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Abstract: Random probability vectors are of great interest especially in
view of their application to statistical inference. Indeed, they can be used
for identifying the de Finetti mixing measure in the representation of the
law of a partially exchangeable array of random elements taking values
in a separable and complete metric space. In this paper we describe the
construction of a vector of Dirichlet processes based on the normalization
of an exchangeable vector of completely random measures that are jointly
infinitely divisible. After deducing the form of the multivariate Laplace
exponent associated to the vector of the gamma completely random mea-
sures, we analyze some of their distributional properties. Our attention
particularly focuses on the dependence structure and the specific partition
probability function induced by the proposed vector.
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1. Introduction

Random probability measures represent the key ingredient for the actual im-
plementation of Bayesian nonparametric procedures and the Dirichlet process
is the most celebrated example. Indeed, their probability distribution plays the
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role of a prior: this is combined with the data to yield a posterior, or a predic-
tive, distribution that is used to determine either exact or approximate Bayesian
inferences on quantities of interest. The most notable advances in the field have
been achieved under the assumption that the observations X1, . . . , XN are the
initial segment of an (ideally) infinite exchangeable sequence of random elements
(Xi)i≥1 taking values in some complete and separable metric space X endowed
with the Borel σ–algebra X . If PX stands for the set of all probability mea-
sures on (X,X ) and PX is the σ–algebra induced by the topology of weak
convergence on PX, the well–known de Finetti representation theorem leads to
a mixture representation of the finite–dimensional distributions of (Xi)i≥1 of
the form

P[(X1, . . . , XN ) ∈ A] =

∫

PX

pN (A)Q(dp) ∀A ∈ X
N , ∀N ≥ 1 (1)

where pN =
∏N

1 p and Q is a probability measure on (PX,PX) that takes on the
name of de Finetti measure of the sequence (Xi)i≥1. This is equivalent to stating
that the Xi’s are conditionally independent, namely P[X1 ∈ A1, . . . , XN ∈
AN | p̃] =

∏N
i=1 p̃(Ai) with p̃ ∼ Q.

One of the most popular applications of nonparametric priors to statistical
inference concerns density estimation and is based on hierarchical mixture mod-
els where the Xi’s are latent variables and Q is the law of a Dirichlet process.
See [21]. The dramatic advances in the implementation of Markov Chain Monte
Carlo simulation algorithms in the last two decades have, then, made Bayesian
nonparametric methods directly applicable to a wide range of real world prob-
lems. Moreover, a considerable body of work has been devoted to the proposal
of alternatives to the Dirichlet process, i.e. different Q’s in (1), for modelling
exchangeable random elements. See [20] for a recent review.

1.1. Partial exchangeability

The notion of exchangeability characterized through (1) corresponds to a more
intuitive idea of homogeneity among the observations. While this seems to be a
natural assumption if one aims at prediction, it does not typically correspond to
many situations of practical interest where data are originated under different
experimental conditions or are, more generally, indexed by a collection of covari-
ates that are relevant for statistical inference. This is the case of data related
to different studies for which it is reasonable to assume exchangeability within
and not between studies. For example, when comparing the survival time of two
groups of patients displaying the same pathology and treated with two different
therapies, the data can be thought of as labeled by a binary covariate identifying
the specific treatment a patient is subject to. In this case, it is not realistic to
assume that any two observations labeled by distinct covariate values, i.e. origi-
nating from different groups, are “homogeneous”. At the same time, one might
be interested in clustering patients subject to a therapy and borrow information
from the outcomes on patients in the other group. Similar issues arise in more
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general regression problems where data are labeled by a collection of covariates
taking values in a general space, and exchangeability can be assumed only for
observations associated to the same covariate realization.

There clearly is a wide range of applied problems which motivate the great
interest that has recently emerged for the definition of nonparametric priors
accommodating for forms of dependence more general than exchangeability and
able to capture the “heterogeneity” featured by the data. Here we shall focus
on a proposal that is suited for handling inferential problems involving partially
exchangeable data. In this setting, if z denotes a set of covariates taking values
in Z, the observations are elements from a collection of sequences {(Xi(z))i≥1 :
z ∈ Z} such that for any n ≥ 1, positive integers q1, . . . , qn

P[(Xq1(z1), . . . ,X
qn(zn)) ∈ A]

=

∫

P
|q|
X

(pq1z1 × · · · × pqnzn)(A)QZ(dpz1 , . . . , dpzn)
(2)

for any A ∈ X |q|, where Xqj (zj) = (X1(zj), . . . , Xqj (zj)), q = (q1, . . . , qn) and
|q| = q1+ · · · +qn. Here QZ is the probability distribution of a collection of pos-
sibly dependent random probability measures p̃ := {p̃z : z ∈ Z} and plays the
role of prior distribution in a similar fashion as Q does in the exchangeable case
(1). Indeed, note that the mixture representation in (2) is due to de Finetti in
[5] and it amounts to assuming exchangeability for the sequence of observations
(Xi(z))i≥1 corresponding to the same covariate value z in Z and conditional
independence among observations corresponding to different covariate values.
Hence, data corresponding to different covariate realizations are not condition-
ally identically distributed. The model can be equivalently summarized in a
hierarchical form as follows

Xi(zj) | p̃
iid
∼ p̃zj i = 1, . . . , qnj

(Xi(zj), Xℓ(zκ)) | p̃
iid
∼ p̃zj × p̃zκ i = 1, . . . , qnj ; ℓ = 1, . . . , qnκ

p̃ ∼ QZ

When QZ is degenerate on PX so that p̃z = p̃z′ (almost surely) for any z ̸= z′,
there is no heterogeneity among the data and exchangeability is recovered.

To our knowledge, the first proposal of a nonparametric prior in this frame-
work has been provided in [2], where Z is a finite set and QZ is the distribution
of a mixture of products of Dirichlet processes. However, the most recent liter-
ature has been spurred by S.N. MacEachern’s seminal papers [22, 23] where a
dependent Dirichlet process is defined by means of a series representation. The
main idea is to rely on the stick–breaking construction of the Dirichlet process
and define, for each z in Z,

p̃z =
∑

i≥1

ωi,z δYi,z (3)
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where ω1,z = V1,z , ωi,z = Vi,z

∏i−1
j=1(1 − Vj,z), for i ≥ 2, and Vi,z

iid
∼ Beta(1, θz)

for i ≥ 1. Moreover, (Yi,z)i≥1 are independent and identically distributed (i.i.d.)
from some probability distribution P0,z. For any z, p̃z is a Dirichlet process with
base measure αz = θzP0,z and dependence between any two random probabili-
ties p̃z and pz′ , for z ̸= z′, is induced by possible dependence between Vi,z and
Vi,z′ and/or between Yi,z and Yi,z′ . Later developments that build on MacEach-
ern’s idea can be found, e.g., in [6, 12, 28, 7, 8]. A more complete and stimulating
picture of the recent state of the art in the field, including a variety of interest-
ing applications, is provided in [13]. The practical use of these models has been
eased by the developments of suitable MCMC sampling algorithms, that make
use of the stick–breaking representation of p̃z in (3) and lead to an approximate
evaluation of Bayesian inferences. As a matter of fact, the availability of an
R package, named DPpackage, that allows for an automatic implementation of
MCMC samplers with dependent processes, has made these models accessible
to interested practitioners as well. See [15] for details.

The present paper relies on a different approach and defines each dependent
random probability measure p̃z by normalizing a completely random measure
(CRM) defined by

µ̃z =
∑

i≥1

Ji,z δYi,z (4)

where (Ji,z)i≥1 is a sequence of non–negative independent random variables such
that

∑

i≥1 Ji,z < ∞, almost surely, and (Yi,z)i≥1 is a sequence of i.i.d random
variables taking values in X. Hence, in (3) one defines ωi,z = Ji,z/

∑

i≥1 Ji,z. In
view of this definition, dependence between p̃z and p̃z′ will be induced by the
dependence between µ̃z and µ̃z′ and this is summarized through a multivariate
Lévy intensity. In our proposal (Yi,z)i≥1 = (Yi)i≥1 and more importantly µ̃z is,
for any z ∈ Z, a gamma CRM which yields, through normalization, a Dirichlet
process. Hence, the model discussed in this paper can be seen as a dependent
Dirichlet process as in (3), with Z being a finite set. However, we are not able
to establish which form of dependence among the stick–breaking weights Vi,z

leads to the dependent Dirichlet process prior that will be discussed in the next
sections.

