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Abstract

The definition and investigation of general classes of nonparametric priors has recently
been an active research line in Bayesian Statistics. Among the various proposals, the Gibbs–
type family, which includes the Dirichlet process as a special case, stands out as the most
tractable class of nonparametric priors for exchangeable sequences of observations. This is
the consequence of a key simplifying assumption on the learning mechanism, which however
has justification except that of ensuring mathematical tractability. In this paper we remove
such an assumption and investigate a general class of random probability measures going
beyond the Gibbs–type framework. More specifically, we present a nonparametric hierarchical
structure based on transformations of completely random measures, which extends the popular
hierarchical Dirichlet process. This class of priors preserves a good degree of tractability, given
we are able to determine the fundamental quantities for Bayesian inference. In particular, we
derive the induced partition structure and the prediction rules, and also characterize the
posterior distribution. These theoretical results are also crucial to devise both a marginal
and a conditional algorithm for posterior inference. An illustration concerning prediction in
Genomic sequencing is also provided.
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1 Introduction

The proposal of novel classes of priors for Bayesian nonparametric inference typically aims at

increasing modeling flexibility, while preserving analytical or computational tractability. In fact,

the ubiquitous Dirichlet process stands out in terms of tractability due to its conjugacy property

but it appears quite limited in terms of flexibility for a number of relevant applied problems. These

limitations spurred a considerable stream of papers in the last 15 years. Recent accounts on this

subject can be found in the monographs by Hjort et al. (2010), Müller et al. (2015) and Phadia

(2013). Among the proposed generalizations, Gibbs–type priors play a prominent role as shown

in De Blasi et al. (2015), where an account of their possible uses for Bayesian inference is given.

They are defined through a system of predictive distributions, whose weights depend on a sequence

of non–negative numbers that solve a simple system of recursive equations and on a parameter

σ < 1. Importantly, they include, as special cases, several instances of popular random probability

measures such as, e.g., the Dirichlet process itself and the Pitman–Yor process.

The present contribution shows that even moving beyond the Gibbs–type setting, one can still

identify classes of priors that are amenable to a full Bayesian analysis. Previous attempts in this

direction focus on specific cases and are clearly affected by the challenging analytical hurdles that

arise. See, e.g., Lijoi et al. (2005) and Favaro et al. (2011). In order to provide a preliminary

description of the problem, suppose that X is a Polish space and X is the associated Borel σ–

algebra. We denote by PX the space of all probability measures on (X,X ), which is assumed to

be equipped with the topology of weak convergence and PX represents the corresponding Borel

σ–algebra. Then consider an exchangeable sequence of X–valued observations X = {Xi}i≥1 such

that

Xi|p̃
iid∼ p̃, i ≥ 1

p̃ ∼ Q.
(1)

Hence, the prior Q is a probability measure on (PX,PX) and most popular choices are such that Q
selects with probability 1 a discrete distribution on X. The Dirichlet process (Ferguson, 1973), the

Pitman–Yor process (Pitman & Yor, 1997) and normalized random measures with independent

increments (Regazzini et al., 2003) are notable examples. Almost sure discreteness of p̃ entails

that ties within the data may occur with positive probability, i.e. P[Xi = Xj ] > 0 for any i 6= j.

Hence, a vector of n observations X(n) = (X1, . . . , Xn) will display k ≤ n distinct values, say

x∗1, . . . , x
∗
k, with respective frequencies n1, . . . , nk. If P0 is a non–atomic distribution, we say that

Q is a Gibbs–type prior with parameter σ < 1 and base measure P0 if

P[Xn+1 ∈ A |X(n)] =
Vn+1,k+1

Vn,k
P0(A) +

Vn+1,k

Vn,k

k∑
j=1

(nj − σ) δx∗j (A) (2)

for any A ∈X . The coefficients {Vn,k : n ≥ 1, 1 ≤ k ≤ n} are solutions of the system of recursive

equation Vn,k = Vn+1,k+1 + (n − kσ)Vn+1,k, with initial condition V1,1 := 1. Gibbs–type priors

have been introduced in Gnedin & Pitman (2005), where one can also find a characterization of the

Vn,k’s corresponding to different values of σ < 1, and rephrased in predictive terms as (2) in Lijoi

et al. (2007). For our purposes, it is also important to stress that such a specification amounts to

assuming that the pair (X,Q) induces a random partition Ψ of N such that, for any n ≥ 1,

P[Ψn = {C1, . . . , Ck}] = Vn,k

k∏
j=1

(1− σ)nj−1 (3)
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identifies a random partition of [n] = {1, . . . , n}, nj = ](Cj) is the cardinality of Cj and (a)q =

Γ(a + q)/Γ(a) for any a > 0 and integer q ≥ 0. In this case, one has that i, j ∈ [n] are in the

same cluster of Ψn if and only if Xi = Xj . Note that the probability of observing a value not

contained in {x∗1, . . . , x∗k}, namely a “new” observation, is Vn+1,k+1/Vn,k: it depends on n and k

but not on the frequencies n1, . . . , nk. The same obviously holds for the probability of sampling

any of the “old” observations, which is 1 − Vn+1,k+1/Vn,k. This simplifying assumption on the

learning mechanism (2) is the key reason for the mathematical tractability of Gibbs–type priors

but clearly represents a restriction from an inferential point of view. See De Blasi et al. (2015)

for a discussion. Here we remove this assumption and study random probability measures that

lead to a more general predictive distribution, where the weights make use of all the information

contained in the sample. To this end, we focus on a class of priors Q such that (X,Q) induces a

random partition of N that is obtained as a mixture of random partitions on N having a simpler

structure as they are induced by a wide class of discrete random probability measures with diffuse

base measure. This representation is the key for obtaining an expression suitable to carry out

posterior inference. This construction corresponds to the popular hierarchical processes, that are

deeply related to the huge probabilistic literature on coagulation and fragmentation processes. See

Kingman (1982) and Bertoin (2006). From a statistical standpoint, nice works connected to our

contribution, though in a different dependence setup for the observations, can be found in Teh &

Jordan (2010), Wood et al. (2011), Nguyen (2015) and Camerlenghi et al. (2016). It is finally worth

mentioning another considerable body of work in the literature where instances of non Gibbs–type

priors have been proposed and investigated. However, unlike our contribution, in all these papers

the exchangeability assumption is dropped. Examples can be found in Fuentes-Garćıa et al. (2010),

Bassetti et al. (2010), Müller et al. (2011), Navarrete & Quintana (2011), Airoldi et al. (2014),

Quintana et al. (2015) and Dahl et al. (2016).

Section 2 recalls some basic notions on completely random measures, which are then used to

define normalized random measures with independent increments and the Pitman–Yor process. In

Section 3 we introduce a prior Q that induces a system of predictive distributions, for which, in

contrast to (2), the probability of a new observation depends on the cluster frequencies n1, . . . , nk
and hence use the full sample information. This generality clearly complicates their analysis, but we

are still able to determine the probability distribution of the induced random partition. Moreover,

in Section 4 we prove a posterior characterization, given the data and the latent variables. These

findings, in addition to their theoretical interest, are also relevant for computational purposes.

Indeed, we devise both a marginal algorithm that extends the standard Blackwell–MacQueen urn

scheme and a conditional algorithm that simulates approximate realizations of p̃ from its posterior

distribution. See Section 5. Finally, resorting to the marginal algorithm some prediction problems

related to genomic data are faced in Section 6. Proofs are deferred to the Appendix.

2 Completely random measures and discrete nonparametric
priors

Most commonly used priors on infinite–dimensional spaces can be described in terms of suitable

transformations of completely random measures, which can be seen as a unifying concept of the

field as argued in Lijoi & Prünster (2010). Also our construction relies on completely random

measures and, hence, we briefly recall a few definitions and introduce some relevant notation that

occurs throughout.
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Let MX denote the space of all boundedly finite measures on (X,X ), namely m(A) < ∞ for

any m ∈ MX and for any bounded Borel set A ∈ X . The space MX is assumed to be endowed

with the Borel σ–field MX (see Daley & Vere-Jones, 2008). A random measure µ̃ is a measurable

map from a probability space (Ω,F ,P), taking values in (MX,MX). If one further has that the

random variables µ̃(A1), . . . , µ̃(An) are independent for any choice of bounded disjoint measurable

sets A1, . . . , An ∈ X , and any n ≥ 1, then µ̃ is termed completely random measure (CRM) on

(X,X ). See Kingman (1993) for an exhaustive account. If a CRM µ̃ does not have jumps at fixed

points in X, then µ̃ =
∑
i≥1 JiδYi , where {Ji}i≥1 are independent random jumps and {Yi}i≥1 are

independent and identically distributed (iid) random atoms. In this case, there exists a measure

ν, termed Lévy intensity, on R+ ×X such that
∫
R+×B min{1, s} ν(ds,dx) < ∞, for any bounded

B ∈X , and

E
[
e−

∫
X
f(x)µ̃(dx)

]
= exp

{
−
∫
R+×X

(1− e−sf(x))ν(ds,dx)

}
,

for any measurable function f : X → R+. In the following we consider almost surely finite

CRMs and, for the sake of illustration, assume the jumps {Ji}i≥1 and the locations {Yi}i≥1 to be

independent which amounts to having a Lévy intensity of the form

ν(ds,dx) = ρ(s)dscP0(dx)

for some constant c > 0 and a non–atomic probability measure P0 on (X,X ). We will write

µ̃ ∼ CRM(ρ, c;P0).

2.1 Transformations of CRMs

The first class of priors we consider has been introduced in Regazzini et al. (2003) and it is obtained

through a normalization of a CRM. Indeed, if µ̃ ∼ CRM(ρ, c;P0) and ρ is such that
∫∞

0
ρ(s) ds =∞,

then p̃ = µ̃/µ̃(X) defines a random probability measure on (X,X ) which is termed normalized

random measure with independent increments (NRMI), in symbols p̃ ∼ NRMI(ρ, c;P0). Such a

construction includes, as special cases, several noteworthy priors. In particular, one obtains the

Dirichlet process with base measure cP0 when ρ(s) = s−1 e−s and the normalized σ–stable process

(Kingman, 1975), arising from the normalization of a σ–stable CRM, specified by the choice c = 1

and ρ(s) = σ s−1−σ/Γ(1− σ) for some σ ∈ (0, 1).

