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Hierarchical nonparametric processes are popular tools for defining pri-
ors on collections of probability distributions, which induce dependence
across multiple samples. In survival analysis problems, one is typically in-
terested in modeling the hazard rates, rather than the probability distribu-
tions themselves, and the currently available methodologies are not applica-
ble. Here, we fill this gap by introducing a novel, and analytically tractable,
class of multivariate mixtures whose distribution acts as a prior for the vector
of sample-specific baseline hazard rates. The dependence is induced through
a hierarchical specification of the mixing random measures that ultimately
corresponds to a composition of random discrete combinatorial structures.
Our theoretical results allow to develop a full Bayesian analysis for this class
of models, which can also account for right-censored survival data and co-
variates, and we also show posterior consistency. In particular, we empha-
size that the posterior characterization we achieve is the key for devising both
marginal and conditional algorithms for evaluating Bayesian inferences of in-
terest. The effectiveness of our proposal is illustrated through some synthetic
and real data examples.

1. Introduction. Hierarchical processes are hugely popular Bayesian nonparametric
models, which have seen successful applications in linguistics, information retrieval, topic
modeling and genomics, among others. They are ideally suited to model relationships across
multiple samples, which may share distinct observations’ values (or latent features, if used
in a mixture setup). For instance, a topic might be shared by different documents of a cor-
pus or a specific subsequence of a cDNA sequence might be recorded at different tissues
of an organism. The prototype of this class of models is the hierarchical Dirichlet process
(HDP) introduced in [41], which can be seen as an infinite-dimensional extension of the latent
Dirichlet allocation model in [3]. Besides being a clever construction, the availability of suit-
able algorithms allow to perform Bayesian inference. The general structure of hierarchical
processes amounts to

(p̃1, . . . , p̃d)|p̃0
i.i.d.∼ L̃0,

p̃0 ∼ L0,
(1)

where L̃0 is the probability distribution of each random probability measure p̃i such that
E[p̃i |p̃0] = ∫

pL̃0(dp) = p̃0, and L0 is such that E[p̃0] = ∫
pL0(dp) = P0, for some fixed

nonatomic probability measure P0. The vector of random probability measures in (1) defines
a prior for the probability distributions of d partially exchangeable samples with dependence
across samples being induced by p̃0. Since p̃0 and (p̃1, . . . , p̃d) are taken to be discrete
random probability measures, distinct values are shared within and across the d samples.
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Clearly, in the extreme case of p̃0 degenerating on P0, the p̃i ’s are unconditionally inde-
pendent corresponding to independence across samples with no shared values; see [40, 41]
and, for extensions to general random measures and a complete picture of their distributional
properties, [4].

Though currently available hierarchical processes are effective in modeling probability
measures, in survival analysis one needs a flexible tool for modeling directly the hazard rates.
Here we successfully address the issue and introduce the natural counterpart, for hazard rate
functions, of hierarchical random probability measures. This corresponds to a class of de-
pendent hazard models defined as mixtures with mixing measures displaying a hierarchical
dependence structure. Such a prior is ideally suited to model hazard rate functions associated
to different, though related, populations in a similar fashion as hierarchical processes do for
related probability distributions. Moreover, it is possible to incorporate both censored obser-
vations and covariates in a straightforward way. More specifically, our proposal assumes a
prior for the hazard rate functions of each individual sample identified by the distribution of
the random mixture

(2) h̃�(t) =
∫
Y

k(t;y)μ̃�(dy), � = 1, . . . , d,

where k(·; ·) is a suitable kernel and μ̃� a random measure. Note that an extension of such
a proposal that accommodates also for subject-specific covariates can be achieved by resort-
ing, for example, to a semiparametric representation through a multiplicative term as in Cox
proportional hazards models. Dependence among the hazard rates is then created at the level
of the random measures through a hierarchical structure

(μ̃1 . . . μ̃d)|μ̃0
i.i.d.∼ G̃0,

μ̃0 ∼ G0,
(3)

where G̃0 is the distribution of each random measure μ̃� and depends on μ̃0, which in turn
is distributed according to G0. An important feature of the proposed construction is that it
allows for nonproportional hazard rates across samples. In the sequel μ̃0 and μ̃�|μ̃0, for � =
1, . . . , d , will be assumed to be completely random measures (CRMs), which play a key role
in Bayesian nonparametrics as effectively described in [29]. This will allow, in the following
sections, to derive some key distributional properties of (μ̃0, μ̃1, . . . , μ̃d), both a priori and
a posteriori. Based on the latter, and conditional on a suitable latent structure, closed-form
expressions for posterior estimates of both the hazard rates and the survival functions are
obtained as well as a sampling scheme for performing full Bayesian inference.

Survival analysis has been one of the driving application areas for Bayesian nonparamet-
rics since its early days and among the many seminal papers in the simple exchangeable setup
we mention [12, 15, 17, 19, 22, 30]. The latter two papers are of particular importance to the
present contribution since they introduced the mixture hazard structure (2) with a gamma
process as mixing measure. Still in the exchangeable case, they were extended to general
mixing CRMs in [25] and further investigated in, for example, [9, 13, 23, 35–38]. Beyond
the exchangeable case, a popular modeling strategy, which yields the desired heterogeneity
across samples, relies on the construction of dependent and sample-specific random mea-
sures that, suitably transformed, allow to model partially exchangeable data. An example is
the mixture transformation in (10), which is the focus of this contribution. This technique
has been widely used for creating dependent random probability measures in the literature
and examples are available in, for example, [5, 10, 11, 16, 28, 32, 34]. For a review, see
[33]. The only contribution aiming to model directly dependent hazard rates, is [27], which
however has the drawback of incurring into combinatorial, and hence computational, issues
for d > 2 samples. In contrast, the methodology proposed here leads to simple and tractable
expressions for d > 2 groups of observations.
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The outline of the paper is as follows. In Section 2, the basic building blocks of our model,
namely vectors of hierarchical CRMs, are defined. Hierarchically dependent random haz-
ard rates are introduced and investigated in Section 3. Posterior consistency, in a partially
exchangeable framework, is established in Section 4, while the posterior distribution is iden-
tified in Section 5. The theoretical findings form the basis for devising suitable marginal and
conditional sampling schemes, which are described in Section 6. Finally, a simulation study
is considered in Section 7. Proofs, other relevant technical details, extensions accounting for
right-censored data and covariates as well as additional illustrations with real data are de-
ferred to the Supplementary Material [6].

2. Hierarchical random measures. The key ingredient for our dependent hazard rates
model is a vector of random measures (μ̃1, . . . , μ̃d) with dependence induced by a hierarchi-
cal structure as in (3). First, we introduce the notion of completely random measure (CRM).
A CRM is a random element μ̃, defined on some probability space (�,F ,P) and taking
values in the space MY of boundedly finite measures on some Polish space Y, such that
μ̃(A1), . . . , μ̃(An) are mutually independent random variables for any choice of bounded
and pairwise disjoint Borel sets A1, . . . ,An, and any n ≥ 1. In the following, we consider
CRMs without fixed jumps and no deterministic component. They are characterized by the
respective Laplace functional transform at any measurable function g :Y →R

+,

(4) E
[
e− ∫

Y
g(y)μ̃(dy)] = exp

{
−

∫
R+×Y

(
1 − e−sg(y))ν(ds,dy)

}
,

where ν, known as the Lévy intensity measure, uniquely identifies μ̃. Hence, the notation
μ̃ ∼ CRM(ν). For completeness, we remind that μ̃ may be seen as a functional of a Poisson
random measure Ñ = ∑

i≥1 δ(Ji,Yi) on R
+ ×Y characterized by a mean intensity measure ν

such that for any Borel set A in R
+ × Y with ν(A) < ∞ one has Ñ(A) ∼ Po(ν(A)). The

CRM μ̃ can be then represented as
∑

i≥1 JiδYi
, hence its realizations are a.s. discrete with

both jumps and locations random. See [26] for an exhaustive account on CRMs.
In analogy to the hierarchical construction for random probability measures, we define a

hierarchical structure for CRMs as

μ̃�|μ̃0
ind∼ CRM(ν̃�), � = 1, . . . , d

μ̃0 ∼ CRM(ν0),
(5)

with Lévy intensities

(6) ν̃�(ds,dy) = ρ�(s)dsμ̃0(dy), ν0(ds,dy) = ρ0(s)dsc0P0(dy),

where P0 is a diffuse probability measure on Y, while ρ� (for � = 1, . . . , d) and ρ0 are
nonnegative measurable functions such that

∫ ∞
0 min{1, s}ρ�(s)ds < ∞ and

∫ ∞
0 min{1, s} ×

ρ0(s)ds < ∞.