The use of dependent CRMs in the construction of dependent random prob-
ability measures has been considered in other work, as well. For example, in [9]
and [17] dependence is induced through Lévy copulas that allow to define multi-
variate Lévy intensities with fixed marginals, thus operating in a similar fashion
as traditional copulas do for probability distributions. More specifically, in [9]
a class of dependent neutral to the right processes for the analysis of partially
exchangeable survival data is constructed, whereas in [17] a bivariate vector of
two–parameter Poisson–Dirichlet processes is introduced. Note that the latter is
closer in spirit to the present work, the main distinctive feature being that it re-
lies on the normalization of a random measure which is not completely random.
As to our knowledge, before these two contributions the use of Lévy copulas
has been mostly confined to applications in Finance as well detailed, e.g., in [3].
Furthermore, a construction that does not rely on Lévy copulas can be found
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in [19]: here the authors define dependent CRMs by means of the superposition
of independent completely random measures some of which are shared. See also
[26] for a similar approach aimed at applications to spatial statistics. An allied
contribution that, similarly to ours, applies to the case where Z is a finite set
is in [24] where the authors model each p̃z as a convex linear combination of
Dirichlet processes one of which is shared through different z’s thus inducing
dependence.

1.2. Main results and outline of the paper

As already anticipated, the present paper introduces a new vector of gamma
CRMs µ̃ = (µ̃1, . . . , µ̃n), which is characterized in terms of a Lévy intensity ν
on (R+)n × X. Each µ̃i has the same marginal distribution and is such that
µ̃i(A) is gamma distributed with

E

[

e−λµ̃i(A)
]

= (1 + λ)−cP0(A) ∀λ > 0, (5)

for probability measure P0 on X, for any set A in X such that P0(A) > 0
and for some constant c > 0. This construction has two merits. On one side it
ensures mutual independence of vectors (µ̃1(Ai), . . . , µ̃n(Ai)), as i = 1, . . . , k,
for any collection of pairwise disjoint sets A1, . . . , Ak in X and for any k ≥ 1.
On the other, it allows one to evaluate exactly the Laplace transform of the
vector (µ̃1, . . . , µ̃n) through

E

[

e−⟨λ,µ̃(A)⟩
]

= exp

{

−

∫

(R+)n×A

[

1− e−⟨λ,y⟩
]

ν(dy, dx)

}

(6)

where λ = (λ1, . . . ,λn) ∈ (0,∞)n, A is any set in X , µ̃(A) = (µ̃1(A), . . . , µ̃n(A))
and ⟨s, t⟩ =

∑n
i=1 siti for any s and t in Rn. Moreover, ν is such that

∫

(R+)n−1

ν(dy−i, dx) =
e−yi

yi
cP0(dx) (7)

with dy−i denoting integration with respect to all y coordinates but the i–th.
In the special case where λ is such that λ1 ̸= · · · ̸= λn we show that

E

[

e−⟨λ,µ̃(A)⟩
]

= exp

⎧

⎨

⎩

−cP0(A)
n
∑

i=1

λn−1
i log(1 + λi)
∏n

j=1
j ̸=i

(λi − λj)

⎫

⎬

⎭

. (8)

A more elaborated expression, still available in closed form, is recovered if any
two of the λi’s coincide. This will be detailed in one of the next sections. In
particular, if λj = 0 for any j ̸= i and λi > 0, one obtains (5) so that µ̃i is,
indeed, a gamma completely random measure whose intensity is displayed on
the right hand side of (7). Notice that the expression (8) is invariant with respect
to permutations of the λi’s, a property which remains valid even for the general
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case allowing for ties in (λ1, . . . ,λn) as it can be noted from (25). Therefore the
vector µ̃ is exchangeable. This is per se an interesting distinctive feature since
the model still preserves analytical tractability despite a non-Markovian form
of dependence.

Both the availability of the Laplace transform and the independence of the
increments of µ̃ are key tools for determining, e.g., the mixed moments of µ̃. If
we confine here to the simple case where n = 2, we show that for any set A in
X

E [µ̃q1
1 (A) µ̃q2

2 (A)] = q1!q2!
q1+q2
∑

k=1

ckP k
0 (A)

q1+q2
∑

j=1

∑

(∗)

j
∏

i=1

1

λi!(s1,i + s2,i)!
(9)

where (∗) denotes the set where the vectors λ = (λ1, . . . ,λj) and si = (s1,i, s2,i),
for i = 1, . . . , j, vary in the sum. This result, that can be extended to the case
of gamma CRM vectors of dimension n > 2, is relevant for analyzing some
distributional properties useful for Bayesian nonparametric inference. Indeed, if
one is willing to analyze data for which partial exchangeability is a suitable form
of dependence, one can set QZ as the probability distribution of (p̃1, . . . , p̃n)
where p̃i = µ̃i/µ̃i(X), for i = 1, . . . , n. This induces a vector of dependent
Dirichlet processes, i.e. a vector such that each p̃i is a Dirichlet process with
base measure cP0. Moreover, Z = {1, . . . , n}. Making use of the same technique
that leads to proving (9) one can evaluate the correlation coefficient between
p̃i(A) and p̃j(B), for any i ̸= j and A,B ∈ X . In particular, it is shown that
for any A in X

corr(p̃1(A), p̃2(A)) = Kc

∫ 1

0
ξc(z) dz (10)

for some constant Kc that depends on the total mass c > 0, for some function
ξc that can be represented in terms of hypergeometric functions 1F1 and 2F1.
The integral in (10) can be evaluated numerically and, more importantly, the
right-hand side is independent from set A: this fact typically motivates the use
of (10) as a measure of overall dependence between p̃1 and p̃2.

The illustration of the properties of (p̃1, . . . , p̃n) is completed by the deter-
mination of the associated partition probability function. Indeed, notice that
each p̃i is discrete with probability 1 so that ties may occur among the data:
this induces a partition with any two observations belonging to the same cluster
if and only if they coincide. The analysis of the random partition associated
to a random discrete distribution is important for computational purposes. For
example, when the observations are exchangeable as in (1), the so–called ex-
changeable partition probability function (EPPF) is a key tool for devising a
MCMC sampler for density estimation in mixture models. See, e.g., [20]. This
also motivates a similar investigation in the partially exchangeable case as em-
phasized in [19]. We shall be able to determine a closed form expression of
the partially exchangeable partition probability function (pEPPF) associated
to (p̃1, p̃2). The extension to the case n > 2, though feasible analytically, leads
to complicated expressions that are not displayed here.
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The outline of the paper is as follows. In Section 2 we shall introduce some ba-
sic facts on CRMs that are necessary for an understanding of the main results
we have obtained. In Section 3 some known examples of multivariate vectors
of CRMs are provided and a new vector of dependent gamma CRMs is in-
troduced. Section 4 is devoted to a detailed description of Lévy copulas and of
their connection with our vector of dependent gamma CRMs. As already pointed
out, attention will be focused in Section 5 on the determination of the Laplace
transform of the vector since it is a key quantity for the evaluation of posterior
inferences in a Bayesian nonparametric framework. Finally, a normalization pro-
cedure is adopted to yield a collection of dependent Dirichlet processes which
correspond to a covariate space Z = {1, . . . , n}, for some positive integer n:
we shall examine their dependence structure and state a result concerning the
partially exchangeable partition probability function in Section 6.

2. Normalized completely random measures

Among the different possibilities emerged in the literature for defining a proba-
bility distribution Q on (PX,PX) in (1), we shall focus on a strategy that makes
use of completely random measures. For this reason we devote the present sec-
tion to the introduction of some preliminary material, which also serves for
clarifying the main notation that will be used henceforth.

