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Abstract

Hierarchical normalized discrete random measures identify a general

class of priors that is suited to �exibly learn how the distribution of a

response variable changes across groups of observations. A special case

widely used in practice is the hierarchical Dirichlet process. Although

current theory on hierarchies of nonparametric priors yields all relevant

tools for drawing posterior inference, their implementation comes at a

high computational cost. We �ll this gap by proposing an approximation

for a general class of hierarchical processes, which leads to an e�cient

conditional Gibbs sampling algorithm. The key idea consists of a de-

terministic truncation of the underlying random probability measures

leading to a �nite dimensional approximation of the original prior law.

We provide both empirical and theoretical support for such a procedure.

Keywords: Bayesian nonparametrics; Hierarchical Dirichlet process; Nor-

malized random measures; Pitman�Yor process.

1 Introduction

When investigating covariate�dependent observations {(Xli)i≥1 : l ∈ L} in a
Bayesian framework, the standard assumption of exchangeability is not appro-
priate since it amounts to considering the data as being homogeneous. The
covariate l ∈ L is actually a source of heterogeneity that one has to take into
account and a di�erent symmetry condition among the data should be speci�ed.
Here we focus on the case where the covariate space is �nite, i.e. L = {1, . . . , d},
and identi�es data that are recorded under d di�erent, though related, exper-
imental conditions. In view of this, a natural dependence structure is implied
by partial exchangeability according to which exchangeability holds true within
each of the d separate groups of observations, but not across them. More for-
mally, let X be the sample space and let X denote its Borel σ-algebra. For the
sake of generality, the spaceX is assumed to be Polish, although in practice one
typically has X ⊆ Rp. Moreover, PX stands for the space of probability mea-
sures on X. The array of X�valued random elements {(Xli)i≥1 : l = 1, . . . , d} is
partially exchangeable if and only if for any i = 1, . . . , n(l) and any l = 1, . . . , d

(Xli | p̃l)
ind∼ p̃l, (p̃1, . . . , p̃d) ∼ Qd, (1)
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for some probability measure Qd on the product space P
d
X. Hence, conditionally

on the vector (p̃1, . . . , p̃d), the Xli's are independent and identically distributed
within, but only independent across groups. The measure Qd plays the role
of prior distribution and in addition governs the dependence across groups.
This setting also constitutes a crucial building block for the construction of
more complex models in which latent quantities, rather than the raw data, are
assumed to be partially exchangeable.

The de�nition and the investigation of Qd (for d ≥ 1) is an active �eld of
research in Bayesian Nonparametrics (bnp). In the simple exchangeable case
(d = 1), for example, some well�known limitations of the Dirichlet process
(Ferguson, 1973) have fostered the research of novel discrete nonparametric
priors, which are nowadays well established inferential tools. Among the several
available alternatives, we recall the Pitman�Yor process (Pitman and Yor, 1997)
and the normalized random measures with independent increments (nrmis)
(Regazzini et al., 2003). Both the Pitman�Yor process and the subclass of
homogeneous nrmis are, in turn, instances of proper species sampling models
with in�nitely many components (Pitman, 1996), namely random probability
measures

p̃(·) =

∞∑
h=1

πhδθh(·),

where the random X�valued locations (θh)h≥1 and the random weights π =
(π1, π2, . . . ) are independent. Furthermore, the θh's are independent and iden-
tically distributed (iid) draws from a di�use probability measure P , that is
P ({x}) = 0 for any x ∈ X.

As for the partially exchangeable case (d ≥ 2), an early proposal for Qd ap-
peared in Cifarelli and Regazzini (1978), but the decisive boost to the literature
came after the seminal paper of MacEachern (1999). Here we will rely on a
hierarchical construction of Qd and assume that the elements of the collection
{p̃1, . . . , p̃d} are conditionally iid, given another discrete random probability
measure p̃0, such that

p̃l(·) =

∞∑
h=1

ξlhδθlh(·), (θlh | p̃0)
iid∼ p̃0,

p̃0(·) =

∞∑
h=1

π0hδφh
(·), φh

iid∼ P0,

(2)

for l = 1, . . . , d and h ≥ 1, where P0 is some di�use probability measure on X.
Note that in view of this speci�cation, one marginally has E(p̃l | p̃0) = p̃0 for
each l = 1, . . . , d. Thus, dependence across groups in (1) is induced by consid-
ering an exchangeable collection {p̃1, . . . , p̃d} of random probability measures.
Such a model, when the p̃l's and p̃0 are Dirichlet processes, has been proposed
in Teh et al. (2006) and takes on the name of hierarchical Dirichlet process
(hdp). The hdp has been successfully applied, e.g., to topic modeling (Teh
et al., 2006), speaker diarization (Fox et al., 2011) and the analysis of fMRI
data (Zhang et al., 2016). For a stimulating account on its use in several mod-
eling and applied frameworks see Teh and Jordan (2010). An extension to the
wider class of normalized random measures was proposed in Camerlenghi et al.
(2019), which further provides a systematic investigation of the most relevant
distributional properties for Bayesian inference. The achievement of these re-
sults heavily bene�ts from the nice probabilistic structure of the completely
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random measures (crms) that are used to de�ne the underlying random prob-
ability measures. See also Bassetti et al. (2019), Argiento et al. (2019) for
further recent developments. It is worth recalling that other examples of crm�
based priors Qd are available in the literature, the most recent examples being
Lijoi et al. (2014a,b), Lijoi and Nipoti (2014) and Gri�n and Leisen (2017).

As noted from equation (2), the random probability measures p̃l at the bot-
tom of the hierarchy have a purely atomic base measure p̃0 that stands at the
top. Discreteness of p̃0 is a signi�cant hurdle as it entails challenging analytical
di�culties that are e�ectively detailed in Camerlenghi et al. (2019). And while
one still achieves a posterior characterization in this setting, its implementa-
tion might be computationally challenging in practice. Additionally, most of
the current algorithms for posterior inference with hierarchical processes are of
marginal type, that is they rely on the marginalization of the random prob-
ability measures (p̃1, . . . , p̃d). While having some computational advantages,
this rules out the possibility of obtaining complex posterior functionals of the
vector (p̃1, . . . , p̃d), which are often of interest in several applied contexts such
as, for example, credible intervals. To overcome this di�culty, we propose a
simple and e�cient conditional Gibbs sampler for a wide class of hierarchical
discrete random probability measures that includes the hdp as a special case.
The actual implementation of the algorithm is eased by an a priori approxima-
tion of the in�nite dimensional process, based on a deterministic truncation of
the random probability measure p̃0. We provide theoretical support for such a
truncation, borrowing ideas from the arguments of Muliere and Tardella (1998),
Ishwaran and James (2001), Argiento et al. (2016) and Arbel et al. (2019), who
described truncated approximations for discrete nonparametric priors, within
the exchangeable setting.

It is �nally worth noting that building upon model (2) and, then, truncating
to the Hth term, one can obtain the building block of a mixture model for par-
tially exchangeable data that is discussed in detail in Section 4. Most notably,
it also has some connections with the Latent Dirichlet Allocation (lda) of Blei
et al. (2003), of which our proposal is a generalization. In fact, we work with a
wider class of distributions compared to the Dirichlet distribution used in lda.
Additionally, while in lda dependence among mixing distributions is induced
through an approximate empirical Bayes procedure that determines the nu-
merical value of certain hyperparameters of the model, here our full Bayesian
analysis makes use of suitable prior laws for all the parameters and hyperpa-
rameters of the model. Finally, as for the choice of H, that is the number of
latent topics in the terminology of topic modeling, in lda it is selected so that
it minimizes some out-of-sample goodness-of-�t metric. On the other hand, we
choose H in order to achieve a satisfactory approximation of the in�nite dimen-
sional process; the actual number of latent topics is elegantly and e�ectively
regulated by the prior. We stress that our model is not con�ned to topic mod-
eling with categorical data: indeed, they may cope with observations taking
values in general Polish spaces, thus allowing for a much broader applicability.