The other popular class of random probability measures we are going to consider is the Pitman–

Yor process, which may be defined in different ways. A relevant construction for our purposes is

as follows. Let µ̃0,σ be a σ–stable CRM with base measure P0 and denote with Pσ its probability

distribution. Introduce, now, another random measure µ̃σ,θ whose probability distribution Pσ,θ on

(MX,MX) is absolutely continuous with respect to Pσ and has Radon–Nikodym derivative

dPσ,θ
dPσ

(m) = m(X)−θ
σΓ(θ)

Γ(θ/σ)
(4)

Then the random probability measure p̃ = µ̃σ,θ/µ̃σ,θ(X) is termed Pitman–Yor process or two–

parameter Poisson–Dirichlet process. See Pitman & Yor (1997). Henceforth we use the notation

p̃ ∼ PY(σ, θ;P0).

2.2 Exchangeable random partitions

Both NRMIs and the Pitman–Yor process are discrete random probability measures. Hence, when

used to model exchangeable data as in (1), they induce a random partition Ψ ofN, whose restriction
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Ψn on [n] = {1, . . . , n} is such that any two integers i and j in [n] are in the same partition set

if and only if Xi = Xj . From a probabilistic standpoint, such a partition is characterized by the

so–called exchangeable partition probability function (EPPF). See Pitman (2006). It also plays

a pivotal role to infer the clustering structure featured by the data and to carry out posterior

inference. It is defined as

Φ
(n)
k (n1, . . . , nk) :=

∫
Xk
E[p̃n1(dx1) · · · p̃nk(dxk)] (5)

for any n ≥ 1, k ∈ {1, . . . , n} and vector (n1, . . . , nk) of positive integers such that
∑k
i=1 ni = n.

This is nothing but the probability of having a partition Ψn = {C1, . . . , Ck} of [n] into k sets with

frequencies nj = ](Cj) and, relative to (1), is the probability of observing a specific sample X(n)

featuring k distinct values with respective frequencies (n1, . . . , nk). Hence, for Gibbs–type priors,

the form of Φ
(n)
k is readily available from (3) and it displays a simple product form. For example,

for the Pitman–Yor process with parameters σ ∈ (0, 1) and θ > −σ one has

Φ
(n)
k (n1, . . . , nk) =

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
j=1

(1− σ)nj−1. (6)

Also for NRMIs the expression of Φ
(n)
k is known. Indeed, if p̃ ∼ NRMI(ρ, c;P0) in (1), with

non–atomic P0, one has

Φ
(n)
k (n1, . . . , nk) =

ck

Γ(n)

∫ ∞
0

un−1 e−cψ(u)
k∏
j=1

τnj (u) du (7)

with ψ(u) =
∫∞

0
[1 − e−uv] ρ(v) dv and τr(u) =

∫∞
0
vr e−uv ρ(v) dv for any integer r ≥ 1. For

example, when ρ(s) = s−1 e−s, then Φ
(n)
k (n1, . . . , nk) = ck

∏k
i=1(ni − 1)!/(c)n which is the EPPF

corresponding to the Dirichlet process. On the other hand, if ρ(s) = σ s−1−σ/Γ(1− σ) it is easily

checked from (7) that Φ
(n)
k (n1, . . . , nk) = σk−1 Γ(k)

∏k
i=1(1− σ)ni−1/Γ(n), which is the EPPF of

a normalized σ–stable process.

It is worth noting that these three examples display the structure of a Gibbs–type prior and

they are characterized by the specific weights Vn,k and the value of σ. Hence, all these models

yield a predictive distribution (2) for which the probability of observing a new value at the (n+1)–

th step of the process, conditional on the first n values, does not depend on cluster frequencies

(n1, . . . , nk) in X(n). Next we remove such a simplifying condition, which is not justified from

a modeling perspective, and work out explicit expressions of the EPPF that arise as mixtures of

simpler EPPFs of the form displayed in this section.

3 Hierarchical processes

An effective strategy for obtaining a more complex structure than the one displayed by Gibbs–

type priors is the use a mixture model. Let Q( · |P0) be a probability distribution on PX such that∫
PX
p(A)Q(dp|P0) = P0(A), for any A ∈X . Q in (1) may then be defined as

p̃ | p̃0 ∼ Q( · | p̃0), p̃0 ∼ Q′( · |P0) (8)

for some non–atomic distribution P0 on X. Natural specifications for Q( · | p̃0) and Q′( · |P0) are

then the probability distributions of either a NRMI or a Pitman–Yor process. Alternatively, the
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model can be viewed as a random partition of N obtained as a mixture over a space of partitions

induced by p̃0. Such an interpretation will become apparent when stating our results. The model

in (8) corresponds to a hierarchical process introduced in a multi–sample setting in Teh et al.

(2006), with both Q( · | p̃0) and Q′( · |P0) being the probability distributions of Dirichlet processes,

and known as hierarchical Dirichlet process.

In order to gain an intuitive insight on the induced partition structure we resort to a variation of

the popular Chinese restaurant franchise metaphor in Teh et al. (2006), which we term multi–room

Chinese restaurant. According to this scheme, the restaurant has a menu of infinitely many dishes

(with labels generated by the non–atomic base measure P0 in (8)) and rooms, with each room

containing infinitely many tables, where people may be seated. Each person in the same room,

regardless of the table she is seated at, eats the same dish in the menu. Different rooms serve

different dishes. The generative construction is as follows: the first customer picks a dish from

the menu, is assigned to a room and seated at one of its tables. The n–th customer entering the

restaurant may either select a dish already chosen from the menu by at least one of the previous

n− 1 customers or a new dish. In the former case, she will be seated in the room serving her dish

of choice, which hosts all other people, among the previous n−1, who have selected that very same

dish. She may be seated either at a new table or at an existing table. If a new dish is chosen, the

n–th customer will sit in a new room and at a new table. This scheme implies that distinct tables

may share the same dish (as long as they are in the same room, which is the only one serving

that dish). The key difference w.r.t. the standard Chinese restaurant process description of the

Dirichlet process and of other Gibbs–type priors is that here we allow the same dish to be served at

different tables. In the sequel Xi represents the dish eaten by the i–th customer of the restaurant,

for i = 1, . . . , n, whereas the tables are latent variables which denoted by T1, . . . , Tn. Moreover,

if k distinct dishes are served in the restaurant, with respective labels X∗1 , . . . , X
∗
k , the frequency

nj in (5) represents the total number of customers seating in room j or, equivalently, eating dish

j. Then `j ∈ {1, . . . , nj} is the number of occupied tables in room j, and qj,t is the number of

customers seating at table t in room j, under the obvious constraint
∑`j
t=1 qj,t = nj . Hence, the

actual random partition has a probability distribution that is obtained by mixing with respect to

all tables’ configurations {(qj,t, `j) : t = 1, . . . , `j}, for j ∈ {1, . . . , k}. This description clearly

hints at an immediate connection with the theory of coagulation and fragmentation processes as

nicely accounted for in the monograph Bertoin (2006).

3.1 Hierarchies of NRMIs

We first examine the following class of random probability measures

p̃ | p̃0 ∼ NRMI(ρ, c; p̃0)

p̃0 ∼ NRMI(ρ0, c0;P0)
(9)

and, for notational convenience, in the sequel we set |x| =
∑k
i=1 xi, for any x = (x1, . . . , xk) ∈ Rk

and for any k ≥ 1.

Theorem 1. Suppose {Xn}n≥1 is an exchangeable sequence of X–valued random elements accord-

ing to (1), where p̃ ∼ Q is such that

p̃ | p̃0 ∼ NRMI(ρ, c; p̃0), p̃0 ∼ NRMI(ρ0, c0;P0).
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Then the EPPF that characterizes the random partition induced by (X1, . . . , Xn), for any n ≥ 1,

coincides with

Π
(n)
k (n1, . . . , nk) =

∑
`

Φ
(|`|)
k,0 (`1, . . . , `k)

k∏
j=1

1

`j !

∑
qj

(
nj

qj,1, . . . , qj,`j

)

× Φ
(n)
|`| (q1,1, . . . , q1,`1 , . . . , qk,1, . . . , qk,`k)

(10)

where Φ
(·)
· and Φ

(·)
·,0 indicate the EPPFs (7) associated to NRMIs with parameters (ρ, c) and (ρ0, c0),

respectively. Moreover, the first sum runs over all vectors of ` = (`1, . . . , `k) such that `i ∈
{1, . . . , ni} and the j–th of the other k sums runs over all qj = (qj,1, . . . , qj,`j ) such that qj,i ≥ 1

and |qj | = nj.

The expression in (10) can be readily rewritten in an equivalent form which discloses a nice in-

terpretation of exchangeable random partitions induced by hierarchical NRMIs. One can represent

Π
(n)
k as a mixture over spaces of partitions, which can be described in terms of the multi–room

Chinese restaurant metaphor: (i) the n customers are partitioned into t tables according to the

NRMI with parameters (c, ρ); (ii) these t tables are are further allocated into k distinct rooms

in the restaurant according to the NRMI with parameters (c0, ρ0) and this step corresponds to

gathering the tables being served the same dish. The following Corollary effectively describes this

structure.

Corollary 1. If {Xn}n≥1 is as in Theorem 1, then

Π
(n)
k (n1, . . . , nk) =

n∑
t=k

∑
π∈Pn,t

{
Φ

(n)
t (]Aπ1 , . . . , ]A

π
t )

×
∑

π′∈Pt,k

[
Φ

(t)
k,0(]Aπ

′

0,1, . . . , ]A
π′

0,k)

k∏
j=1

1{nj}

( ∑
i∈Aπ′0,j

]Aπi

)]}

where Pn,t and Pt,k are the spaces of all partitions of [n] = {1, . . . , n} and [t] = {1, . . . , t} into

t and k sets, respectively, the sets Aπ1 , . . . , A
π
t and Aπ

′

0,1, . . . , A
π′

0,k identify the partitions π and π′.