Denote by MX that space of boundedly finite measures on (X,X ), namely
each element µ in MX is a measure on (X,X ) such that µ(B) < ∞ for any
bounded set B ∈ X . The space MX is endowed with the so–called weak♯ topol-
ogy (see [4] for details) and MX stands for the corresponding Borel σ–algebra.
A completely random measure (CRM) is a random element µ̃ defined on some
probability space (Ω,F ,P) and taking values in (MX,MX) such that, for any
k–tuple A1, . . . , Ak of pairwise disjoint sets in X and for any k ≥ 2, the random
variables µ̃(A1), . . . , µ̃(Ak) are mutually independent. If it is further assumed
that µ̃ does not have random masses at fixed locations, then

µ̃ =
∑

i≥1

Ji δXi

where {(Ji, Xi) : i = 1, 2, . . .} are the points of a Poisson process N on R+ ×X

with intensity measure ν, i.e. for any A ∈ B(R+)⊗X such that ν(A) < ∞ one
has N(A) = card({(Ji, Xi) : i = 1, 2, . . .} ∩ A) and

P[N(A) = k] =
e−ν(A) νk(A)

k!
1{0,1,2,...,}(k),

where 1A is the indicator function of set A. Moreover, the measure ν is such
that

∫

R+×B
min{s, 1} ν(ds, dx) < ∞, for any B in X , and is also referred to as

the intensity, or the Lévy intensity, of the CRM µ̃. It is important to emphasize
that it characterizes µ̃ through its Laplace functional transform representation.
Indeed, if f : X → R is any measurable function such that

∫

|f | dµ̃ < ∞ almost
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surely, then

E

[

e−
∫
X
f(x) µ̃(dx)

]

= exp

{

−

∫

R+×X

[

1− e−s f(x)
]

ν(ds, dx)

}

(11)

Given its relevance, in the sequel we shall refer to

ψ∗
ν(f) =

∫

R+×X

[

1− e−s f(x)
]

ν(ds, dx) (12)

as the Laplace exponent of µ̃. A popular example is the so–called gamma CRM
with base measure cP0, where c > 0 and P0 is a probability measure on (X,X ).
This is characterized by the Lévy intensity ν(ds, dx) = s−1 e−sds c P0(dx) which
leads to the following form of the Laplace functional transform

E

[

e−
∫
X
f(x) µ̃(dx)

]

= exp

{

−c

∫

X

log[1 + f(x)]P0(dx)

}

(13)

for any measurable function f : X → R such that
∫

log(1+ |f |) dP0 < ∞. If one
sets f = λ1A for any set A in X and λ > 0, from (13) one deduces that µ̃(A) has
Laplace transform as in (5) and is, thus, gamma distributed with shape and scale
parameters equal to cP0(A) and 1, respectively. Another noteworthy example
corresponds to ν(ds, dx) = σs−1−σ dσ P0(dx)/Γ(1 − σ), where σ ∈ (0, 1), and
identifies the so–called σ–stable CRM. In this case, for any measurable function
f : X → R+ such that

∫

X
fσ dP0 < ∞ one has

E

[

e−
∫
X
f(x) µ̃(dx)

]

= exp

{

−

∫

X

fσ(x)P0(dx)

}

. (14)

A choice of f = λ1A shows that µ̃(A) has a positive stable distribution with
parameter σ ∈ (0, 1).

As shown in [20], CRMs are the basic building blocks for the definition of
nonparametric priors in an exchangeable framework. Indeed, suitable transfor-
mations of µ̃ lead to define random probability measures whose distribution
can be used as the mixing Q in (1). The transformation of interest for the
present paper is the normalization. Indeed, if the intensity ν of µ̃ is such that
ν(R+ × X) = ∞, it is possible to set Q as the probability distribution of

p̃ =
µ̃

µ̃(X)
, (15)

which defines a normalized CRM or a normalized random measure with inde-
pendent increments. See [27] and [14]. For example, the Dirichlet process with
base measure cP0 can be obtained through (15) if µ̃ is a gamma CRM whose
Laplace functional transform is as in (13). Analogously, a shown in [16] the
normalized σ–stable CRM with base measure P0 coincides with the normaliza-
tion of a CRM characterized through (14). The construction displayed in (15)
is also relevant for our proposal. Indeed, we shall consider a vector (µ̃1, . . . , µ̃n)
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of dependent CRMs such that marginally each µ̃i is a gamma CRM. A vector of
dependent random probabilities will, then, be obtained by normalizing µ̃i, for
i = 1, . . . , n. The resulting dependent Dirichlet processes will represent a can-
didate for modelling partially exchangeable data as in (2) when the cardinality
of Z is n.

3. Gamma CRM and Dirichlet process vectors

The definition outlined in Section 2 can be extended to the case of CRM vectors.
These are random elements µ̃ = (µ̃1, . . . , µ̃n) defined on (Ω,F ,P) and taking
values in (Mn

X
,M n

X
) such that, for any k ≥ 2 and for any choice of pairwise

disjoint sets A1, . . . , Ak in X , the vectors (µ̃1(Ai), . . . , µ̃n(Ai)) are, for i =
1, . . . , k, mutually independent. In a similar fashion as for the one–dimensional
case, a Poisson process type representation holds true and

(µ̃1, . . . , µ̃n) =
∑

r

(Jr,1, . . . , Jr,n) δXr .

In the above representation, {(Jr,1, . . . , Jr,n, Xr) : r = 1, 2, . . .} are points from
a Poisson process on ((R+)n,X) with intensity measure ν such that

∫

(R+)n×B

∥s∥ ν(ds, dx) < ∞ ∀B ∈ X

where ν(A(i) × B) = νi(A × B) for any A in B(R+), νi is the (marginal)
intensity of µ̃i, A(i) = (R+)i−1 ×A× (R+)n−i and ∥x∥ is the usual notation for
the Euclidean norm of vector x ∈ Rn. Similarly to the one–dimensional case, ν
characterizes µ̃ through its Laplace functional transform representation. Indeed,
for any collection of measurable functions fi : X → R such that

∫

|f | dµ̃i < ∞,
almost surely, i = 1, . . . , n, one has

E

[

e−
∑n

i=1

∫
X
fi(x) µ̃i(dx)

]

= exp

{

−

∫

(R+)n×X

[

1− e⟨y, f(x)⟩
]

ν(dy, dx)

}

(16)

where f = (f1, . . . , fn), y = (y1, . . . , yn) and ⟨y,f(x)⟩ =
∑n

i=1 yifi(x). In order
to simplify the notation, we shall henceforth identify the Laplace exponent of µ̃
as

ψ∗
ν,n(f) =

∫

(R+)n×X

[

1− e⟨y, f(x)⟩
]

ν(dy, dx). (17)

Example 1. Instances of multivariate CRMs with a view to applications in
Bayesian nonparametric inference can be found, e.g., in [9] and in [17]. For exam-
ple, a vector of CRMs (µ̃1, µ̃2) with σ–stable margins having Laplace transform
(14) has Lévy intensity of the form

ν(dy1, dy2, dx) =
σ2(1 + θ)

Γ(1 − σ)

yθσ−1
1 yθσ−1

2
{

yθσ1 + yθσ2
}

1
θ+2

dy1 dy2 dx
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for any θ > 0. The corresponding Laplace exponent coincides with

ψ∗
ν,2(λ1 1A1 ,λ2 1A)

P0(A)
= λσ1 + λσ2 −

λ1λ2
Γ(1− σ)

∫

(R+)2

e−λ1y1−λ2y2

{

yθσ1 + yθσ2
}

1
θ

dy1 dy2

For further details, see [9] where this vector of dependent CRMs has been used to
define neutral to the right priors for pairs of survival functions with two–sample
data. An obvious simplification occurs when θ = 1/σ. In this case, indeed, one
has

ψ∗
ν,2(λ1 1A1 ,λ2 1A)

P0(A)
=
λσ+1
1 − λσ+1

2

λ1 − λ2
1R\{0}(λ1 − λ2)

+ (σ + 1)λσ1 1{0}(λ1 − λ2).

This simplifed structure has allowed the definition of a bivariate version of the
two–parameter Poisson–Dirichlet process in [17].

In contrast to this example, we now wish to introduce a CRM vector µ̃ whose
components marginally are gamma CRMs. This is accomplished by introducing
the following multivariate Lévy intensity on (R+)n × X

ν(dy, dx) =
n−1
∑

i=0

(n− 1)!