REMARK 1. The specification in (5) entails that the μ̃�’s may have different distribu-
tions, which yields greater flexibility in applications. Nonetheless, for the sake of simplicity
we henceforth stick to the case where ρ� = ρ for any � = 1, . . . , d . The results we obtain can
be adapted to recover the case where the ρ�’s differ and we defer this to future work.

The fundamental tool to work with is the Laplace functional transform of a hierarchi-
cal CRM vector (μ̃1, . . . , μ̃d), which has a simple structure. For � = 1, . . . , d , set μ̃�(g�) =∫
Y

f�(y)μ̃�(dy) with g� a nonnegative real valued function. Moreover, we let ψ(0)(u) :=
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∫ ∞
0 (1 − e−su)ρ0(s)ds and ψ(�)(u) := ∫ ∞

0 (1 − e−su)ρ�(s)ds, as � = 1, . . . , d . By exploiting
conditional independence and (4), the Laplace functional transform is given by

(7) E
[
e−μ̃1(g1)−···−μ̃d (gd)] = exp

{
−c0

∫
Y

ψ(0)

[
d∑

�=1

ψ(�)(g�(y)
)]

P0(dy)

}
.

Now we introduce two special cases to be considered throughout and which represent natural
choices for hierarchical CRM constructions.

EXAMPLE 1 (Hierarchical gamma CRM model). If both μ̃�’s and μ̃0 are gamma CRMs,
which corresponds to ρ0(s) = ρ�(s) = e−ss−1 with c0 = 1, we obtain the hierarchical gamma
CRM model, whose Laplace functional reduces to

E
[
e−μ̃1(g1)−···−μ̃d (gd)] = exp

{
−

∫
Y

log(1 +
d∑

�=1

log
(
1 + g�(y)

)
P0(dy)

}
.

EXAMPLE 2 (Hierarchical generalized gamma CRM model). Let us assume that both
μ̃�’s and μ̃0 are generalized gamma CRMs, that is, ρ0(s) = e−ss−1−σ0/	(1 − σ0) and
ρ�(s) = e−ss−1−σ /	(1 − σ) for some σ and σ0 in (0,1), we obtain the hierarchical gen-
eralized gamma CRM model with Laplace functional

E
[
e−μ̃1(g1)−···−μ̃d (gd)]

= exp
{
− c0

σ0

∫
Y

[( d∑
�=1

(g�(y) + 1)σ − 1

σ
+ 1

)σ0 − 1
]
P0(dy)

}
.

REMARK 2. The construction of hierarchical CRMs in (5) is closely related to the pop-
ular Bochner subordination in the theory of Lévy processes. Indeed, with Y = [0,1], de-
fine t �→ τt = μ̃0((0, t]) and t �→ ξ

(�)
t = μ̃�((0, t]). Moreover, let P0(dt) = dt . In this case,

{τt : 0 ≤ t ≤ 1} is known as a subordinator and the time-changed process {ξ (�)
τt : 0 ≤ t ≤ 1}

corresponds to the so-called Bochner’s subordination; see, for example, [2] and [39]. Hence,
our proposal can be seen as an extension of such a construction to more abstract spaces. Sub-
ordination of Lévy processes has been widely used in Finance and the first contributions in
this direction can be found in [31] and [7]. Very much in the spirit of the present paper, sub-
ordination has been applied to a vector of independent Brownian motions (B

(1)
τt , . . . ,B

(d)
τt ) in

order to define dependent Lévy processes for financial applications. Examples can be found
in the monograph by Cont and Tankov [8].

3. Hierarchical mixture hazard rates. If an exchangeable sequence of lifetimes, or
time-to-event data, is from an absolutely continuous distribution, with hazard rate h, the
pioneering papers by [15] and [30] define a prior for h in terms of a mixture model. Recast
in a more general setting, as done in [25], their prior equals the distribution of the random
hazard

(8) t �→ h̃(t) :=
∫
Y

k(t;y)μ̃(dy),

where μ̃ is a mixing CRM and k :R+ ×Y→R
+ is a suitable transition kernel. Dykstra and

Laud [15] considered the case of h̃ being an extended gamma process, which corresponds to
μ̃ being a gamma CRM and k(t;y) = 1(0,t](y)α(y) for some positive and right-continuous
function α. Lo and Weng [30] investigated the weighted gamma process, which arises with
μ̃ still a gamma CRM and k a general kernel. The posterior characterization for the general
case was first derived in [25].
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Assuming the lifetimes are exchangeable is clearly restrictive for practical purposes. A
typical example may refer to data collected under d different experimental conditions that
identify d samples or groups such as patients suffering from the same illness but undergoing
different treatments resulting in homogeneity within the groups of patients undergoing the
same treatment and heterogeneity across groups. It is worth noting that the d samples may
be identified also by a vector of categorical covariates, as long as they take on finitely many
values. For example, the real data illustration in the Supplementary Material (Section S7)
discusses the case where the patients’ groups are determined by the hospital where they are
treated and by the type of tumor they suffer from. In these cases, partial exchangeability [20]
is the appropriate notion of dependence, since it implies that observations are exchangeable
within the same group and conditionally independent across the different groups. More pre-
cisely, for an array {(X�,i)i≥1 : � = 1, . . . , d} of X-valued random elements we assume that
for any �1 �= · · · �= �k in {1, . . . , d}, (i1, . . . , ik) ∈ N

k and k ≥ 1,

(X�1,i1, . . . ,X�k,ik )|(p̃1, . . . , p̃d)
i.i.d.∼ p̃�1 × · · · × p̃�k

,

(p̃1, . . . , p̃d) ∼ Q,
(9)

with Q is a distribution on Pd
X

dictating the dependence across the different groups. The liter-
ature on dependent nonparametric priors essentially boils down to the definition of probabil-
ity measures Q inducing natural dependence structures across groups while still preserving
mathematical tractability. Hierarchical processes represent one of the most popular instances.

In the survival context, that is, X = R
+, it is often more convenient to devise inferen-

tial procedures that are suited for models based on hazard rates and this motivates our ap-
proach; in addition our proposal allows for a straightforward inclusion of possible censor-
ing mechanisms and individuals’ covariates as discussed in the Supplementary Material (see
Section S7). The prior specification we suggest resorts to a vector of dependent hazard rates
h̃1, . . . , h̃d based on hierarchically dependent CRMs according to the following.

DEFINITION 1. A partially exchangeable sequence {(X�,i)i≥1 : � = 1, . . . , d} is directed
by a hierarchically dependent mixture hazard model if it is characterized by (9) with

(10) p̃�((−∞, t]) = 1(0,+∞)(t) exp
(
−

∫ t

0
h̃�(s)ds

)
(� = 1, . . . , d),

where the hazard rates h̃� admit the mixture representation in (2) and the mixing hierarchical
CRMs are defined as in (3).

Note that our model allows for nonproportional hazards across samples. Moreover, the
survival function associated to the hazard rate (10) is

(11) S̃�(t) = exp
(
−

∫
Y

K
(�)
t (y)μ̃�(dy)

)
, � = 1, . . . , d,

where K
(�)
t (y) = ∫ t

0 k(s;y)ds for each � = 1, . . . , d . Two important properties of the depen-
dent survival functions are the determination of sufficient conditions guaranteeing they are
proper and of their pairwise correlation structure. These are provided in the following result.