Moreover, for any set A, 1A is the indicator function of A.

Note that the product of indicators on the right–hand side of the equality displayed in Corol-

lary 1 implies that we are summing over all partitions π and π′ such that
∑
i∈Aπ′0,j

]Aπi = nj , for

any j = 1, . . . , k. The multi–room Chinese restaurant interpretation amounts to saying that the

frequency of customers eating dish j at different tables in room j of the restaurant is exactly nj .

Having characterized the distribution of the random partition induced by {Xn}n≥1, it is then

natural to look at the marginal distribution of the number of clusters Kn out of n observations

X(n) = (X1, . . . , Xn). This is a key quantity in a number of applications. For instance, it serves

as a prior distribution on the number of components in nonparametric mixture models or on the

number of distinct species in a sample of size n in species sampling problems. It is identified by

the following

Corollary 2. If {Xn}n≥1 is as in Theorem 1 and Kn is the number of distinct values in X(n),

then

7



P[Kn = k] =

n∑
t=k

1

t!

∑
ν∈∆t,n

(
n

ν1, · · · , νt

)
Φ

(n)
t (ν1, · · · , νt)

× 1

k!

∑
ζ∈∆k,t

(
t

ζ1, · · · , ζk

)
Φ

(t)
k,0(ζ1, · · · , ζk) (11)

where ∆t,n = {ν = (ν1, . . . , νt) : νi ≥ 1, |ν| = n} for any n ≥ 1 and t ∈ {1, . . . , n}.

In general, the sums involved in the mixtures (10) and (11) cannot be evaluated in closed form.

However, as shown in the sequel, expressions like (10) form the backbone for devising suitable

algorithms that allow to sample exchangeable random elements from p̃ and evaluate, among others,

an approximation of the distribution of Kn. The following two examples illustrate the previous

general results.

Example 1. Suppose ρ(s) = ρ0(s) = s−1 e−s, so that (9) corresponds to a hierarchical Dirichlet

process (HDP). See Teh et al. (2006) for its version in a multi–sample setting. A straightforward

application of Theorem 1 yields a novel closed form expression of the EPPF

Π
(n)
k (n1, . . . , nk) =

ck0
(c)n

∑
`

c|`|

(c0)|`|

k∏
j=1

(`j − 1)! |s(nj , `j)|. (12)

where |s(n, k)| are the signless Stirling numbers of the first kind and the sum runs over all vectors

` = (`1, . . . , `k) such that `i ∈ {1, . . . , ni}. The predictive distributions can be determined from

(12). Indeed, using the recursive relationship |s(nj +1, `j)| = nj |s(nj , `j)|+ |s(nj , `j−1)| and some

algebra, one finds out that

P[Xn+1 ∈ · |X(n)] =
c

(c+ n)

∑
`

c0
(c0 + |`|)

π(` |X(n))P0( · )

+

k∑
j=1

[
nj
c+ n

+
c

(c+ n)

∑
`

`j
(c0 + |`|)

π(` |X(n))

]
δx∗j ( · )

where π(` |X(n)) is the posterior distribution of the latent variables ` = (`1, . . . , `k) coinciding

with

π(` |X(n)) ∝ ck0 c
|`|

(c0)|`|
∏k
j=1(c)nj

k∏
j=1

(`j − 1)! |s(nj , `j)| 1{1,...,nj}(`j).

Notice that the predictive probability mass associated to the j–th distinct observation x∗j ’s is

nj/(c + n), which appears also in the Dirichlet prediction rule, and an additional term generated

by the discreteness of p̃0. In other terms, a dish x∗j is picked by the (n + 1)–th customer either

because it is the one served at that particular table she seats at or because she seats at a new

table while picking x∗j from the menu. The latter term does not appear in the standard Chinese

restaurant process associated to the Dirichlet case, where tables and dishes are in one–to–one

correspondence.

One can also give an interesting integral representation of the EPPF corresponding to the HDP

(12). Indeed, if ∆k is the k–dimensional simplex, the definition of the signless Stirling number of
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the first kind entails
∑nj
`j=1 a

`j−1|s(nj , `j)| = (a+ 1)nj−1 and from (12) we deduce

Π
(n)
k (n1, . . . , nk) =

(cc0)k

(c)n

∑
`

∫
∆k

(1− |p|)c0−1
k∏
j=1

(cpj)
`j−1|s(nj , `j)|dp

=
ck

(c)n

ck0
(c0)k

∫
∆k

Dk(dp; 1, . . . , 1, c0)

k∏
j=1

(c pj + 1)nj−1

(13)

where Dk( · ;α1, . . . , αk+1) is the k–variate Dirichlet distribution with parameters (α1, . . . , αk+1).

Finally, note that (13) admits an interesting interpretation by noting that if (Y1, . . . , Yk)|p ∼
Dk(cp1 + 1, . . . , cpk + 1, c(1− |p|), then

Π
(n)
k (n1, . . . , nk) =

(cc0)k

(c)k(c0)k

∫
∆k

E[Y n1
1 · · · Y nkk |p]Dk(dp; 1, . . . , 1, c0)

From (13) one can also readily obtain the corresponding predictive distributions.

Example 2. Let ρ(s) = σ s−1−σ/Γ(1 − σ) and ρ0(s) = σ0 s
−1−σ0/Γ(1 − σ0), with σ and σ0 in

(0, 1). In view of this specification, p̃ is a hierarchical normalized σ–stable process whose base

measure is itself a normalized σ0–stable process. Since the total masses c and c0 are redundant

under normalization, we set c = c0 = 1 with no loss of generality. Based on Theorem 1 one has

Π
(n)
k (n1, . . . , nk) =

∑
`

σk−1
0 Γ(k)

Γ(|`|)
σ|`|−1 Γ(|`|)

Γ(n)

k∏
j=1

(1− σ0)`j−1
C (nj , `j ;σ)

σ`j

where C (n, k;σ) = 1
k!

∑k
i=0(−1)i

(
k
i

)
(−iσ)n is the generalized factorial coefficient, for any k ≤ n (see

Charalambides (2002)), and the sum runs over all vectors ` = (`1, . . . , `k) such that `i ∈ {1, . . . , ni}.
Now rewrite Π

(n)
k (n1, . . . , nk) as

Π
(n)
k (n1, . . . , nk) =

σk−1
0 Γ(k)

σΓ(n)

k∏
j=1

nj∑
`j=1

C (nj , `j ;σ) (1− σ0)`j−1

=
(σ σ0)k−1 Γ(k)

Γ(n)

k∏
j=1

(1− σ σ0)nj−1

(14)

where the last equality follows immediately by the definition of generalized factorial coefficients.

We observe that the EPPF in (14) is the one of a normalized (σσ0)–stable process. From a

probabilistic point of view, the hierarchical construction can also be seen as subordination and, as

such, (14) is an important and well–known formula originally derived in Pitman (1999), which has

found several applications in Population Genetics with reference to coagulation phenomena.

3.2 Hierarchies of Pitman–Yor processes

The results displayed in Section 3.1 can be extended to the case where Q( · |p̃0) and Q′( · |P0) in

(8) are the probability distributions of Pitman–Yor process, namely

p̃ | p̃0 ∼ PY(σ, θ; p̃0)

p̃0 ∼ PY(σ0, θ0;P0)
(15)

being σ, σ0 ∈ (0, 1), θ > 0 and θ0 > 0. We also refer to p̃ in (15) as hierarchical Pitman–Yor process

and use the acronym HPYP. The following result provides the corresponding partition structure.
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Theorem 2. Let {Xn}n≥1 be an exchangeable sequence of X–valued random elements as in (1),

with p̃ being a HPYP. Then the EPPF that characterizes the random partition of N induced by

{Xn}n≥1 is

Π
(n)
k (n1, . . . , nk) =

∏k−1
r=1(θ0 + rσ0)

(θ + 1)n−1

∑
`

∏|`|−1
s=1 (θ + sσ)

(θ0 + 1)|`|−1

k∏
j=1

C (nj , `j ;σ)

σ`j
(1− σ0)`j−1 (16)

where the sum runs over all vectors of positive integers ` = (`1, . . . , `k) such that `i ∈ {1, . . . , ni},
for each i = 1, . . . , k.

Remark 1. For the special case of θ = θ0σ in (15), and proceeding as for hierarchies of normalized

σ–stable processes in Example 2, the EPPF (16) reduces to that of a simple PY process, or in

other terms, p̃ ∼ PY(σσ0, θ0σ;P0) and this can be easily checked through (16). Such a coagulation

property was first established in Pitman (1999). See also Bertoin (2006).

Having the EPPF (16) at hand, one can derive the predictive distributions in a similar vein to

the HDP case considered in Example 1. In fact,

P[Xn+1 ∈ · |X(n)] =
∑
`

(
θ + |`|σ
θ + n

) (
θ0 + kσ0

θ0 + |`|

)
π(` |X(n))P0( · )

+

k∑
j=1

∑
`

{
nj − `jσ
θ + n

+

(
θ + |`|σ
θ + n

) (
`j − σ0

θ0 + |`|

)}
π(` |X(n))δX∗j ( · )

where π(` |X(n)) is the posterior distribution of the latent variables ` = (`1, . . . , `k) coinciding

with

π(` |X(n)) ∝
∏|`|−1
s=1 (θ + sσ)

(θ0 + 1)|`|−1

k∏
i=1

C (ni, `i;σ)

σ`i
(1− σ0)`i−1.

It is then immediately clear that a simulation algorithm can be devised by augmenting with respect

to the latent variables `i’s. Also note that an analogous structural interpretation to the one given

for the HDP holds also here. Similarly to what we have shown for hierarchical NRMIs, one can

establish the probability distribution of Kn.