(n− i− 1)!

e−|y|

|y|i+1
dy c P0(dx) (18)

with |y| =
∑n

=1 yi. It is easy to check that

ν(A(i) ×B) = cP0(B)

∫

A

e−y

y
dy i = 1, . . . , n,

for any A ∈ B(R+), which implies that µ̃1, . . . , µ̃n marginally are identically
distributed gamma CRMs. It is worth noting that (18) corresponds to the su-
perposition of n vector of CRMs

(µ̃1, . . . , µ̃n) =
n
∑

i=1

(µ∗
i,1, . . . , µ

∗
i,n)

with the intensity of the ith summand (µ∗
i,1, . . . , µ

∗
i,n) being

ν∗i (dy, dx) = cP0(dx)
(n− 1)!

(n− i)!

e−|y|

|y|i

Moreover, one has ν∗1 ((R
+)n × B) = ∞, whereas ν∗i ((R

+)n × B) < ∞ for any
i = 2, . . . , n and for any B ∈ X . Hence, for any i ≥ 2 the vector (µ∗

i,n, . . . , µ
∗
n,n)

has a finite number of jumps and acts as a multivariate Poisson compound
process. This structure is reminiscent of a completely random measure whose
normalization has been shown in [29] to be dense in the class of homogeneous
normalized completely random measures.
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The components of the gamma CRM vector will be normalized, thus yielding
a random probability vector

(p̃1, . . . , p̃n) =

(

µ̃1

µ̃1(X)
, . . . ,

µ̃n

µ̃n(X)

)

(19)

that we shall refer to as n–variate Dirichlet process. Indeed, since each µ̃i is
a gamma process with base measure cP0, then p̃i is a Dirichlet process with
base measure cP0, for any i = 1, . . . , n. Before discussing the uses of (19) for
drawing inferences with partially exchangeable observations, we shall linger on
some important distributional properties of the un-normalized gamma CRM
vector µ̃.

4. Connection with Lévy copulas

A popular tool for the definition of multivariate distributions on Rd, with fixed
margins, is represented by copulas. See [25] for an extensive account on the topic.
A similar approach has been recently introduced in an infinite-dimensional set-
ting for the definition of multidimensional CRM vectors with fixed marginal
CRMs. Lévy copulas have been originally employed for applications in mathe-
matical finance, with the goal of describing the dynamics of portfolios including
multiple dependent assets whose evolution in time is modeled through a Lévy
process. See [3]. Dependence among the components of a Lévy process vector
is, then, induced by means of Lévy copulas which act at the level of Lévy inten-
sities. Since increasing Lévy processes are special case of CRMs, one can easily
extend the use of Lévy copulas for defining CRM vectors, as illustrated in [9]
and [17]. In view of the definition provided in the previous section, one might
wonder whether it is possible to identify the Lévy copula that induces (18)
starting from gamma univariate margins. Note that, according to Theorem 5.4
in [3] such a copula is unique. The interest in such a result is motivated by the
fact that a possible representation of dependence through a Lévy copula allows
one to simulate approximate realizations of the trajectories of the CRM vector.
Indeed, this can be achieved by relying on an extension of the well–known Fer-
guson and Klass algorithm. For details, see Algorithm 6.5 in [3]. Besides this, it
can provide further insight into the dependence structure featured by the CRM
vector we have introduced.

Let us focus on the two–dimensional case, i.e. n = 2, and suppose each
marginal CRM is homogeneous with intensity that can be represented as follows

νi(ds, dx) = ρi(s) ds cP0(dx). (20)

Note that the our proposal clearly fits this setting. A Lévy copula is, then, a
function C : [0,∞]2 → [0,∞] such that

(i) C(y1, 0) = C(0, y2) = 0 for any positive y1 and y2,

(ii) C has uniform margins, i.e. C(y1,∞) = y1 and C(∞, y2) = y2,
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(iii) for all y1 < z1 and y2 < z2, C(y1, y2)+C(z1, z2)−C(y1, z2)−C(y2, z1) ≥ 0.

Set y 0→ Ui(y) :=
∫∞
y
ρi(s) ds as the i–th marginal tail integral associated to ρi.

Moreover, if
ν(ds1, ds2, dx) = ρ(s1, s2) ds1 ds2 cP0(dx) (21)

is the Lévy intensity of (µ̃1, µ̃2) and (y1, y2) 0→ U(y1, y2) =
∫∞
y1

∫∞
y2
ρ(s1, s2) ds1 ds2

is the corresponding tail integral. According to Theorem 5.4 in [3] there exists
a unique Lévy copula C such that U(y1, y2) = C(U1(y1), U2(y2)). Furthermore,
if both the copula C and the marginal tail integrals are sufficiently smooth

ρ(s1, s2) =
∂2 C(y1, y2)

∂y1∂y2

∣

∣

∣

∣

y1=U1(s1), y2=U2(s2)

ρ1(s1) ρ2(s2).

A wide range of dependence structures can be induced through Lévy copulas.
For example the independence case, i.e.

∫

A×B
ρ(s1, s2) ds1 ds2 =

∫

A
ρ(s1) ds1 +

∫

B
ρ2(s2) ds2 for any A and B in B(R+), corresponds to the Lévy copula

C⊥(y1, y2) = y11{∞}(y2) + y21{∞}(y1).

On the other hand, the case of completely dependent CRMs corresponds to

C∥(y1, y2) = min{y1, y2}

which yields a vector (µ̃1, µ̃2) such that for any x and y in X either µ̃i({x}) <
µ̃i({y}) or µ̃i({x}) > µ̃i({y}), for i = 1, 2, almost surely. Intermediate cases,
between these two extremes, can be detected, for example, by relying on the
Lévy-Clayton copula defined by

Cθ(y1, y2) = (y−θ1 + y−θ2 )−
1
θ θ > 0. (22)

with the parameter θ regulating the degree of dependence. It can be seen that
limθ→0 Cθ = C⊥ and limθ→∞ Cθ = C∥.

We shall now focus on the determination of the Lévy copula that identifies the
specific gamma CRM vector characterized by the Lévy measure (18). We shall
use the notation Γ(a, x) =

∫∞
x

sa−1 e−s ds for the incomplete gamma function,
whereas Γ−1(a, x) is the inverse function of x 0→ Γ(a, x), for any a ∈ R.

Proposition 1. The measure ν defined in (18) with n = 2 can be recovered by
applying the Lévy Copula

C(y1, y2) = Γ(0,Γ−1(0, y1) + Γ−1(0, y2)) (23)

to a pair of gamma CRMs.

Proof. The tail integral of each marginal gamma CRM is

Ui(x) =

∫ +∞

x

y−1e−y dy = Γ(0, x) i = 1, 2
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On the other hand, the tail integral associated to (18) with n = 2 is

U(x1, x2) =

∫ +∞

x1

∫ +∞

x2

[

1

(y1 + y2)2
e−y1−y2 +

1

(y1 + y2)
e−y1−y2

]

dy1 dy2

After the change of variable s = y1 + y2 and t = y1 we obtain

U(x1, x2) =

∫ +∞

x1+x2

e−s

(

1

s2
+

1

s

)
∫ s−x2

x1

dt ds

=

∫ +∞

x1+x2

e−s

(

s− (x1 + x2)

s2
+

s− (x1 + x2)

s

)

ds

= Γ(0, x1 + x2)− (x1 + x2)Γ(−1, x1 + x2) + e−x1−x2

− (x1 + x2)Γ(0, x1 + x2)

Since Γ(a+ 1, x) = aΓ(a, x) + xa e−x one has

U(x1, x2) = Γ(0, x1 + x2)− (x1 + x2)

[

e−x1−x2

x1 + x2
− Γ(0, x1 + x2)

]

+ e−x1−x2 − (x1 + x2)Γ(0, x1 + x2)

= Γ(0, x1 + x2)

From Theorem 5.3 in [3], the copula C for this process is characterized by

U(x1, x2) = C(U(x1),U(x2))

which in this case reduces to

Γ(0, x1 + x2) = C(Γ(0, x1),Γ(0, x2))

Setting yi = Γ(0, xi), for i = 1, 2, completes the proof.