THEOREM 1. Consider a hierarchical mixture hazard model as in Definition 1.

(i) If
∫ ∞

0 ρ�(s)ds = +∞, for � = 0, . . . , d , and limt→∞
∫ t

0 k(s;y)ds = ∞, P0-a.s., then
with probability 1

(12) lim
t→∞ S̃�(t) = 0 (� = 1, . . . , d).
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(ii) The covariance between any two survival functions �1 �= �2, time points t1, t2 ∈ R
+

equals

Cov
(
S̃�1(t1), S̃�2(t2)

)

= exp

(
−c0

∫
Y

ψ(0)

( 2∑
i=1

ψ(�i)
(
K

(�i)
ti

(y)
))

P0(dy)

)

− exp(−c0

2∑
i=1

∫
Y

ψ(0)(ψ(�i)
(
K

(�i)
ti

(y)
)
P0(dy)

) ≥ 0.

(13)

As for (ii), the nonnegativity of the covariance between random probabilities p̃i(A) and
p̃j (A), for any i �= j , is a common feature of a number of dependent processes’ propos-
als in the literature. In particular, there are several instances where Cov(p̃i(A), p̃j (A)) does
not even depend on the specific set A and is then often interpreted as a measure of overall
dependence between p̃i and p̃j .

Theorem 1 can be nicely illustrated in two special cases that correspond to the hierarchical
CRMs already considered in Section 2. Note further that we shall consider the μ̃�’s condi-
tionally identically distributed, that is, ρ� = ρ for any �, and hence it is not surprising that in
both examples Cov(S̃�1(t1), S̃�2(t1)) does not depend on the specific �1 �= �2.

EXAMPLE 3 (Hierarchical gamma mixture hazard model). Consider the Dykstra–Laud
kernel k(t;y) := 1(0,t](y)α(y) and, for simplicity, take α(y) ≡ α > 0. Combining this kernel
with a hierarchical vector of gamma CRMs on Y= R

+ leads to a hierarchical gamma mixture
hazard model. The associated survival functions are proper, given they clearly satisfy the
conditions of (i) in Theorem 1. As for the pairwise correlation structure, by (ii) in Theorem 1
and calculations detailed in the Supplementary Material, one obtains for any �1 �= �2 and
t1 ≤ t2 in R

+,

Cov
(
S̃�1(t1), S̃�2(t2)

)
= exp

(
−c0

∫ t2

t1

log
(
1 + log

(
1 + α(t2 − y)

))
P0(dy)

)

×
{

exp

(
−c0

∫ t1

0
log

(
1 +

2∑
i=1

log
(
1 + α(ti − y)

))
P0(dy)

)

− exp

(
−

2∑
i=1

c0

∫ t1

0
log

(
1 + log

(
1 + α(ti − y)

))
P0(dy)

)}
.

(14)

EXAMPLE 4 (Hierarchical generalized gamma mixture hazard model). If the Dykstra
and Laud kernel in Example 3 is combined with a hierarchical vector of generalized gamma
CRMs on Y = R

+, we obtain a hierarchical generalized gamma mixture hazard model. The
conditions of (i) in Theorem 1 are met also in this case leading to proper survival functions.
The pairwise correlation between survival functions, for any �1 �= �2 and t1 ≤ t2 in R

+ is

Cov
(
S̃�1(t1), S̃�2(t2)

)
= exp

(
− c0

σ0

∫ t2

t1

[(
1 + [(

1 + A2(y)
)σ − 1

]
/σ

)σ0 − 1
]
P0(dy)

)
(15)

×
{

exp

(
− c0

σ0

∫ t1

0

[( 2∑
i=1

[(
1 + Ai(y)

)σ − 1
]
/σ + 1

)σ0

− 1

]
P0(dy)

)
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− exp

(
− c0

σ0

2∑
i=1

∫ t1

0

[(
1 + [(

1 + Ai(y)
)σ − 1

]
/σ

)σ0 − 1
]
P0(dy)

)}
,

where Ai(y) = α(ti − y)1(0,ti )(y). This is again a consequence of (ii) in Theorem 1 and
calculations detailed in the Supplementary Material.

4. Posterior consistency. In this section, we investigate frequentist posterior consis-
tency of the proposed class of priors. Most of the existing literature on the topic deals with
sequences of exchangeable data and other specific forms of dependence (see [21] for an ac-
count). But very few results are available for partially exchangeable observations (see, e.g.,
[1]) and general theorems to study posterior consistency in a multiple samples framework,
as the one we are studying here, are still missing. Here, we provide a strategy to face con-
sistency in a partially exchangeable setting and, then, adapt it to show consistency of hier-
archical generalized gamma CRMs. Consider the partially exchangeable framework (9) for
R

+-valued random elements X�,i’s and note that the hierarchically dependent mixture hazard
model in Definition 1 implies that their distribution is absolutely continuous with respect to
the Lebesgue measure. If (f̃1, . . . , f̃d) is the vector of random dependent densities associated
with (p̃1, . . . , p̃d), one has

(16) f̃�(t) = h̃�(t)S̃�(t) = h̃�(t)e
−H̃�(t),

where t �→ H̃�(t) = ∫ t
0 h̃�(s)ds is the cumulative hazard of the �th sample, with � = 1, . . . , d .

Let us denote by FR the space of all probability density functions, with respect to the
Lebesgue measure on R. We shall now assume the data from each sequence (X�,i)i≥1, with
� = 1, . . . , d , are independently generated from a true and fixed density f

(0)
� and we, then

check whether the posterior distribution of the vector (f̃1, . . . , f̃d) accumulates in a neigh-
borhood of f (0) := (f

(0)
1 , . . . , f

(0)
d ) in a suitable topology on the product space Fd

R
. In the

sequel, we deal with weak consistency, hence we endow FR with the weak topology and
for any f ∈ FR we denote by A(f ) a weak neighborhood of f . Moreover, the space Fd

R
is

naturally endowed with the product topology.
In order to state the main results, we need to introduce some additional notation. First,

we let P
(0)
� denote the probability distribution associated with f

(0)
� and P

(0),∞
� be the infi-

nite product measure. Similarly, P (0),∞ := P
(0),∞
1 × · · · × P

(0),∞
d . If 
 is the prior distri-

bution on Fd
R

induced by Q, we let 
n(·|X1, . . . ,Xd) be the corresponding posterior and
n = (n1, . . . , nd). Hence, the goal is to identify sufficient conditions on the intensities ν� of
the underlying CRMs (� = 0,1, . . . , d) such that, as n1, . . . , nd → +∞, one has

(17) 
n
(
A

(
f (0))|X1, . . . ,Xd

) → 1, P (0),∞-a.s.

for any neighborhood A(f 0) of f (0) = (f
(0)
1 , . . . , f

(0)
d ) ∈ Fd

R
in the weak topology. If (17)

holds true, we say that 
 is consistent at f (0). One can then show the following.

THEOREM 2. Let (f
(0)
1 , . . . , f

(0)
d ) be an element of Fd

R
, if for any weak neighborhood

A�(f
(0)
� ) of f

(0)
�

(18) 
�,n�

(
A�

(
f

(0)
�

)|X�

) := P
[
f̃� ∈ A�

(
f

(0)
�

)|X�

] → 1 P
(0),∞
� -a.s.

as n� → ∞ for any � = 1, . . . , d , then (17) holds true and 
 is weakly consistent at
(f

(0)
1 , . . . , f

(0)
d ).
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It is worth remarking two important points related to this result. First, from Theorem 2 it
is apparent that showing (17) boils down to proving consistency for each f̃� given the �th
sample X�, and hence, allows us to address the problem in an exchangeable setting. Second,
Theorem 2 may be rephrased for vectors of random probability measures (p̃1, . . . , p̃d) and
its validity is not limited just to random dependent densities.