The paper is organized as follows: in Section 2 we review some background
material on homogeneous normalized random measures with independent in-
crements (nrmis), and on the Pitman-Yor process. In Section 3, we propose a
particular instance of hierarchical process and we discuss a �nite dimensional
approximation based on a deterministic truncation of p̃0. In Section 4 the
truncated process is employed to de�ne an in�nite mixture model for partially
exchangeable data. The novel conditional Gibbs sampler to conduct posterior
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inference is derived and described in detail. To assess the practical performance
of both the novel algorithm and the aforementioned in�nite mixture model, we
conduct a simulation study in Section 5. Finally, as an illustration, we apply
our algorithm on real data in Section 6.

2 Preliminaries and background

2.1 Normalized random measures

Throughout the manuscript we will make extensive use of the notion of homoge-
neous normalized completely random measures (nrmis), and of the Pitman-Yor
process (py), which are hence brie�y recalled here.

We start by providing some preliminary, and concise, background on com-
pletely random measures. To this end, we will denote with MX the space
of boundedly �nite measures on (X,X ) and with MX the corresponding σ-
algebra. See Appendix A.2 of Daley and Vere-Jones (2003) for details on this
space and its properties.

De�nition 1. A measurable function µ̃ de�ned on some probability space
(Ω,F ,P) and taking values in (MX, MX) is a completely random measure
(crm) if for any pairwise disjoint sets A1, . . . , AM in X and for any M ≥ 2,
the random variables µ̃(A1), . . . , µ̃(AM ) are mutually independent.

Henceforth we mostly focus on crms of the form

µ̃(·) =

∞∑
h=1

Jhδθh(·), (3)

for some sequence of X�valued random elements (θh)h≥1 and positive jumps
(Jh)h≥1. Under representation (3), a crm µ̃ is characterized by the so-called
Lévy-Khintchine representation, which states that

E

(
exp

{
−
∫
X

f(x)µ̃(dx)

})
= exp

{
−
∫
R+×X

(
1− e−sf(x)

)
ν(ds, dx)

}
,

(4)
for any measurable function f : X→ R such that

∫
X
|f(x)|µ̃( dx) <∞ almost

surely, with ν being a measure on R+ × X such that for any set A in X
it holds

∫
A

∫
R+ min {s, 1}ν(ds, dx) < ∞. By virtue of (4), the measure ν

characterizes µ̃ and it is referred to as the Lévy intensity of µ̃. We additionally
assume homogeneity, implying that the Lévy intensity ν can be factorized as
the product of two measures, that is

ν( ds, dx) = ρ( ds)cP (dx), (5)

with c a positive constant and P a probability measure over (X,X ). This
amounts to assuming that the sequences (Jh)h≥1 and (θh)h≥1 in (3) are inde-
pendent. Note also that the points (Jh, θh)h≥1 can be regarded as a sample
from a Poisson process with intensity ν.

De�nition 2. Let µ̃ be a crm with Lévy intensity ν as in (5) and such that
0 < µ̃(X) <∞ almost surely. Then, a random probability measure p̃ is named
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homogeneous normalized random measure with independent increments (nrmi)
if

p̃(·) =
µ̃(·)
µ̃(X)

=

∞∑
h=1

Jh∑∞
h′=1 Jh′

δθh(·) ∼ nrmi(c, ρ, P ),

where µ̃(X) =
∑∞
h′=1 Jh′ and θh

iid∼ P .

The homogeneity assumption (5) greatly simpli�es the development of the-
oretical properties and has several practical advantages. Indeed, most of the
nrmi currently employed in Bayesian nonparametrics are homogeneous (Lijoi
and Prünster, 2010), and nonetheless they represent a wide class of random
probability measure. We shall stress the fact that this de�nition of homoge-
neous nrmi does not make any further assumptions on the baseline probability
measure P . In particular, P is allowed to have atoms.

While De�nition 2 encompasses several nonparametric priors used in the
Bayesian literature such as, e.g., the Dirichlet process (Ferguson, 1973), the nor-
malized stable process (Kingman, 1975) and the normalized inverse�Gaussian
process (Lijoi et al., 2005), an important instance of discrete random proba-
bility measure that does not belong to this class of nrmis is the Pitman�Yor
process. The py process can be de�ned in terms of a simple stick-breaking
construction, which will henceforth be relevant for us.

De�nition 3. Let (v0h)h≥1, with v0h
ind∼ beta(1− σ0, c0 + hσ0), and

p̃0(·) =

∞∑
h=1

π0hδφh
(·), π0h = v0h

∏
h′<h

(1− v0h′), φh
iid∼ P0, h ≥ 1,

where P0 is a di�use probability measure on (X,X ) and we agree on
∏
h′<1(1−

v0h′) ≡ 1. Then p̃0 is a Pitman�Yor process whenever the parameters are such
that σ0 ∈ [0, 1) and c0 > −σ0 or σ0 < 0 and c0 = m|σ0| for some integer m.
We will use the notation p̃0 ∼ py(σ0, c0, P0).

In the sequel we will only consider a subset of the collection of admissible pa-
rameters (σ0, c0), namely that for which σ0 ∈ [0, 1). Clearly, setting σ0 = 0 one
obtain the stick-breaking construction of Sethuraman (1994) for the Dirichlet
process, whereas for c0 = 0 one is able to recover the stick-breaking construc-
tion of the σ0-stable process given in Perman (1990). See also Perman et al.
(1992). The distribution of the weights π0 = (π01, π02, . . . ) will be denoted
with

π0 ∼ gem(σ0, c0),

after Gri�ths, Engen, and McCloskey, and is also referred to as the two�
parameter Poisson�Dirichlet process.

2.2 nrmi with �nitely supported base measure

The hierarchical speci�cation of discrete random probability measures given
in (2) entails that each p̃l has, conditionally on p̃0, an atomic base measure.
In our case the p̃l's are homogeneous nrmis and this motivates our inter-
est in discussing speci�c features of nrmis whose base measure P is purely
atomic. Accordingly, henceforth we will suppose that, for some H ≥ 1, there
exists {x1, . . . , xH} ⊂ X such that P ({xh}) > 0 for any h ∈ {1, . . . ,H} and
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∑H
h=1 P ({xh}) = 1. This corresponds to normalizing a crm with �xed points

of discontinuity.
Let us �rst consider a �nite collection {ζ1, . . . , ζH} of independent and in-

�nitely divisible positive random variables such that for any λ > 0, ch > 0 and
h = 1, . . . ,H one has E{exp(−λζh)} = exp{−ch ψ(λ)}. The function ψ is the
so-called Laplace exponent corresponding to jump measure ρ, which is de�ned
as ψ(λ) =

∫
R+

(
1− e−λs

)
ρ( ds) for any λ > 0. We also assume that ζh = 0

almost surely if ch = 0.

De�nition 4. If ζ̄ =
∑H
h=1 ζh and πh = ζh/ζ̄, then we say that (π1, . . . , πH−1)

identi�es a normalized in�nitely divisible distribution and will use the notation

(π1, . . . , πH−1) ∼ nid(c1, . . . , cH ; ρ).

These distributions have been discussed at length in Favaro et al. (2011) and
Lijoi et al. (2019). If p̃ ∼ nrmi(c, ρ, P ), for any �nite and measurable par-
tition {B1, . . . , BM} of X the vector (p̃(B1), . . . , p̃(BM−1)) clearly identi�es
a probability distribution on the simplex SM−1 = {(ω1, . . . , ωM−1) : ωm ≥
0;

∑M−1
m=1 ωm ≤ 1}. Combining standard properties of crms and nrmis with

De�nition 4 one can show that

(p̃(B1), . . . , p̃(BM−1)) ∼ nid(cP (B1), . . . , cP (BM ); ρ),

with the proviso that p̃(Bm) = 0, almost surely, if P (Bm) = 0. If we set
ch = cP ({xh}) for each h = 1, . . . ,H, and note that P (X \ {x1, . . . , xH}) = 0,
the random probability measure p̃ ∼ nrmi(c, ρ, P ) is fully characterized by the
random vector

(p̃({x1}), . . . , p̃({xH−1})) ∼ nid(c1, . . . , cH ; ρ),

and the support of p̃ is the �nite set {x1, . . . , xH}, almost surely. This motivates
the shorter notation p̃ ∼ nrmi(c1, . . . , cH ; ρ) we use in this setting. Note that
the posterior distribution of a nid random vector, if data are generated under a
multinomial sampling, can be obtained in closed form. This is detailed in Lijoi
et al. (2019) and it will be of great practical importance in the implementation
of conditional algorithms for hierarchical processes.