5. The Laplace exponent

As already mentioned, the Laplace exponent (12) of a CRM µ̃ is an important
tool for its possible uses in Bayesian nonparametric inference as pointed out, e.g.,
in [20]. For example, it may help to determine, via differentiation, a formula for
the so-called exchangeable partition probability function (EPPF) corresponding
to the distribution of a sample of exchangeable observations (Xn)n≥1 as in (1)
with Q being the probability distribution of a normalized CRM p̃ := µ̃/µ̃(X).
The EPPF is also a key quantity needed for the posterior calculus of p̃, given
the data. Similarly, the availability of an exact expression of ψ∗

ν is decisive for
evaluating posterior inferences, either exact or approximated, with exchangeable
survival data when X = R+ and µ̃ is both taken to define a neutral to the right
prior for the survival function as

P[Xi > t | µ̃] = S̃(t) = e−µ̃(0,t]
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and as the mixing measure in a prior representation for the hazard rate function
through

S̃(t) = exp

{

−

∫ t

0

∫

X

k(s, x)µ̃(dx) ds

}

for some kernel function k( · ; · ) on R+ × X.
All these arguments are still relevant when working in a multivariate frame-

work, where a multidimensional analogue of ψ∗
ν can be similarly applied to a

Bayesian nonparametric model with partially exchangeable observations: this
motivates the focus we are reserving in this Section to the determination of the
Laplace exponent induced by (18).

Before getting started, it is worth noting that, since (µ̃1, . . . , µ̃n) has inde-
pendent increments, its distribution is characterized by a choice of f1, . . . , fn in
(16) such that fi = λi 1A for any set A in X , λi ∈ R+ and i = 1, . . . , n. In this
case

ψ∗
ν,n(f) = H(A)ψν,n(λ)

where λ = (λ1, . . . ,λn) and

ψν,n(λ) =

∫

(R+)n

[

1− e−⟨λ,y⟩
]

n−1
∑

i=0

(n− 1)!

(n− i− 1)!

e−|y|

|y|i+1
dy (24)

Our goal is to prove the following

Proposition 2. Let λ ∈ (R+)n be such that it consists of l ≤ n distinct values
denoted as λ̃1, . . . , λ̃l with respective multiplicities (n1, . . . , nl). Then

ψν,n(λ) =

(

l
∏

i=1

1

Γ(ni)

∂ni−1

∂ni−1λ̃i

)(

φl(λ̃1, . . . , λ̃l)
l
∏

i=1

λ̃ni−1
i

)

, (25)

where

φn(x) =
n
∑

i=1

xn−1
i log(1 + xi)

∏n
j=1,j ̸=i(xi − xj)

1(x1 ̸= . . . ̸= xn). (26)

To prove Proposition 2, we first show in detail how to deal with the case
n = 2 and, then, deduce the result for an arbitrary n by induction. A recursive
formula provided in Lemma 1 will be the engine for the induction. For general
n a delicate aspect we will encounter is related to deriving a form for ψν,n(λ)
when not all the coordinates in λ are distinct. For n > 2 for the sake of clarity it
will be convenient to deal separately with a derivation when there are no ties in
λ (Proposition 4) and then eventually to extend the proof to the case of general
λ ∈ Rn. For the case n = 2, the joint Laplace functional transform is given as
follows.

Proposition 3. Let ν be the Lévy intensity introduced in (18) with n = 2. The
corresponding Laplace exponent has the following form:

ψν,2(λ1,λ2) =

{

[λ1 log(1 + λ1)− λ2 log(1 + λ2)]/(λ1 − λ2) λ1 ̸= λ2

log(1 + λ1) + λ1/(λ1 + 1) λ1 = λ2
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Proof. Suppose λ1 ̸= λ2. Correspondingly one has

ψν,2(λ1,λ2) = I1(λ1,λ2) + I2(λ1,λ2)

where

I1(λ1,λ2) =

∫ ∞

0

∫ ∞

0

(

1− e−λ1y1−λ2y2
)

dy1 dy2
e−y1−y2

y1 + y2

I2(λ1,λ2) =

∫ ∞

0

∫ ∞

0

(

1− e−λ1y1−λ1y2
)

dy1 dy2
e−y1−y2

(y1 + y2)2

The change of variable y1 + y2 = w and y1/(y1 + y2) = z leads to

I1(s, t) =

∫ 1

0
dz

∫ ∞

0

(

1− e−w(λ1z+λ2(1−z))
)

e−w dw

= 1−
log(1 + λ1)− log(1 + λ2)

λ1 − λ2

and, similarly

I2(λ1,λ2) =

∫ 1

0
dz

∫ ∞

0

(

1− e−w(λ1z+λ2(1−z))
) e−w

w
dw

=
1 + λ1
λ1 − λ2

log(1 + λ1)−
1 + λ2
λ1 − λ2

log(1 + λ2)− 1

and combining these two expression one obtains ψν . Proceeding in a similar
fashion, and with some useful simplifications, one also obtains ψν,2(λ1,λ1) when
λ1 = λ2.

The statement of Proposition 2 points out that one needs to take into account
possible ties in the vector λ when determining an expression, in closed form, of
ψν,n. Hence, when dealing with the case n > 2 we shall first assume that λ has
no ties and, then, move on to the case where any two λi and λj , with i ̸= j,
may coincide.

Set En = {x ∈ (R+)n : x1 ̸= x2 ̸= · · · ̸= xn}. A preliminary Lemma provides
a useful recursive formula for ψν,n on En, with n ≥ 1.

Lemma 1. Suppose that λ ∈ En+1, for any n ≥ 1, and denote as λ−i the
original λ vector with the i–th component removed. Then the following recursive
equation holds true

ψν,n+1(λ) =
λn+1

λn+1 − λn
ψν,n(λ−n) +

λn
λn − λn+1

ψν,n(λ−(n+1)) (27)

Proof. If An
j = {k ∈ {0, 1, . . . , j}n : |k| = j}, then

1− e−⟨λ,y⟩ = −
∑

j≥1

(−1)j(⟨λ,y⟩)j

j!
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=
∑

j≥1

(−1)j+1

j!

∑

k∈An
j

j!

k1! · · · kn!
λk1
1 · · · λkn

n yk1
1 · · · ykn

n

and

ψν,n(λ) =
n−1
∑

i=0

(n− 1)!

(n− 1− i)!

∑

j≥1

(−1)j+1

j!

∑

k∈An
j

j!

k1! · · · kn!
λk1
1 · · ·λkn

n I∗n(k)

where

I∗n(k) =

∫

(R+)n
yk1
1 · · · ykn

n

e−|y|

|y|i+1
dy1 · · · dyn

A simple change of variable, namely zi = yi/s for i = 1, . . . , n− 1 and s = |y|,
yields

I∗n(k) =
k1! · · · kn!

(j + n− 1)!
(n− 2− i+ j)!.

This in turn leads to

ψν,n(λ) =
n−1
∑

i=0

(n− 1)!

(n− 1− i)!

∑

j≥1

∑

k∈An
j

(−1)j+1 (n− 2− i+ j)!

(j + n− 1)!
λk1
1 · · · λkn

n

= (n− 1)!
∑

j≥1

∑

k∈An
j

(−1)j+1

(j + n− 1)!
λk1
1 · · · λkn

n

n−1
∑

l=0

(l + j − 1)!

l!

=
∑

j≥1

∑

k∈An
j

(−1)j+1

j
λk1
1 · · · λkn

n (28)

since
n−1
∑

l=0

(l + j − 1)!

l!
=

1

j

(j + n− 1)!

(n− 1)!
. (29)

Hence, if one resorts to (28)

ψν,n+1(λ) =
∑

j≥1

(−1)j+1

j

j
∑

k1=0

λk1
1

j−k1
∑

k2=0

λk2
2 · · ·

· · ·

j−(k1+···+kn−1)
∑

kn=0

λkn
n λj−(k1+···+kn)

n+1

Afer some algebra, the last sum above can be rewritten as

j−(k1+···+kn−1)
∑

kn=0

λkn
n λj−(k1+···+kn)

n+1 = λj−(k1+···+kn−1)
n+1

j−(k1+···+kn−1)
∑

kn=0

(

λn
λn+1

)kn
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=
λj−(k1+···+kn−1)+1
n+1 − λj−(k1+···+kn−1)+1

n

λn+1 − λn

Hence

ψν,n+1(λ) =
λn+1

λn+1 − λn

∑

j≥1

(−1)j+1

j

j
∑

k1=0

λk1
1

j−k1
∑

k2=0

λk2
2 · · ·

· · ·

j−(k1+···+kn−2)
∑

kn−1=0

λkn−1

n−1 λ
j−(k1+···+kn−1)
n+1

+
λn

λn − λn+1

∑

j≥1

(−1)j+1

j

j
∑

k1=0

λk1
1

j−k1
∑

k2=0

λk2
2 · · ·

· · ·

j−(k1+···+kn−2)
∑

kn−1=0

λkn−1

n−1 λ
j−(k1+···+kn−1)
n

which shows the validity of (27).

