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Abstract

Given a functional de�ned on a nonempty subset of an Archimedean Riesz space with unit,

necessary and su¢ cient conditions are obtained for the existence of a (convex or concave) niveloid

that extends the functional to the entire space. In the language of mathematical �nance, this

problem is equivalent to the one of verifying if the policy adopted by a regulator is consistent with

monetary risk measurement, when only partial information is available.
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1 Introduction

Let S be a nonempty set and L a vector sublattice of B (S) containing the constant functions.1 Dolecki

and Greco [11] call niveloid a functional ' : L! R which is

� monotone: x > y implies ' (x) � ' (y);

� translation invariant : ' (x+ c) = ' (x) + c for all x 2 L and c 2 R.

In mathematics, an important example of niveloid is the Choquet integral (introduced by Choquet

[8], see also Dellacherie [9]). In this case, S is a Polish space, L = Cb (S), and

' (x) =

Z 1

0

� (x � t) dt+

Z 0

�1
[� (x � t)� � (S)] dt

where � is an increasing set function, such that � (S) = 1, de�ned on the closed subsets of S.

In economics, niveloids play a central role in the modelling of decisions under (Knightian) uncer-

tainty (see Gilboa and Marinacci [17] for a recent survey on this topic). For example, in the case of

Gilboa and Schmeidler [19]�s multiple priors preferences, (S;�) is a measurable space and an action

a generating utility ua (s) in each state s is evaluated by

' (ua) = inf
p2�

Z
S

ua (s) dp (s) (1)

�We thank Giulia Brancaccio for helpful suggestions, Hans Föllmer and Alex Schied for encouragement, the par-
ticipants of the Bachelier Course Robust Decision Theory and Risk Measurement (IHP Paris, 2012) for stimulating
discussions. The �nancial support of ERC (Advanced Grant BRSCDP-TEA) and of the AXA-Bocconi Chair in Risk is
gratefully acknowledged.

1As usual, B (S) denotes the Banach lattice of real-valued bounded functions on S endowed with the pointwise order
and the supnorm. A vector sublattice of B (S) containing the constant functions is called Stone vector lattice.
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where � is a set of probabilities on �. The interpretation in terms of robust statistical decision theory is

clear. Maccheroni, Marinacci, and Rustichini [20] axiomatically characterize the more general criterion

' (ua) = infp2�(S;�)

�Z
S

ua (s) dp (s) +  (p)

�
(2)

where the hard constraint p 2 � is relaxed to a soft constraint  : � (S;�)! [0;1].2

In mathematical �nance, niveloids are called monetary measures of risk and they represent capital

requirements. In this perspective, ' (x) represents the minimal reserve amount that should be invested

in a risk-free manner at date 0 to cover date 1 state-contingent loss x. Monotonicity means that higher

losses require higher reserves, while translation invariance requires that if a loss is augmented by c

dollars in every state the capital requirement have to be augmented by the same amount.3 The

active research in this topic started with the seminal paper of Artzner, Delbaen, Eber, and Heath [3]

and is strongly motivated by banking regulation and supervision problems. A complete and updated

treatment of monetary measures of risk can be found in Föllmer and Schied [14]. As they argue (see

also [5]), a central principle of risk management requires that diversi�cation cannot increase risk. For

niveloids this principle translates into convexity. In particular, convex niveloids are called convex risk

measures. They were introduced by Föllmer and Schied [15] and Frittelli and Rosazza Gianin [16],

and are the economically most relevant class of monetary measures of risk.

This paper studies the conditions under which a functional de�ned only on a nonempty subset X of

L can be extended to a (convex or concave) niveloid on the entire space L. This question is natural from

a mathematical viewpoint in light of the extension results of measure theory and functional analysis.

But, here it is also compelling from the viewpoint of applications. For example, in the theory of choice

under uncertainty the natural domain of ' only consists of the set fua : a 2 Ag, where A is the set

of available actions and concavity corresponds to uncertainty aversion. Analogously, in a banking

context, the European Central Bank can observe the capital requirements ' (x1) ; :::; ' (xN ) imposed

by the Bank of Italy on the portfolios x1; x2; :::; xN of the N Italian banks and try to gauge if the

policy is consistent with a monetary measure of risk. Plausibly, the European Central Bank might

also want to verify if diversi�cation is favoured by the Bank of Italy, that is, if there exists a convex

niveloid that extends '.

Section 2 contains the mathematical framework of the paper plus some basic de�nitions and prop-

erties. The, mostly introductory, Section 3 adapts the extension results of Dolecki and Greco [11]

to the di¤erent setup of this paper and investigates some basic representations of niveloids. Section

4 characterizes the conditions for the existence of a convex niveloidal extension, while a dual rep-

resentation of the maximal of such extensions is obtained in the subsequent Section 5, where the

Fenchel-Moreau duality of niveloids is studied in some detail. A version of the Daniell-Stone Theorem

for niveloids is obtained in Section 6. The concluding Section 7 studies niveloids on domains of the

form �
x 2 L : inf

s2S
x (s) ; sup

s2S
x (s) 2 I

�
where I is an interval of the real line. This class of sets contains the open and closed unit balls of L,

as well as the positive cone, the negative cone, and the entire space.

2As usual, �(S;�) denotes the set of all probabilities on �.
3While monotonicity is uncontroversial, translation invariance (called cash additivity in this context) is non-

problematic only if it is possible to transfer cash from date 0 to date 1 in a risk-free manner without frictions. In
this case the assumption of zero interest rate is an innocuous normalization. See the discussion in El Karoui and
Ravanelli [12] and Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio [5].
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2 Setup and preliminaries

Stone vector lattices form a special case of Archimedean Riesz spaces with unit, but the latter class

is larger, including for example all L1 (
;F ;N ;Rn) spaces where N is the �-ideal of null subsets of

F (see [4]). For this reason, with the exception of Section 6, functionals on Archimedean Riesz spaces
with unit rather than on Stone vector lattices are considered in the rest of the paper.

Let E be a vector space and > a partial order on E such that

x > y =) cx+ z > cy + z

for all c 2 R+ and z 2 E. The pair (E;>) is called an ordered vector space. An element x of E is

positive if x > 0, E+ denotes the set of all positive elements of E, E� = �E+. For each y; z 2 E,

[y; z] is the (possibly empty) set fx 2 E : y 6 x 6 zg.
An ordered vector space is a Riesz space if each pair of elements x; y 2 E admits a supremum and

an in�mum in E, respectively denoted by x _ y and x ^ y. A Riesz space is Archimedean if whenever
0 6 nx 6 y for all n 2 N and some y 2 E, then x = 0. If E is a Riesz space and x 2 E, the absolute
value of x is de�ned by jxj = (�x) _ x. An element e 6= 0 in a Riesz space E is a unit if for each

x 2 E there exists n 2 N such that jxj 6 ne. The vector subspace spanned by e is denoted by Re.

Throughout this paper (E;>; e) is an Archimedean Riesz space with unit e, endowed with the
supnorm

kxke = inf fc 2 R+ : jxj 6 ceg 8x 2 E:

It is important to recall that E+ is closed in the induced topology.4

Let X be any nonempty subset of E. A functional ' : X ! R is:

� monotone if x > y implies '(x) � '(y) for all x; y 2 X;

� translation invariant if '(x+ ce) = '(x) + c for all x 2 X and c 2 R such that x+ ce 2 X.5

The natural domains for translation invariant functionals are sets X that contain the coset x+Re
whenever they contain x: these sets are called tubes. If X is not a tube, then X + Re is the smallest
tube that contains X. The next proposition, inspired by the results on risk measures of [3] and [14],

characterizes monotone and translation invariant functionals on tubes.