While nids have been de�ned on a �nite�dimensional simplex, they can be
easily extended to an in�nite dimensional setting. This is illustrated in the
following.

De�nition 5. Let c = (c1, c2, . . . ) be an in�nite collection of non�negative
numbers such that 0 <

∑∞
h=1 ch <∞. An in�nite random vector π = (π1, π2, . . . )

such that
∑∞
h=1 πh = 1, almost surely, is a normalized in�nitely divisible pro-

cess (nidp) with parameters ρ and c if, for any M ≥ 2 and �nite partition
H1, . . . ,HM of N, one has( ∑

j∈H1

πj , . . . ,
∑

j∈HM−1

πj

)
∼ nid

( ∑
j∈H1

cj , . . . ,
∑
j∈HM

cj ; ρ
)
,

and it will be denoted π ∼ nidp(c, ρ).

If we take p̃ ∼ nrmi(c, ρ, P ) with cP =
∑∞
h=1 chδxh

and let, for any h ≥ 1

πh = p̃({xh}) =

∞∑
h=1

Jh∑∞
h′=1 Jh′

δθh({xh}) =
∑

{j: θj=xh}

Jj∑
h′≥1 Jh′

,
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then π ∼ nidp(c, ρ) with ch = cP ({xh}) for each h. Because of their connection
with nrmis with countable baseline measure, nidp processes will play a central
role also in the description of general hierarchical processes.

We move on presenting some examples of homogeneous nrmis, the associ-
ated nid distributions and their densities, that will play a relevant role in the
sequel.

Example 1 (Gamma process). Let ρ( ds) = s−1e−s ds, thus implying that the

crm µ̃ is a gamma process since µ̃(B)
ind∼ gamma(cP (B), 1) for any B ∈ X .

Hence, p̃ ∼ nrmi(c, ρ, P ) is a Dirichlet process and for any measurable partition
{B1 . . . , BM} of X

(p̃(B1), . . . , p̃(BM−1)) ∼ dirichlet (c1, . . . , cM )

with cm = cP (Bm) for m = 1, . . . ,M . If cm > 0 for each m = 1, . . . ,M , its
density function is

f(ω) =
Γ (c1 + · · ·+ cM )

Γ(c1)× · · · × Γ(cM )
ωc1−11 · · · ωcM−1−1

M−1 (1− |ω|)cM−1ISM−1
(ω),

where |ω| =
∑M−1
m=1 ωm.

Example 2 (Inverse Gaussian process). Let the intensity function ρ( ds) =
(
√

2π)−1 s−3/2 e−s/2 ds, which identi�es an inverse�Gaussian crm µ̃. Then
µ̃(B) ∼ ig(cP (B), 1) for any B ∈X and we shall, then, use the notation

(p̃(B1), . . . , p̃(BM−1)) ∼ n-ig (c1, . . . , cM ) ,

with cm = cP (Bm) for m = 1, . . . ,M . If cm > 0 for each m, its density
function can be obtained in closed form (Lijoi et al., 2005) and coincides with

f(ω) =
e
∑M

m=1 cm
∏M
m=1 cm

2M/2−1Γ(1/2)M

K−M/2

(√
AM (ω)

)
AM (ω)M/4

×

×
{
ω1 · · · ωM−1(1− |ω|)

}−3/2
ISM−1

(ω),

where AM (ω) =
∑M−1
m=1 (c2m/ωm)+c2M/(1−|ω|) and Kq(·) denotes the modi�ed

Bessel function of the third type.

Example 3 (1/2 stable process). Let the intensity function ρ( ds) = (
√

2π)−1 s−3/2 ds,
so that the crm µ̃ is a σ-stable process with parameter σ = 1/2 since µ̃(B) ∼
stable(cP (B), 1/2) for any measurable B in X. If p̃ ∼ nrmi(c, ρ, P ) we will
write

(p̃(B1), . . . , p̃(BM−1)) ∼ n-stable (c1, . . . , cM ) ,

with cm = cP (Bm) for m = 1, . . . ,M . If cm > 0 for each m, its density
function is

f(ω) =
Γ(M/2)

∏M
m=1 cm

Γ(1/2)M AM (ω)M/2

{
ω1 · · · ωM−1(1− |ω|)

}−3/2
ISM−1

(ω),

where, as before AM (ω) =
∑M−1
m=1 (c2m/ωm)+c2M/(1−|ω|). See Carlton (2002).

A well�known property of the normalized stable process is that it does not depend
on the total mass c and this is clearly re�ected by the expression of the density
function above.
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3 Hierarchical nrmi-py process

In order to de�ne a prior Qd that governs a d-dimensional partially exchange-
able array {(Xli)i≥1 : l = 1, . . . , d}, according to (1), we rely on (2) and resort
to a special instance of hierarchical discrete random probabilities. More specif-
ically, we will deal with the following setting

(Xli | p̃l)
ind∼ p̃l, i = 1, . . . , n(l), l = 1, . . . , d,

(p̃l | p̃0)
iid∼ nrmi(c, ρ, p̃0), l = 1, . . . , d,

p̃0 ∼ py(σ0, c0, P0),

(6)

where P0 is a di�use probability measure de�ned on X. We will identify this
model as a hierarchical nrmi-py process. Notice that both the hdp (Teh et al.,
2006) and the hierarchical stable process (Camerlenghi et al., 2019) can be
recovered as particular cases.

A key feature of hierarchical species sampling models (2), and consequently
also of the nrmi-py process (6), is that with positive probability they induce
ties among the Xli's, because of the almost sure discreteness of both (p̃l | p̃0)
and p̃0. Ties might occur both within and across groups, because the (p̃l | p̃0)
share the same discrete baseline measure, for l = 1, . . . , d. Thus, investigating
the a priori clustering mechanism is of greater importance to highlight possible
limitations induced by speci�c choices of (p̃l | p̃0) and p̃0. Indeed, compared to
the hdp, speci�cation (6) allows for a more �exible modeling of the clustering
mechanism while still preserving analytical tractability: one can resort to the
general theory set forth in Camerlenghi et al. (2019) in order to derive the
partially exchangeable partition function, the full posterior characterization,
and a closed form expression for the distribution of the number of clusters.
See also Bassetti et al. (2019) for further developments in this direction. In
addition, formulation (6) is also a suitable choice for computational reasons, as
we will discuss in Section 4. Indeed, the stick�breaking construction of the py
process p̃0 leads to a simple simulation strategy, both a priori and a posteriori,
whereas nrmis are a good candidate for each (p̃l | p̃0) whenever it is relatively
simple to study their �nite-dimensional distribution, as discussed in Section 2.

An alternative representation of the model in (6) highlights a direct connec-
tion with a hierarchical collection of random weights following nidp and gem

distributions, respectively. This approach provides a deeper understanding of
the model and, in addition, has relevant computational advantages. Let us �rst
recall that, in view of De�nition 2, one has

p̃l(·) =

∞∑
h=1

Jlh∑∞
h′=1 Jlh′

δθlh(·), l = 1, . . . , d, (7)

where (θlh | p̃0)
iid∼ p̃0, for h = 1, 2, . . . , and l = 1, . . . , d. Moreover, the

sequences of random jumps Jlh are independent from the locations θlh and also
conditionally independent across groups, given p̃0. As for the py process p̃0,
we will refer to the notation used in De�nition 3. From the above construction,
each random probability measures p̃l places positive probability on the locations
that are sampled from p̃0. Because of the almost sure discreteness of p̃0, one
can equivalently rewrite (7) as follows

p̃l(·) =

∞∑
h=1

πlhδφh
(·), l = 1, . . . , d, (8)
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in which, conditionally on p̃0, the locations φh are �xed whereas the �modi�ed
weights� πl = (πl1, πl2, . . . ) are

πlh =
∑

{j: θlj=φh}

(
Jlj∑∞
h′ Jlh′

)
, h = 1, 2, . . . ,

for any l = 1, . . . , d. Remarkably, the conditional law of the perturbed weights
πl, given p̃0, can be derived and it follows a nidp process. This can be easily
seen from additivity of nrmis, since for any �nite and measurable partition
{B1, . . . , BM} of X,

