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Abstract

The prediction of future outcomes of a random phenomenon is typically based on a certain
number of “analogous” observations from the past. When observations are generated by
multiple samples, a natural notion of analogy is partial exchangeability and the problem
of prediction can be e↵ectively addressed in a Bayesian nonparametric setting. Instead of
confining ourselves to the prediction of a single future experimental outcome, as in most
treatments of the subject, we aim at predicting features of an unobserved additional sample
of any size. We first provide a structural property of prediction rules induced by partially
exchangeable arrays, without assuming any specific nonparametric prior. Then we focus on a
general class of hierarchical random probability measures and devise a simulation algorithm
to forecast the outcome of m future observations, for any m � 1. The theoretical result and
the algorithm are illustrated by means of a real dataset, which also highlights the “borrowing
strength” behavior across samples induced by the hierarchical specification.

Keywords: Bayesian Nonparametrics, Hierarchical processes, Partial exchangeability, Predic-
tion, Pitman–Yor process, Species sampling models.
AMS Classification 2010: 62F15; 60G57; 62G05.

1 Introduction

A fundamental goal of statistics consists in predicting future outcomes of a certain experiment given
analogous observations that have been recorded in the past. If the observed data are denoted
as X1, . . . , Xn, one may be interested in predicting specific features related to a future sample
Xn+1, . . . , Xn+m of size m � 1. Bruno de Finetti repeatedly emphasized in his writings the
importance of prediction. For instance, in [8] he wrote “science cannot limit itself to theorize
about accomplished facts but must foresee.” Also in the philosophical debate prediction plays a
dominant role. In the fundamental work of Rudolf Carnap [4], where he provides a taxonomy of the
varieties of inductive inference he stresses that prediction is “the most important and fundamental
kind of inductive inference.” And, in fact, singular predictive inference, in which the additional
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future sample consists of just one individual (namely m = 1), represents only a special case of
predictive inference. See [35] for a stimulating account.

Here, very much in de Finetti’s spirit, we focus on prediction in its generality therefore not
confining ourselves to singular predictive inference but considering m-step ahead prediction, for
any m � 1. In order to face the problem of prediction, the observations X1, X2, . . . need to satisfy
some symmetry condition that allows one to consider them as being analogous. In a Bayesian
nonparametric context such a mathematical hypothesis corresponds to exchangeability (see [9])
and defines quite a general kind of dependence across data. A random infinite sequence (Xn)n�1 is
exchangeable when its distribution is invariant under the group of all finitary permutations. This

means that (Xn)n�1
d
= (X⇡(n))n�1, where ⇡ : N! N is any permutation such that ⇡(j) = j for any

j � N , for some N � 1, i.e., ⇡ permutes an arbitrary but finite number of indices of the sequence.
Equivalently, homogeneity across data is coded through an invariance property with respect to the
order with which the observations are recorded. Prediction within an exchangeable setting has
become routine in a number of applications where data display a clustering structure such as, e.g.,
in ecology, genomics, linguistics, topic modeling, and analysis of network data. The probabilistic
investigations that have had a more direct impact in the area are exhaustively accounted for in
[31], whereas statistical contributions are reviewed in [7, 21, 26].

However, in a large variety of applications exchangeability is quite restrictive an assumption. An
interesting example is where data are originated from d di↵erent, though related, experiments that
identify d sequences (X1,n)n�1, . . . , (Xd,n)n�1. In such situations, the homogeneity assumption
may reasonably hold within each experimental condition (Xi,n)n�1, though not across di↵erent
experimental conditions (Xi,n)n�1 and (Xj,n)n�1, where i 6= j. In these cases, one may rely on a
more general and appropriate form of dependence such as partial exchangeability. See [10].

In this paper the problem of prediction within the general framework of partially exchangeable
observations is addressed and some properties of the induced prediction rules are investigated. Sec-
tion 2 provides a brief introduction to the goals pursued in the paper. The main result is contained
in Section 3, where we show a structural predictive property of partial exchangeability, which holds
true without any specific assumptions on the prior distribution. In Section 5 an algorithm to pre-
dict future observations is devised for the hierarchical Pitman–Yor process defined in Section 4.
Finally we face the problem of prediction for species sampling problems as an illustration of the
theoretical results. Moreover, we compare prediction corresponding to independent exchangeable
samples with prediction in the partially exchangeable framework. The latter is discussed in the
case of multiple samples and showcases a significant borrowing strength phenomenon.