We are now in a position to state and prove the following representation of
the Laplace exponent of our multivariate gamma CRM vector, when there are
no ties in its argument λ.

Proposition 4. For any λ ∈ En and n ≥ 1 one has

ψν,n(λ) = φn(λ) (30)

where φn is as in (26).

Proof. Suppose (30) holds true for n and we shall show that this implies the
validity of (30) for n+1. By virtue of Proposition 3 the proof is thus completed
by induction. Since (30) holds true for n, for any λ ∈ (R+)n+1 one has

ψν,n(λ−n) =
λn−1
n+1 log(1 + λn+1)
∏n−1

j=1 (λn+1 − λj)
+

n−1
∑

i=1

λn−1
i log(1 + λi)

(λi − λn+1)
∏n−1

j=1,j ̸=i(λi − λj)

ψν,n(λ−(n+1)) =
n
∑

i=1

λn−1
i log(1 + λi)

∏n
j=1,j ̸=i(λi − λj)

=
λn−1
n log(1 + λn)
∏n−1

j=1 (λn − λj)
+

n−1
∑

i=1

λn−1
i log(1 + λi)

(λi − λn)
∏n−1

j=1,j ̸=i(λi − λj)

If these two expressions are plugged in the recursive relation (27) one has

ψν,n+1(λ) =
λnn+1 log(1 + λn+1)
∏n

j=1(λn+1 − λj)
+

λnn log(1 + λn)
∏n+1

j=1,j ̸=n(λn − λj)
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n−1
∑

i=1

[

λn+1

λi − λn+1
−

λn
λi − λn

]

λn−1
i log(1 + λi)

(λn+1 − λn)
∏n−1

j=1,j ̸=i(λi − λj)
.

After some algebra, one shows that ψν,n+1 satisfies (30) and the proof is com-
pleted.

To achieve a complete proof of Proposition 2, it only remains to extend the
technique used for the proof of Proposition 4, by taking this time into account
possible ties in λ ∈ (R+)n.

Proof of Proposition 2. If Bj = {i : λi = λ̃j}, for any j = 1, . . . , l, and

|y|j =
∑

i∈Bj

yi

for any y ∈ (R+)n, one has, similarly to (28),

ψν,n(λ) =
n−1
∑

i=0

(n− 1)!

(n− 1− i)!

∑

j≥1

(−1)j+1

j!

∑

k∈Al
j

j!

k1! · · · kl!
λ̃k1
1 · · · λ̃kl

l I∗∗n (k)

where

I∗∗n (k) =

∫

(R+)n
|y|k1

1 · · · |y|kl

l

e−|y|

|y|i+1
dy1 · · · dyn

=
(n− 2− i+ j)!

(n+ j − 1)!
(n1)k1 · · · (nl)kl

This implies that

ψν,n(λ) =
n−1
∑

i=0

(n− 1)!

(n− 1− i)!

∑

j≥1

(−1)j+1 (n− 2− i+ j)!

(n+ j − 1)!

×
∑

k∈Al
j

(n1)k1 · · · (nl)kl

k1! · · · kl!
λ̃k1
1 · · · λ̃kl

l

= (n− 1)!
∑

j≥1

(−1)j+1

(n+ j − 1)!

∑

k∈Al
j

(n1)k1 · · · (nl)kl

k1! · · · kl!

× λ̃k1
1 · · · λ̃kl

l

n−1
∑

l=0

(l + j − 1)!

l!

=
∑

j≥1

(−1)j+1

j

∑

k∈Al
j

(n1)k1 · · · (nl)kl

k1! · · · kl!
λ̃k1
1 · · · λ̃kl

l
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where the last equality follows from (29). Now note that

(ni)ki

ki!
λki

i =
(ki + 1)ni−1

Γ(ni)
λ̃ki

i =
1

Γ(ni)

∂ni−1

∂λ̃ni−1
i

λ̃ni−1+ki

i

and from this deduce

ψν,n(λ) =
∑

j≥1

(−1)j+1

j

∑

k∈Al
j

l
∏

i=1

1

Γ(ni)

∂ni−1

∂λ̃ni−1
i

λ̃ni−1+ki

i

=
1

∏l
i=1 Γ(ni)

∂n−l

∂λ̃n1−1
1 · · · ∂λ̃nl−1

l

×

⎛

⎝λ̃n1−1
1 · · · λ̃nl−1

l

∑

j≥1

(−1)j+1

j

∑

k∈Al
j

λ̃k1
1 · · · λ̃kl

l

⎞

⎠

which, from (28) and by virtue of the definition of the function φl in (30),
completes the proof of (25).

6. Investigating the dependence structure

The determination of the Laplace exponent discussed in the previous section
is preliminary to an investigation of the dependence structure among the ran-
dom probabilities of the vector p̃ = (p̃1, . . . , p̃n) of dependent Dirichlet processes
defined by (19). Given p̃ is an infinite–dimensional object, some hints on the de-
pendence between any pair p̃i and p̃j , for i ̸= j, are conveyed by the correlation
coefficient between p̃i(A) and p̃j(A), for any A ∈ X . For this reason, we shall
first provide an expression for such a coefficient and, then, rely on the same tech-
nique for determining the partially exchangeable partition probability function
of the sample Xq1(z1), . . . ,Xqn(zn) characterized through (2). Indeed, almost
sure discreteness p̃i implies that P[Xi(zκ) = Xj(zℓ)] > 0 for any i, j, κ and ℓ.
In other terms, ties may appear both within each sample and between different
samples X(qκ)(zκ) and X(qℓ)(zℓ). Hence, the q1+ · · · + qn data consist of k dis-
tinct values forming clusters of sizes N1, . . . , Nk Moreover, Nj =

∑n
i=1 qj,i ≥ 1

with qj,i denoting the number of observations from Xqi(zi) coinciding with the
j–th distinct value in the sample. In the following, we confine our treatment to
the case n = 2.

6.1. Mixed moments and correlations

We rely on an approach used in [17] for defining a bivariate two–parameter
Poisson–Dirichlet process: this arises as the normalization of a random measure
that does not necessarily satisfy the property of independence when evaluated
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on pairwise disjoint sets as a CRM does. Accordingly, a key quantity is going
to be

gρ(q1, q2, s, t) =

∫ ∞

0

∫ ∞

0
yq11 yq22 e−sy1−ty2ρ(y1, y2) dy1 dy2 (31)

where the notation corresponds to the one set forth in (20) and in (21): this is
legitimate since the case we are examining is homogeneous. See (18). Note that
one can also write

gρ(q1, q2; s, t) = I1(q1, q2; s, t) + I2(q1, q2; s, t)

where

I1(q1, q2; s, t) =

∫

(R+)2
yq11 yq22 e−sy1−ty2

e−y1−y2

(y1 + y2)2
dy1 dy2

I2(q1, q2; s, t) =

∫

(R+)2
yq11 yq22 e−sy1−ty2

e−y1−y2

y1 + y2
dy1 dy2

when q1 + q2 ≥ 1. Moreover, gρ(0, 0; s, t) ≡ 1. a simple change of variable into
polar coordinates yields

I1(q1, q2, s, t) =

∫ π
2

0
sin(2θ)

∫

R+

ρq1+q2−1 cos2q1(θ) sin2q2(θ)

× e−ρ[(1+s) cos2(θ)+(1+t) sin2(θ)]dρ dθ

= Γ(q1 + q2)

∫ π
2

0

cos2q1(θ) sin2q2(θ) sin(2θ)

[(1 + s) cos2(θ) + (1 + t) sin2(θ)]q1+q2
dθ

= Γ(q1 + q2)

∫ 1

0

yq1(1− y)q2

[(1 + s)y + (1 + t)(1 − y)]q1+q2
dy

= (1 + t)−q1−q2Γ(q1 + q2)