(p̃l(B1), . . . , p̃l(BM−1) | p̃0) =
( ∑
j∈H1

πlj , . . . ,
∑

j∈HM−1

πlj | p̃0
)
,

where Hm = {h ≥ 1 : φh ∈ Bm}, for m = 1, . . . ,M , form a partition of N.
Then, we have that( ∑

j∈H1

πlj , . . . ,
∑

j∈HM−1

πlj | p̃0
)
∼ nid

(
c
∑
j∈H1

π0j , . . . , c
∑
j∈HM

π0j ; ρ
)
,

since p̃0(Bm) =
∑
j∈Hm

π0j , for any m = 1, . . . ,M . This implies, by de�nition

of a nidp, that (πl | π0)
iid∼ nidp(cπ0, ρ), for any l = 1, . . . , d. Now let us

introduce a collection of assignment variables Gli ∈ {1, 2, . . . }, denoting the
cluster membership of each observation, namely Xli = φGli

. Then, we express
model (6) in the following equivalent form

(Gli | πl)
iid∼ categorical(πl),

(πl | π0)
iid∼ nidp(cπ0, ρ), π0 ∼ gem(σ0, c0),

φh
iid∼ P0, h ≥ 1,

(9)

for i = 1, . . . , n(l) and l = 1, . . . , d. Speci�cation (9) in the particular case of
the hdp is already available from Teh et al. (2006) and it is extended here to
the nrmi-py process.

3.1 Deterministic truncation of the in�nite process

Posterior inference for the nrmi-py hierarchical processes of equation (6) is
complicated by the in�nite amount of parameters involved in the prior speci�-
cation. A possible strategy for circumventing the problem is the marginaliza-
tion with respect to the random probability measures p̃1, . . . , p̃d, p̃0 to obtain
generalized Pólya urn schemes that are building blocks of Gibbs samplers of
the type proposed in Camerlenghi et al. (2019). This approach is very e�ective
when one wants to approximate Bayesian point estimators under squared error
loss or, more generally, evaluate linear functionals of the underlying posterior
distribution. On the contrary, it is not ideal if one is interested in non�linear
functionals such as those needed for determining credible intervals that are
relevant for uncertainty quanti�cation. In order to address the issue, we �rst
introduce a deterministic truncation of the stick-breaking construction of the
py process. This obviously has a cascade e�ect also on the conditional distri-
butions of the p̃l's, given such a truncated version of p̃0, since they boil down
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to �nite�dimensional random elements, without the need of further approxima-
tions. More precisely, we approximate model (6) with the following truncated
speci�cation

(Xli | p̃Hl )
ind∼ p̃Hl , i = 1, . . . , n(l), l = 1, . . . , d,

(p̃Hl | p̃H0 )
iid∼ nrmi

(
cp̃H0 ; ρ

)
, l = 1, . . . , d,

p̃H0 ∼ pyH(σ0, c0, P0),

(10)

where p̃H0 ∼ pyH(σ0, c0, P0) denotes a truncated py process with H com-
ponents. In other terms p̃H0 is obtained as in De�nition 3, provided that

ν0H = 1, so that
∑H
h=1 π0h = 1 almost surely. Clearly, the truncated mea-

sure pyH(σ0, c0, P0) converges weakly, almost surely, to a proper Pitman-Yor
process as H → ∞, and hence implying also the weak convergence, almost
surely, of the bottom level nrmis.

Remark 1. The approximation strategy employed in (10) does not use peculiar
properties of the py process. Hence, this approach may be extended to other
discrete random probability measure p̃0 if an approximation p̃H0 were available.
For example, one may alternatively assume that p̃0 ∼ nrmi(c0, ρ0, P0) and let
p̃H0 be its nid-multinomial approximation (Lijoi et al., 2019). An advantage
of the truncated nrmi-py process relies on the fact that the density function of
a truncated gem distribution is available in closed form for general values of
(σ0, c0), and this enables posterior inference via Gibbs sampling. However, this
strategy might be adapted to general approximations p̃H0 as long as the density
function of the weights (π01, . . . , π0H) associated to p̃H0 is available.

An assessment of the e�ect of such a deterministic truncation can be obtained
by determining an upper bound of the total variation distance between p̃l of
the hierarchical process (6) and its �nite-dimensional approximation p̃Hl in (10),
for each l = 1, . . . , d. This can provide some guidance on the value at which
H can be �xed. It is apparent that such an upper bound turns out to be
random and we will rely on its expected value in order to gain some intuitive
insight on the accuracy of the proposed truncation. To this end, we need to
introduce τ2(u) =

∫
R+ s

2e−usρ( ds) and let (x)r = x(x+1) · · · (x+r−1) denote
the Pochammer symbol. Moreover, we recall that ψ is the Laplace exponent
associated to ρ, i.e. ψ(u) =

∫
R+ (1− e−us) ρ( ds) for any u > 0.

Theorem 1. Let (p̃1, . . . , p̃d) be a hierarchical nrmi-py process as in (6)
and (p̃H1 , . . . , p̃

H
d ) be the truncated version de�ned in (10). Then, for any

l = 1, . . . , d,

dtv
(
p̃l, p̃

H
l

)
= sup
A∈X

∣∣p̃l(A)− p̃Hl (A)
∣∣ ≤ RlH =

∑
h>H

πlh,

almost surely implying that

E
(
dtv

(
p̃l, p̃

H
l

))
≤ E(RlH) =

H∏
h=1

c0 + σ0h

c0 + σ0(h− 1) + 1
.

In addition, set R1(H) =
∏H
h=1

c0+σ0h
c0+σ0(h−1)+1 and R2(H) =

∏H
h=1

(c0+σ0h)2
(c0+σ0(h−1)+1)2

,

then
Var (RlH) = I(c, ρ)R1(H) + (1− I(c, ρ))R2(H)−R1(H)2,

where I(c, ρ) = c
∫
R+ ue−cψ(u)τ2(u) du.
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Theorem 1 is similar in spirit to the one of Ishwaran and James (2001); Ish-
waran and Zarepour (2002) in the exchangeable case, being based on a priori
considerations. However, while we work directly with the underlying random
probability measures, their results are based on the discrepancy between the
marginal densities of a mixture model.

The upper bound RlH has a simple interpretation: it consists on the part
of πl neglected by the truncation, and hence it is sometimes called truncation
error in the exchangeable setting (Arbel et al., 2019). As a natural and intuitive

consequence of Theorem 1, we get that dtv
(
p̃l, p̃

H
l

) a.s.−→ 0 as H → ∞. More
importantly, the �rst two moments of RlH can be used to determine a suitable
truncation level H; for example, one might select the value of H such that the
expected value of RlH is below a certain threshold. Some further insight on
RlH may be gained by using the fact that

(RlH | π0) ∼ nid

(
c
(

1−
H∑
h=1

π0h

)
, c

H∑
h=1

π0h; ρ
)
,

so that one can simulate its realizations, conditionally on π0. When p̃0 is a
Dirichlet process the expected value of the random variable RlH goes to zero
exponentially fast, meaning that H has not to be very large in practice. This
is illustrated in the following example.

Example 4 (Truncated hdp). If ρ( ds) = s−1e−s and σ0 = 0, then p̃H0 in (10)
is a truncated Dirichlet process and the p̃Hl are, conditionally on p̃H0 , iid draws
from a Dirichlet distribution. Specializing Theorem 1 we get

E
(
dtv

(
p̃l, p̃

H
l

))
≤
(

c0
c0 + 1

)H
.

Therefore, on average, the distance dtv
(
p̃l, p̃

H
l

)
goes to zero exponentially fast

as a function of H. Moreover,

Var (RlH) =
1

c+ 1

[
c

(
c0

c0 + 2

)H
− (c+ 1)

(
c0

c0 + 1

)2H

+

(
c0

c0 + 1

)H ]
,

which is, again, exponentially decreasing as a function of H, implying that the
upper bound RlH is quite concentrated on its expected value for reasonably large
values of H.

As apparent from Theorem 1, the parameters (c0, σ0) of the (truncated) py
process p̃H0 directly impact the quality of the approximation. Indeed, the ex-
pectation E(RlH) increases as a function of both c0 and σ0. However, if σ0 > 0
the decay is not exponential anymore, implying that to achieve reasonable ap-
proximations we need a larger H, especially for values of σ0 close to one. This
is consistent with the discussions in Ishwaran and James (2001) and Arbel et al.
(2019) in the exchangeable case. We will discuss the choice of H through ex-
amples in the simulation study of Section 5 and in the illustration of Section 6.