2 Partial exchangeability and prediction

Suppose that X is a Polish space, associated with the possible outcomes of an experiment, and
let X be the corresponding Borel �-algebra. Moreover, PX is the set of all probability mea-
sures on (X,X ), which is assumed to be endowed with the topology of weak convergence so
that PX is its Borel �-algebra. Consider, now, an array of d sequences of observations X =
{(Xi,j)j�1 : i = 1, . . . , d} defined on some probability space (⌦,F ,P) and taking values in (X,X ).
They are partially exchangeable if for any choice of finite permutations ⇡1, . . . ,⇡d of N one has

{(Xi,j)j�1 : i = 1, . . . , d} d
=
�

(Xi,⇡i(j))j�1 : i = 1, . . . , d
 

.
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The analogue of de Finetti’s representation theorem for the partial exchangeable case states that
X is partially exchangeable if and only if

P
n

d
\

i=1

(X(ni)
i 2 Ai)

o

=

Z

Pd
X

d
Y

i=1

p(ni)
i (Ai)Qd(dp1, . . . , dpd) (1)

for any integer ni � 1 and Ai 2 X ni , where X(ni)
i = (Xi,1, . . . , Xi,ni) and p(q) = p ⇥ · · · ⇥ p is

the q-fold product measure on Xq, for any q � 1. In (1) Qd is termed the de Finetti measure of
the sequence.

In a Bayesian framework, partial exchangeability is usually rephrased in terms of random
probability measures; consider a vector of dependent random probability measures (p̃1, . . . , p̃d)
having law Qd, then (1) may be expressed as:

(X1,j1 , . . . , Xd,jd) | (p̃1, . . . , p̃d)
iid⇠ p̃1 ⇥ · · · ⇥ p̃d, (j1, . . . , jd) 2 Nd

(p̃1, . . . , p̃d)
iid⇠ Qd

(2)

It is apparent that Qd acts as a prior distribution on Pd
X and is the starting point for the determi-

nation of posterior inferences in a nonparametric setting.
The first contribution to the Bayesian nonparametric literature in this direction can be traced

back to [6]. Nonetheless, the research in the area has experienced a significant boost only more
recently, inspired by the seminal papers of S.N. MacEachern [22, 23]. Stimulating accounts can be
found in [16, 26, 27]. Among the most recent interesting contributions we mention [1, 14, 15, 17,
18, 25, 28, 29, 36].

The key in this setting is the specification of Qd, as it defines the dependence structure among
p̃1, . . . , p̃d and, hence, determines the predictive distributions across di↵erent samples. A large
portion of the contributions currently available on this topic work on multivariate extensions of
celebrated priors used for exchangeable sequences such as, e.g., the Dirichlet process or the Pitman–
Yor process.

We now consider the problem of m-step prediction in a partially exchangeable setting and
highlight an interesting property of predictive rules that holds true for any choice of Qd and
emerges as a structural property of partial exchangeability. To be more precise, if we suppose that
for each sample i 2 {1, . . . , d} we have ni � 1 observations Xi,1, . . . , Xi,ni , we would like to predict

specific features of an additional sample X(mi|ni)
i = (Xi,ni+1, . . . , Xi,ni+mi) of size mi, for any

mi � 1. In view of (2), one then has to determine

P
n

d
\

i=1

(X(mi|ni)
i 2 Ai)

�

�

�

X(n1)
1 , . . . ,X(nd)

d

o

=

Z

Pd
X

d
Y

i=1

p(mi)
i (Ai)Qd

⇣

dp1, . . . , dpd
�

�

�

X(n1)
1 , . . . ,X(nd)

d

⌘

for any Ai 2 X mi and i 2 {1, . . . , d}, where Qd( · | X(n1)
1 , . . . ,X(nd)

d ) denotes the posterior
distribution of (p̃1, . . . , p̃d). It is worth noting that if Qd is such that (p̃1, . . . , p̃d) are independent,
i.e., Qd(C1, . . . , Cd) =

Qd
i=1 ⇤i(Ci), for any choice of A1, . . . , Ad in PX, and each ⇤i is a probability
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measure on PX, then independence is preserved also a posteriori and

P
n

d
\

i=1

(X(mi|ni)
i 2 Ai)

�

�

�

X(n1)
1 , . . . ,X(nd)

d

o

=
d
Y

i=1

Z

PX

p(mi)(Ai) ⇤i

⇣

dp
�

�

�

X(ni)
i

⌘

=
d
Y

i=1

P
⇣

X(mi|ni)
i 2 Ai

�

�

�

X(ni)
i

⌘

.