Corollary 3. Let {Xn}n≥1 be as in Theorem 2. Then

P[Kn = k] =

∏k−1
r=1(θ0 + rσ0)

(θ + 1)n−1

1

σ σk0

n∑
q=k

(
θ
σ + 1

)
q−1

(θ0 + 1)q−1
C (n, q;σ) C (q, k;σ0) (17)

It is worth noting that in both cases covered by Corollary 2 and Corollary 3 one has the following

equality

P[Kn = k] =

n∑
t=k

P[K ′n = t] P[Kt,0 = k] (18)

where K ′n and Kn,0 denote the number of distinct values, out of n exchangeable observations driven

by p̃ and p̃0, respectively. In terms of the multi–room Chinese restaurant process representation,

this amounts to saying that the n customers are seated at t tables and, conditional on having t

tables, these are allocated into k different rooms each being identified by a specific distinct dish.

It is apparent from (18) that Kn
d
= KK′n,0

. Such an equality is the obvious starting point to

investigate the asymptotic behaviour of Kn, which is described in the following

10



Proposition 1. Assume that Kn is the number of distinct values in a sample X(n) from an

exchangeable sequence {Xi}i≥1, governed by a HPYP defined as in (15). Then, as n→∞,

Kn

nσσ0
→ S̃(σ, σ0, θ, θ0)

almost surely, where S̃(σ, σ0, θ, θ0) is a finite and non–negative random variable.

The previous proposition follows from the asymptotic behaviors concerning Kn,0 and K ′n, de-

rived in Pitman (2006). Asymptotic results analogous to Proposition 1 may be derived also for

hierarchical NRMIs (see also Camerlenghi et al. (2016) for a general treatment).

Some other insight on the distribution of Kn in (17) can be gained by means of Figures 1–2,

which correspond to a sample size n = 500. For the plain PY(σ, θ;P0) it is well–known (see Lijoi et

al., 2007) that the parameter σ tunes the flatness: the larger σ and the flatter the distribution ofKn.

On the other hand, θ has a direct impact on the location and a slight influence on variability. For

the HPYP the interaction between the two hierarchies has an important effect. Indeed, increasing

just one of σ and σ0 is not enough to achieve a non–informative situation. One has to increase

at least one parameter for each level of the hierarchy. This is apparent when comparing the two

curves both in right and left panels in Figure 1. In other terms, if σ is low (high) and σ0 is high

(low), one should fix a high value of θ (θ0) to obtain a less informative prior. In both the cases,

the increase of either θ or θ0 induces an expected shift of the distribution of K500 towards a large

number of (a priori) clusters. Figure 2 shows that a large value of σσ0 has the effect of flattening

the prior, regardless of the values of θ and θ0.

Figure 1: Prior distribution of Kn, for n = 500 and for different choices of the parameters
σ, σ0, θ, θ0.

Remark 2. In general, hierarchical processes are not of Gibbs–type, since the probability of

sampling a new value depends explicitly also on n1, . . . , nk. The only exceptions we are aware of are

11



Figure 2: Prior distribution of Kn, for n = 500 and for different values of (σ, σ0), when θ = θ0 = 0.5
are fixed.

the σ–stable hierarchies (see Example 2) and a very specific HPYP (see Remark 1). Nonetheless,

they still preserve a good degree of tractability and the displayed examples represent the most

explicit instances of nonparametric priors outside the Gibbs framework.

Moreover, note that by using the characterization of Gibbs–type priors as σ–stable Poisson–

Kingman models one could define hierarchies of Gibbs–type priors in a straightforward way. Also

Theorem 2 and Corollary 3 could be extended with minor conceptual adaptations but a significant

additional notational burden.

Remark 3. The previous results concern hierarchical processes involving random probability

measures which are structurally the same, i.e. Q( · |p̃0) and Q′( · |P0) in (8) are both either NRMIs

or Pitman–Yor processes. Nonetheless, the techniques used to prove Theorems 1–2 can be easily

adapted to yield the EPPFs and the prediction rules of hierarchical processes where Q( · |p̃0) and

Q′( · |P0) are the probability distribution of a NRMI and of a Pitman–Yor process, respectively, or

vice versa. We omit detailed derivation of the relevant formulas in these cases as they easily follow

from the previous treatment.

4 Posterior characterizations

One of the reasons of the popularity of the Dirichlet process is its conjugacy, which makes full

posterior inference feasible. When moving beyond the Dirichlet process, one typically has to give

up conjugacy but it is still possible to retain a considerable degree of analytical tractability as shown

in James et al. (2009) for the large class of NRMIs. As we will show the same holds for hierarchical

processes in the sense that we are able to derive analytically their posterior distributions. This

completes the picture of their main distributional properties in view of Bayesian inference. As

for the partition structure, the displayed results refer to cases where both levels of the hierarchy

12



involve a NRMI or a Pitman–Yor process, but they can be easily extended to mixed models where

one hierarchy is identified by a NRMI and the other by a Pitman–Yor process. See also Remark 3.

The posterior representations we establish can be used to devise conditional algorithms, which

are important in order to estimate non–linear functionals. See Section 5.2.

4.1 Hierarchical NRMI posterior

Assume that {Xj}j≥1 is a sequence of X–valued exchangeable observations such that Xi|p̃
iid∼ p̃,

with p̃ | p̃0
iid∼ NRMI(ρ, c; p̃0), p̃0 ∼ NRMI(ρ0, c0;P0) and P0 is a non–atomic probability measure

on (X,X ). Recall that x∗1, . . . , x
∗
k denote the distinct observations featured by the sample X(n)

and assume that U0 is a positive random variable whose density function, conditional on the

observations and the tables, denoted as T (n) = (T1, . . . , Tn), equals

f0(u|X(n),T (n)) ∝ u|`|−1e−c0ψ0(u)
k∏
j=1

τ`j ,0(u) (19)

where both the `j ’s and qj,t’s are functions of (X(n),T (n)). The latent variable U0 plays a role

similar to Un in the posterior representation of NRMIs obtained in James et al. (2009). In the

current hierarchical setting, the posterior characterization is described in terms of: (i) the posterior

of p̃0, at the root of the hierarchy, given the data; (ii) the posterior of p̃, conditional on the data

and on p̃0. As it will be apparent from the next Theorems 3–4, the main results are stated in terms

of the CRMs µ̃0 and µ̃.

Theorem 3. Suppose that {Xi}i≥1 is an X–valued sequence of exchangeable observations as

in (9), with p̃ = µ̃/µ̃(X) and p̃0 = µ̃0/µ̃0(X). Then the conditional distribution of µ̃0, given

(X(n),T (n), U0), equals the distribution of the CRM

µ̃∗0 := η∗0 +

k∑
j=1

IjδX∗j (20)

where the two summands on the right–hand–side of (20) are independent. Moreover, η∗0 is a CRM

with intensity ν0(ds,dx) = e−U0sρ0(s)ds c0 P0(dx) and the Ij’s are independent and non–negative

jumps with density

fj(s|X(n),T (n), U0) ∝ s`je−sU0ρ0(s)

It is now possible to provide a posterior characterization of µ̃, which is expressed in terms of a

non–negative random variable Un whose density function is

f(u|X(n),T (n)) ∝ un−1e−cψ(u)
k∏
j=1

`j∏
t=1

τqj,t(u).

The main theorem of the section can now be stated as follows.

Theorem 4. Suppose that {Xi}i≥1 is an X–valued sequence of exchangeable observations as in

(9), with p̃ = µ̃/µ̃(X) and p̃0 = µ̃0/µ̃0(X). Then

µ̃|(X(n),T (n), Un, µ̃
∗
0)

d
= µ̃∗ +

k∑
j=1

`j∑
t=1

Jj,tδX∗j , (21)
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where the two summands on the right–hand–side of (21) are independent. Moreover, µ̃∗ is a CRM

that has intensity ν(ds,dx) = e−Usρ(s)ds c p̃∗0(dx), with p̃∗0 = µ̃∗0/µ̃
∗
0(X) and the jumps Jj,t are

independent and non–negative random variables whose density equals

fj,t(s|X(n),T (n), U) ∝ e−Ussqj,t ρ(s).

Finally, µ̃0 and Un are conditionally independent, given (X(n),T (n)).

We point out that the CRM µ̃∗ in Theorem 4 may be thought of as a hierarchical CRM, in

the sense that, conditional on µ̃∗0, its base measure is random and equals p̃∗0, while the posterior

distribution of µ̃∗0 is specified in Theorem 3. Moreover, note that the expressions in Theorem 4 are

somehow reminiscent of the ones provided in James et al. (2009), with the only difference that here

we have an additional level of hierarchy. Though the following illustrative example refers to the

Dirichlet process, the general results can be easily adapted to determine the posterior distribution

of other specific hierarchical processes based on NRMIs.

Example 3. Let ρ(s) = ρ0(s) = e−s/s. In such a case, we have ψ(u) = ψ0(u) = log(1 + u) and

τq(u) = τq,0(u) = Γ(q)/(1 + u)q. This implies that U0/(1 +U0)|(X(n),T (n)) ∼ Beta(|`|, c0). Next,

by virtue of Theorem 3, one can specialize the posterior of µ̃0 in (20), by noting that

(a) η∗0 is a gamma CRM with intensity e−(1+U0)ss−1 ds c0 P0(dx),

(b) Ij
ind∼ Ga(`j , 1 + U0), namely

fj(s|X(n),T (n), U0) =
(1 + U0)`j

Γ(`j)
x`j−1e−(1+U0)x1(0,∞)(x)

Since the normalized distributions in (a) and (b) do not depend on the scale U0, it follows that

p̃∗0
d
= p̃0|(X(n),T (n)) ∼ D(c0P0 +

k∑
j=1

`jδx∗j )

where D(α) stands for the Dirichlet process with base measure α on X. Theorem 4, in turn,

implies that the conditional distribution of µ̃, given (X(n),T (n), Un), equals the distribution of the

random measure µ̃∗ +
∑k
j=1Hjδx∗j where

(a’) µ̃∗ is a gamma CRM having intensity e−(1+U)ss−1 ds c p̃∗0(dx)

(b’) Hj ∼ Ga(nj , U + 1).

Moreover, note that Un/(1 + Un)|(X(n),T (n)) ∼ Beta(c, n). Hence one has

p̃|(X(n),T (n), p̃∗0) ∼ D(cp̃∗0 +

k∑
j=1

njδx∗j )

and it depends on the latent configuration of T (n) only through p̃∗0.