∫ 1

0

yq1(1− y)q2
[

1− y t−s
1+t

]q1+q2
dy

=
Γ(q2 + 1)Γ(q1 + 1)

(q1 + q2)(q1 + q2 + 1)

2F1(q1 + q2, q1 + 1, q1 + q2 + 2, t−s
1+t )

(1 + t)q1+q2

In a similar fashion one determines I2(q1, q2; s, t) thus yielding

gρ(q1, q2; s, t) =
Γ(q2 + 1)Γ(q1 + 1)

(q1 + q2 + 1)(1 + t)q1+q2

×

{

2F1(q1 + q2, q1 + 1, q1 + q2 + 2, t−s
1+t

)

q1 + q2

+
2F1(q1 + q2 + 1, q1 + 1, q1 + q2 + 2, t−s

1+t )

1 + t

}

(32)
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The availability of the gρ function allows us to determine an expression of the
mixed moments of the un–normalized vector (µ̃1(A), µ̃2(A)), with A ∈ X .
This is a preliminary step towards the determination of the mixed moments
of the normalized vector (p̃1(A), p̃2(A)). In the sequel, for any two vectors
x = (x1, . . . , xd) and y = (y1, . . . , yd) in Nd

0, one writes x ≺ y if either |x| < |y|
or |x| = |y| and x1 < y1 or if |x| = |y| with xi = yi for i = 1, . . . , j and
xj+1 < yj+1 for some j in {1, . . . , d}.

Proposition 5. Let pj(q1, q2, k) be the set of vectors (λ, s1, . . . , sj) such that

the coordinates of λ = (λ1, . . . ,λj) are positive and such that
∑j

i=1 λi = k.
Moreover, si = (s1,i, s2,i) are vectors such that 0 ≺ s1 ≺ · · · ≺ sj and
∑j

i=1 λi(s1,i + s2,i) = k = q1 + q2. Then,

E

[

2
∏

i=1

{µ̃i(A)}
qi

]

= q1!q2!
q1+q2
∑

k=1

[H(A)]k×
q1+q2
∑

j=1

∑

pj(q1,q2,k)

j
∏

i=1

1

λi!(s1,i + s2,i)λi

Proof. Note that

E

[

e−sµ̃1(A)−tµ̃2(A)
2
∏

i=1

{µ̃i(A)}
qi

]

= (−1)q1+q2
∂q1+q2

∂sq1 ∂tq2
e−H(A)ψρ,2(s,t)

and by virtue of Theorem 2.1 in [1] one has that the derivative in the right–hand
side above coincides with

e−H(A)ψρ,2(s,t) q1!q2!
q1+q2
∑

k=1

(−1)k[H(A)]k ×

×
q1+q2
∑

j=1

∑

pj(q1,q2,k)

j
∏

i=1

1

λi!(s1,i!s2,i!)λi

(

∂s1.i+s2,i

∂ss1,i∂ts2,i
ψρ,2(s, t)

)λi

By virtue of the definition of the function gν one has

e−H(A)ψρ,2(s,t) q1!q2!
q1+q2
∑

k=1

[H(A)]k ×

×
q1+q2
∑

j=1

∑

pj(q1,q2,k)

j
∏

i=1

1

λi!(s1,i!s2,i!)λi
(gρ(s1,i, s2,i, s, t))

λi .

Since ψρ,2(0, 0) = 1 and

gρ(s1,i, s2,i, 0, 0) =
s1,i!s2,i!

s1,i + s2,i

the conclusion follows.
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The procedure described in the previous proof can be used to determine the
correlation coefficient between p̃1(A) and p̃2(B), for any A and B in X . In
particular, when A = B, it will be seen that such a correlation does not depend
on the specific set p̃1 and p̃2 are evaluated at: this finding is typically used to
motivate the use of corr(p̃1(A), p̃2(A)) as a measure of the dependence between
p̃1 and p̃2. The main difference with respect to the previous proof is the use of
a gamma integral representation of the normalizing total random masses µ̃1(X)
and µ̃2(X). In order to make notation simpler, we set

h1(z) = 2F1(2, 2, 4, z) 1F1

(

c, c+ 1,−c(1− z)
log(1− z)

z

)

h2(z) = 2F1(3, 2, 4, z) 1F1

(

c+ 1, c+ 2,−c(1− z)
log(1− z)

z

)

(33)

where 1F1 is the confluent hypergeometric function and 2F1 is the Gauss hyper-
geometric function.

Proposition 6. Let A and B be any two sets in X and suppose that (p̃1, p̃2)
is a Dirichlet vector defined as in (19), with n = 2. Then

corr(p̃1(A), p̃2(B)) =
[cH(A ∩B)−H(A)H(B)]

3
√

H(A)H(B)H(Ac)H(Bc)

×

{

(c+ 1)

∫ 1

0
(1− z)ce−c z−1

z log(1−z) h1(z) dz

+ 2c

∫ 1

0
(1− z)c+1e−c z−1

z log(1−z) h2(z) dz

}

(34)

where h1 and h2 are defined in (33).

Proof. Note, first, that

E [p̃1(A)p̃2(B)] =

∫

(R+)2
E

[

µ̃1(A)µ̃2(B) e−sµ̃1(X)−tµ̃2(X)
]

du dv. (35)

In order to exploit the independence of the increments of (µ̃1, µ̃2) on can consider
the (measurable) partition of X generated by {A,B}. Hence, one can rewrite
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the right–hand–side of (35) as follows

∫

(R+)2
E

[

µ̃1(A \B)µ̃2(B \A) e−sµ̃1(X)−tµ̃2(X)
]

ds dt

+

∫

(R+)2
E

[

µ̃1(A \B)µ̃2(A ∩B) e−sµ̃1(X)−tµ̃2(X)
]

ds dt

+

∫

(R+)2
E

[

µ̃1(A ∩B)µ̃2(B \A) e−sµ̃1(X)−tµ̃2(X)
]

ds dt

+

∫

(R+)2
E

[

µ̃1(A ∩B)µ̃2(A ∩B) e−sµ̃1(X)−tµ̃2(X)
]

ds dt

(36)

Let us focus on the first summand and note that it can be rewritten as

∫

(R+)2
E

[

µ̃1(A \B) e−sµ̃1(A\B)−tµ̃2(A\B)
]

E
[

µ̃2(B \A) e−sµ̃1(B\A)−tµ̃2(B\A)
]

× E

[

e−sµ̃1(X
∗)−tµ̃2(X

∗)
]

ds dt

where X∗ = X\ (A∆B) and ∆ stands for the symmetric difference between sets.
Each factor in the integrand can be easily evaluated. As for the first one, for
example, one has

E

[

µ̃1(A \B) e−sµ̃1(A\B)−tµ̃2(A\B)
]

= H(A \B) e−H(A\B)ψρ,2(s,t) gρ(1, 0; s, t)

and one, then, has

∫

(R+)2
E

[

µ̃1(A \B)µ̃2(B \A) e−sµ̃1(X)−tµ̃2(X)
]

ds dt

= H(A \B)H(B \A)

∫

(R+)2
e−cψρ(s,t) gρ(1, 0; s, t) gρ(0, 1; s, t) ds dt

As for the last summand in (36), it should be noted that

∫

(R+)2
E

[

µ̃1(A ∩B)µ̃2(A ∩B) e−sµ̃1(X)−tµ̃2(X)
]

ds dt

= H(A ∩B)

∫

(R+)2
gρ(1, 1; s, t) e

−cψρ(s,t) ds dt

+H2(A ∩B)

∫

(R+)2
gρ(1, 0; s, t) gρ(0, 1; s, t) e

−cψρ(s,t) ds dt
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Combining (35) and (36) with the above integral representations, one obtains

E [p̃1(A) p̃2(B)]

= H(A)H(B)

∫

(R+)2
gρ(1, 0; s, t) gρ(0, 1; s, t) e

−cψρ(s,t) ds dt

+H(A ∩B)

∫

(R+)2
gρ(1, 1; s, t) e

−cψρ(s,t) ds dt

(37)