Another natural aspect that is worth pointing out is the dependence be-
tween p̃Hl and p̃Hl′ , for any l 6= l′, and how this di�er from the one associated to
the original hierarchical process speci�cation in (2). To this end one can, for
instance, evaluate the correlation between p̃Hl (A) and p̃Hl′ (A) for any A ∈ X
and truncation level H.
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Theorem 2. Let (p̃1, . . . , p̃d) be a hierarchical approximate nrmi-py process
as in (10). Then, for any A ∈X such that 0 < P0(A) < 1 and any l 6= l′

Corr
(
p̃Hl (A), p̃Hl′ (A)

)
=

I0(σ0, c0, H)

I(c, ρ) + I0(σ0, c0, H)(1− I(c, ρ))
, (11)

where I(c, ρ) is as in Theorem 1 and

I0(σ0, c0, H) =

H−1∑
h=1

[ (1− σ0)2
(1 + c0 + (h− 1)σ0)2

h−1∏
l=1

(c0 + lσ0)2
(1 + c0 + (l − 1)σ0)2

]
+

H−1∏
h=1

(c0 + hσ0)2
(1 + c0 + (h− 1)σ0)2

.

Moreover, taking the limit

lim
H→∞

I0(σ0, c0, H) =
1− σ0
1 + c0

,

which entails that Corr(p̃Hl (A), p̃Hl′ (A)) converges to the actual Corr(p̃l(A), p̃l′(A)),
implied by the model (6), as H → ∞. It is apparent that the correlation co-
e�cient is always positive and, unsurprisingly, does not depend on the speci�c
set A as a consequence of homogeneity of the underlying random probability
measures at the di�erent levels of the hierarchy. As such, it is generally inter-
preted as an overall measure of dependence between the random probability
measures.

Remark 2. Note that the parameters c0 and σ0 do not play the same role as in
the in�nite dimensional case. Indeed, one can show that limc0→∞ I0(σ0, c0, H) =
1, which clearly entails that limc0→∞ Corr(p̃Hl (A), p̃Hl′ (A)) = 1. On the other
hand, it is clear that when H = ∞ one has the opposite limiting behaviour,
namely that limc0→∞ Corr(p̃l(A), p̃l′(A)) = 0, for any l 6= l′. Similar consid-
erations can be made when considering σ0 → 1. The truncation e�ect that
explains this di�erent limiting dependence structure is quite intuitive: when ei-
ther σ0 or c0 increase more mass is placed on the Hth atom of the stick-breaking
construction, so that p̃H0 eventually converges to a point mass at φH . To sum
up, if we let σ0 (or c0) be �xed and consider the correlation as a function of c0
(or of σ0) it �rst decreases until it reaches a minimum and, then, increases.

Example 5 (Truncated hdp, cont'd.). In the hdp case, the above correlation
can be signi�cantly simpli�ed. Indeed, a straightforward application of Theo-
rem 2 yields

Corr(p̃Hl (A), p̃Hl′ (A)) =

(1 + c)

(
1 + c0

(
c0
c0+2

)H−1)
1 + c0 + c

(
1 + c0

(
c0
c0+2

)H−1) .
In the in�nite case H → ∞ the correlation reduces to (1 + c)/(1 + c0 + c),
as already obtained in Camerlenghi et al. (2019). Thus, the truncation of p̃0
induces a perturbation of the correlation of the hdp through a factor which is
exponentially decreasing in H.
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4 Hierarchical nrmi-py mixture model

In several applied contexts the discreteness of the hierarchical nrmi-py prior
is not a realistic assumption. Nonetheless, we can adapt formulation (6) by
adding a further level in the hierarchy, giving rise to a mixture model for
partially exchangeable observations. Within the exchangeable framework, this
idea was �rstly suggested by Lo (1984), and discussed in practice for instance
in Escobar and West (1995) in the Dirichlet process case, and e.g. by Barrios
et al. (2013) for general homogeneous nrmis.

Let Yli for i = 1, . . . , n(l) and l = 1, . . . , d be a sample of observations taking
values in a complete and separable metric space Y and let K : Y ×X → R+

a transition kernel such that y 7→ K(y;x) is a density function on Y, for
any x ∈ X, with respect to some dominating σ��nite measure. Exploiting
representation (9), for any truncation level H the approximate hierarchical
nrmi-py mixture model is

(Yli | Gli,φ)
ind∼ K(y;φGli

),

(Gli | πl)
iid∼ categorical(πl1, . . . , πlH),

(πl | π0)
iid∼ nid(cπ01, . . . , cπ0H ; ρ),

π0 ∼ gemH(σ0, c0), φh
iid∼ P0,

(12)

for h = 1, . . . ,H, i = 1, . . . , n(l) and l = 1, . . . , d, with φ = (φ1, . . . , φH) and
πl = (πl1, . . . , πlH−1), and where gemH(σ0, c0) denotes the truncated sequence
of probabilities π0 = (π01, . . . , π0H−1), associated to the aforementioned trun-
cated py process. Also, we set πlH = 1− |πl| for l = 0, 1, . . . , d. Marginalizing
over the cluster indicators Gli, we obtain a �nite mixture representation

(Yli | πl,φ)
ind∼ fl(y | πl,φ) =

H∑
h=1

πlhK(y;φh), (13)

for i = 1, . . . , n(l) and l = 1, . . . , d. As apparent from equations (12)-(13), under
this hierarchical constructions the distributions fl(y | πl,φ) for l = 1, . . . , d
share the same mixture components K(y;φh). However, they have di�erent
mixing weights πl, accounting for heterogeneity across groups. We remark
that the conditional density fl(y | πl,φ) is often of direct inferential interest
and one may want to obtain its posterior distribution rather than just con�ning
herself to a point estimate. In this case, one cannot rely on marginal algorithms
that integrate out the random weights πlh and a di�erent (conditional) sampler
must be adopted.

4.1 Blocked Gibbs sampler

In this Section we propose a simple Markov Chain Monte Carlo (mcmc) scheme
that makes use of the approximate speci�cation in equation (12) and enables
posterior inference. The algorithms originally proposed for the hdp in Teh
et al. (2006) are of marginal type, thus being characterized by their pros and
cons: very e�ective for point estimation, but unreliable when it comes to un-
certainty quanti�cation. In the supplementary material of Fox et al. (2011)
a conditional algorithm for the hdp is discussed, and it is based on a �nite-
dimensional approximation of p̃0; however, its applicability is limited to the
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hdp case. A general marginal algorithm for hierarchical nrmi processes and
hierarchical py processes was proposed by Camerlenghi et al. (2019). In this
very same paper, the authors discuss also a conditional algorithm based on a
representation of crms that can be traced back to Ferguson and Klass (1972).
Its actual implementation must still rely on some truncation of the underlying
in�nite dimensional process that can be achieved through a speci�c approach
as the one suggested, e.g., in Arbel and Prünster (2017). Since the repre-
sentation in Ferguson and Klass (1972) displays jumps arranged in decreasing
order, any truncation rule will retain the most relevant jumps. On the other
hand, any computational procedure based on this construction will require the
inversion of an underlying Lévy measure attainable and this may cause some
computational issues.

The blocked Gibbs sampler we propose does not rely on the augmented
scheme proposed in Camerlenghi et al. (2019) nor does it makes use of the (suit-
ably truncated) Ferguson & Klass representation, while still being a conditional
algorithm. Furthermore, the e�ect of the approximations can be explicitly as-
sessed a priori thanks to Theorem 1. The main relevant constraint implied
by our proposal is the availability of the density function f(πl | π0) in closed
form since it needs to be evaluated. Nonetheless there are some noteworthy
examples of nrmis that comply with this requirement, namely the Dirichlet
process, the normalized inverse�Gaussian process, and the 1/2-stable process.
See Section 2.