14



4.2 Hierarchical PY posterior

Results similar to those stated in Theorems 3–4 can also be given for hierarchies of Pitman–Yor

processes and the proofs rely on similar techniques, so we omit them. In this section, we assume

{Xj}j≥1 is a sequence of X–valued exchangeable random elements as in (1), with p̃ being a HPYP

defined as in (15). Moreover, we set p̃0 = µ̃0/µ̃0(X) and p̃ = µ̃/µ̃(X) and, despite µ̃0 and µ̃ are

not CRMs as apparent from (4), we are still able to establish a posterior characterization for p̃.

Theorem 5. Let V0 be such that V σ0
0 ∼ Ga(k + θ0/σ0, 1). Then µ̃0|(X(n),T (n), V0) equals, in

distribution, the random measure µ̃∗0 := η∗0 +
∑k
j=1 IjδX∗j , where η∗0 is a generalized gamma CRM

whose intensity is
σ0

Γ(1− σ0)

e−V0s

s1+σ0
dsP0(dx),

{Ij : j = 1, . . . , k} and η∗0 are independent and Ij
ind∼ Ga(`j − σ0, V0), for j = 1, . . . , k.

One can now state a posterior characterization of µ̃, which is the key for determining the

posterior of a HPYP.

Theorem 6. Let V be such that V σ ∼ Ga(|`|+ θ/σ, 1). Then

µ̃|(X(n),T (n), V, µ̃∗0)
d
= µ̃∗ +

k∑
j=1

HjδX∗j (22)

where the two summands in the above expression are independent. Moreover, µ̃∗ is a generalized

gamma CRM with intensity
σ

Γ(1− σ)

e−V s

s1+σ
ds p̃∗0(dx)

p̃∗0 = (η∗0 +
∑k
j=1 Ijδx∗j )/(η∗0(X) +

∑k
j=1 Ij) and Hj

ind∼ Ga(nj − `jσ, V ).

The posterior distribution of p̃ can be, finally, deduced by normalizing the random measure

(22) and one can further simplify the resulting representation by integrating out V0 and V . This

is effectively illustrated by the following.

Theorem 7. The posterior distribution of p̃0, conditional on (X(n),T (n)), equals the distribution

of the random probability measure

k∑
j=1

WjδX∗j +Wk+1 p̃0,k (23)

where (W1, . . . ,Wk) is a k–variate Dirichlet random vector with parameters (`1 − σ0, . . . , `k −
σ0, θ0 + kσ0), Wk+1 = 1 −

∑k
i=1Wi and p̃0,k ∼ PY(σ0, θ0 + kσ0;P0). Moreover, conditional on

(p̃0,X
(n),T (n)), the posterior distribution of p̃∗ = (µ̃∗ +

∑k
j=1Hjδx∗j )/(µ̃∗(X) +

∑k
j=1Hj) equals

the distribution of the random measure

k∑
j=1

W ∗j δX∗j +W ∗k+1 p̃k (24)

where (W ∗1 , . . . ,W
∗
k ) is a k–variate Dirichlet random vector with parameters (n1 − `1σ, . . . , nk −

`kσ, θ + |`|σ), W ∗k+1 = 1−
∑k
j=1W

∗
j and p̃k | p̃0 ∼ PY(σ, θ + |`|σ; p̃0).
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5 Algorithms

The previous theoretical findings are crucial for establishing computational algorithms which allow

an effective implementation of hierachical processes providing approximations to posterior infer-

ences and to the quantification of uncertainty associated to them. Here we provide two sets of

algorithms. The first one is based on the marginalization of p̃ and is in the spirit of the traditional

Blackwell–MacQueen urn scheme. The second algorithm, on the contrary, simulates the trajec-

tories of p̃ from its posterior distribution and falls within the category of so–called conditional

algorithms.

5.1 Blackwell–MacQueen urn schemes

Here we devise a generalized Blackwell–MacQueen urn scheme that allows to generate elements

from an exchangeable sequence governed by a hierarchical prior as in (8). Such a tool becomes of

great importance if one wants to address prediction problems. Indeed, conditional on observed data

X(n) one may be interested in predicting specific features of additional and unobserved samples

X(m|n) = (Xn+1, . . . , Xn+m)

such as, e.g., the number of new distinct values or the number of distinct values that have appeared

r times in the observed sample X(n) that will be recorded in X(m|n). Such an algorithm suits also

density estimation problems based on a mixture model, where the predictives are to be considered

for the case m = 1 and to be combined with a kernel. For the sake of illustration we confine

ourselves to the HPYP prior (15), though the algorithms easily carry over also to the class of

hierarchical NRMIs, with suitable adaptations.

Let T (n) be an Xn–valued vector of latent tables associated to the observations X(n). They

are from an exchangeable sequence {Ti}i≥1 such that Ti | q̃
iid∼ q̃ and q̃ ∼ PY(σ, θ;P0). In terms

of the multi–room Chinese restaurant process description, Ti can be thought of as the label of the

table where the i–th costumer Xi is seated. It is further assumed that X(n) features k distinct

values x∗1, . . . , x
∗
k, with respective frequencies n1, . . . , nk, and T (n) has |`| distinct values

t∗j,1, . . . , t
∗
j,`j with qj,r = ]{i : Ti = tj,r} r = 1, . . . , `j

for j = 1, . . . , k. From Theorem 2, the marginal probability distribution of (X(n),T (n)) on

(X2n,X 2n) is equivalently identified by the joint probability distribution of the partitions in-

duced by (X(n),T (n)) and of the distinct values associated to such random partitions, which boils

down to

k∏
j=1

P0(dx∗j )

`j∏
i=1

P0(dt∗j,i)

∏k−1
r=1(θ0 + rσ0)

(θ0 + 1)|`|−1

∏|`|−1
r=1 (θ + rσ)

(θ + 1)n−1

k∏
j=1

(1 − σ0)`j−1

`j∏
i=1

(1 − σ)qj,i−1 (25)

because of non–atomicity of P0. The full conditionals of the Gibbs sampler we are going to propose

can now be determined from (25). If V is a variable that is a function of (T1, . . . , Tn+m) and of

(Xn+1, . . . , Xn+m), use V (−r) to denote the generic value of the variable V after removal of Tr, for

r = 1, . . . , n, and of (Xr, Tr), for r = n+ 1, . . . , n+m.

(1) At s = 0, start from an initial configuration X
(0)
n+1, . . . , X

(0)
n+m and T

(0)
1 , . . . , T

(0)
n+m.

(2) At iteration s ≥ 1
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(2.a) With Xr = X∗h generate latent variables T
(s)
r , for r = 1, . . . , n,

P[Tr = “new”| · · · ] ∝ wh,r
(θ + |`(−r)|σ)

(θ0 + |`(−r)|)

P[Tr = T
∗,(−r)
h,κ | · · · ] ∝ (q

(−r)
h,κ − σ) for κ = 1, · · · , `(−r)h

where wh,r = (`
(−r)
h − σ0) if `

(−r)
h ≥ 1 and wh,r = 1 otherwise.

(2.b) For r = n+ 1, . . . , n+m, generate (X
(s)
r , T

(s)
r ) from the following predictive distributions

P[Xr = “new”, Tr = “new”| · · · ] =
(θ0 + (k + j(−r))σ0)

(θ0 + |`(−r)|)
(θ + |`(−r)|σ)

(θ + n+m− 1)

while, for any h = 1, · · · , k + j(−r) and κ = 1, · · · , `(−r)h ,

P[Xr = X
∗,(−r)
h , Tr = “new”| · · · ] =

(`
(−r)
h − σ0)

(θ0 + |`(−r)|)
(θ + |`(−r)|σ)

(θ + n+m− 1)

P[Xn+1 = X
∗,(−r)
h , Tn+1 = T

∗,(−r)
h,κ | · · · ] =

q
(−r)
h,κ − σ

θ + n+m− 1

where T
∗,(−r)
h,κ stands for the distinct values in the sample after the removal of Tr. When n ≥ 1, this

algorithm yields approximate samples (X
(s)
n+1, . . . , X

(s)
n+m), for s = 1, . . . , S, from the exchangeable

sequence {Xi}i≥1 that can be used, e.g., for addressing prediction problems on specific features of

the additional sample Xn+1, . . . , Xn+m as detailed in Section 6.

5.2 Simulation of p̃ from its posterior distribution

The posterior representations determined in Section 4 are the main ingredient for simulating the

trajectories of p̃ from its posterior distribution. Here we address this issue, focusing on the Pitman–

Yor process and the obvious adaptations may be easily deduced to sample posterior hierarchical

NRMIs. The merit of this sampling scheme, compared to the one discussed in Section 5.1, relies

on the possibility to estimate non–linear functionals of p̃ such as, for example, credible intervals

that quantify the uncertainty associated to proposed point estimators.

For the sake of clarity, assume that X = R+. The Ferguson–Klass representation of a CRM

provided in Ferguson & Klass (1972), combined with Theorems 5–6, entails

η∗0((0, t]) =

∞∑
h=1

J
(0)
h 1{M (0)

h ≤ P0((0, t])} (26)

with M
(0)
1 ,M

(0)
2 , . . .

iid∼ U(0, 1), the jumps’ heights J
(0)
h are decreasing and may be recovered from

the identity

S
(0)
h =

σ0

Γ(1− σ0)

∫ ∞
J

(0)
h

e−V0ss−1−σ0ds (27)

where S
(0)
1 , S

(0)
2 , . . . are the points of a standard Poisson process on R+, i.e. S

(0)
h − S

(0)
h−1 are

exponential random variables with unit mean. Similarly one obtains that

µ̃∗((0, t]) =

∞∑
h=1

Jh1{Mh ≤ P0((0, t])}. (28)
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As in (27), the Jh’s are ordered and solve the equation

Sh =
σ

Γ(1− σ)

∫ ∞
Jh

e−V ss−1−σ0ds (29)

with S1, S2, . . . denoting, again, the points of a standard Poisson process on R+ with unit mean.