If A = B = X in (37), the following useful identity holds true

∫

(R+)2
gρ(1, 0; s, t) gρ(0, 1; s, t) e

−cψρ(s,t) ds dt

=
1

c2
−

1

c

∫

(R+)2
gρ(1, 1; s, t) e

−cψρ(s,t) ds dt

which, in turn, yields

E [p̃1(A) p̃2(B)] =
H(A)H(B)

c2
+

{

H(A ∩B)−
H(A)H(B)

c

}

×

∫

(R+)2
gρ(1, 1; s, t) e

−cψρ(s,t) ds dt

(38)

Note, now, that from (32) one has

∫

(R+)2
e−cψ(s,t)gν(1, 1, s, t)dsdt = J1 + J2

where

J1 =
1

6

∫

(R+)2
e−cψ(s,t)(1 + t)−2

2F1

(

2, 2, 4,
t− s

1 + t

)

ds dt

J2 =
1

3

∫

(R+)2
e−cψ(s,t)(1 + t)−3

2F1

(

3, 2, 4,
t− s

1 + t

)

ds dt

A simple change of variable yields

J1 =
2

6

∫ 1

0

∫ 1−z

0
wc−1e−cw

log(1−z)
z e−c z−1

z log(1−z)
2F1(2, 2, 4, z) dw dz

=
1

3

∫ 1

0

(
∫ 1

0
yc−1e−c(1−z)y log(1−z)

z dy

)

(1− z)ce−c z−1
z log(1−z)

2F1(2, 2, 4, z) dz

=
B(1, c)

3

∫ 1

0
(1 − z)ce−c z−1

z log(1−z) h1(z) dz



86 F. Leisen et al.

where, for any a, b > 0, B(a, b) is the beta function. In a similar fashion one
determines J2. Finally, if one recalls that p̃1(A) and p̃2(B) are, marginally, beta
distributed with parameters (H(A), c−H(A)) and (H(B), c−H(B)), the result
follows.

From (34) it follows that when A = B, the dependence on the set A disap-
pears, as anticipated in (10), and corr(p̃1(A), p̃2(A)) can be meant as a measure
of the dependence between p̃1 and p̃2. This is a typical argument used in the
Bayesian nonparametric literature.

6.2. Partially exchangeable random partition

As already mentioned, the components of the vector (p̃1, p̃2) are such that
ties may be detected both within and between the two samples X(q1)(z1) and
X(q2)(z2). Hence, the sample induces a random partition of the integers {1, . . . ,
q1 + q2} that can be described through the so–called partially exchangeable
partition probability function. This is the bivariate counterpart of the marginal
exchangeable partition probability functions induced by p̃1 and p̃2. Indeed, since

p̃1
d
= p̃2 and are Dirichlet processes with base measure H = cP0, each sample

X(qi)(zi) characterized through (1) induces a a random partition that can be
characterized through the probability function

Π(qi)
k (n1, . . . , nk) =

ck

(c)qi

k
∏

j=1

(nj − 1)!

where k ∈ {1, . . . , qi} is the number of sets of the partition and the positive
integers n1, . . . , nk are the cardinalities of the partitions sets, thus being such
that

∑k
j=1 nj = qi. The above displayed equation corresponds to the EPPF

of the Dirichlet process whose base measure has total mass c > 0. The EPPF
characterizing discrete random probabilities, even beyond the Dirichlet case, are
a remarkable tool for addressing a variety of issues in Bayesian nonparametric
inference. Indeed, they are the key for devising Blackwell-MacQueen type al-
gorithms for density estimation (see [20] for a general discussion) and for the
exact evaluation of estimators of interest in species sampling problems (see, e.g.,
[18, 10, 11]).

Here we deal an extension to the case where one considers the partition jointly
induced by the two samples X(q1)(z1) and X(q2)(z2). The dependence between
p̃1 and p̃2 obviously introduces some further technical issues with respect to
the marginal exchangeable case. In order to examine such an extension in some
detail, for any vectors n1 = (n1,1, . . . , nk,1) and n2 = (n1,2, . . . , nk,2) of non–
negative integers in the set

∆k(q1, q2) := {(n1,n2) ∈ N
2k
0 : nj,1 + nj,2 ≥ 1, |ni| = qi}
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we shall denote by

Π(n1,n2)
k (n1,n2) =

∫

Xk

E

⎡

⎣

k
∏

j=1

p̃
nj,1

1 (dxi) p̃
nj,2

2 (dxi)

⎤

⎦

the probability of detecting two specific samples Xn1(z1) and Xn2(z2) featuring
k distinct values with respective frequencies n1,1 + n1,2, . . . , nk,1 + nk,2. Before

providing an expression for Π(n1,n2)
k , we need to introduce some notation. In

particular, we set

θi(q1, q2; z) =

⎧

⎨

⎩

q1!q2!
(q1+q2+1)(q1+q2) 2F1(q1 + q2, q1 + 1; q1 + q2 + 2; z) i = 1

q1!q2!
(q1+q2+1) 2F1(q1 + q2 + 1, q1 + 1; q1 + q2 + 2; z) i = 0

(39)
for i = 0, 1 and for any z ∈ (0, 1). We are now in a position to provide an
expression of the pEPPF characterizing a bivariate Dirichlet process.

Proposition 7. For any positive integers q1, q2 and k such that k ≤ n1 + n2

and for any vector of cluster frequencies (n1,n2) ∈ ∆k(n1, n2) one has

Π(n1,n2)
k (n1,n2)

=
ck

∏2
i=1 Γ(ni)

∑

i∈{0,1}k

n1−1
∑

ℓ=0

n2−1
∑

m=0

(

n1 − 1

ℓ

)(

n2 − 1

m

)

(−1)k−|i|+1

×

∫ 1

0
(1 − z)c+n1+m+k−|i|−1−c z−1

z

×
1F1(ζ(ℓ,m, i), ζ(ℓ,m, i) + 1,−c(1− z) log(1−z)

z )

ζ(ℓ,m, i)

×

⎛

⎝

k
∏

j=1

θij (nj,1, nj,2; z) +
k
∏

j=1

θij (nj,2, nj,1; z)

⎞

⎠ dz

(40)

where ζ(ℓ,m, i) = c+ ℓ+m+ k − |i| and |i| = i1 + · · · + ik.

Proof. The result can be deduced from

Π(n1,n2)
k (n1,n2) =

ck
∏2

i=1 Γ(ni)

(

∫

A−

+

∫

A+

)

sn1−1 tn2−1 e−cψ(s,t)

×
k
∏

j=1

gν(nj,1, nj,2; s, t) ds dt =: I1 + I2

where the function gν is as in (32), A− := {(s, t) ∈ (R+)2 : s < t} and
A+ := {(s, t) ∈ (R+)2 : s ≥ t}. We shall explicitly deal with I1, which is
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associated to A−, since an expression for I2 can be similarly obtained. Resort
to the change of variable z = (t − s)/(1 + t) and w = 1/(1 + t) and note that
(z, w) is in the simplex S1 = {(z, w) ∈ [0, 1]2 : z + w ≤ 1} since (s, t) ∈ A−.
Hence

I1 =
ck

∏2
i=1 Γ(ni)

∑

|i|∈{0,1}k

∫

S1

wc+k−|i|−1(1− z − w)n1−1(1− w)n2−1

× e−c z−1
z log(1−z)−cw

log(1−z)
z

k
∏

j=1

θij (nj,1, nj,2, z) dz dw

=
ck

∏2
i=1 Γ(ni)

∑

|i|∈{0,1}k

n1−1
∑

ℓ=0

n2−1
∑

m=0

(

n1 − 1

ℓ

)(

n2 − 1

m

)

(−1)ℓ+m

×

∫

S1

wζ(ℓ,m,i)−1(1 − z)n1−1−ℓe−c z−1
z log(1−z)−cw

log(1−z)
z

×
k
∏

j=1

θij (nj,1, nj,2, z) dz dw

and the first part in the representation of Π(n1,n2)
k follows upon noting that

∫ 1−z

0
wζ(ℓ,m,i)−1 e−cw

log(1−z)
z dw

= (1 − z)ζ(ℓ,m,i)

∫ 1

0
yζ(ℓ,m,i)−1 e−cy(1−z) log(1−z)

z dy

= (1 − z)ζ(ℓ,m,i) 1F1(ζ(ℓ,m, i), ζ(ℓ,m, i) + 1,−c(1− z) log(1−z)
z

)

ζ(ℓ,m, i)

A similar procedure on A+ leads to an expression of I2 that completes the
proof.
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