In view of Theorem 2, in order to show consistency with partially exchangeable arrays, we
need to identify conditions for which (18) holds true, for any � = 1, . . . , d . Henceforth, we
assume that the support of ρ� is the whole positive real line R

+ and that∫
R+

ρ�(s)ds = +∞
for each � = 0,1, . . . , d . Moreover, P0 is such that its weak support is the whole space Y. We
tackle the problem by relying on [9], Theorem 2, which is proved for mixture hazards, and on
a result on the support of hierarchical CRMs discussed in Section S2.3 of the Supplementary
Material. To fix the notation, h

(0)
� is the true hazard rate for the �-sample, namely f

(0)
� (t) =

h
(0)
� (t) exp{− ∫ t

0 h
(0)
� (s)ds}. Let us now recall the following.

THEOREM 3 ([9]). Let f̃� be a random density function induced by a random hazard
mixture model and denote its distribution by 
�. If the following conditions hold:

(i) f
(0)
� > 0 on (0,∞) and

∫
R+ max{EH̃�(t), t}f (0)

� (t)dt < +∞,

(ii) either there exists r > 0 such that lim inft→0 h̃�(t)/tr = ∞, a.s., or h
(0)
� (0) > 0,

a sufficient condition for weak consistency of 
� at f
(0)
� is

(19) 
�

({
h : sup

t≤T

∣∣h(t) − h
(0)
� (t)

∣∣ < δ
})

> 0 ∀T , δ ∈ (0,∞).

Theorem 3 provides us with a sufficient condition to prove weak consistency of random
densities f̃�. In order to verify condition (ii), one should study the small time behavior of h̃�

otherwise one has to assume that the true hazard rate is such that h
(0)
� (0) > 0 as in [14].

We now focus on the case Y = R
+, and identify easier sufficient conditions ensuring the

validity of Theorem 3(ii); see, for example, Proposition 3 in [9]. We shall do this with hierar-
chies of the generalized gamma random measure

(20) ρ0(s) = 1

	(1 − σ0)

e−s

s1+σ0
and ρ�(s) ≡ ρ(s) = 1

	(1 − σ)

e−s

s1+σ

as � = 1, . . . , d , being σ,σ0 ∈ (0,1). This prior specification will be adopted in the numerical
illustrations of Section 7.

PROPOSITION 1. Let k(·; ·) be the Dykstra and Laud kernel and let μ̃� be the hi-
erarchical generalized gamma process as in (20), with σ,σ0 ∈ (0,1) and P0 such that
P0((0, t))/tr

′ → C ∈ (0,∞) as t → 0 for some r ′ > 0. Then the corresponding mixture haz-
ard h̃� satisfies condition (ii) of Theorem 3.

We can state a theorem concerning marginal consistency of a hierarchical mixture hazard
based on generalized gamma processes.

THEOREM 4. Let h̃� be a hierarchical mixture hazard as in Proposition 1. Then 
� is
consistent at any f

(0)
� ∈ F1, where F1 is the set of densities satisfying

∫
R+ E[H̃ (t)]f (0)

� (t)dt <

∞, h
(0)
� (0) = 0 and h

(0)
� (t) is strictly positive and nondecreasing for any t > 0.
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Combining Theorems 2 and 4, we obtain a consistency theorem for 
. With Fd
1 =×d

1 F1,
one easily deduces the following.

COROLLARY 1. Let k(·; ·) be the Dykstra and Laud kernel and (μ̃1, . . . , μ̃d) a vector of
hierarchical generalized gamma processes that meets the conditions in Proposition 1. Then

 is consistent at any (f

(0)
1 , . . . , f

(0)
d ) ∈ Fd

1 .

Along similar lines, one may prove consistency for other kernels k, as the ones considered
by De Blasi et al. [9].

REMARK 3. If σ = σ0 = 0, we obtain the gamma process, but condition (ii) is not
satisfied in such a case and it should be replaced with a condition on the true hazard rate
(h(0)

� (0) > 0). Indeed, Drǎghici and Ramamoorthi [14] show the consistency under this as-
sumption and they consider a random hazard rate of the following type:

h̃�(t) = h̃�(0) + μ̃�(0, t),

where h̃�(0) is a random element with support on R
+, to consistently estimate the value of

the hazard rate in t = 0.

5. Random partitions and Bayesian inference. The primary goal we wish to pursue
here is the determination of a conditional probability distribution of the vector (μ̃1, . . . , μ̃d)

in (5), given data from a partially exchangeable array and given a suitable collection of latent
variables. Indeed, it will be assumed that the data are from an array {(X�,j )j≥1 : � = 1, . . . , d}
as in (9) with

(21) p̃�

(
(t,+∞)

) = exp
(
−

∫
Y

∫ t

0
k(s, y)dsμ̃�(dy)

)

for any � = 1, . . . , d and t > 0. The hierarchical specification of μ̃ = (μ̃1, . . . , μ̃d), combined
with the almost sure discreteness of the base measure μ̃0, poses some serious analytical chal-
lenges that need to be addressed if one wants to determine Bayesian inferences for survival
data modeled through the random probability measure in (21). Hence, from a technical stand-
point achieving a posterior characterization is much more difficult than analogous results for
exchangeable (see [25]) and for alternative partially exchangeable priors (see, e.g., [27]).
Here, we successfully tackle this issue and show that the results we get are not only of theo-
retical interest per se, but they are also fundamental for devising efficient sampling schemes
for an approximate evaluation of Bayesian inferences in this framework. The key is the in-
troduction of two collections of latent variables that describe a sampling procedure somehow
reminiscent of the Chinese restaurant franchise scheme introduced in [41] and extended to a
more general framework in [4].

5.1. Latent variables and their partition structure. For simplicity in the sequel, we will
assume that all data are exact. The possible presence of censored observations, with censor-
ing times being independent from all other random components of the model, can be easily
accommodated for and this will be explicitly seen in Section 7 through an illustrative exam-
ple. In order to keep the notation concise, we set μ̃ = (μ̃�)� and X = (X�)�. From [24], it is
seen that the likelihood function associated to a multiplicative intensity model as the one we
are considering here is

(22) L (μ̃;X) = e−∑d
�=1

∫
Y

K�(y)μ̃�(dy)
d∏

�=1

n�∏
i=1

∫
Y

k(X�,i;y)μ̃�(dy),
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where

(23) K�(y) :=
n�∑

i=1

K
(�)
X�,i

(y) =
n�∑

i=1

∫ X�,i

0
k(s, y)ds

for � = 1, . . . , d . A considerable simplification of (22) occurs if one removes the integrals by
introducing a suitable sequence of latent variables Y = (Y �)�. This leads to

(24) L (μ̃;X,Y ) = e−∑d
�=1

∫
Y

K�(y)μ̃�(dy)
d∏

�=1

n�∏
i=1

k(X�,i;Y�,i)μ̃�(dY�,i).