Proposition 1 Let X be a tube. A function ' : X ! [�1;1] is real valued, monotone, and
translation invariant if and only if there exists ? � Y � X, such that x 2 X, y 2 Y and x 6 y imply

x 2 Y , for which
' (x) = inf fc 2 R : x� ce 2 Y g 8x 2 X: (3)

Moreover, if X and Y are convex so is '.

Proof. If ' is real valued, monotone, and translation invariant, take Y = f' < 0g or Y = f' � 0g.
Conversely, for each x 2 X, set Cx = fc 2 R : x� ce 2 Y g and notice that:

� Cx is not empty, since for each y 2 Y eventually x� y 6 ne so that x� ne 6 y 2 Y ;
4See Chapters 8 and 9 of Aliprantis and Border [1] for the properties of Riesz spaces. For example, see Theorem

9.28 for the properties of k�ke and Theorem 8.43 for the closure of E+.
5This is equivalent to require '(x+ ce) = '(x)+ c for all x 2 X and c > 0. In fact, assume this is the case; let x 2 X

and c < 0 be such that x + ce 2 X. Set y = x + ce 2 X and d = �c. This yields y; y + de = x 2 X and d > 0, then
' (y + de) = ' (y) + d, that is, ' (x) = ' (x+ ce)� c. Obviously, '(x+ ce) = '(x) + c for all x 2 X if c = 0.
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� Cx is an unbounded above half-line (c 2 Cx and d � c imply d 2 Cx);

� Cx is bounded below, otherwise x + ne 2 Y for all n 2 N, but for each z 2 X eventually

z 6 x+ ne 2 Y , and this would contradict Y � X.

This proves that (3) de�nes a real valued functional. If x 6 z 2 X, then Cz � Cx and hence ' is

monotone. While translation invariance follows from Cx+de = Cx + d for all d 2 R.
Finally, if X and Y are convex, take x; y 2 X and set z = y + (' (x)� ' (y)) e. By translation

invariance, ' (z) = ' (x), then Cx and Cz are half-lines with the same in�mum and ' (x) = ' (z) =

inf (Cx \ Cz). For each � 2 (0; 1) and each c 2 Cx \ Cz, x � ce; z � ce 2 Y , and the convexity of Y
implies �x+ (1� �) z � ce 2 Y , then c 2 C�x+(1��)z, so that

' (x) = inf (Cx \ Cz) � inf C�x+(1��)z = ' (�x+ (1� �) z) = ' (�x+ (1� �) y)+(1� �) (' (x)� ' (y))

which proves convexity of '. �

For X = E and Y = E�, Proposition 1 shows monotonicity, translation invariance and convexity

of the essential supremum

esup (x) = inf fc 2 R : x 6 ceg 8x 2 E: (4)

Notice that kxke = esup (jxj) for all x 2 E, and so esup (�) is positively homogeneous. Moreover, since
E+ is closed, the in�mum in (4) is attained. Therefore, given x 2 E and c 2 R,

x 6 ce() esup (x) � c

and hence

jxj 6 ce() kxke � c:

In turn, this implies that the closed ball U" (xo) in E of radius " centered in xo coincides with the

interval [xo � "e; xo + "e].
The essential supremum can also be used to characterize the properties of monotonicity and trans-

lation invariance of functionals de�ned on tubes. As usual in convex analysis set 1�1 =1.6

Proposition 2 A function ' : X ! [�1;1] is real valued, monotone, and translation invariant if

' (x)� ' (y) � esup (x� y) 8x; y 2 X: (5)

The converse is true if X is a tube.

Proof. Assume (5) holds, since the extended di¤erence takes value 1 whenever the usual one is

unde�ned, 'must be real valued. If x; y 2 X and x 6 y, then ' (x)�' (y) � esup (x� y) � 0, so that '
is monotone. Moreover, if x 2 X, c 2 R, and x+ce 2 X, then ' (x+ ce)�' (x) � esup (x+ ce� x) = c

and ' (x)� ' (x+ ce) � esup (x� x� ce) = �c so that ' is translation invariant.
Conversely, assume X is a tube and ' : X ! R is monotone and translation invariant. Since X is

a tube, for all x; y 2 X, x� y 6 (esup (x� y)) e, thus x 6 y + (esup (x� y)) e 2 X. By monotonicity
' (x) � ' (y + (esup (x� y)) e), by translation invariance ' (x) � ' (y) + esup (x� y). �

Next example shows that the equivalence cannot be true for a generic subset X of E.

6See, e.g., [21].
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Example 1 Consider the anti-diagonal X of the real plane R2 endowed with the usual order and unit
(1; 1). Set ' (t;�t) = t2 for all t 2 R.7 Clearly, ' is monotone and translation invariant on X, but

' (2;�2)� ' (0; 0) = 4 > 2 = esup ((2;�2)� (0; 0)) :

Proposition 2 implies that ' cannot be extended to a monotone and translation invariant functional

on the entire R2.

In particular, Proposition 2 implies that if a functional ' : X ! R admits a monotone and

translation invariant extension to E, then ' satis�es (5). This observation suggests the following:

De�nition 1 A functional ' : X ! R is a niveloid if and only if

' (x)� ' (y) � esup (x� y) 8x; y 2 X: (6)

A few remarks are in order.

� Although this is not the original de�nition of Dolecki and Greco [11] reported in the introduction,
it is equivalent because of Proposition 2; in fact, Proposition 2 guarantees that a functional

' : X ! R on a tube is monotonic and translation invariant if and only if it satis�es (6).

� Given ' : X ! R, de�ne ' : �X ! R by ' (y) = �' (�y) for all y 2 �X. It is easy to check
that: (') = '; ' is monotone if and only if ' is monotone; ' is translation invariant if and only

if ' is translation invariant; ' is a niveloid if and only if ' is a niveloid; �nally, provided X is

convex, ' is convex if and only if ' is concave. For example,

einf (x) = � esup (�x) = sup fc 2 R : ce 6 xg 8x 2 E

is a superlinear niveloid.

� ' is a niveloid if and only if ' (y)� ' (x) � � esup (x� y) = einf (y � x) for all x; y 2 X if and

only if einf (y � x) � ' (y)� ' (x) � esup (y � x) for all y; x 2 X.

� Niveloids are Lipschitz continuous of order 1. In fact

' (x)� ' (y) � esup (x� y) � esup (jx� yj) = kx� yke 8x; y 2 X:

� In the risk measurement perspective of mathematical �nance, (6) has a very natural interpreta-
tion: the additional reserve ' (x)� ' (y) required to move from position y to position x cannot

exceed the maximal additional loss esup (x� y).

3 Extensions of niveloids

In this section it is shown that ' : X ! R admits a monotone and translation invariant extension to
E if and only if it is a niveloid. Actually, the next result is stronger since it explicitly describes the

minimal and maximal niveloidal extensions of '.