The terms defining the series representations (26) and (28) can be sampled and, hence, an approx-

imate sampled trajectory of p̃ from its posterior distribution can be determined according to the

following procedure:

(1) Fix ε > 0 and generate an approximate trajectory of p̃0 from the posterior distribution

derived in Theorem 5:

(1.a) generate a random variable V0,σ0
∼ Ga(k + θ0/σ0, 1) and put V0 = (V0,σ0

)1/σ0 ;

(1.b) generate the weights Ij ∼ Ga(`j − σ0, V0), for j = 1, . . . , k, independently;

(1.c) for any h ≥ 1 generate S
(0)
h from the Poisson process

{
S

(0)
h

}
h≥1

with unit rate on R+;

(1.d) determine J
(0)
h from (27);

(1.e) if J
(0)
h ≤ ε stop and set h = H0, otherwise h→ h+ 1 and go to (1.c);

(1.f) generate the random variables M
(0)
1 , . . . ,M

(0)
H0

iid∼ U(0, 1).

An approximate draw of p̃0 would, then, be

p̃∗0((0, t]) ≈
∑H0

h=1 J
(0)
h 1{M (0)

h ≤ P0((0, t])}+
∑k
j=1 Ijδx∗j ((0, t])∑H0

h=1 J
(0)
h +

∑k
j=1 Ij

.

Hence, conditional on this approximate realization of p̃∗0, one can proceed to the second step of the

algorithm

(2) Fix ε > 0 and sample an approximate trajectory of p̃ from its posterior distribution derived

in Theorem 6:

(2.a) generate a random variable Vσ ∼ Ga(|`|+ θ/σ, 1) and put V = (Vσ)1/σ;

(2.b) generate the weights Hj ∼ Ga(nj − `jσ, V ), for j = 1, . . . , k, independently;

(2.c) for any h ≥ 1 sample Sh from the Poisson process {Sh}h≥1 with unit rate on R+;

(2.d) determine Jh from (29);

(2.e) if Jh ≤ ε stop and set h = H0, otherwise h→ h+ 1 and go to (1.c);

(1.f) generate the random variables M1, . . . ,MH0

iid∼ U(0, 1).

An approximate trajectory of p̃ from the corresponding posterior distribution can be obtained as

follows

p̃((0, t]) ≈
∑H
h=1 Jh1{Mh ≤ p̃∗0((0, t])}+

∑k
j=1Hjδx∗j ((0, t])∑H

h=1 Jh +
∑k
j=1Hj

.
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6 Application to a species sampling problem

A natural application area of hierarchical processes is represented by species sampling problems.

Consider a population of individuals consisting of species, possibly infinite, labeled Z = {Zi}i≥1,

with unknown proportions p = {pi}i≥1. If {Xn}n≥1 is the sequence of observed species labels, it

is then natural to take

Xi|(p,Z)
iid∼
∑
i≥1

pi δZi .

Given a basic sample of size n, namely X(n) = (X1, · · · , Xn), containing k ≤ n distinct species

with respective labels x∗1, . . . , x
∗
k and frequencies N1,n, . . . , Nk,n, possible inferential problems of

interest are

(i) The estimation of the sample coverage, namely the proportion of the population species that

have been observed in X(n).

(ii) The prediction of K
(n)
m = Kn+m −Kn, namely the number of the new species that will be

seen in further additional sample of size m.

(iii) The estimation of the (m, r)–discovery probability, which coincides with the probability of

discovering a species at the (n+m+ 1)–th draw that has been observed r times in X(n+m),

given the initial sample of size n and without observing the outcomes of the additional sample

X(m|n) of size m. If ∆r,n+m = {j :
∑n+m
i=1 1{Zj}(Xi) = r} is the number of species with

frequency r in X(n+m), then the discovery probability equals

D0
m :=

∑
i∈∆0,n+m

pi

for m ≥ 0. For r = 0 this is also known as the m–discovery probability.

These issues were first addressed in Good (1953); Good & Toulmin (1956), where the authors

derived frequentist estimators also known in the literature as Good–Turing and Good–Toulmin

estimators. More recently Lijoi et al. (2007) have introduced a Bayesian nonparametric approach

to this problem, with further developments in Favaro et al. (2012, 2013). The key idea is to

randomize the proportions pi’s and consider them as generated by a Gibbs–type prior. This leads

to closed form expressions for the estimator of the (m, r)–discover probability and for K
(n)
m . See De

Blasi et al. (2015) for a review of these methods. Besides these investigations, very little has been

explored in a non–Gibbs context. The only exceptions we are aware of are Lijoi et al. (2005) and

Favaro et al. (2011). Here we want to employ hierarchical processes to face this type of problem.

Though we are not able to identify closed form expressions of the estimators for addressing (i)–(ii)

as for Gibbs–type priors, we can still determine approximations based on the algorithm developed

in Section 5.1.

As an illustrative example, we focus on a genomic application even if one can easily think

of similar problems arising in ecological applications, where one has populations of animals or

plants, or in economics, linguistics, topic modeling, and so forth. The specific application we are

interested in involves Expressed Sequence Tags (EST) data. Such data are generated by partially

sequencing randomly isolated gene transcripts that have been converted into cDNA. EST have

been playing an important role in the identification, discovery and characterization of organisms

as they are a cost–effective tool in genomic technologies. The resulting transcript sequences and

their corresponding abundances are the main focus of interest as they identify the distinct genes
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and their expression levels. Indeed, an EST sample of size n, consists of Kn distinct genes with

frequencies, or expression levels, N1,n, . . . , NKn,n where
∑Kn
j=1Nj,n = n. Based on these data, one

is interested in assessing some features of the whole library. For the sake of comparison, we use

the same dataset as in Lijoi et al. (2007), which is obtained from a cDNA library made from the 0

mm to 3 mm buds of tomato flowers (see also Mao (2004)). It consists of n = 2586 EST showing

Kn = 1825 distinct values or genes.

We assume the data are exchangeable and that p̃ is a hierarchical Pitman–Yor random proba-

bility measure as in (15). We assign a non–informative prior to (σ, σ0, θ, θ0) of the form

(σ, σ0, θ, θ0) ∼ U(0, 1)×U(0, 1)×Gam(20, 50−1)×Gam(20, 50−1).

For the tomato flower dataset, considering an additional sample of size m, the quantities of

interest are the (m, 0)–discovery probability and the expected number of new distinct genes, K
(m)
n ,

recorded in the additional sample. To this end trajectories of the additional unobserved sample

X(m|n), are generated conditional on X(n) = (X1, . . . , Xn). This is done by resorting to the

algorithm devised in Section 5.1 with the addition of a Metropolis–Hastings step to update the

model parameters.

If X
(m|n)
s = (X

(s)
n+1, . . . , X

(s)
n+m) denotes a realization of X(m|n), one the can evaluate the

discovery probability as

D̂0
m ≈

1

S

S∑
s=1

P
[
Xn+m+1 = “new”

∣∣∣X(n),X(m|n)
s

]
,

which is easy to calculate, since P[Xn+m+1 = “new”|X(n),X
(m|n)
s ] is a one–step prediction. As

for the estimation of the new distinct genes recorded in an additional sample of size m one has:

K̂(m)
n ≈ 1

S

S∑
s=1

m∑
r=1

1{X1,...,Xn+r−1}c(X
(s)
n+r).

The numerical outputs are based on S = 15, 000 iterations of the Gibbs sampler after 5, 000 burn–

in sweeps. We choose m ∈ {517, 1034, 1552, 2069, 2586}, which correspond to 20%, 40%, 60%, 80%

and 100% of the size of the basic sample in order to make direct comparison with the results

contained in Lijoi et al. (2007). There the prior distribution of p̃ is a Poisson–Dirichlet process,

which is of Gibbs–type and the two parameters are selected on the basis of a maximum likelihood

procedure.

Table 1 displays the expected number of new species, the discovery probabilities and the cor-

responding 95% highest posterior density (HPD) intervals. Figure 3(a) shows the decay of the

discovery probability as m increases, and Figure 3(b) the number of new genes detected for dif-

ferent sizes of the additional sample. The point estimates we obtain are very similar to those

contained in Lijoi et al. (2007) thus showing that HPYPs are effective competitors w.r.t. to the

standard Pitman–Yor process. In contrast, the HPD intervals are significantly wider for the HPYP

model. This is due in part to the different prior specification for the parameters but also hints to

the fact that the HPYP yields a more flexible prediction scheme. In a future applied paper the

performances of the two models will be compared in detail in both species sampling and mixture

setups.

Finally the posterior means of parameters are E[(θ0, σ0, θ, σ) |X(n)] = (520.8, 0.9128, 1179.7, 0.6155).
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(a) (b)

Figure 3: Tomato flower: (a) decay of the discovery probability as a function of m; (b) number of
new genes detected in additional samples, for different values of m.

m K̂
(m)
n HPD (95%) D̂0

m HPD (95%)
517 277.90 (229.38,326.13) 0.5217 (0.5020 , 0.5426)
1034 540.62 (474.05, 611.90) 0.4949 (0.4743 , 0.5179)
1552 791.24 (701.10, 880.85) 0.4721 (0.4506 , 0.4960)
2069 1030.26 (926.00, 1142.00) 0.4525 (0.4304 , 0.4773)
2586 1259.82 (1139.10, 1389.15) 0.4353 ( 0.4128 , 0.4609)

Table 1: Tomato flower: posterior expected number of new species, discovery probabilities and
95% highest posterior density intervals, for different values of m

7 Concluding remarks

In this paper we have introduced and investigated a broad class of nonparametric priors with a more

general and flexible predictive structure than the one implied by Gibbs–type priors. Although the

higher degree of flexibility is not for free, we have shown that hierarchical NRMIs and HPYPs are

still analytical tractable. Indeed, we obtained closed form expressions for the probability function

of the exchangeable random partition induced by the data and posterior characterizations that

make them viable alternatives to Gibbs–type priors in several applied settings, even beyond the

species sampling setting considered in Section 6.