(3)

In this case, sample i, for i 6= j, has no e↵ect on the prediction of future outcomes for sample
j. The other extreme situation corresponds to Qd degenerating on the diagonal {p1 = · · · = pd},
which corresponds to exchangeability across all samples that is

P
n

d
\

i=1

(X(mi|ni)
i 2 Ai)

�

�

�

X(n1)
1 , . . . ,X(nd)

d

o

=

Z

PX

d
Y

i=1

p(mi)(Ai)Q
⇣

dp
�

�

�

X(n1)
1 , . . . ,X(nd)

d

⌘

. (4)

Interest typically lies in specific features of X(mi|ni)
i , for i = 1, . . . , d, which can be described

in terms of suitable summaries of the predictive distribution. If the realizations of p̃1, . . . , p̃d are
discrete probability measures, as for many popular nonparametric priors, there may be ties among
data within the same sample and across di↵erent samples (with positive probability). Hence, the
outcomes of the additional mi-sample for population i can be either “new” values or values that
have been already observed in X(ni)

i and/or in another sample X
(nj)
j for j 6= i.

A natural quantity one is then interested in predicting is the expected proportion of elements
in X(mi|ni)

i yielding “new” or “old” distinct values. In Section 3 we show that such a quantity is
constant as the size of the additional sample mi varies and coincides with the singular predictions,
i.e., P(Xi,ni+1 = “new”|X(n1)

1 , . . . ,X(nd)
d ) and P(Xi,ni+1 = “old”|X(n1)

1 , . . . ,X(nd)
d ), respectively.

Importantly, such a result holds true whatever the choice of the prior distribution Qd and represents
a direct consequence of the partial exchangeability assumption giving a neat indication of the
interaction among the populations summarized by a singular prediction alone.

3 A structural predictive property of partial exchangeabil-
ity

Within the framework laid out in Section 2 let us assume, without loss of generality, d = 2 to
simplify the notation. A key quantity of interest in an additional sample X(mi|ni)

i , for i = 1, 2,

is the number of observations that coincide with specific subsets of the observed data X(n1)
1 and

X(n2)
2 . Define

Ah,k = {X1,1, . . . , X1,n1}h \ {X2,1, . . . , X2,n2}k, (h, k) 2 {0, 1}2 (5)

where B1 = B and B0 = Bc. Then A1,1 is the set of values shared by the two samples, A1,0 and
A0,1 the set of values appearing in the first (second) sample but not in the second (first) and A0,0

the set of potential new values. Hence, one might be interested in estimating the number (or the
proportion) of elements in X(mi|ni)

i that belong to any of the four sets that one can identify in (5).
For sample s 2 {1, 2}, these are defined as

L0,1
s,m =

m
X

r=1

1A0,1(Xs,ns+r), L1,0
s,m =

m
X

r=1

1A1,0(Xs,ns+r),
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L1,1
s,m =

m
X

r=1

1A1,1(Xs,ns+r), L0,0
s,m =

m
X

r=1

1A0,0(Xs,ns+r),

where 1A is the indicator function of set A. The following result provides the corresponding
posterior expectations.

Theorem 1. Suppose X = {(Xi,j)j�1 : i = 1, 2} is partially exchangeable according to (1). Then,

for each sample s = 1, 2 and each partition set of the possible outcomes Ah,k with (h, k) 2 {0, 1}2,
one has

E(Lh,k
s,m |X(n1)

1 ,X(n2)
2 ) = m P(Xs,ns+1 2 Ah,k |X(n1)

1 ,X(n2)
2 ). (6)

Proof. We shall focus on L0,1
1,m and the proof for the other quantities involved follows in a straight-

forward way. First of all, note that by virtue of the partial exchangeability assumption, one has

P(X1,n1+i 2 A0,1 |X(n1)
1 ,X(n2)

2 ) = P(X1,n1+1 2 A0,1 |X(n1)
1 ,X(n2)

2 )

for any i � 1. Such an identity in distribution, conditional on X(n1) and X(n2), yields

E(L0,1
1,m |X(n1)

1 ,X(n2)
2 ) =

m
X

i=1

E{1A0,1(X1,n1+i) |X(n1)
1 ,X(n2)

2 }

=
m
X

i=1

P(X1,n1+i 2 A0,1 |X(n1)
1 ,X(n2)

2 )

and (6) follows.