Theorem 1 Let ' : X ! R be a niveloid. The functional de�ned on E by

'̂ (y) = sup f' (x) + b : x 2 X; b 2 R, and x+ be 6 yg 8y 2 E (7)

7The elements of X can be seen as Bernoullian risks and ' is their variance relative to the uniform probability.
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is the minimal niveloid on E that extends '. Moreover, for each y 2 E,

'̂ (y) = sup
x2X

(' (x) + einf (y � x)) : (8)

Analogously, the functional de�ned on E by

�' (y) = inf f' (x) + b : x 2 X; b 2 R, and x+ be > yg 8y 2 E (9)

is the maximal niveloid on E that extends '. Moreover, for each y 2 E,

�' (y) = inf
x2X

(' (x) + esup (y � x)) : (10)

Before entering the details of the proof notice that (8) and (10) imply '̂ = �' and �' = '̂ .

Lemma 1 If ' : X ! R is a translation invariant functional, then there exists a unique translation
invariant extension ~' of ' to eX = X + Re.

Proof. If such an extension ~' : eX ! R exists, for all x 2 X and c 2 R, it satis�es

~' (x+ ce) = ~' (x) + c = ' (x) + c: (11)

In particular it is unique. It remains to be shown that (11) de�nes a translation invariant functional

(that obviously extends ') on eX.
If x; y 2 X, c; d 2 R, and x+ce = y+de, then x = y+(d� c) e. In particular, y 2 X and d�c 2 R

are such that y + (d� c) e 2 X, therefore

' (x) + c = ' (y + (d� c) e) + c = ' (y) + d� c+ c = ' (y) + d:

This proves that ~' is well de�ned by (11) on eX = X + Re. If x + ce 2 eX (with x 2 X and c 2 R)
and d 2 R, then ~' ((x+ ce) + de) = ~' (x+ ce+ de) = ' (x) + c + d = ~' (x+ ce) + d, that is, ~' is

translation invariant. �

Lemma 2 The following statements are equivalent for a functional ' : X ! R:

(i) ' is translation invariant and its unique translation invariant extension ~' to eX is monotone.

(ii) ' is translation invariant and ~' is a niveloid.

(iii) ' is a niveloid.

Proof. By Proposition 2, (i) implies (ii). (ii) trivially implies (iii). Finally, if ' is a niveloid, by
Proposition 2 again, ' is translation invariant. Moreover, if x; y 2 X and c; d 2 R are such that

x+ de 6 y + de, then ' (x)� ' (y) � esup (x� y) implies

~' (x+ ce)� ~' (y + de) = ' (x)� ' (y) + c� d � esup (x� y) + c� d = esup ((x+ ce)� (y + de)) � 0

that is ~' is monotone. �

Proof of Theorem 1. Observe that

f' (x) + b : x 2 X; b 2 R, and x+ be 6 yg =
n
~' (z) : z 2 eX and z 6 y

o
:

Therefore

'̂ (y) = sup
n
~' (z) : z 2 eX and z 6 y

o
8y 2 E
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from E to [�1;1] is the minimal monotone extension of ~' to E ( ~' is monotone by Lemma 2).

Moreover, choose x 2 X, for each y 2 E there exists c 2 R such that ce 6 y� x (since e is a unit),
thus y > x + ce 2 eX and

n
~' (z) : z 2 eX and z 6 y

o
6= ?, so that '̂ never takes value �1. Choose

x 2 X and n 2 N such that x+ ne > 0 (eventually x > �ne), then, for each y 2 E, z 2 eX and z 6 y

imply z 6 esup (y) e 6 x + ne + esup (y) e, so that ~' (z) � ' (x) + n + esup (y). That is '̂ is real

valued.

For each y 2 E,
n
~' (z) : z 2 eX and z 6 y + ce

o
=
n
~' (z) : z 2 eX and z 6 y

o
+ c for all c 2 R,

therefore '̂ is translation invariant, hence a niveloid.

Clearly, '̂ extends '. If  is a niveloid that extends ', x 2 X, b 2 R, and x+ be 6 y, then

 (y) �  (x+ be) =  (x) + b = ' (x) + b

thus '̂ is minimal.

Moreover, for each y 2 E,

'̂ (y) = sup f' (x) + b : x 2 X; b 2 R, and x+ be 6 yg
= sup f' (x) + b : x 2 X; b 2 R, and einf (y � x) � bg
= sup
x2X

(' (x) + einf (y � x)) :

This proves the �rst part of Theorem 1. The second follows from analogous arguments. �

Theorem 1 extends Theorem 5.2 of Dolecki and Greco to Archimedean Riesz spaces with unit.

The merit of representations (8) and (10) is that they allow to explicitly express extensions '̂ and �'

in terms of '. Next proposition provides some alternative explicit representations featuring the strict

epigraph epi (') and ipograph ipo (') of '.8

Proposition 3 Let ' : X ! R be a niveloid. Then, for each y 2 E,

'̂ (y) = sup fc 2 R : y � ce 2 A'g = sup
z2A'

(einf (y � z))

�' (y) = inf fc 2 R : y � ce 2 A'g = inf
z2A'

(esup (y � z))

where

A' = fx� te : (x; t) 2 ipo (')g+ E+
A' = fx� te : (x; t) 2 epi (')g+ E�

in particular, A' = f'̂ > 0g and A' = f �' < 0g.

Proof. Let ' : X ! R be a niveloid. By (9)

fy 2 E : �' (y) < dg =
n
z 2 eX : ~' (z) < d

o
+ E� 8d 2 R:

In particular,

f �' < 0g =
n
z 2 eX : ~' (z) < 0

o
+ E� (12)

= fx� te : x 2 X; t 2 R; and ' (x) < tg+ E� (13)

= fx� te : (x; t) 2 epi (')g+ E� = A': (14)

8Recall that epi (') = f(x; t) 2 X � R : t > ' (x)g and ipo (') = f(x; t) 2 X � R : t < ' (x)g.
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Therefore, for each y 2 E,

�' (y) = inf fc 2 R : c > �' (y)g = inf fc 2 R : y � ce 2 f �' < 0gg (15)

= inf fc 2 R : y � ce 6 z for some z 2 f �' < 0gg (16)

= inf fc 2 R : esup (y � z) � c for some z 2 f �' < 0gg (17)

= inf
z2f �'<0g

(esup (y � z)) : (18)

which together with f �' < 0g = A' delivers the second part of the statement.9 The �rst is proved

with analogous arguments. �

Notice that the chain of equalities (15)-(18) holds for any niveloid on any tube.

4 Convexity

As discussed in the introduction, convex niveloids play an important role in mathematical �nance.10

The next example shows that there exist niveloids satisfying the usual convexity condition

' (x0) �
Pn

1�i' (xi) (19)

for all x0; x1; :::; xn 2 X and all �1; :::; �n 2 R+ such that
Pn

1�i = 1 and x0 =
Pn

1�ixi, but that do

not admit a convex niveloidal extension.

Example 2 Consider the set X = f(0; 0) ; (2; 0) ; (0; 2)g in R2 and the niveloid ' � 0 on X. Clearly
' satis�es (19). But, if there existed a convex niveloid  extending ' to R2, it would follow

1 =  (1; 1)� (0; 0) =  (1; 1)�' (0; 0) =  (1; 1) � 1

2
 (2; 0)+

1

2
 (0; 2) =

1

2
' (2; 0)+

1

2
' (0; 2) = 0:

As the next theorem shows, a strengthening of the de�ning condition for niveloids delivers the

desired extension property.

