differ very much

from the QML estimate of 10.34 commented above.62 The corresponding QQ plot is in Figure

A14 and is not materially different from Figure A13, showing that often–at least for practical

purposes–QMLE gives results that are comparable to MLE.

Figure A14: QQ plot of ML estimate of t-Student NAGARCH(1,1) model

Figures A15 and A16 perform the comparison between the filtered (in-sample) conditional

volatilities from the two sets of estimates–QML vs. ML–of the t-Student NAGARCH (A15)

62No big shock: although these are numerically different, you know that the real diffence between QMLE and

MLE consists in the lack of the efficiency of the former when compared to the latter. However, in this case we

have not computed and reported the corresponding standard errors.
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and among the t-Student NAGARCH and a classical NAGARCH with normal innovations.

Figure A15: Comparing filtered conditional volatilities across QML and ML t-Student NAGARCH

Figure A16: Comparing conditional volatilities across QML and ML t-Student vs. Gaussian NAGARCH

Interestingly, specifying t-Student errors within the NAGARCH model systematically reduces

conditional variance estimates, vs. the Gaussian case. Given our result in Section 4 that

̂2 = b̄2
̂− 2
̂



when ̂ is relatively small, ̂2 tends to be smaller than a pure, ML-type sample-induced estimate

of 2.

7. The lines of code that implement the EVT quantile estimation through Hill’s estimation

are:
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p VaR=0.0001;

std loss=-z ng;

[sorted loss I]=sort(std loss,‘descend’);

. u=quantile(sorted loss,0.96); % This is the critical threshold choice

tail=sorted loss(sorted lossu);

Tu=length(tail);

T=length(std loss);

xi=(1/Tu)*sum(log(tail./u));

% Quantiles

q EVT=u*(p VaR./(Tu/T)).ˆ(-xi);

The results are:

and at such a small probability size of the VaR estimation, the largest estimate is given by the

EVT, followed by the Cornish-Fisher approximation. The partial EVT QQ plot is shown in

Figure A17 and shows excellent fit in the very far left tail.

Figure A17: Partial QQ plot (4%  threshold)

However, if we double to 8% the  threshold used in the Hill-type estimation, the partial QQ

plot results in Figure A18 are much less impressive. The potential inconsistency of the density fit

provided by the EVT approach in dependence of a choice of the parameter  has been discussed

in Chapter 6.
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Figure A18: Partial QQ plot (8%  threshold)

8. The estimation of conditional mean and variance under model 8.a (Constant mean and

GARCH (1,1) assuming normally distributed innovations) are performed using

[coeff us1,errors us1,sigma us1,resid us1,Rsqr us1,miu us1]=

regres-

sion tool 1(’GARCH’,’Gaussian’,ret1(2:end,1),[ones(size(ret1(2:end,1)))],1,1,n);

[coeff uk1,errors uk1,sigma uk1,resid uk1,Rsqr uk1,miu uk1]=

regres-

sion tool 1(’GARCH’,’Gaussian’,ret1(2:end,2),[ones(size(ret1(2:end,2)))],1,1,n);

[coeff ger1,errors ger1,sigma ger1,resid ger1,Rsqr ger1,miu ger1]=

regres-

sion tool 1(’GARCH’,’Gaussian’,ret1(2:end,3),[ones(size(ret1(2:end,3)))],1,1,n);

The estimation of conditional mean and variance under model 8.b (Constant mean and

EGARCH (1,1) assuming normally distributed innovations) is similar (please see the code).

Finally, conditional mean and variance estimation for model 8.c (constant mean and EGARCH

(1,1) model assuming Student-t distributed innovations) are performed with the code:

[coeff us3,errors us3,sigma us3,resid us3,Rsqr us3,miu us3]=

regression tool 1(’EGARCH’,’T’,ret1(2:end,1),[ones(size(ret1(2:end,1)))],1,1,n);

[coeff uk3,errors uk3,sigma uk3,resid uk3,Rsqr uk3,miu uk3]=

regression tool 1(’EGARCH’,’T’,ret1(2:end,2),[ones(size(ret1(2:end,2)))],1,1,n);
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[coeff ger3,errors ger3,sigma ger3,resid ger3,Rsqr ger3,miu ger3]=

regression tool 1(’EGARCH’,’T’,ret1(2:end,3),[ones(size(ret1(2:end,3)))],1,1,n);

regression tool 1 is used to perform recursive estimation of simple GARCH models (please

check out its structure by opening the corresponding procedure). The unconditional correlations

are estimated and appropriate covariance matrices are built using:

corr un1=corr(std resid1); %Unconditional correlation of returns for model under 8.a

corr un2=corr(std resid2); %Unconditional correlation of residuals from model under 8.b

corr un3=corr(std resid3);

T=size(ret1(2:end,:),1);

cov mat con1=NaN(3,3,T); %variances and covariances

cov mat con2=NaN(3,3,T);

cov mat con3=NaN(3,3,T);

for i=2:T

cov mat con1(:,:,i)=diag(sigma1(i-1,:))*corr un1*diag(sigma1(i-1,:));

cov mat con2(:,:,i)=diag(sigma2(i-1,:))*corr un2*diag(sigma2(i-1,:));

cov mat con3(:,:,i)=diag(sigma3(i-1,:))*corr un3*diag(sigma3(i-1,:));

end

The asset allocation (with no short sales and limited to risky assets only) is performed for

each of the three models using the function mean variance multiperiod that we have used

already in chapter 4. Figure A19 shows the corresponding results.
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Figure A19: Recursive mean-variance portfolio weights ( = 05) from three alternative models

Clearly, there is considerable variation over time in the weights that–although different if one

carefully inspects them–are eventually characterized by similar dynamics over time, with an

average prevalence of U.S. stocks. Figure A20 shows the resulting, in-sample realized Sharpe

ratios using a procedure similar to the one already followed in chapter 4.

Figure A20: Recursive realized Sharpe ratios from mean-variance portfolio weights ( = 05) from three models
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Errata Corrige

(30/04/2013, p. 8) The sentence in the second equation from top of the page should read as

“Fraction of your data equal to .”, not .

(30/04/2013, p. 10) Towards the end of the page, the sentence should read as “This means

that the right tail of the empirical distribution of S&P 500 returns is thicker than the normal

tail”.

(30/04/2013, p. 14) A new footnote 21 has been added to explain what the model of reference

is at pp. 14-16.

(30/04/2013, p. 15) A −3 has been added in the equation providing the moment matching
condition for 2 and one spurious equal sign removed from 2 

−2 = b̄2.

(30/04/2013, p. 46 and workout Matlab code posted on the web) The formula (1+05)+

has been now used to compute the GJR stationarity measure (there would be reasons not to, but

it is easier this way; thanks M. Fiorani-Gallotta for pointing out the insidious inconsistency).

In this case, 0(1 + 05× 01381) + 09131 = 09131 of course.
(07/05/2013, p. 8) In equation (4) the pedices labelling the two kernel densities as “Box”

and “Triangular” have been switched.

(07/05/2013, p. 23) ̃−1 (670) should be −1 (670)
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Errata Corrige
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(30/04/2013, p. 35) One incorrect notation  ≡ Pr(;θ) has been replaced with the correct
 ≡ Pr(;θ).

(30/04/2013, p. 36) 2 incorrect occurrence of  that should have been simply  have been

fixed.

(30/04/2013, p. 48) Equation (5) should read as

+1 = +1 + 1(
2
 − ) + 1( − )

i.e., the last  should be such and not +1.

(18/05/2013, p. 24) Figure 7 refers to per-period forecasts of variance as a function of ,

not to total variance between + 1 and +
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