We now review the steps of the blocked Gibbs sampler, outlined in Al-
gorithm 1, highlighting practical di�culties and suggesting possible solutions.
Each step represents a full conditional distribution for a block of random vari-
ables, and we will denote with a �−� the conditioning to all the other variables.
Step [1 ]. Observations are randomly and independently allocated to di�erent
clusters. Since we have truncated the sequence of weights π0 up to the Hth
term, the number of mixture component is �nite. In turns, this implies that the
normalizing constant can be obtained as a simple summation of the involved
quantities.
Step [2 ]. The mixing probabilities πl are sampled independently for l =
1, . . . , d. In the Dirichlet case, the density f(πl | −) is still a Dirichlet with
updated parameters, thanks to conjugacy. For general nid distributions, the
law of (πl | −) has been recently obtained in closed form by Lijoi et al. (2019)
when π0 = (c0/H, . . . , c0/H); the extension to general baseline probabilities
π0 is a straightforward modi�cation of their results. This in particular enables
the exact sampling from the full-conditional f(πl | −), without the need of
Metropolis steps, for all the nid distributions discussed in this paper. See Lijoi
et al. (2019) for the details.
Step [3 ]. The baseline mixing weights π0 are sampled. Notice that the vector
π0 is a particular instance of a generalized Dirichlet distribution (Connor and
Mosimman, 1969), and its density is

f(ω) =
(1− |ω|)c0+σ0(H−1)−1∏H−1

h=1 Beta(1− σ0, c0 + hσ0)

H−1∏
h=1

ω−σ0

h

 H∑
j=h

ωj

−1
 ISH−1

(ω).

where B(a, b) is the beta function evaluated at a, b > 0. Unfortunately, the
full conditional f(π0 | −) has no closed form�even in the Dirichlet case�
and therefore we must resort to a Metropolis-Hastings step. Having tried
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Algorithm 1: Steps of the Gibbs sampler

begin

Step [1 ] Assign each unit i = 1, . . . , n(l) and l = 1, . . . , d, to a
mixture component;
for l from 1 to d do

for i from 1 to n(l) do
Sample Gi ∈ (1, . . . ,H) independently from the categorical
variable with probabilities

P(Gli = h | −) =
πlhK(Yli;φh)∑H

h′=1 πlh′K(Yli;φh′)
,

for every h = 1, . . . ,H.

Step [2 ] Update the mixing parameters πl, for any l = 1, . . . , d;
for l from 1 to d do

Sample πl independently from the full conditional having
density proportional to

f(πl | −) ∝ f(πl | π0)

H∏
h=1

πnlh

lh ,

where nlh =
∑n(l)

i=1 I(Gli = h), and where I(·) denotes the
indicator function.

Step [3 ] Sample the baseline mixing parameter π0 from the full
conditional having density proportional to

f(π0 | −) ∝ f(π0)

d∏
l=1

f(πl | π0).

Step [4 ] Update the kernel parameters φh, for any h = 1, . . . ,H;
for h from 1 to H do

Sample the kernel parameters φh independently from the full
conditional having density proportional to

f(φh | −) ∝ f(φh)
∏

(l,i)∈Gh

K(Yli;φh),

where Gh = {i = 1, . . . , n(l), l = 1, . . . , d : Gli = h}.

several di�erent proposal distributions, we obtained very good performance
by working in the unconstrained space v0 = (v01, . . . , v0H−1) ∈ RH−1�with
v0h = log (π0h/π0H), for any h = 1, . . . ,H−1�and then by applying a compo-
nentwise Gaussian random walk. The variances on the Gaussian proposal were
adaptively and automatically selected as in Roberts and Rosenthal (2009).
Step [4 ]. The atoms φh are sampled independently for h = 1, . . . ,H, proceed-
ing as in the exchangeable setting and considering only within-cluster observa-
tions. The complexity of this sampling step depends both on the chosen kernel
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K and on the prior distribution P0. However, if the kernel belongs to an expo-
nential family, then one might adopt a conjugate prior distribution (Diaconis
and Ylvisaker, 1979), and hence simplify the computations.

As a �nal remark, we notice that the deterministic truncation allows for the
implementation of other well-established mcmc techniques, essentially because
it shifts the original nonparametric formulation to a �nite-dimensional problem,
whose likelihood and prior distribution can be readily evaluated. As such,
automatic tools like stan (Carpenter et al., 2017) might be used for posterior
inference.

5 Simulation study

To assess the empirical performance of model (12) and the associated Gibbs
sampling algorithm, we conduct a simple simulation study. The target of this
analysis is the comparison between the hdp and more general hierarchical pro-
cesses in terms of inference on the clustering structure of the data.

Group: 4 − Sample size: 200 Group: 5 − Sample size: 750

Group: 1 − Sample size: 750 Group: 2 − Sample size: 50 Group: 3 − Sample size: 750
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Figure 1: Graphical representation of the dataset used in the simulation study.
Solid lines represent the true densities from which the data were simulated.

We consider n = 2500 observations divided in d = 5 di�erent groups, each hav-
ing a di�erent sample size, precisely (n(1), . . . , n(5)) = (750, 50, 750, 200, 750).
Within group, the simulated data are iid draws from a group-speci�c �nite mix-
ture of Gaussian distributions, whereas across groups they are independently
sampled. The Gaussian mixtures densities were chosen so that di�erent groups
share some mixture components. In particular, there are a total of 7 latent
Gaussian mixture components having means (−2.5,−1.5,−1, 0, 1, 1.5, 2.5) and
standard deviations (1.2, 0.7, 0.25, 0.25, 0.25, 0.7, 1.2), which are split over the
d = 5 groups, as reported in Table 1. For instance, the mixture component
with 0 mean and standard deviation 0.25 is shared by all the groups. The mix-
ing proportions are not uniform within groups nor equal across groups: this
means, for example, that some mixture components are speci�c of two groups
but they are not shared by the other three. The simulated dataset is illustrated
in Figure 1.

In the hierarchical mixture (12), we employ a Gaussian kernel K(y;φh) =
N
(
y;µh, τ

−2
h

)
, and we choose a conditionally conjugate prior distribution for
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Mixture component
1 2 3 4 5 6 7

1 0.0 0.1 0.0 0.6 0.3 0.0 0.0
2 0.1 0.0 0.0 0.5 0.4 0.0 0.0

Group 3 0.1 0.0 0.3 0.3 0.0 0.3 0.0
4 0.0 0.2 0.2 0.5 0.0 0.1 0.0
5 0.0 0.0 0.0 0.4 0.4 0.0 0.2

Table 1: True mixing proportions of the simulated data for each group l =
1, . . . , 5, and for each of the 7 mixture components.

Model c c0 σ0 Correlation Expected # clusters E(RlH) H

hdp 18 13 0 0.59 ≈ 41 < 10−6 250
hdp-py 7 5 0.5 0.43 ≈ 40 0.042 250
hst-py - 7 0.5 0.12 ≈ 39 0.057 250
hig-py 2.5 2 0.5 0.50 ≈ 40 0.020 250

Table 2: Hyperparameter settings for each hierarchical mixture model. The
correlation coe�cient is evaluated using Theorem 2. The expected number of
clusters is obtained via Monte Carlo simulations, averaging over 100′000 values
from the truncated prior. The expected value of the upper bound RlH , de�ned
as in Theorem 1, is also reported.

the random locations φh = (µh, τ
−2
h ), so that their baseline measure is

P0

(
dµ, dτ2

)
= P0,1( dµ)P0,2

(
dτ2
)
,

where P0,1 is a Gaussian distribution with mean 0 and standard deviation 10,
whereas P0,2 is a Gamma distribution with parameters (1, 1). To simplify our
treatment, we decided not to place any hyperprior distribution on the parame-
ters in P0, although this further hierarchical layer could be easily handled with
a straightforward modi�cation of the blocked Gibbs sampler in Algorithm 1.

We �tted four di�erent hierarchical mixture models to the same simulated
dataset, for di�erent choices of the jump measure ρ( ds) and of the hyperparam-
eters c, c0 and σ0, whose value are presented in Table 2. These models include:
i) a hierarchical Dirichlet Process (hdp); ii) a hierarchical Dirichlet and Pitman-
Yor process (hdp-py); iii) a hierarchical 1/2-stable and Pitman-Yor process
(hst-py); iv) a hierarchical normalized inverse Gaussian and Pitman-Yor pro-
cess (hig-py). Notice that in the 1/2-stable case the total mass parameter is
irrelevant and therefore it was omitted. We �xed a common truncation level
H = 250, which we found to be su�ciently large to guarantee a good approx-
imation of the in�nite hierarchical mixture model. Indeed, in Table 2 we also
report the expected value of upper bound RlH , de�ned as in Theorem 1, which
in the worst case scenario is approximately equal to 0.06.