Theorem 2 Let ' : X ! R. There exists a convex niveloid that extends ' to E if and only if

' (x0)�
Pn

1�i' (xi) � esup (x0 �
Pn

1�ixi) (20)

for all x0; x1; :::; xn 2 X and all �1; :::; �n 2 R+ such that
Pn

1�i = 1.

In this case,

�' (y) = inf fc 2 R : y � ce 2 co (A')g 8y 2 E

is the maximal convex niveloid that extends '.

Before entering the details of the proof, notice that:

� For n = 1, condition (20) reduces to the de�nition (6) of niveloid.

� For each x0; x1; :::; xn 2 X, the function

(�1; :::; �n) 7! esup (x0 �
Pn

1�ixi)� (' (x0)�
Pn

1�i' (xi))

= esup (
Pn

1�i (x0 � xi))�
Pn

1�i (' (x0)� ' (xi))

is continuous and convex on the compact n-dimensional simplex and (20) amounts to require

that its minimum is not negative. This allows to check the existence of a convex niveloidal

extension by solving some �nite dimensional optimization problems.
9The last equality follows from inf R = inf (R+ R+) for all R � R.
10Analogously, in the theory of choice under uncertainty, concavity of the niveloid ' representing the preferences of

a decision maker corresponds to uncertainty aversion (see [19] and [20]).
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� Also (20), like (6), has a simple interpretation in terms of capital requirements: the additional
reserve ' (x0)�

Pn
1�i' (xi) required to make x0 acceptable, once

Pn
1�i' (xi) has already been

invested in a risk-free manner, cannot exceed the maximal additional loss esup (x0 �
Pn

1�ixi) of

x0 relative to the diversi�ed loss portfolio
Pn

1�ixi. In fact, since diversi�cation cannot increase

risk,
Pn

1�i' (xi) already provides a su¢ cient deposit for
Pn

1�ixi.

Lemma 3 For a functional ' : X ! R, condition (20) is equivalent to

' (x0) �
Pn

1�i' (xi) + �0 (21)

for all x0; x1; :::; xn 2 X and all �0; �1; :::; �n 2 R such that �1; :::; �n � 0,
Pn

1�i = 1, and x0 6Pn
1�ixi + �0e.

Proof. For all x0; x1; :::; xn 2 X and all �1; :::; �n 2 R+ such that
Pn

1�i = 1,

x0 6
Pn

1�ixi + esup (x0 �
Pn

1�ixi) e (22)

so that (21) implies (20).

Conversely, for all x0; x1; :::; xn 2 X and all �0; �1; :::; �n 2 R such that �1; :::; �n � 0,
Pn

1�i = 1,

and x0 6
Pn

1�ixi + �0e, the relation esup (x0 �
Pn

1�ixi) � �0 holds. Then (20) delivers

' (x0) �
Pn

1�i' (xi) + esup (x0 �
Pn

1�ixi) �
Pn

1�i' (xi) + �0

that is, (21). �

Proof of Theorem 2. If there exists a convex niveloid  extending ' to E, then (22) implies

' (x0) =  (x0) �  (
Pn

1�ixi + esup (x0 �
Pn

1�ixi) e) =  (
Pn

1�ixi) + esup (x0 �
Pn

1�ixi)

�
Pn

1�i (xi) + esup (x0 �
Pn

1�ixi) =
Pn

1�i' (xi) + esup (x0 �
Pn

1�ixi)

for all x0; x1; :::; xn 2 X and all �1; :::; �n 2 R+ such that
Pn

1�i = 1. Therefore (20) is necessary for

the existence of a convex niveloidal extension.

Conversely, assume condition (20) is satis�ed. By Lemma 2, ~' is a niveloid. By the chain of

equalities (12)-(14), A' = f ~' < 0g+ E�. Then, convexity of E� implies

co (A') = co (f ~' < 0g) + E�: (23)

Moreover, z 2 eX and z 6 y for some y 2 co (f ~' < 0g) implies z 2 f ~' < 0g, that is

eX \ co (A') = f ~' < 0g : (24)

In fact, z = x0 + c0e (x0 2 X and c0 2 R), and there exist zi = xi + cie 2 f ~' < 0g (xi 2 X, ci 2 R,
i = 1; :::; n) and �1; :::; �n 2 R+ with

Pn
1�i = 1 such that z 6 �1z1 + �2z2 + ::: + �nzn, that is,

x0 6
Pn

1�ixi +
Pn

1�icie� c0e. By (21), ' (x0) �
Pn

1�i' (xi) +
Pn

1�ici � c0, that is,

~' (z) = ' (x0) + c0 �
Pn

1�i' (xi) +
Pn

1�ici =
Pn

1�i ~' (zi) < 0:

The �rst implication of (24) is that ? 6= f ~' � 0g � E n co (A'), so that:

� ? � co (A') � E;

� co (A') = co (A') + E�, because of (23);

9



� co (A') is convex.

By Proposition 1, �' is a convex niveloid. If x 2 X, then for each c 2 R such that x� ce 2 co (A'),
(24) implies x� ce 2 f ~' < 0g, then

fc 2 R : x� ce 2 co (A')g = fc 2 R : x� ce 2 f ~' < 0gg

and �' (x) = ~' (x) = ' (x).11 Thus �' extends ', and (20) is su¢ cient for the existence of a convex

niveloidal extension.

Finally, if  is a convex niveloid that extends ', by Lemma 1, it extends ~', then f < 0g � f ~' < 0g,
by convexity f < 0g � co (f ~' < 0g), by monotonicity f < 0g � co (A'). Therefore

�' (y) = inf fc 2 R : y � ce 2 co (A')g � inf fc 2 R : y � ce 2 f < 0gg =  (y)

for all y 2 E. �

In the very special and very important case in whichX is convex, (20) is equivalent to the convexity

of '.

Proposition 4 If X is convex and ' : X ! R is a niveloid, then (20) is equivalent to the convexity
of ' in the usual sense, and �' = �'.

Proof. Let X and ' be convex. In this case eX = X + Re is convex, and

~' (�z1 + (1� �) z2) = ' (�x1 + (1� �)x2) + �c1 + (1� �) c2
� �' (x1) + (1� �)' (x2) + �c1 + (1� �) c2 = � ~' (z1) + (1� �) ~' (z2)

for all zi = xi + cie (xi 2 X, ci 2 R, i = 1; 2) and all � 2 [0; 1]. So that ~' is convex too. In turn, this
implies that f �' < 0g = f ~' < 0g+ E� is convex and so is �'. Thus ' admits a convex extension to E

and it satis�es (20).12 Maximality of �' and �' delivers �' = �'. �

Finally, if X is convex and it has nonempty interior, a convex niveloid ' : X ! R also admits a
minimal niveloidal extension; this can be shown adapting the proof of Theorem 5 below.

5 Fenchel-Moreau duality

A Radon measure is a positive linear functional on E.13 A Radon probability measure is a Radon

measure p such that he; pi = 1. Denote by � the set of Radon probability measures. Clearly, � is

convex and, being weak* closed and norm bounded, it is also weak* compact.