It is worth noting that Y = (Y �)� forms an array of partially exchangeable random elements
and (24) suggests they are generated by a discrete random probability measure. Hence, with
positive probability there will be tied values in Y both within each sample Y � and across
samples Y �1 and Y �2 , for �1 �= �2. In other terms, Y generates a random partition of the
integers [N ] = {1, . . . ,N}, where N = n1 + · · · + nd . This can be described by ordering the
Y�,i’s in such a way that Y�,i = Y�′,j entails n̄�−1 + i and n̄�′−1 + j are in the same partition
set, where n̄� = n1 + · · · + n� for each � = 1, . . . , d with the proviso n̄0 = 0. According to
this notation, for any partition C = {C̄1, . . . , C̄k} of [N ], one can further decompose C̄j =
C̄1,j ∪ · · · ∪ C̄d,j with C̄�,j = {n̄�−1 + i ∈ C̄j : i = 1, . . . , n�}. In the sequel, we denote by
�N the random partition of [N ] generated by Y , and by Y ∗ := (Y ∗

1 , . . . , Y ∗
k ) the k distinct

values associated with such a partition. With this notation, C̄�,j refers to all elements of the
�th sample that coincide with Y ∗

j . It is easy to realize that the distribution of (X,Y ∗,�N) is
equivalent to the distribution of the vector (X,Y ), which will be characterized in Theorem 5
below. In order to simplify the notation, we also set

Q
(
X,Y ∗) =

d∏
�=1

k∏
j=1

∏
i∈C̄�,j

k(X�,i;Y�,i), τ (�)
q (u) =

∫ ∞
0

sqe−suρ�(s)ds

for any u > 0, q ∈ N and � = 0,1, . . . , d . The subsequent expressions (25) and (27) we de-
termine depend on sums over q and i, and they may appear difficult to evaluate and interpret
at a first glance. Nonetheless, a considerable simplification, and additional intuition on these
results, is achieved if one resorts to a version of the Chinese restaurant franchise metaphor
suited to this particular setting. The franchise is made of d restaurants and the Y�,i variables
identify the specific dish chosen from the menu by customer i at the �th restaurant. The val-
ues Y ∗

1 , . . . , Y ∗
k are the k distinct dishes selected by the N customers at the d restaurants of

the franchise and n�,j = card{i : Y�,i = Y ∗
j } is the number of customers being served dish j at

the �th restaurant. Of course, one may have that {i : Y�,i = Y ∗
j } = ∅, in which case n�,j = 0.

With reference to previous notation, the set C�,j := {i : Y�,i = Y ∗
j } plays the role of C̄�,j ,

whose elements are equal to those of C�,j after subtracting the additive constant n̄�−1. At
this stage it is then convenient to introduce latent variables T � := (T�,1, . . . , T�,n�

) where,
for each � = 1, . . . , d , T�,j is the label of the table where the j th customer of restaurant �

is sitting and with the convention that customers seating at the same tables are being served
the same dish. The T�,i’s are generated by a discrete random probability measure, and hence
admit ties, namely {T�,i : i ∈ C�,j } display i�,j ≤ n�,j distinct values T ∗

�,j,1, . . . , T
∗
�,j,i�,j

that
induce a partition of [n�,j ] = {1, . . . , n�,j } into i�,j sets

C�,j,t = {
i ∈ C�,j : T�,i = T ∗

�,j,t

}
(t = 1, . . . , i�,j )

with q�,j,t = card(C�,j,t ) such that
∑i�,j

t=1 q�,j,t = n�,j . Note that i�,j = 0 when n�,j = 0 and
we, thus, agree that

∑0
t=1 at = 0 for any sequence (at )t≥1. We are now ready to prove the

main results of this section that can be read in terms of the metaphor just outlined.
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THEOREM 5. The probability distribution of (X,Y ∗) and of �N equals

π
(
X,Y ∗,�N

)
∝ Q

(
X,Y ∗)

ck
0e−c0

∫
Y

ψ(0)(
∑d

�=1 ψ(�)(K�(y)))P0(dy)

× ∑
i

∑
q

k∏
j=1

τ
(0)
i•j

(
d∑

�=1

ψ(�)(K�

(
Y ∗

j

)))
P0

(
dY ∗

j

)

×
d∏

�=1

k∏
j=1

1

i�,j !
(

n�,j

q�,j,1, . . . , q�,j,i�,j

) i�,j∏
t=1

τ (�)
q�,j,t

(
K�

(
Y ∗

j

))
,

(25)

where the sum with respect to q runs over all the vectors of positive integers {q�,j,t } such that∑i�,j
t=1 q�,j,t = n�,j for any � = 1, . . . , d and j = 1, . . . , k and i = {i�,j } is through the set of

all integers i�,j ∈ {1, . . . , n�,j }, with i•j = ∑d
�=1 i�,j , for any j = 1, . . . , k.

This result is the backbone of theoretical and computational developments in the remainder
of the paper. For example, one can deduce from (25) the following augmented joint distribu-
tion:

π
(
X,Y ∗,T ,�N

)
∝ ck

0Q
(
X,Y ∗)

e−c0
∫
Y

ψ(0)(
∑d

�=1 ψ(�)(K�(y)))P0(dy)

×
k∏

j=1

τ
(0)
i•j

(
d∑

�=1

ψ(�)(K�

(
Y ∗

j

)))
P0

(
dY ∗

j

)

×
d∏

�=1

k∏
j=1

i�,j∏
t=1

τ (�)
q�,j,t

(
K�

(
Y ∗

j

))
P0

(
dT ∗

�,j,t

)
,

(26)

where i = {i�,j } and q = {q�,j,t } are now fixed. Note that, since the specific table’s label is not
relevant, for simplicity and with no loss of generality we have assumed that each table’s label
still takes values in Y. This formula provides some nice intuition on the Chinese restaurant
franchise metaphor briefly discussed before Theorem 5. Indeed, if we agree that D−(�,i) is
the vector (X,Y ∗,T ,q, i) after the removal of (X�,i, Y�,i, T�,i), one has that the dish chosen
by the ith customer in the �th restaurant and the table where she seats are determined through
the following distribution

P
[
Y�,i = Y ∗

j , T�,i = T ∗
�,j,t |D−(�,i)

] ∝ k
(
X�,i;Y ∗

j

)τ (�)
q�,j,t+1(K�(Y

∗
j ))

τ
(�)
q�,j,t (K�(Y

∗
j ))

,

which corresponds to the customer choosing the j th dish already ordered from the menu and
seating at the already existing t th table, whereas

P
[
Y�,i = Y ∗

j , T�,i /∈ T−(�,i)|D−(�,i)

] ∝ k
(
X�,i;Y ∗

j

)τ (0)
i•,j+1(

∑d
r=1 ψ(r)(Y ∗

j ))

τ
(0)
i•,j

(
∑d

r=1 ψ(r)(Y ∗
j ))

is the probability that the customer still chooses the j th dish though decides to sit at a new
table whose label will be drawn from P0. Finally, the customer may choose a new dish, and
then sit at a new table with probability

P[Y�,i /∈ Y−(�,i), T�,i /∈ T−(�,i)|D−(�,i)]
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∝ c0

∫
Y

k(X�,i;y)τ
(�)
1

(
K�(y)

)
τ

(0)
1

(
d∑

r=1

ψ(r)(Kr(y)
))

P0(dy)

and the label of both the new dish and the new table are generated from P0. This structure
of the Chinese restaurant franchise will be exploited in the algorithm that will be used for
determining Bayesian inferences. For details, see the Supplementary Material.

Theorem 5 is also relevant for deducing the distribution of the random partition �N con-
ditionally on the other variables of the model.

COROLLARY 2. Let C = {C̄1, . . . , C̄k} denote a partition of [N ] into k sets such that
C̄j = C̄1,j ∪ · · · ∪ C̄d,j . Moreover, we let card(C̄j ) = nj ≥ 1 and card(C̄�,j ) = n�,j ≥ 0. If
�N denotes the random partition of [N ] induced by Y , then P[�N = C|X] is proportional to

ck
0

∑
i

∑
q

{
d∏

�=1

k∏
j=1

1

i�,j !
(

n�,j

q�,j,1, . . . , q�,j,i�,j

)}

×
k∏

j=1

∫
Y

{
d∏

�=1

∏
i∈C̄�,j

k(X�,i−n̄�−1;y)

}
τ

(0)
i•j

(
d∑

�=1

ψ(�)(K�(y)
))

×
d∏

�=1

i�,j∏
t=1

τ (�)
q�,j,t

(
K�(y)

)
P0(dy),

(27)

where the sums with respect to q and i are as in Theorem 5.

At this point, one may wonder whether there exist CRMs such that

(28) π
(
Y ∗,T ,�N |X) =

∫
π

(
Y ∗,T ,�N |X,μ

)
P(dμ|X),

the answer is provided by the following result, which is based on Corollary 2.