The hyperparameters c, c0 and σ0 were selected so that peculiar character-
istics of each model can be appreciated�especially compared to the hdp. In
particular, the a priori expected number of clusters, obtained via Monte Carlo
after averaging over 100′000 draws from the truncated prior in (10), is centered
approximately around 40, as reported in Table 2 and depicted in Figure 2.
That is, we set on purpose the a priori expected number of clusters to be much
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Figure 2: Top �gures: a priori distribution of the number of clusters, based
on 100′000 simulations from the truncated prior. Bottom �gures: a posteriori
distribution of the number of clusters, based on 20′000 mcmc draws. Both top
and bottom �gures refers to the models in Table 2.

higher than the true number of mixture components. An extensive description
of the underlying clustering behaviors is beyond the aim of this paper, and one
can refer e.g. to Lijoi et al. (2007); De Blasi et al. (2015) in the exchangeable
case and to Camerlenghi et al. (2019) in the partially exchangeable setting with
hierarchical processes. To our purposes, it su�ces to notice that the a priori
distribution of the number of clusters is much ��atter��i.e. less informative�
in general hierarchical mixture models compared to the one of the hdp, as
empirically evidenced in Figure 2. This is due to the stable parameter σ0 in
the Pitman-Yor speci�cation, but also to the speci�c choice of jump measure ρ.
For example, the normalized inverse Gaussian distribution might be regarded
as less informative compared to the Dirichlet (Lijoi et al., 2005), essentially
leading to a �atter cluster con�guration. Thus, we aim at showing that hierar-
chical models beyond the hdp might be more robust in identifying a suitable
number of components, especially in severely misspeci�ed prior settings. This
behavior was already noticed in Lijoi et al. (2007) for exchangeable data, and
extend to the case of truncated hierarchical processes.

We run the chain for 200′000 iterations�after a burn-in period of 100′000
draws�and we thin the chain every 10 iterations, thus comprising a total of
20′000 posterior samples. The traceplots show good mixing and no evidence
against convergence. As expected, the posterior distribution of the number of
clusters�depicted in the bottom row of Figure 2�di�ers across models: in
the hdp the values having highest probabilities are located between 10 and 12,
whereas in all the other cases the posterior distribution is shifted towards 7,
the correct number of mixture components. This is particularly evident in the
hig-py case, whose a priori distribution was indeed the less informative.

6 Illustration

To further corroborate the practical relevancy of the proposed conditional algo-
rithm, in this section we discuss an application of the nrmi-py process to latent
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Figure 3: Posterior distribution of ψ1, group: ego. Top: posterior distribu-
tion of ψ1 under the alternative multinomial formulation. Bottom: posterior
distribution of ψ1 under the hig-st mixture model of equation (14).

class analysis, in presence of qualitative covariates (Lazarsfeld and Henry, 1968;
Goodman, 1974; Hagenaars and McCutcheon, 2002). As an illustration, we
analyze the dataset presented in Stou�er and Toby (1951) and reported in Ap-
pendix A.3. This has been the object of several investigations (e.g. Goodman,
1974, 1975; Clogg and Goodman, 1986; Hagenaars and McCutcheon, 2002)
through latent class analysis, and from a frequentist perspective. The data are
based on a short questionnaire completed by n = 648 undergraduate students
at Harvard and Radcli�e, in 1950. Four ethical dilemmas, denoted as A,B,C
and D, were posed to these students: a response coded as 1 represents a pref-
erence towards particularistic values, and conversely 0 indicates a preference
towards universalistic values. The questions were presented in slightly di�er-
ent forms to d = 3 independent and equally sized groups of students, meaning
n(1) = n(2) = n(3) = 216. The �rst group received each dilemma so that it
refers to themselves (ego), the second group so that it refers to a stranger
(smith), and the third group so that it refers to a friend (friend).

Clearly, some degree of agreement of the responses among di�erent groups
is expected, since the ethical dilemmas are the same. Nonetheless, the three
groups should not be treated as identical, because the way in which each
dilemma is posed might in�uence the response. Hence, within a Bayesian
framework, the partial exchangeability assumption seem fairly natural in this
setting, and it provides practical advantages. In particular, it allows to borrow
information across groups and therefore to take stronger inferential conclusion
compared to single-group analyses. Relying on the notation of Section 4, we
assume that our observations are drawn from a collection of partially exchange-
able binary random vectors Yli = (Yli1, . . . , Yli4) ∈ {0, 1}4, for i = 1, . . . , 216
and l = 1, 2, 3, where the components of each Yli refer to items A,B,C and D,
respectively.

Latent class models are essentially mixture models in which, given a latent
class (cluster) indicator Gli, the qualitative random variables (Yli1, . . . , Yli4)
are mutually independent. However, as noted in Dunson and Xing (2009), in
this setting it is not straightforward to obtain a well-justi�ed estimate for the
number of mixture components. In addition, they proved that any probability
mass function P(Yli = yli) can be represented in terms of a latent class mixture
model, when the number of mixture components is large enough. This leads us
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to assuming a mixture model with in�nitely many components that we truncate
up to the Hth term, thus obtaining a �exible and theoretically justi�ed model
for contingency tables. Hence, we can extend the approach of Dunson and Xing
(2009) to the partially exchangeable setting, whereby d groups of contingency
tables are observed and a product of multinomial kernel in the nrmi-py mixture
model of equations (12)-(13) is speci�ed. More precisely

Yli
ind∼ P(Yli1 = yli1, . . . , Yli4 = yli4 | πl,φ) =

=

H∑
h=1

πlh

(
4∏
k=1

φylikhk (1− φhk)1−ylik

)
,

(14)

independently for i = 1, . . . , 216, and l = 1, 2, 3, where πl = (πl1, . . . , πlH)
has the same hierarchical prior distribution as in equation (12) and where
φ = (φ1, . . . , φH) is such that φh = (φh1, . . . , φh4) for any h = 1, . . . ,H. As
for the baseline measure P0, we selected a uniform prior over the space (0, 1)4,
which is conditionally conjugate and hence facilitates posterior computations.
A possible alternative speci�cation for P0 consists of independent beta distri-
butions, for k = 1, . . . , 4, which would still preserve conjugacy while allowing
for the inclusion of more speci�c prior information in the model.

As for the prior setting of πl, we speci�ed a hierarchical normalized inverse�
Gaussian and stable process (nig-st), with hyperparameter settings c = 1/2,
c0 = 0 and σ0 = 3/10 and with a truncation level H = 150. We achieve a good
approximation of the in�nite dimensional process, since E(RlH) < 10−4. More-
over, this speci�cation induces high correlation a priori (to be meant in terms
of the statement of Theorem 2) among the random probability measures p̃l
(≈ 0.86): this is consistent with our prior belief that the same ethical dilemma
should lead to very similar responses, regardless the way it was presented. The
a priori expected number of clusters, evaluated via Monte Carlo, is approxi-
mately 3.9; however, the a priori distribution of the number of clusters is quite
dispersed, consistently with the �ndings of previous analyses, which indeed do
not provide a univocal recommendation about the number of latent compo-
nents (Stou�er and Toby, 1951; Goodman, 1974, 1975; Clogg and Goodman,
1986). Posterior inference was conducted via mcmc, using the blocked Gibbs
sampler described in Section 4. We run the chain for 200′000 iterations�after
a burn-in period of 50′000 draws�and we thin the chain every 10 iterations,
thus comprising a total of 20′000 posterior samples. The traceplots show good
mixing and no evidence against convergence.

In Clogg and Goodman (1986) it is suggested that these dilemmas can be
ordered (D → C → B → A), according to a Guttman scale. This means, for
instance, that a negative answer to C should imply, on average, also a negative
response to dilemmas B and A. While such an assumption greatly simpli�es
the analysis, it seems clear from the subsequent results that it can only provide
a reasonable approximation of the phenomenon. Indeed, we aim at studying
for instance the conditional probability of B = 1 given that C = 0,D = 1 for
each group of respondents, which should be close to zero under the Guttman
scale assumption. As it will turn out, these probabilities not only are away
from zero, but they are also signi�cantly greater than 1/2. More formally, we
are interested in the posterior distribution of

ψl = P(Yli2 = 1 | Yli3 = 0, Yli4 = 1,πl,φ),
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for any group l = 1, 2, 3, and given the data. Once more, we remark that the
posterior distribution of each ψl can be obtained only through conditional algo-
rithms, which therefore represent the only possible choice to conduct inference
in this speci�c application.