Theorem 3 Let ' : X ! R satisfy (20). Then:

(i) '�j� is the minimal function � : �! (�1;1] such that

' (x) = sup
p2�

(hx; pi � � (p)) 8x 2 X: (25)

Moreover, @' (x) \� = argmaxp2� (hx; pi � '� (p)) for all x 2 X.
11Remember the observation at the end of Section 3.
12Conversely, Theorem 2 guarantees that if ' satis�es (20), then it is convex on X (where it coincides with �').
13Notice that if f is a Radon measure, monotonicity implies supx2U1(0) hx; fi = he; fi since U1 (0) = [�e; e], in

particular f 2 E� and kfk�e = f (e).
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(ii) �'� (p) = '� (p) for all p 2 � and �'� (f) =1 if f 2 E� n�. In particular,

�' (y) = max
p2�

(hy; pi � '� (p)) 8y 2 E: (26)

(iii) If X + Re = E and � : �! (�1;1] is such that (25) holds, then

'� (p) = sup fhy; pi : y 2 E and hy; �i � � (�)g 8p 2 �: (27)

In particular, '�j� is the unique convex and weakly* lower semicontinuous � : � ! (�1;1]
such that (25) holds.

(iv) If � : � ! (�1;1] is such that (25) holds, then ' (x) = supfp2�:�(p)�c� �'(0)g (hx; pi � � (p))
for all x 2 X such that esup (x)� einf (x) < c.

(v) If there exists k 2 R such that ke 2 X and ' (ke) = k, then �' (0) = 0 and '� (p) � 0 for all

p 2 �. Moreover, @' (ke) \� =
n
'�j� = 0

o
= argminp2� '

� (p).

Notice that to evaluate the Fenchel conjugate '� (p) = supx2X fhx; pi � ' (x)g it is not necessary
to know �', therefore (26) describes an alternative (dual) way to construct �'.

The proof of Theorem 3 starts with a simple application of the generalized Moreau duality. Let F

be a nonempty subset of RX and ' : X ! R be a function. The F -subdi¤erential at x 2 X of ' is

@F' (x) = ff 2 F : ' (y)� ' (x) � hy; fi � hx; fi for all y 2 Xg

where h�; fi = f (�). The (lower) F -conjugate of ' is the extended real valued function

'F (f) = sup
x2X

fhx; fi � ' (x)g 8f 2 F:

Notice that when F = E�, then @E
�
' = @' and 'E

�
= '� are the usual subdi¤erential and conjugate

of convex analysis.

Lemma 4 If @F' (x) 6= ? for all x 2 X, then

' (x) = max
f2F

�
hx; fi � 'F (f)

�
@F' (x) = argmax

f2F

�
hx; fi � 'F (f)

�
for all x 2 X. Moreover, 'F is the minimal � : F ! (�1;1] such that

' (x) = sup
f2F

(hx; fi � � (f)) 8x 2 X:

Proof. By de�nition, ' (x) � hx; fi � 'F (f) for all x 2 X and f 2 F . Moreover,

f 2 @F' (x) () 'F (f) = hx; fi � ' (x)() ' (x) = hx; fi � 'F (f)

which proves the �rst part of the statement. Moreover, if ' (x) = supf2F (hx; fi � � (f)) for all x 2 X,
then � (f) � hx; fi � ' (x) for all x 2 X and f 2 F , that is � (f) � 'F (f) for all f 2 F . �

Proof of Theorem 3. (i) Since ' : X ! R satis�es (20), �' is a convex niveloid that extends ' to E.
Since �' is continuous, at each y 2 E the subdi¤erential @ �' (y) is not empty, and it is contained in �

because �' is monotone and translation invariant. A fortiori, for each x 2 X, @�' (x) = @' (x) \� �
@ �' (x) is not empty. Lemma 4 concludes.
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(ii) For all y 2 E, set  (y) = supp2� (hy; pi � '� (p)),  is a convex niveloid on E (that extends

'). Point (i) applied to  guarantees that  � (p) � '� (p) for all p 2 �. Maximality of �' as a convex
niveloidal extension guarantees that  � �'. Therefore

 � (p) � '� (p) = sup
x2X

(hx; pi � ' (x)) � sup
y2E

(hy; pi � �' (y)) � sup
y2E

(hy; pi �  (y)) =  � (p)

that is  � (p) = '� (p) = �'� (p) for all p 2 �. Point (ii) follows because �' is a niveloid on E.
(iii) Since E = X +Re = eX, then ~' = �' and, by the previous point, ~'� (p) = '� (p) for all p 2 �.

Let � : �! (�1;1] be such that ' (x) = supp2� (hx; pi � � (p)) for all x 2 X. Then, for all y 2 E,

~' (y) = sup
p2�

(hy; pi � � (p)) = �� (y)

when the dual pair (E;E�) is considered and � is extended to 1 outside �. Point (iii) follows from

the implied equality ~'� = ��� and the properties of conjugation (see, e.g., [13, p.102] and [21, p.77]).

(iv) If esup (x)� einf (x) < c, there exists " > 0 such that esup (x)� einf (x)+ " < c. For all p 2 �
such that � (p) > c� �' (0),

' (x)� " � �' (einf (x) e)� " = �' (0) + einf (x)� " > �' (0)� c+ esup (x) > �� (p) + hesup (x) e; pi
� hx; pi � � (p) :

On the other hand,

' (x) = sup
p2�

(hx; pi � � (p)) = max
 

sup
p2f�>c� �'(0)g

(hx; pi � � (p)) ; sup
p2f��c� �'(0)g

(hx; pi � � (p))
!

which concludes the proof of this point, since supp2f�>c� �'(0)g (hx; pi � � (p)) � ' (x)� ".
(v) The assumption ' (ke) = k implies �' (0) = �' (0) + k � k = �' (ke) � k = ' (ke) � k = 0.

Moreover,

'� (p) = sup
x2X

fhx; pi � ' (x)g � hke; pi � ' (ke) = 0 8p 2 �:

By point (i),

@' (ke) \� = argmax
p2�

(hke; pi � '� (p)) = argmax
p2�

(k � '� (p)) = argmin
p2�

'� (p) :

Finally, maxp2� (hke; pi � '� (p)) = ' (ke) = k implies minp2� '� (p) = 0, (v) is proved. �

6 Daniell-Stone extensions

In this section, X = L is a Stone vector lattice in B (S) and E = B (S; � (L)) is the space of bounded

functions on S that are measurable with respect to the �-algebra � (L) generated by L.

A functional ' : L ! R has the Lebesgue property if ' (xn) ! ' (x) whenever xn is a norm

bounded sequence in L which converges pointwise to x in L. The set L� of linear functionals on L

that have the Lebesgue property is a vector sublattice of L� and the map

T : ca (S; � (L)) ! L�

� 7!
R
S
d�

that associates to each � 2 ca (S; � (L)) the restriction to L of the integral with respect to � is a linear
lattice isomorphism, and an isometry when ca (S; � (L)) is endowed with the total variation norm.14

14See, e.g., [7, p.909-910] and notice that a fortiori T is a homeomorphism when both spaces are endowed with their
weak topologies.

12



The elements of �� = �\L� are called Daniell-Stone integrals. By the eponymous theorem, for each
q 2 �� there exists a unique probability measure Q on � (L) such that hx; qi = EQ [x] for all x 2 L,
that is, Q = T�1 (q). Denote by Q the set of all probability measures on � (L) and by q in �� the

image T (Q) of Q in Q. Observe that Q 7! q = T (Q) is a bijection between Q and ��.