THEOREM 6. Let m0 ∼ CRM(ν0) and m�,y ∼ CRM(ν�,y) be independent and such that

ν0(ds,dy) = c0e−∑d
�=1 ψ(�)(K�(y))ρ0(s)dsP0(dy),

ν�,y(ds,dw) = e−K�(y)wρ�(s)dsP0(dw).

Then

π
(
Y ∗,T ,�N |X,m0,m

)

∝
d∏

�=1

k∏
j=1

{ ∏
i∈C�,j

k
(
X�,i, Y

∗
j

)} i�,j∏
t=1

m0
(
dY ∗

j

) ∏
r∈C�,j,t

m�,Y ∗
j

(
dT ∗

�,j,t

)
,

(29)

where m denotes the vector containing the m�,Y ∗
j

’s.

We have previously defined the random partition �N in such a way that there is a one to
one correspondence between the two vectors (Y ∗,�N) and Y . Henceforth, we equivalently
write Y instead of (Y ∗,�N).
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5.2. A posterior characterization. The result in Theorem 5, combined with the related
augmented probability distribution in (26), paves the way to the determination of the posterior
distribution of μ̃ = (μ̃1, . . . , μ̃d), given the data and the latent variables. This is described in
the next theorem, which shows that a structural conjugacy property holds true and the vector
μ̃ is still hierarchical a posteriori. In order to state the result, let I1, . . . , Ik be independent
nonnegative random variables with Ij having density function

(30) fj (s) ∝ si•j e
−s

∑d
�=1 ψ(�)(K�(Y

∗
j ))

ρ0(s)ds

and η∗
0 ∼ CRM(ν∗

0 ) where

(31) ν∗
0 (ds,dy) = e−s

∑d
�=1 ψ(�)(K�(y))ρ0(s)dsc0P0(dy).

Finally, set μ̃∗
0 = η∗

0 + ∑k
j=1 Ij δY ∗

j
and correspondingly

(32) ν̃∗
� (ds,dy) = e−sK�(y)ρ�(s)dsμ̃∗

0(dy)

for each � = 1, . . . , d .

THEOREM 7. The posterior distribution of μ̃, conditional on (X,Y ,T ), equals the dis-
tribution of the vector of CRMs

(33)
(
μ̃∗

1, . . . , μ̃
∗
d

) +
(

k1∑
j=1

i1,j∑
t=1

J1,j,t δY ∗
1,j

, . . . ,

kd∑
j=1

id,j∑
t=1

Jd,j,t δY ∗
d,j

)
,

where μ̃∗
� |μ̃∗

0
ind∼ CRM(ν̃∗

� ), for � = 1, . . . , d , and the jumps J�,j,t are independent and non-
negative random elements with corresponding density functions

(34) f�,j,t (s) ∝ sq�,j,t e
−sK�(Y

∗
�,j )

ρ�(s)ds.

Moreover, the random elements μ̃∗ = (μ̃∗
1, . . . , μ̃

∗
d), η∗

0, (I1, . . . , Ik) and {J�,j,t } are mutually
independent.

It is worth stressing that according to Theorem 7, the random measures μ̃∗
� + ∑k�

j=1∑i�,j
t=1 J�,j,t δY ∗

�,j
are conditionally independent CRMs, given μ̃∗

0. The main differences with
respect to the prior (5) are the presence of the jumps J�,j,t at fixed locations identified by
the distinct values Y ∗

�,j of the latent variables Y � and the exponential updating of the con-
ditional Lévy intensity as described in (32). Moreover, unlike (5) the CRM μ̃∗

0 at the top
hierarchy does also have jumps at fixed locations corresponding to the overall distinct latent
variables’ values Y ∗

1 , . . . , Y ∗
k . Hence the hierarchical structure is preserved also a posteriori

and a property of structural conjugacy holds true. Note that the posterior characterization
given in Theorem 7 shares some interesting features with the one of [4], Theorem 10. Indeed,
at the CRM level, the posteriors exhibit structural analogies displaying an updated CRM in-
dependent of positive fixed jumps Ij ’s, that are shared across the groups, and of positive
fixed jumps J�,j,t ’s, that are specific to group �. Otherwise, the posteriors are very different
in distribution, given the different transformation of the CRMs they rely on. This somehow
surprising and interesting finding is reminiscent of the structural analogies pointed out by
[29] for the simple exchangeable case.

A posterior characterization, as the one in Theorem 7, is the starting point for evaluating
Bayesian inferences of interest on functionals of (p̃1, . . . , p̃d). For example, one can resort
to (33) for determining a posterior estimate of the sample-specific survival functions, in the
following.
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COROLLARY 3. For any t > 0, the posterior estimate of the survival function S̃�(t) with
respect to a quadratic loss is

E
[
S̃�(t)|X,Y ,T

]
= exp

(
−c0

∫
Y

ψ(0)∗
(
ψ(�)∗

(
K

(�)
t (y)

))
P0(dy)

)

×
k∏

j=1

∫ ∞
0 e−s{ψ(�)∗ (K

(�)
t (Y ∗

j ))+∑d
h=1 ψ(h)(Kh(Y ∗

j ))}
si•j ρ0(s)ds∫ ∞

0 e−s
∑d

h=1 ψ(h)(Kh(Y ∗
j ))

si•j ρ0(s)

×
k�∏

j=1

i�,j∏
t=1

∫ ∞
0 e−s(K

(�)
t (Y ∗

�,j )+K�(Y
∗
�,j ))

sq�,j,t ρ�(s)ds∫ ∞
0 e−sK�(Y

∗
�,j )

sq�,j,t ρ�(s)ds
,

(35)

where

ψ(0)∗ (u) =
∫ ∞

0

(
1 − e−su)

e−s
∑d

�=1 ψ(�)(K�(y))ρ0(s)ds,

ψ(�)∗ (u) =
∫ ∞

0

(
1 − e−su)

e−sK�(y)ρ�(s)ds, � = 1, . . . , d.

The posterior expectation of S̃�, as described in Corollary 3, is conditional on the data X

and on all the latent variables. Therefore, in order to obtain a posterior estimate of the survival
function, one marginalizes (35) with respect to the posterior distribution of (Y ,T ), given X.
This goal may be achieved resorting to a Gibbs sampler, since such a marginalization cannot
be handled analytically, and this will be the subject of Section 6.1. Analogously, one can
obtain the posterior expectation of the hazard rate for each group of survival times.

COROLLARY 4. For any t > 0, the posterior estimate of the hazard rate h̃�(t) condition-
ally given X,Y ,T , under a square loss function is∫

Y

k(t;y)

∫ ∞
0

se−sK�(y)ρ�(s)ds

∫ ∞
0

we−w
∑d

h=1 Kh(y)ρ0(w)dwc0P0(dy)

+
k∑

j=1

k
(
t;Y ∗

j

) ∫ ∞
0

se
−sK�(Y

∗
j )

ρ�(s)ds

∫ ∞
0

wfj (w)dw

+
k�∑

j=1

i�,j∑
t=1

k
(
t;Y ∗

�,j

) ∫ ∞
0

wf�,j,t (w)dw.

6. Marginal and conditional samplers. We now rely on the theoretical finding of the
previous sections to describe a marginal and a conditional sampler, which can be used, for in-
stance, to obtain posterior estimates of the survival functions. More precisely in Section 6.1,
we develop a MCMC procedure to estimate dependent survival functions, based on Theo-
rem 7 and Corollary 3. We in fact use the output of such an MCMC procedure to estimate
the posterior expected values of the random survival functions, marginalizing out the CRMs.
Hence in Section 6.1 we devise a so-called marginal algorithm. On the other hand, we also
describe a conditional strategy in Section 6.2, which allows us to simulate the trajectories of
the hierarchical CRMs.
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6.1. A marginal MCMC sampler. Though here we will focus on a special case where
each μ̃� is a generalized gamma process, more specifically ρ�(s) = e−ss−1−σ /	(1 − σ) for
� = 1, . . . , d and ρ0(s) = e−ss−1−σ0/	(1 − σ0), our analysis can be extended to any other
choice of Lévy intensities that satisfy the conditions (i)–(ii) in Theorem 1. We further assume
that Y = R

+ and set k(t;y) := 1(0,t](y)α(y) for some positive right-continuous real-valued
function α(·). Note that when σ = σ0 = 0, each random hazard rate is an extended gamma
process, given μ̃0, with parameters (μ̃0, α). The extended gamma process was introduced
in [15] to model monotone increasing hazard rates and it has been extensively used in an
exchangeable setting. We will further assume that the function α(y) ≡ α is constant and we
specify a prior for α. We are able to deal with the general case d ≥ 2, without analytical
difficulties with respect the situation in which d = 2. One can now specialize Corollary 3 to
this case and get the following result.