In Figure 3 we compare the posterior distribution of ψ1 (ego group) ob-
tained using the aforementioned hig-st model in equation (14), with the poste-
rior distribution of ψ1 obtained under a much simpler multinomial model. More
precisely, under the alternative model we treat the 24 = 16 possible combina-
tion of responses as mutually exclusive categories. Among groups, we assume
full heterogeneity�i.e. independence�whereas within group observations are
conditionally iid draws from a multinomial distribution having 16 possible out-
comes, and with a uniform prior. In both cases, the posterior distribution of
ψ1 is far from zero, suggesting that the Guttman scaling adopted in Clogg
and Goodman (1986) should be interpreted with care. However, as apparent
from Figure 3, our hig-st model is able to substantially reduce the posterior
uncertainty compared to the benchmark multinomial model. Essentially, this
is due to two reasons: i) the latent class representation of equation (14), albeit
�exible, allows for a parsimonious characterization of the distribution function
P(Yli = yli) compared to the alternative multinomial formulation (Dunson and
Xing, 2009); ii) in our hierarchical formulation we �exibly borrow information
across the three groups, and this translates in a lower variability of the the
posterior distribution. The posterior distributions of ψ2, ψ3 for other groups
(smith, friend), lead to similar conclusions.
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A Appendix

A.1 Proof of Theorem 1

Recall that (p̃1, . . . , p̃d) comes from a hierarchical nrmi-py process as in (6).
Moreover, let (p̃H1 , . . . , p̃

H
d ) be the hierarchical approximate process nrmi-py

de�ned in (10), with truncation level H. Then for any A ∈X , and exploiting
representation (8), we have that almost surely

∣∣p̃l(A)− p̃Hl (A)
∣∣ =

∣∣∣ ∞∑
h=1

πlhδφh
(A)−

(H−1∑
h=1

πlhδφh
(A) +

(
1−

H−1∑
h=1

πlh

)
δφH

(A)
)∣∣∣

=
∣∣∣πlHδφH

(A) +
∑
h>H

πlhδφh
(A)−

(
1−

H−1∑
h=1

πlh

)
δφH

(A)
∣∣∣

=

∣∣∣∣∣δφH
(A)

∑
h>H

πlh −
∑
h>H

πlhδφh
(A)

∣∣∣∣∣ ≤ ∑
h>H

πlh = RlH .

Note that
∑
h>H πlh ≥

∑
h>H πlhδφh

(A). Hence, if δφH
(A) = 0, then the last

inequality easily follows, and the same holds true if δφH
(A) = 1 almost surely.

Hence,

dtv
(
p̃l, p̃

H
l

)
= sup
A∈X

∣∣p̃l(A)− p̃Hl (A)
∣∣ ≤ RlH =

∑
h>H

πlh,

almost surely. Moreover, notice that(∑
h>H

πlh | π0

)
∼ nid

(
c

(
1−

H∑
h=1

π0h

)
, c

H∑
h=1

π0h; ρ

)
,

from which it follows that the expected value is equal to

E

(∑
h>H

πlh

)
= E

(
E

(∑
h>H

πlh | π0

))
= E

(∑
h>H

π0h

)
=

H∏
h=1

E (1− ν0h) =

H∏
h=1

c0 + σ0h

c0 + σ0(h− 1) + 1
.

Now recall that I(c, ρ) = c
∫
R+ ue−cψ(u)τ2(u) du with τ2(u) =

∫
R+ s

2e−usρ( ds)
and let R0H =

∑
h>H π0h, then

Var (RlH) = E

(
Var

(∑
h>H

πlh | π0

))
+ Var

(
E

(∑
h>H

πlh | π0

))
=

= I(c, ρ)E
(
R0H −R2

0H

)
+ E(R2

0H)− E (R0H)
2
,

where E(R0H) can be computed as before and

E
(
R2

0H

)
=

H∏
h=1

E
(

(1− ν0h)
2
)

=

H∏
h=1

(c0 + σ0h)2
(c0 + σ0(h− 1) + 1)2

,

recalling that (x)r = x(x+ 1) · · · (x+ r − 1) denotes the Pochhammer symbol.
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A.2 Proof of Theorem 2

First of all, notice that the expected value of the truncated Pitman-Yor process
p̃H0 ∼ pyH(σ0, c0, P0), for any A ∈ X and any H = 1, 2, . . . , is equal to the
baseline measure

E(p̃H0 (A)) =

H∑
h=1

E(π0h)E(δφh
(A)) = P0(A).

Moreover, one can show that

Var(p̃H0 (A)) = P0(A)(1− P0(A))

H∑
h=1

E(π2
0h),

for any H = 1, 2, . . . , and A ∈ X . De�ne I0(σ0, c0, H) =
∑H
h=1E(π2

0h)
and recall that I(c, ρ) = c

∫
R+ ue−cψ(u)τ2(u) du with τ2(u) =

∫
R+ s

2e−usρ( ds).
From Proposition 1 of James et al. (2006), one has that Var(p̃Hl (A) | p̃H0 ) =
P0(A)(1− P0(A))I(c, ρ) for any A ∈X . Hence, for any l = 1, . . . , d,

Var(p̃Hl (A)) = E(Var(p̃Hl (A) | p̃H0 )) + Var(p̃H0 (A))

= I(c, ρ)E(p̃H0 (A)(1− p̃H0 (A)))+

+ P0(A)(1− P0(A))I0(σ0, c0, H)

= P0(A)(1− P0(A))(I(c, ρ)− I(c, ρ)I0(σ0, c0, H)+

+ I0(σ0, c0, H)).

Moreover, following Camerlenghi et al. (2019, Appendix A.1), for any l 6= l′

Cov(p̃Hl (A), p̃Hl′ (A)) = Var(p̃H0 (A)) =

= P0(A)(1− P0(A))I0(σ0, c0, H),

from which it follows that

Cor(p̃Hl (A), p̃Hl′ (A)) =
I0(σ0, c0, H)

I(c, ρ) + I0(σ0, c0, H)(1− I(c, ρ))
.

It remains to �nd the explicit formulation of I0(σ0, c0, H), being equal to

I0(σ0, c0, H) =

H∑
h=1

E(π2
0h) =

H∑
h=1

E

(
ν20h

h−1∏
l=1

(1− ν0l)2
)

=

=

H−1∑
h=1

[
(1− σ0)2

(1 + c0 + (h− 1)σ0)2

(
h−1∏
l=1

(c0 + lσ0)2
(1 + c0 + (l − 1)σ0)2

)]
+

+

(
H−1∏
l=1

(c0 + lσ0)2
(1 + c0 + (l − 1)σ0)2

)
.

Notice that all the above results hold also for the in�nite case, having replaced
I0(σ0, c0, H) with its limit I0(σ0, c0), so that

lim
H→+∞

I0(σ0, c0, H) = I0(σ0, c0) = E

( ∞∑
h=1

π2
0h

)
=

=

∞∑
h=1

E
(
π2
0h

)
=

1− σ0
1 + c0

,

where the last equality follows for instance from Ishwaran and James (2001,
Appendix A.2).
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A.3 Dataset

We report in Table 3 the dataset used in the illustrative analysis of Section 6
and originally presented in Stou�er and Toby (1951).

A B C D ego smith friend

0 0 0 0 42 37 35
0 0 0 1 23 31 17
0 0 1 0 6 6 9
0 0 1 1 25 15 26
0 1 0 0 6 5 3
0 1 0 1 24 29 27
0 1 1 0 7 6 3
0 1 1 1 38 25 32
1 0 0 0 1 2 3
1 0 0 1 4 4 5
1 0 1 0 1 3 2
1 0 1 1 6 4 5
1 1 0 0 2 3 0
1 1 0 1 9 23 20
1 1 1 0 2 3 3
1 1 1 1 20 20 26

Total 216 216 216

Table 3: The Stou�er and Toby (1951) dataset. We report the frequencies for
each possible combination of the 24 = 16 responses, divided over the the three
groups ego, smith and friend.
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