Proposition 5 Let L be a Stone vector lattice in B (S) and ' : L ! R be a convex niveloid. The

following conditions are equivalent:

(i) ' has the Lebesgue property.

(ii) fp 2 � : '� (p) � cg is a weakly compact subset of �� for all c 2 R.

In this case, the only convex niveloid with the Lebesgue property that extends ' to B (S; � (L)) is

'� (y) = max
Q2Q

(EQ [y]� '� (q)) 8y 2 B (S; � (L)) :

Proof. First notice that, by point (ii) of Theorem 3 with E = L = X, '� (f) = 1 if f 2 L� n �.
Therefore fp 2 � : '� (p) � cg = f'� � cg.

(i) ) (ii) If xn is a norm bounded sequence in L which converges pointwise to x in L, then

zn = xn � x is a norm bounded sequence in L which converges pointwise to 0. Arbitrarily choose

c 2 R. For all p 2 f'� � cg, n 2 N, and � > 0,

h� jznj ; pi � ' (� jznj) � '� (p) � c =) jhzn; pij � hjznj ; pi �
c

�
+
' (� jznj)

�

so that

0 � sup
p2f'��cg

jhzn; pij �
c+ ' (� jznj)

�
:

Passing to the limit delivers 0 � limn supp2f'��cg jhzn; pij � ��1 (c+ ' (0)), since ' has the Lebesgue

property. But this is true for all � > 0, therefore

sup
p2f'��cg

jhzn; pij ! 0 as n!1: (28)

This implies that the elements of f'� � cg have the Lebesgue property, that is, f'� � cg � ��.

Moreover, if xn is a norm bounded disjoint sequence in L,15 then it is pointwise convergent to 0, and

(28) implies that f'� � cg is weakly relatively compact by the Grothendieck Theorem.16 Since '� is
weakly* lower semicontinuous on L�, then f'� � cg is weakly closed in L� and hence weakly compact.

(ii) ) (i) Consider the function de�ned by

� (�) =

(
'� (T (�)) � 2 Q
1 � =2 Q

(29)

from ba (S; � (L)) to (�1;1]. For each c 2 R, f� � cg = T�1 f'� � cg is a weakly compact subset of
Q (in ca (S; � (L)) and so in ba (S; � (L))), in particular, � is weakly lower semicontinuous and convex.
Let yn be a norm bounded sequence in B (S; � (L)) which converges pointwise to y0. By point (iv)

of Theorem 3, there exists c 2 R such that

'� (ym) = max
Q2f��cg

(EQ [ym]� � (Q)) 8m 2 N0:

15Disjoint means that jxlj ^ jxmj = 0 for all l 6= m in N.
16 In Theorem 4.41 of [2] the assumption of norm completeness is redundant.
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If yn # y0, Q 7! EQ [ym] � � (Q) is weakly upper semicontinuous for all m 2 N0, and by the Domi-
nated Convergence Theorem EQ [yn] � � (Q) # EQ [y0] � � (Q) for all Q 2 f� � cg. By the Dini-
Cartan Lemma,17 supQ2f��cg (EQ [yn]� � (Q)) # supQ2f��cg (EQ [y0]� � (Q)), that is '� (yn) #
'� (y0). If yn " y0, then '� (yn) " k � '� (y0), but '� (y0) = EQ0

[y0] � � (Q0) for some Q0 2
f� � cg, and by the Dominated Convergence Theorem again '� (y0) = limn (EQ0

[yn]� � (Q0)) �
limnmaxQ2f��cg (EQ [yn]� � (Q)) = k. Monotonicity of '� and �-Dedekind completeness ofB (S; � (L))

imply that '� has the Lebesgue property, and so does ' = '�jL.

Finally, if  is a convex niveloid with the Lebesgue property that extends ' to B (S; � (L)) and

� =  �, then

' (x) = max
Q2Q

(EQ [x]� � (Q)) = max
q2�

(hx; qi �  (q)) 8x 2 L

where  is de�ned by

 (f) =

(
�
�
T�1 (f)

�
f 2 ��

1 f =2 ��
(30)

from L� to (�1;1]. By (ii) f� � cg is weakly compact in ba (S; � (L)) for all c 2 R, and this implies
that  is weakly* lower semicontinuous since f � cg = T f� � cg. By point (iii) of Theorem 3 with

E = L = X,  = '�. Positions (29) and (30) deliver � = � whence '� =  . �

7 Niveloids on boxes

If I is an interval in R, the box with diagonal I is the set

E (I) = fx 2 E : einf (x) ; esup (x) 2 Ig :

The closed unit ball, the open unit ball, and the positive cone E+ are boxes.18 The �nancial intuition

is again immediate; E
��
`; `
��
, for example, is the set of losses that are bounded below by ` and above

by `.

Notation Throughout this section, I is a nonsingleton interval in R and X = E (I).19

Now consider the following decision theoretic setup à la Anscombe-Aumann: (S;�) is a measurable

space, there is a �nite set of n consequences, and each action a determines in each state s an objective

probability distribution a (s) = (a1 (s) ; :::; an (s)) over consequences; that is, the set A of actions can

be identi�ed with the set of measurable functions from S to the n dimensional simplex. Denote by ui
the utility of consequence i = 1; :::; n and set

ua (s) =
nX
i=1

uiai (s) 8a 2 A; s 2 S:

Taking E = B (S;�) and I = [min (u1; :::; un) ;max (u1; :::; un)], it is easy to check that E (I) =

fuaga2A and that
u�a+(1��)b = �ua + (1� �)ub 8a; b 2 A;8� 2 [0; 1] : (31)

This is the motivating example for the last exercise of this paper that consists in giving conditions on

' : E (I)! R that guarantee the existence of a concave niveloidal extension and only rely on convex
17See, e.g., [10, p. 98].
18For I = [�1; 1], (�1; 1), and [0;1), respectively.
19 If I were a singleton, then X would be a singleton, and distinctions should be introduced in the proofs to discuss

functionals de�ned on a single point.
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combinations of elements of E (I). In view of (31), these conditions can be directly translated into

conditions on actions,20 while conditions such as (20) cannot: convex combinations of elements of

E (I) correspond to randomizations of actions, while the interpretation of general linear combinations

is less natural in this decision theoretic framework.

De�nition 2 A functional ' : X ! R is translation quasinvariant if and only if whenever

'(�x+ (1� �) ke) � '(�y + (1� �) ke) (32)

holds for some � 2 (0; 1), x; y 2 X, and k 2 R such that ke 2 X, then it holds for all k 2 R such that
ke 2 X.

Translation quasinvariance is implied by translation invariance (like quasiconcavity is implied by

concavity) and preserved by increasing transformations. But, clearly, it is weaker and �di¤erently

from translation invariance �it only involves convex combinations of elements of X.

Theorem 4 Let I be a nonsingleton interval in R. The following statements are equivalent for a
functional ' : E (I)! R.

(i) ' is a niveloid.

(ii) ' is monotone, translation quasinvariant, and ' (ke)� ' (he) = k � h for all h; k 2 I.

(iii) ' is monotone and translation invariant.

In this case, ' is concave if and only if

' (�y + (1� �)x) � ' (x)

for all x; y 2 E (I) such that ' (y) = ' (x) and all � 2 (0; 1); moreover, also '̂ is concave.

First observe that E (I) is a convex sublattice of E.