COROLLARY 5. Let ρ�(s) = e−ss−1−σ /	(1 − σ) for � = 1, . . . , d , ρ0(s) = e−ss−1−σ0/

	(1 − σ0), and k(t;y) := α1(0,t](y). Then the posterior expected value E[S̃�(t)|X,Y ,T ]
equals

exp
(
− c0

σ0

∫
Y

F�(y)P0(dy)

)

×
k∏

j=1

{
1 + [1 + K�(Y

∗
j ) + K

(�)
t (Y ∗

j )]σ − [1 + K�(Y
∗
j )]σ∑d

h=1[(Kh(Y
∗
j ) + 1)σ − 1]

}−(i•j−σ0)

×
k�∏

j=1

{
1 + K

(�)
t (Y ∗

�,j )

1 + K�(Y
∗
�,j )

}−(n�,j−i�,j σ )

being

F�(y) =
[

d∑
h=1

(Kh(y) + 1)σ − 1

σ
+ 1

]σ0

×
{[

1 + [1 + K�(y) + K
(�)
t (y)]σ − [1 + K�(y)]σ

σ [∑d
h=1

(Kh(y)+1)σ −1
σ

+ 1]
]σ0 − 1

}

for each � = 1, . . . , d .

As far as the hazard is concerned, an application of Corollary 4 in the case of hierarchies
of generalized gamma process leads to the following.

COROLLARY 6. Let ρ�(s) = e−ss−1−σ /	(1 − σ) for � = 1, . . . , d , ρ0(s) = e−ss−1−σ0/

	(1 − σ0), and k(t;y) := α1(0,t](y), then the posterior expected value E[h̃�(t)|X,Y ,T ]
equals ∫

Y

k(t;y)

(1 + ∑d
h=1 Kh(y))1−σ0(1 + K�(y))1−σ

c0P0(dy)

+
k∑

j=1

k(t;Y ∗
j )(i•j − σ0)

(1 + σ−1 ∑d
h=1[(1 + Kh(Y

∗
j ))σ − 1])(1 + K�(Y

∗
j ))1−σ

+
k�∑

j=1

i�,j∑
t=1

k(t;Y ∗
�,j )(q�,j,t − σ)

(1 + K�(Y
∗
�,j ))

(36)

for any � = 1, . . . , d .
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It is now immediate to check that, with our choices of the kernel k(t;y) and of the Lévy
intensities ρ�, one has

K
(�)
t (y) = α(t − y)1(0,t](y),

K�(y) = α
∑

{i:y≤X�,i}
X�,i − yα · #{i : y ≤ X�,i}.

An approximate evaluation of the posterior estimate E[S̃�(t)|X] of the survival function S̃�

may be obtained by means of an MCMC procedure. At the same time, one can obtain a
posterior estimate of the hazard rate h̃�(t). To this end, the full conditional distributions of
the latent variables must be identified. The detailed description of the Gibbs sampler and
all the full conditional distributions is reported in Section S5. To complete the picture, we
assume α and c0 are independent and further specify the following priors:

(37) α ∼ Ga(a, b), c0 ∼ Ga(a0, b0).

For computational convenience, σ and σ0 are assumed to be fixed values.

6.2. Conditional sampler. The key distinctive feature of the MCMC procedure detailed
in previous Section 6.1 is the marginalization with respect to the mixing dependent CRMs
μ̃�’s. This is very useful when one is mainly interested in determining estimates of the sur-
vival functions, at any point t > 0, as posterior expected values of S̃�(t)’s; see Corollary 5.
On the contrary, in the present section we are going to develop a conditional algorithm that
generates trajectories of the μ̃�’s from their respective posterior distributions. Our strategy
relies on Theorem 7 and a proper adaptation of the algorithm by Wolpert and Ickstadt [42]. A
conditional sampler is very useful for many practical reasons, and here we confine ourselves
to just mentioning that: (i) it allows to estimate the actual posterior distribution of the survival
functions or, equivalently, of the hazard rates at any time point t ; (ii) it yields estimates of
the posterior credible intervals for the estimated quantities that are more reliable than those
arising from marginal samplers.

As for (i), if �1, . . . ,�N denote N posterior samples of the latent vector � obtained
through an MCMC procedure, and if in addition μ̃

(i,1)
� , . . . , μ̃

(i,M)
� are M trajectories of μ̃�,

conditionally given �i ,X, then the posterior distribution function of survival function S̃�(t),
at t , is approximated by

(38) P
(
S̃�(t) ≤ s|X) ≈ 1

NM

N∑
i=1

M∑
k=1

1{
S̃

(i,k)
� (t)≤s

},
where

S̃
(i,k)
� (t) := exp

(
−

∫ t

0

∫
Y

k(s;y)μ̃
(i,k)
� (dy)ds

)
.

See Section S6.1 for details on the derivation of (38). Being provided with the approximation
of the posterior distribution of the survival functions (38), it is now clear one can also address
the aforementioned point (ii).

Hence, we need to devise an algorithm that samples the trajectories of the μ̃�’s from their
posterior distribution and plug them in (38). Having fixed � = 1, . . . , d , the computational
procedure is based on Theorem 7 and a nontrivial adaptation of the algorithm developed by
Wolpert and Ickstadt [42]. The technique suggested in [42] is easier to implement in the
presence of nonhomogeneous CMRs, as those considered here, if compared to an alternative
and popular sampler yielded by the Ferguson and Klass [18] representation. Nonetheless, the
jumps of the CRMs are not sampled in a decreasing order and this may be a serious drawback
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when one wants to obtain an approximate draw of a CRM by discarding the infinite number
of jumps whose size does not exceed a fixed threshold, ε > 0 say. We have been able to
successfully address this issue for the CRMs

(39) η∗
0 = ∑

h≥1

J
(0)
h δ

y
(0)
h

, μ̃∗
� = ∑

h≥1

J
(�)
h δ

y
(�)
h

,

for � = 1, . . . , d , where y
(0)
h

i.i.d.∼ P0 and y
(�)
h |μ̃∗

0
i.i.d.∼ μ̃∗

0/μ̃
∗
0(Y); see Theorem 7. Let now

S
(0)
h and S

(�)
h be the points of a unit rate Poisson process, for h ≥ 1, namely S

(0)
h − S

(0)
h−1 and

S
(�)
h −S

(�)
h−1 are independent random variables whose distribution is negative exponential with

unit mean. Hence, according to [42] the jumps J
(0)
h and J

(�)
h in (39) are such that

S
(0)
h = c0

∫ ∞
J

(0)
h

e−s
∑d

�=1 ψ�(K�(y
(0)
h ))ρ0(s)ds,(40)

S
(�)
h = c̃

∫ ∞
J

(�)
h

e−sK�(y
(�)
h )ρ�(s)ds,(41)

where c̃ := ∑
h≥1 J

(0)
h δ

y
(0)
h

+ ∑k
j=1 Ij δY ∗

j
is the total mass of μ̃∗

0. One can then show the

following.