The most natural development of our work is the extension to a multiple–sample framework,

where data are recorded under different experimental conditions. These arise in several applied

settings that involve, for example, multicenter studies, change–point analysis, clinical trials, topic

modeling and so on. In all these cases, a source of heterogeneity affects data arising from different
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samples: the exchangeability assumption is, thus, not realistic and is replaced by the weaker

condition of partial exchangeability. In other words, instead of a single exchangeable sequence

{Xi}i≥1, one considers a collection of d sequences Xj = {Xi,j}i≥1, for j = 1, . . . , d, corresponding

to d different, though related, experiments. They are such that each Xj is itself exchangeable while

exchangeability does not hold true across any two samples Xj and Xk, for any j 6= k. Any two

distinct samples are conditionally independent but are not identically distributed. This would be

along the lines of Teh et al. (2006) and would lead to a generalization of the popular HDP to the

case of normalized random measures. A first study in this direction can be found in Camerlenghi

et al. (2016).

A Appendix

A.1 Proof of Theorem 1

Recall that the n–th order derivative of e−mψ(u), with ψ(u) =
∫∞

0
[1− e−uv] ρ(v) dv, is given by

dn

dun
e−mψ(u) =

∑
π

d|π|

dx|π|
(e−mx)

∣∣∣
x=ψ(u)

∏
B∈π

d|B|

du|B|
ψ(u) (30)

where m ∈ R, and the sum is extended over all partitions π of [n] = {1, . . . , n}. See, e.g., (10) in

Hardy (2006). Clearly (30) can be rewritten as

dn

dun
e−mψ(u) =

n∑
i=1

(−m)ie−mψ(u)
∑

π:|π|=i

∏
B∈π

d|B|

du|B|
ψ(u).

Since to each unordered partition π of size i there correspond i! ordered partitions of the set [n]

into i components, which are obtained by permuting the elements of π in all the possible ways,

one has

dn

dun
e−mψ(u) =

n∑
i=1

(−m)ie−mψ(u) 1

i!

o∑
π:|π|=i

∏
B∈π

d|B|

du|B|
ψ(u)

=

n∑
i=1

(−m)ie−mψ(u) 1

i!

∑
(∗)

(
n

q1, · · · , qi

)
dq1

duq1
ψ(u) · · · dqi

duqi
ψ(u)

where
∑o

is the sum over the ordered partitions of the set [n] while the sum (∗) runs over all vectors

(q1, · · · , qi) of positive integers such that
∑i
j=1 qj = n. The second equality follows upon noting

that the derivative of ψ depends only on the number of elements within each component of the

partition π and that the number of partitions π of the set [n] containing i elements (B1, · · · , Bi),
with (|B1|, · · · , |Bi|) = (q1, · · · , qi), equals the multinomial coefficient above. It is now easy to see

that

(−1)n
dn

dun
e−mψ(u) = e−mψ(u)

n∑
i=1

miξn,i(u) (31)

where we have set

ξn,i(u) =
∑
(∗)

1

i!

(
n

q1, · · · , qi

)
τq1(u) · · · τqi(u) (32)
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with τq(u) =
∫∞

0
vq e−uv ρ(v) dv. In view of this, for any x1 6= · · · 6= xk one can now evaluate

Mn1,...,nk(dx1, . . . ,dxk) = E

k∏
j=1

p̃nj (dxj),

then the EPPF Π
(n)
k will be recovered integrating this quantity over Xk with respect to x1, . . . , xk.

Indeed, if one sets Aj,ε = B(xj ; ε) a ball of radius ε around xj , with ε > 0 small enough so that

Ai,ε ∩Aj,ε = ∅ for any i 6= j, then

Mn1,...,nk(A1,ε × · · · ×Ak,ε) = E E
[ k∏
j=1

p̃nj (Aj,ε)
∣∣∣p̃0

]

=
1

Γ(n)
E

∫ ∞
0

un−1E[e−uµ̃(X∗ε)|p̃0]

k∏
j=1

E[e−uµ̃(Aj,ε)µ̃nj (Aj,ε)|p̃0] du

=
1

Γ(n)
E

∫ ∞
0

un−1e−cψ(u)p̃0(X∗ε)
k∏
j=1

(
(−1)nj

dnj

dunj
e−cψ(u)p̃0(Aj,ε)

)
du

where X∗ε = X \ (∪kj=1Aj,ε). If ` = (`1, . . . , `k) ∈ ×ki=1{1, . . . , ni}, by virtue of (31) one obtains

Mn1,...,nk(A1,ε × · · · ×Ak,ε)

=
1

Γ(n)

∫ ∞
0

un−1 e−c ψ(u)
∑
`

c|`|

E k∏
j=1

p̃
`j
0 (Aj,ε) ξnj ,`j (u)

 du

=
1

Γ(n)

∑
`

M0
`1,...,`k

(A1,ε × · · · ×Ak,ε) c|`|
∫ ∞

0

un−1 e−cψ(u)

 k∏
j=1

ξ`j ,nj (u)

 du

where M0
`1,...,`k

(dx1, . . . ,dxk) = E
∏k
j=1 p̃

`j
0 (dxj). Since P0 in (9) is non–atomic, Proposition 3 in

James et al. (2009) yields

M0
`1,...,`k

(dx1, . . . ,dxk) =

 k∏
j=1

P0(dxj)

 Φ
(|`|)
k,0 (`1, . . . , `k)

for any (x1, . . . , xk) ∈ Xk such that x1 6= · · · 6= xk, where Φ
(·)
·,0 is the EPPF of a NRMI with

parameter (c0, ρ0) recalled in (7). Hence, by letting ε→ 0, one has

Mn1,...,nk(dx1, . . . ,dxk) =

∏k
j=1 P0(dxj)

Γ(n)

∑
`

c|`|Φ
(|`|)
k,0 (`1, . . . , `k)

×
∫ ∞

0

un−1 e−cψ(u)

 k∏
j=1

ξ`j ,nj (u)

 du.

The result follows by taking into account the definition of ξn,` in (32).
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A.2 Proof of Theorem 2

The proof works along similar lines as the proof of Theorem 1, the key difference being that one

has to take into account the appropriate change of measure in (4). Indeed, in this case one has

E

k∏
j=1

p̃nj (dxj) = EE
[ k∏
j=1

p̃nj (dxj)
∣∣∣ p̃0

]

=
σ Γ(θ)

Γ(θ/σ)

1

Γ(θ + n)

∫ ∞
0

uθ+n−1EE
[
e−uµ̃(X)

k∏
j=1

µ̃nj (dxj)
∣∣∣ p̃0

]
where, conditional on p̃0, µ̃ is a σ–stable CRM with E[p̃ | p̃0] = p̃0. Hence, the proof easily follows

upon recalling that in this case τq(u) = σ (1− σ)q−1, for any q ≥ 1, and

Φ
(|`|)
k,0 (`1, . . . , `k) =

∏k−1
i=1 (θ0 + iσ0)

(θ0 + 1)|`|−1

k∏
j=1

(1− σ0)`j−1.

A.3 Proof of Corollary 2

We first recall that

P[Kn = k] =
1

k!

∑
(n1,...,nk)∈∆k,n

(
n

n1, . . . , nk

)
Π

(n)
k (n1, . . . , nk)

with Π
(n)
k as in (10). If ∆k,t(n) = {` = (`1, . . . , `k) ∈ ×ki=1{1, . . . , ni} s.t. |`| = t}, one can rewrite

Π
(n)
k as follows

Π
(n)
k (n1, · · · , nk) =

n∑
t=k

∑
`∈∆k,t(n)

Φ
(t)
k,0(`1, · · · , `k)

k∏
j=1

1

`j !

∑
qj

(
nj

qj,1, · · · , qj,`j

)

× Φ
(n)
t (q1,1, · · · , q1,`1 , · · · , qk,1, · · · , qk,`k).

In view of this one has

P[Kn = n] =
1

k!

n∑
t=k

∑
n∈∆k,n

∑
`∈∆k,t(n)

(
n

n1, · · · , nk

)
Φ

(t)
k,0(`1, · · · , `k)

×
k∏
j=1

1∏k
j=1 `j !

∑
qj∈∆`j ,nj

(
nj

qj,1, · · · , qj,`j

)
Φ

(n)
t (q1,1, · · · , q1,`1 , · · · , qk,1, · · · , qk,`k)

=
1

k!

n∑
t=k

∑
n∈∆k,n

∑
`∈∆k,t(n)

(
t

`1, · · · , `k

)
Φ

(t)
k,0(`1, · · · , `k)

× 1

t!

∑
q

(
n

q1,1, · · · , q1,`1 , · · · , qk,1, · · · , qk,`k

)
Φ

(n)
t (q1,1, · · · , q1,`1 , · · · , qk,1, · · · , qk,`k).
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At this point, if ∆∗k,n(`) = {n = (n1, . . . , nk) ∈ ×ki=1{`i, . . . , n} s.t. |n| = n} one has∑
n∈∆∗k,n(`)

∑
q

(
n

q1,1, · · · , q1,`1 , · · · , qk,1, · · · , qk,`k

)
Φ

(n)
t (q1,1, · · · , q1,`1 , · · · , qk,1, · · · , qk,`k)

=
∑

ν∈∆t,n

(
n

ν1, · · · , νt

)
Φ

(n)
t (ν1, · · · , νt),

(33)

now the result easily follows by interchanging the sum over n with the sum over ` and taking into

account (33).

A.4 Proof of Corollary 3

The proof for the hierarchical Pitman–Yor process (15) follows along the same lines of Corollary 2

and relies on the following identity for generalized factorial coefficients

∑
n∈∆∗k,n(`)

(
n

n1, · · · , nk

) k∏
j=1

C (nj , `j ;σ) =

(
|`|

`1, · · · , `k

)
C (n, |`|;σ).

Therefore, we have

P[Kn = k] =
1

k!

∑
(n1,...,nk)∈∆n,1

(
n

n1, · · · , nk

)
Π

(n)
k (n1, . . . , nk)

=
1

k!

∑
`

(
|`|

`1, · · · , `k

)
Φ

(|`|)
k,0 (`1, . . . , `k)

∏|`|−1
s=1 (θ + sσ)

(θ + 1)n−1

C (n, |`|;σ)

σ|`|

where the second equality follows by the above mentioned identity and Φ stands for the EPPF of

a PY process (6). Then the result follows.