Proposition 6 E (I) is convex, and [x ^ y; x _ y] � E (I) for all x; y 2 E (I) :

Proof. Since esup (�) is convex and einf (�) is concave, for each x; y 2 E (I) and � 2 [0; 1],

� einf (x) + (1� �) einf (y) � einf (�x+ (1� �) y)
� esup (�x+ (1� �) y) � � esup (x) + (1� �) esup (y)

and the �rst and the last term of the chain of inequalities belong to I, thus all terms do, because

I is an interval. Next observe that esup (�) is maxitive and einf (�) is minitive,21 therefore for each
x; y 2 X and all z 2 [x ^ y; x _ y]

einf (x) ^ einf (y) = einf (x ^ y) � einf (z) � esup (z) � esup (x _ y) = esup (x) _ esup (y)

again the �rst and the last term of the chain of inequalities belong to I, thus all terms do. �

Lemma 5 Let 0 2 Io. Then ' : E (I)! R is translation invariant if and only if

'(�x+ (1� �) ke) = '(�x) + (1� �) k (33)

for all x; ke 2 E (I) and all � 2 (0; 1).
20E.g., quasiconcavity of ' on E (I) amounts to uncertainty aversion on A.
21That is, for each x; y 2 E (I), esup (x _ y) = esup (x) _ esup (y) and einf (x ^ y) = einf (x) ^ einf (y) .
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Proof. Assume (33) holds (and notice that 0R 2 Io () 0E 2 E (I)o).

Step 1. If I = (a; b), then ' is translation invariant.

Proof of Step 1. Let x 2 E (I) and c > 0 be such that x+ce 2 E (I). Then a < einf (x), esup (x+ ce) <
b, and there exist � 2 (0; 1) such that

x

�
;
x+ ce

�
2 E (I). Fix such a � and �x " > 0 such that

[�"e; "e] 2 E (I). Choose n � 2 such that
1
nc

1� � < ", thus
1
nc

1� �e 2 E (I). By convexity,

x+ m
n ce

�
=
m

n

x+ ce

�
+
�
1� m

n

� x
�
2 E (I) 8m = 0; 1; :::; n� 1:

Then

'

�
x+

m+ 1

n
ce

�
= '

�
x+

m

n
ce+

1

n
ce

�
= '

�
�

�
x+ m

n ce

�

�
+ (1� �)

1
nc

1� �e
�

but
x+ m

n ce

�
and

1
nc

1� �e 2 E (I). By (33),

'

�
x+

m+ 1

n
ce

�
= '

�
�

�
x+ m

n ce

�

��
+ (1� �)

1
nc

1� � = '
�
x+

m

n
ce
�
+
c

n
8m = 0; 1; :::; n� 1:

and

' (x+ ce)� ' (x) =
n�1X
m=0

�
'

�
x+

m+ 1

n
ce

�
� '

�
x+

m

n
ce
��

=
n�1X
m=0

c

n
= c

as wanted.22 �

Step 2. If I = (a; b], then ' is translation invariant.

Proof of Step 2. Let x 2 E (I) and c > 0 be such that x + ce 2 E (I). Then a < einf (x) and

esup (x+ ce) � b. Choose n � 2 such that b� c

n
> 0 and einf

�
b

b� c
n

x

�
> a. Set � =

b� c
n

b
2 (0; 1)

so that
1
nc

1� � = b 2 I. For each m = 0; 1; :::; n� 1,

a < einf (x) � einf
�
x+

m

n
ce
�
� esup

�
x+

m

n
ce
�
� b� c

n
< b: (34)

Divide all the terms by � to obtain

a < einf
�x
�

�
� einf

�
x+ m

n ce

�

�
� esup

�
x+ m

n ce

�

�
�
b� c

n

�
= b

and hence
x+ m

n ce

�
2 E (I) for all m = 0; 1; :::; n� 1. Then, since

1
nc

1� �e = be 2 E (I),

' (x+ ce) = '

�
x+

n� 1
n

ce+
1

n
ce

�
= '

�
�

�
x+ n�1

n ce

�

�
+ (1� �)

1
nc

1� �e
�

= '

�
�

�
x+ n�1

n ce

�

��
+ (1� �)

1
nc

1� � = '

�
x+

n� 1
n

ce

�
+
c

n
:

Also, by (34), x; x+ n�1
n e 2 E ((a; b)) � E ((a; b]), and by Step 1,

' (x+ ce) = '

�
x+

n� 1
n

ce

�
+
c

n
= ' (x) +

n� 1
n

c+
c

n

as wanted. �
22Actually, this proves that the lemma is true for any open convex subset X of E containing 0.
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Step 3. If I = [a; b), then ' is translation invariant.

Proof of Step 3. Notice that �I = (�b;�a] contains 0 in its interior. Moreover, �E (I) = E (�I)
and ' : E ((�b;�a]) ! R satis�es (33). In fact, for each x; ke 2 �E (I) and each � 2 (0; 1),

�x;�ke 2 E (I), then

' (�x+ (1� �) ke) = �' (� (�x+ (1� �) ke)) = �' (� (�x) + (1� �) (�k) e)
= �' (� (�x))� (1� �) (�k) = ' (�x) + (1� �) k:

Step 2 implies that ' is translation invariant, and so is '. �

Step 4. If I = [a; b], then ' is translation invariant.

Proof of Step 4. If I = [a; b], c > 0, and x; x+ ce 2 E (I), then x; x+ c
2e 2 E ([a; b)) and x+

c
2e; x+

ce 2 E ((a; b]). By the previous steps, ' is translation invariant both on E ([a; b)) and on E ((a; b]).

Therefore

' (x+ ce) = '
��
x+

c

2
e
�
+
c

2
e
�
= '

�
x+

c

2
e
�
+
c

2
= ' (x) +

c

2
+
c

2
:

as wanted. �

Steps 1-4 prove that if (33) holds, then ' is translation invariant, the converse is trivial. �

Lemma 6 ' : E (I)! R is translation invariant if and only if

'(�x+ (1� �) ke) = '(�x+ (1� �)he) + (1� �) (k � h) (35)

for all x; ke; he 2 E (I) and � 2 (0; 1).

Proof. Fix h 2 Io. For all x; ke 2 E (I) and � 2 (0; 1), (35) implies

'(he+ � (x� he) + (1� �) (k � h) e) = '(he+ � (x� he)) + (1� �) (k � h) :

Thus

 (y) = ' (y + he) 8y 2 E (I � h) (36)

satis�es (33) and, by Lemma 5 it is translation invariant. In turn,

' (x) =  (x� he) 8x 2 E (I)

is translation invariant too.

Conversely, translation invariance of ' clearly implies (35). �

Lemma 7 Let ' : E (I) ! R be monotone. Then ' is translation invariant if and only if it is

translation quasinvariant, and ' (ke)� ' (he) = k � h for all h; k 2 I.

Proof. Assume ' is translation quasinvariant, and ' (ke) � ' (he) = k � h for all h; k 2 I. Let

x; ke; he 2 E (I) and � 2 (0; 1). Monotonicity and the fact that there exists c 2 R such that

' (te) = t+ c 8t 2 I (37)

imply that

'(�x+ (1� �) ke) = ' (�{e+ (1� �) ke) (38)

for some { 2 [einf (x) ; esup (x)] � I. Translation quasinvariance implies

'(�x+ (1� �)he) = ' (�{e+ (1� �)he) (39)

which together with (37) delivers (35) so that ' is translation invariant. The converse is trivial.23 �
23Notice that the assumption of translation quasinvariance can be replaced with the weaker requirement that (38)

implies (39) provided x; ke; he;{e 2 E (I) and � 2 (0; 1).
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Lemma 8 A translation invariant and monotone functional ' : E (I)! R is a niveloid.