PROPOSITION 2. The sequences of nonnegative random variables (J̃
(0)
h )h≥1 and

(J̃
(�)
h )h≥1, for � = 1, . . . , d , defined through the equations

S
(0)
h = c0

∫ ∞
J̃

(0)
h

ρ0(s)ds, S
(�)
h = c̃

∫ ∞
J̃

(�)
h

ρ�(s)ds

are monotonically decreasing and dominate (J
(0)
h )h≥1 and (J

(�)
h )h≥1 in (40)–(41), namely

J
(0)
h ≤ J̃

(0)
h and J

(�)
h ≤ J̃

(�)
h , for any h ≥ 1 and � = 1, . . . , d , almost surely.

In order to make precise the use of this result, let us focus attention on η∗
0 in (39). If one

wants to determine a finite-sum approximation of η∗
0, one can fix ε > 0 and discard jumps

whose size is smaller than ε by setting the truncation level Hε as the minimum value of h

such that the additional jump satisfies J̃
(0)
h ≤ ε, that is,

(42) η∗
0 ≈

Hε∑
h=1

J
(0)
h δ

y
(0)
h

.

By virtue of Proposition 2, such a procedure guarantees that the heights of the discarded
jumps J

(0)
h ’s in (42) are smaller than ε. Similar arguments apply to μ̃∗

� .
We now have all the necessary ingredients to describe the conditional algorithm.

(1) Generate μ̃0 from its posterior distribution, which is described right before The-
orem 7, namely proceed as follows:
(1.a) Generate the random jumps Ij , as j = 1, . . . , k, whose density is proportional to

(30);
(1.b) generate η∗

0 using the algorithm developed by Wolpert and Ickstadt [42], that is,
fix a threshold level ε > 0 and proceed with the following steps:

– generate the atom of the CRM y
(0)
h ∼ P0;

– generate the waiting times S
(0)
h of a standard Poisson process, that is to say S

(0)
h −S

(0)
h−1 are

independent and identically distributed exponential random variables with unit mean;
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– determine the jump J
(0)
h by inverting the upper tail of the Lévy intensity (31), that is, by

solving (40);
– stop the procedure at Hε

0 := min{h : J̃
(0)
h ≤ ε} where the auxiliary jumps J̃

(0)
h are deter-

mined according to Proposition 2.

(1.c) Evaluate an approximate draw of μ̃∗
0

μ̃∗
0,ε =

Hε
0∑

h=1

J
(0)
h δ

y
(0)
h

+
k∑

j=1

Ij δY ∗
j
.

(2) Generate μ̃�, given (μ̃∗
0,X), as follows.

(2.a) Generate the J�,j,t ’s from the density in (34);
(2.b) with ε > 0 fixed, generate the μ̃∗

�’s using the posterior representation in Theo-
rem 7 and the algorithm by Wolpert and Ickstadt [42], namely:

– generate the atoms of the CRMs y
(�)
h ∼ P ∗

0,ε = μ̃∗
0,ε/μ̃

∗
0,ε(Y);

– generate the waiting times S
(�)
h of a standard Poisson process, that is to say S

(�)
h −S

(�)
h−1 are

independent and identically distributed exponential random variables with unit mean;
– determine the jump J

(�)
h by inverting the upper tail of the Lévy intensity (41);

– stop the procedure at Hε
� := min{h : J̃ (�) ≤ ε}, where the auxiliary jumps J̃

(�)
h are deter-

mined according to Proposition 2;

(2.c) evaluate an approximate draw from the posterior of μ̃�, by putting

μ̃� ≈
Hε

�∑
h=1

J
(�)
h δ

y
(�)
h

+
k�∑

j=1

i�,j∑
t=1

J�,j,t δY ∗
�,j

.

For the numerical experiments of Section 7, we have implemented the conditional algo-
rithm when μ̃� is such that ρ�(s) = (	(1 − σ))−1e−s/s1+σ for � = 1, . . . , d , and ρ0(s) =
(	(1 − σ0))

−1e−s/s1+σ0 , that is, the CRMs are generalized gamma processes exactly as in
the previous section. For the readers’ convenience, we have specialized the conditional sam-
pler for such a noteworthy example in Section S6.3.

7. Illustrations. In this section, we display an illustrative example that provides evi-
dence of the effectiveness of our proposal on simulated datasets. In Section S7, we also
discuss how to adapt our strategy in presence of covariates and right-censored survival times,
dealing with tumor survival data.

In the following simulated scenario, we have run the MCMC algorithm for 50,000 itera-
tions with a burn-in period of 20,000 sweeps: the number of iterations allow the convergence
of all the MCMC procedures. We have considered a synthetic dataset composed by d = 3
groups of observations, more specifically the data are generated by three different mixtures
of Weibull distributions f1 ∼ Wbl(1.5,3/2), f2 ∼ 0.5Wbl(2.5,3/2) + 0.5Wbl(1.5,3/2) and
f3 ∼ 0.5Wbl(2,3/2) + 0.5Wbl(1.5,3/2). For any � = 1,2,3, we have set n� = 100. For
the sake of simplifying notation, we denote by S� the survival function associated to f�,
for any � = 1,2,3. As priors are concerned, we have used the specifications a = a0 = 1,
b−1 = b−1

0 = 10 and T = 30 which correspond to a noninformative specification, while we
have fixed the values of σ = σ0 = 0.25. We compare our BNP estimates (obtained via the
marginal and conditional algorithm) with a frequentist estimate which is based on a smoothed
version of the Kaplan–Meier estimator (using the optimized Matlab command ksdensity).
Since the data have been generated independently across groups, we evaluate the frequentist
estimator separately for each group. Figure 1 compares the true survival curve, the estimated
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FIG. 1. True survival functions (dotted) versus estimated (straight blue) for the first sample and 95% posterior
credible intervals estimated using the marginal method (a) and conditional method (b). The BNP estimates are
also compared with the corresponding frequentist estimate (straight red).

survival function obtained via the marginal algorithm (in blue) and the frequentist estimate
(in red). In Figure 1(a), the estimated credible intervals are obtained through the outputs of the
marginal procedure, while in Figure 1(b) they are evaluated through the conditional method.
More precisely, the BNP estimated survival function in Figure 1(a) has been obtained gen-
erating N = 30,000 values of E[S̃�(t)|X,Y ,T ] (see Corollary 5) through the Gibbs sampler
of Section 6.1, besides the respective credible intervals have been approximated evaluating
the quantiles of the corresponding vector of outputs. On the other hand, as for Figure 1(b),
we have implemented the conditional sampler depicted in Section 6.2 and we have estimated
the posterior distribution (38) of S̃1 to derive both the credible intervals and the estimator
(posterior mean). Analogously Figures 2–3 compare the two survival functions for the sec-
ond and third sample, respectively. First of all, we observe that both the BNP marginal and
the BNP conditional method outperform with respect to the frequentist approach, providing
estimates which are closer to the truth. This is also emphasized by the Kolmogorov distances
dK(S�, S̃�) between the true survival curve and the estimated one reported in Table 1 for
all � = 1,2,3 and for the different kinds of estimators. Second, it is apparent both marginal
and conditional procedures yield similar point estimates, though the marginal method under-
estimates the credible intervals: indeed in such a situation the infinite dimensional random

FIG. 2. True survival functions (dotted) versus estimated (straight blue) for the second sample and 95% poste-
rior credible intervals estimated using the marginal method (a) and conditional method (b). The BNP estimates
are also compared with the corresponding frequentist estimate (straight red).
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FIG. 3. True survival functions (dotted) versus estimated (straight blue) for the third sample and 95% posterior
credible intervals estimated using the marginal method (a) and conditional method (b). The BNP estimates are
also compared with the corresponding frequentist estimate (straight red).

TABLE 1
The Kolmogorov distance between the true and estimated survival functions for the different methodologies

dK(S1, Ŝ1) dK(S2, Ŝ2) dK(S3, Ŝ3)

marginal BNP 0.033 0.027 0.023
conditional BNP 0.031 0.024 0.031
smoothed KM 0.060 0.042 0.056

elements are integrated out. We finally note that the conditional algorithm provides more re-
liable credible intervals which always contain the true survival functions, which is not the
case for marginal sampling schemes (see Figure 3).
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