A.5 Proof of Theorem 3

The posterior characterization may be established through the posterior Laplace functional of µ̃0

E
[
e−µ̃0(f)

∣∣∣X(n)
]

= lim
ε↓0

E e−µ̃0(f)
∏k
j=1 p̃

nj (Aj,ε)

E
∏k
j=1 p̃

nj (Aj,ε)
(34)

for any measurable f : X→ R+, where Aj,ε is the same set used in the Proofs of Theorems 1– 2.

The denominator is Mn1,...,nk(A1,ε × · · · ×Ak,ε), defined in the proof of Theorem 1 and, as ε ↓ 0,

equals

k∏
j=1

P0(Ajε)
∑
`

∑
q

Φ
(|`|)
k,0 (`1, · · · , `k)

×
k∏
j=1

1

`j !

(
nj

qj,1, · · · , qj,`j

)
Φ

(n)
|`| (q1,1, . . . , q1,`1 , . . . , qk,1, . . . , qk,`k) + λk,ε
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where λk,ε = o
(∏k

j=1 P0(Aj,ε)
)

. The numerator in (34) may be evaluated in a similar way, in fact

E e−µ̃0(f)
k∏
j=1

p̃nj (Aj,ε) = E e−µ̃0(f)E
[
p̃nj (Aj,ε)

∣∣∣µ̃0

]

=
∑
`

c|`|

Γ(n)

∫ ∞
0

un−1 e−c ψ(u)
k∏
j=1

ξnj ,`j (u) du
(
Ee−µ̃0(f)

k∏
j=1

p̃
`j
0 (Aj,ε)

)
Setting X∗ε = X \ (∪kj=1Aj,ε), as ε ↓ 0 one can see that

Ee−µ̃0(f)
k∏
j=1

p̃
`j
0 (Aj,ε) =

1

Γ(|`|)

∫ ∞
0

u|`|−1Ee−µ̃0((f+u)1X∗ε )
( k∏
j=1

Ee−µ̃0((f+u)1Aj,ε ) µ̃
`j
0 (Aj,ε)

)
du

=

∏k
j=1 c0 P0(Aj,ε)

Γ(|`|)

∫ ∞
0

u|`|−1 e−c0 ψ0(f+u)
k∏
j=1

τ`j (u+ f(X∗j )) du+ λk,ε

and as a consequence we obtain

E e−µ̃0(f)
k∏
j=1

p̃nj (Aj,ε) =

k∏
j=1

P0(Aj,ε)

×
∑
`,q

k∏
j=1

1

`j !

(
nj

qj,1, · · · , qj,`j

)
Φ|`|(q1,1, . . . , q1,`1 , . . . , qk,1, . . . , qk,`k)

× c
|`|
0

Γ(|`|)

∫ ∞
0

u|`|−1 e−c0 ψ0(f+u)
k∏
j=1

τ`j (u+ f(X∗j )) du+ λk,ε.

Conditioning on the tables T (n), the posterior Laplace functional coincides with

E
[
e−µ̃0(f)

∣∣∣X(n),T (n)
]

=

∫∞
0
u|`|−1 e−c0 ψ0(f+u)

∏k
j=1 τ`j (u+ f(X∗j )) du

Φ
(|`|)
k,0 (`1, . . . , `k)

and the result follows, observing that the normalizing constant of the density f0( · |X(n),T (n)) in

(19) amounts to be Φ
(|`|)
k,0 (`1, . . . , `k).

A.6 Proof of Theorem 4

The proof follows the similar arguments as that of Theorem 3. The posterior Laplace functional

of µ̃, conditional on the observations X(n) and the tables T (n), may be expressed as

E
[
e−µ̃(f)

∣∣∣X(n),T (n)
]

= E
[
E
[
e−µ̃(f)

∣∣∣X(n),T (n), µ̃0

] ∣∣∣X(n),T (n)
]

for any measurable function f : X→ R+. Then, we try to calculate

E
[
e−µ̃(f)

∣∣∣X(n),T (n), µ̃0

]
= lim

ε↓0

E
[
e−µ̃(f)

∏k
j=1 p̃

nj (Aj,ε)
∣∣∣T (n), µ̃0

]
E
[∏k

j=1 p̃
nj (Aj,ε)

∣∣∣T (n), µ̃0

] (35)
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The denominator equals

( k∏
j=1

p̃
`j
0 (Aj,ε)

) c|`|

Γ(n)

∫ ∞
0

un−1 e−c ψ(u)
k∏
j=1

`j∏
t=1

τqj,t(u) du,

whereas, for the numerator we note that

E
[
e−µ̃(f)

k∏
j=1

p̃nj (Aj,ε)
∣∣∣T (n), µ̃0

]
= E

[
e−µ̃(f)

k∏
j=1

p̃nj (Aj,ε)
∣∣∣T (n), µ̃0

]

=
( k∏
j=1

p̃
`j
0 (Aj,ε)

) d∏
i=1

c|`|

Γ(n)

∫ ∞
0

un−1 e−c ψ̃(f+u)
k∏
j=1

`j∏
t=1

τqj,t(u+ fi(X
∗
j )) du,

where we have put

ψ̃(f) =

∫
X

∫ ∞
0

[1− e−sf(x)], ρ(s) ds p̃0(dx).

The right–hand–side of (35) boils down to∫∞
0
un−1e−cψ̃(f+u)

∏k
j=1

∏`j
t=1 τqj,t(u+ f(X∗j ))du∫∞

0
un−1e−cψ(u)

∏k
j=1

∏`j
t=1 τqj,t(u)du

.

which entails

E
[
e−µ̃(f)

∣∣∣X(n),T (n), Un, µ̃0

]
=

k∏
j=1

`j∏
t=1

τqj,t(Un + f(X∗j ))

τqj,t(Un)

× exp

{
−c
∫
X×R+

(1− e−sf(x))e−sUn ρ(s) ds p̃0(dx)

}
and the assertion follows.

A.7 Proof of Theorem 7

Let µ̃σ denote a σ–stable CRM and µ̃σ,θ is a random measure whose normalization yields a Pitman–

Yor process with parameters (σ, θ). From Theorem 5, we have

E
[
e−η̃

∗
0 (f)

]
=

σ0

Γ
(
θ0
σ0

+ k
) ∫ ∞

0

vθ0+kσ0−1 e−v
σ0

e−
∫
X

[(v+f(x))σ0−vσ0 ]P0(dx) dv

=
σ0

Γ
(
θ0
σ0

+ k
) ∫ ∞

0

vθ0+kσ0−1
(
E e−vµ̃σ0 (X)−µ̃σ0 (f)

)
dv

=
σ0 Γ(θ0 + kσ0)

Γ
(
θ0
σ0

+ k
) (

E e−µ̃σ0 (f){µ̃σ0(X)}−θ0−kσ0

)
= E e−µ̃σ0,θ0+kσ0

(f)

Hence, one can conclude that η∗0
d
= µ̃σ0,θ0+kσ0 and

p̃0 | (X(n),T (n), V0)
d
=

k∑
j=1

Wj,V0 δX∗j +Wk+1,V0 p̃σ0,θ0+kσ0
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where p̃σ0,θ0+kσ0
∼ PY(σ0, θ0 + kσ0;P0). Moreover Wj,V0

= Ij/(η
∗
0(X) +

∑k
i=1 Ii), for any j =

1, . . . , k, and Wk+1,V0 = η∗0(X)/(η∗0(X) +
∑k
i=1 Ii). Let us denote by fv the density of the vector

(W1,V0
, . . . ,Wk,V0

) on the k–dimensional simplex ∆k, then we want to determine

f(w1, . . . , wk) =

∫ ∞
0

fv(w1, . . . , wk)
σ0

Γ
(
θ0
σ0

+ k
) vθ0+kσ0−1 e−v

σ0
dv.

Denoted by hv the density function of η∗0(X) and by independence, the vector (I1, . . . , Ik, η
∗
0(X))

has density given by

f∗v (x1, . . . , xk, t) = hv(t)
v|`|−kσ0∏k

j=1 Γ(`j − σ0)
e−v

∑k
i=1 xi

k∏
j=1

x
`j−σ0−1
j .

The density function of (W1,V0
, . . . ,Wk,V0

,WV0
) follows by the simple transformation WV0

=∑k
i=1 Ij + η∗0(X):

fv(w1, . . . , wk, w) =
v|`|−kσ0

∏k
j=1 w

`j−σ0−1
j∏k

j=1 Γ(`j − σ0)
w|`|−kσ0 e−vw|w| hv(w(1− |w|))

where |w| =
∑k
i=1 wi. From this, an expression for the density of (W1,V0 , . . . ,Wk,V0) easily follows

and it turns out to be

fv(w1, . . . , wk) =
v|`|−kσ0

∏k
j=1 w

`j−σ0−1
j∏k

j=1 Γ(`j − σ0)

1

(1− |w|)|`|−kσ0+1

(
E(η∗0(X))|`|−kσ0 e−

v|w|
1−|w| η

∗
0 (X)

)
.

Since η∗0 is a generalized gamma CRM with parameters (σ0, V0) and base measure P0, its probability

distributions P∗ is absolutely continuous with respect to the probability distribution Pσ0 of a σ0–

stable CRM and
dP∗

dPσ0

(m) = exp{−vm(X) + vσ0},

then

E(η∗0(X))|`|−kσ0 e−
v|w|

1−|w| η
∗
0 (X) = ev

σ0
E (µ̃σ0

(X))|`|−kσ0 e−
v

1−|w| µ̃σ0 (X)

In view of this, one can now marginalize fv with respect to v and and obtain a density of

(W1, . . . ,Wk). Indeed, a straightforward calculation leads to

f(w1, . . . , wk) =
Γ(θ0 + |`|)

Γ(θ0 + kσ0)
∏k
j=1 Γ(`j − σ0)

(1− |w|)θ0+kσ0−1
k∏
j=1

w
`j−σ0−1
j

and this completes the proof of the posterior characterization of p̃0. The representation (24) may

be proved in a similar fashion.
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