Proof. In view of Lemma 2, it is su¢ cient to show that ~' is monotone; i.e., that ' (x)+ c � ' (y)+d

if x; y 2 E (I), c; d 2 R, and x + ce 6 y + de. Setting k = d � c, it will be shown that y + ke > x

implies ' (y) + k � ' (x).

Let b = esup (x) _ esup (y) 2 I.

� If k � b � esup (y), then einf (x) � einf (y + ke) and esup (y + ke) = esup (y) + k � b, so that

y + ke 2 E (I) and ' (x) � ' (y + ke) = ' (y) + k.

� Else k > b� esup (y) � 0 and x 6 be. There are two subcases:

I if k � b� einf (y), then

' (y) + k � ' (einf (y) e) + k = ~' (0) + einf (y) + k

� ~' (0) + b = ' (be) � ' (x) ;

I if k < b� einf (y) and einf (y) < b�k < esup (y), then y+ke > x implies (y + ke)^ be > x,

but (y + ke)^be 2 E (I), in fact x 6 (y + ke)^be � be, and (y + ke)^be = (y ^ (b� k) e)+
ke. Notice that also y ^ (b� k) e 2 E (I) since (b� k) 2 (einf (y) ; esup (y)) � I. Therefore

' (y) + k � ' (y ^ (b� k) e) + k = ' ((y ^ (b� k) e) + ke)
= ' ((y + ke) ^ be) � ' (x) :

As wanted. �

Lemma 9 Let X = E (I) or X be a convex tube, and ' : X ! R be a niveloid. Then

' (�y + (1� �)x) � ' (x) (40)

for all x; y 2 X such that ' (y) = ' (x) and all � 2 (0; 1) if and only if ' is concave.

Proof. Clearly concavity of ' imply (40) for all x; y 2 X such that ' (y) = ' (x) and all � 2 (0; 1).
Conversely, assume �rst X = E (I). Let xo 2 Xo, there exists " > 0 such that

Xo � U" (xo) = [xo � "e; xo + "e] :

By Lipschitz continuity of order 1, kx� xok � "=3 implies j' (x)� ' (xo)j � "=3. Then, if x; y 2
U"=3 (xo),

j' (x)� ' (y)j � j' (x)� ' (xo)j+ j' (xo)� ' (y)j �
2

3
"

and � 2
3" � ' (x) � ' (y) � 2

3". That is, �
2
3"e 6 te 6 2

3"e where t = ' (x) � ' (y). Moreover,

xo � 1
3"e 6 y 6 xo +

1
3"e and

xo � "e 6 y + te 6 xo + "e

so that y + te 2 Xo. Since y 2 Xo too, then ' (y + te) = ' (y) + t = ' (x), and (40) implies

' (� (y + te) + (1� �)x) � ' (x) 8� 2 (0; 1) : (41)

Hence

' (x) � ' (� (y + te) + (1� �)x) = ' (�y + (1� �)x+ �te)
= ' (�y + (1� �)x) + �t = ' (�y + (1� �)x) + � (' (x)� ' (y))
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that is

' (�y + (1� �)x) � �' (y) + (1� �)' (x) 8� 2 (0; 1) (42)

and ' is concave in U"=3 (xo). Conclude, by arbitrarity of the choice of xo, that ' is locally concave

on Xo. A standard result from convex analysis yields concavity on Xo. Finally, the continuity of '

implies its concavity on the whole X. This proves the �rst case. To prove the second, for all x; y 2 X
and � 2 (0; 1), set t = ' (x)�' (y). Since X is a tube, y+ te 2 X, and ' (y + te) = ' (y) + t = ' (x).

Repeat the argument leading from (41) to (42). �

Proof of Theorem 4. (i) =) (ii) is trivial. (ii) =) (iii) is Lemma 7. (iii) =) (i) is Lemma 8. The

concavity properties descend from Lemma 9, Proposition 4, and '̂ = �' . �

By Theorem 4, if ' : E (I) ! R is a concave niveloid, then its minimal niveloidal extension '̂

is concave. A fortiori, '̂ is the minimal concave niveloidal extension of '. Clearly, the maximal

niveloidal extension �' may fail to be concave. Nonetheless, the next and �nal theorem of this paper

shows that ' admits a maximal concave niveloidal extension, denoted by �'. Such extension is the

pointwise supremum of all concave niveloidal extensions of '. This result is somehow surprising

since the supremum of concave (resp. quasiconcave) functions is not concave (resp. quasiconcave) in

general.

Theorem 5 Let ' : E (I)! R be a concave niveloid. Then

'̂ (y) = inf
�
 (y) :  is a concave niveloid on E such that  jE(I) = '

	
8y 2 E (43)

is the minimal concave niveloid on E that extends '.

Analogously, the functional de�ned on E by

�' (y) = sup
�
 (y) :  is a concave niveloid on E such that  jE(I) = '

	
8y 2 E (44)

is the maximal concave niveloid on E that extends '.

In particular, if  is a concave niveloid on E such that  jE(I) = ', then

'̂ �  � �':

Before entering the proof�s details, notice that, in general �' < �'.

Example 3 Consider the positive unit box [0; 1]2 in the real plane R2, and ' (t; r) = min ft; rg. Then
'̂ = �' and by (10) it follows that

�' (2; 0) = 0 < 1 = inf
0�t;r�1

(2 + min f0; r � tg) = inf
0�t;r�1

(min ft; rg+max f2� t;�rg) = �' (2; 0) :

Proof of Theorem 5. As already observed, the �rst part of the statement follows from Theorem 4.

Set X = E (I) and

	 =
�
 : E ! R j  is a concave niveloid on E and  jX = '

	
=
�
 : E ! R j  is a concave niveloid on E and  jXo = '

	
:

For each  2 	 denote by  � and @ the concave conjugate and superdi¤erential of  .24 Set

� (f) = inf
 2	

 � (f) 8f 2 E�:

24 If f 2 E� and y 2 E,  � (f) = infz2E (hz; fi �  (z)) and @ (y) = fg 2 E� :  (z) �  (y) + hz � y; gi 8z 2 Eg :
Recall that @ (y) = fg 2 E� : hy; gi �  (y) =  � (g)g =

�
g 2 E� : g � d+ (y)

	
, see [1], [13], and [21].
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The e¤ective domain of all  �, and hence that of � : E� ! [�1;1), is contained in �. Moreover,
since all  � are weakly* upper semicontinuous, so is �. For each x 2 Xo and q 2 @' (x) (= @ (x) for

all  2 	)
hx; qi � ' (x) = hx; qi �  (x) =  � (q) = � (q) (45)

so that � is proper. Therefore

�� (y) = min
p2�

(hy; pi � � (p)) 8y 2 E

is a concave niveloid, and �� �  for all  2 	. Finally, for each x 2 Xo and q 2 @' (x) it follows

�� (x) � ' (x) = hx; qi � � (q) � �� (x), that is, �� 2 	 and �� = �'. �
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