The result in (6) entails that the prediction over an additional sample X1,n1+1, . . . , X1,n1+m of
size m is linear in m when evaluating the number of observations that coincide with: (i) any of
the distinct values specific to X(n2)

2 and not shared by X(n1)
1 (i.e., L0,1

1,m); (ii) any of the distinct

values specific to X(n1) and not shared by X(n2)
2 (i.e., L1,0

1,m); (iii) any of the distinct values shared

by X(n1)
1 and X(n2)

2 (i.e., L1,1
1,m); (iv) new distinct values that have been observed neither in X(n1)

1

nor in X(n2)
2 (i.e., L0,0

1,m). The same conclusion obviously holds true for X2,n2+1, . . . , X2,n2+m.
Phrased in di↵erent terms, the expected proportion of values that will belong to each of the

Ah,k’s is constant with respect to additional sampling. This result is deep and trivial at the same
time. Indeed, if one thinks about the independent and identically distributed case with a single
sample, one has a binomial experiment and hence linearity in the number of trials, which is the
size of the additional sample. Since independence does not hold true in this setting, the quantities
in Theorem 1 represent generalizations of the binomial experiment with a more general form
of dependence and dimensionality, the latter being meant as the number of populations. And (6)
implies that with partial exchangeability (a fortiori in the exchangeable case) the expected number
of observations in an additional sample, which replicate specific subsets of distinct values in the
basic samples, is still linear and the slope is the corresponding singular predictive probability, i.e.,
at step ns + 1. Such a result is due to the conditional identity in distribution, given the observed
samples, and is a deep structural property implied by the partial exchangeability assumption.

It is apparent that linearity holds true whatever the choice of Qd in (1). On the other hand,
the choice of Qd a↵ects the structure of the singular predictive probability in (6). Consider sam-
ple 1. The discreteness of Qd implies that the probability of re-observing values of sample 1, i.e.,
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P(X1,n1+1 2 A1,k |X(n1)
1 ,X(n2)

2 ) for k = 0, 1, is strictly positive. The specific structure of Qd

determines the presence and, in the a�rmative case, the intensity of the “borrowing strength”
between the two exchangeable sequences, which is clearly desirable from an inferential point of
view. Being interested in studying the dependence among di↵erent samples, in the following
we will focus on priors Qd such that the probability P(X1,n1+1 2 A0,1 |X(n1)

1 ,X(n2)
2 ) is strictly

positive. This is equivalent to a positive probability of ties across samples and, consequently,
P(X1,n1+1 2 A0,1 |X(n1)

1 ,X(n2)
2 ) provides a sort of quantification of the “borrowing strength”

phenomenon. A more subtle display emerges from the probability of re-observing values present
in both samples being higher than were they observed in sample 1 alone. A number of dependent
processes (p̃1, p̃2) yield such a property. Here we focus on a class of hierarchical random probability
measures that naturally lend themselves to investigating the phenomenon we have been hinting at.

4 Hierarchical Pitman–Yor processes

Hierarchical processes have been first considered [34], where the popular Hierarchical Dirichlet
process (HDP) has been introduced. The hierarchical construction induces dependence among the
random probability measures in (2) through the base measure, which is taken to be random instead
of being deterministic. Recall that a Dirichlet process with parameter # > 0 and base measure P0,
D(#;P0), can be defined by means of a stick-breaking procedure as a discrete random probability
measure p̃ ⌘

P

j�1 ⇡̃j�Zj with

⇡̃1 = V1, ⇡̃j = Vj

j�1
Y

i=1

(1� Vi) for j � 2, (7)

(Zj)j�1 i.i.d. random variables on (X,X ) with common distribution P0 and the Vi’s i.i.d. Beta

random variables with parameters (#, 1), namely Vi
iid⇠ B(#, 1). Moreover, the sequences (Vi)i�1

and (Zi)i�1 are independent. The HDP is defined as

p̃i|p̃0
iid⇠ D(#; p̃0), i = 1, . . . , d

p̃0 ⇠ D(#0;P0)
(8)

where P0 is a fixed non-atomic probability measure on (X,X ). Such a model has been highly
successful in topic modeling applications for classification of documents in a corpus at di↵erent
levels.

A natural extension is obtained by replacing the Dirichlet process in (8) with a Pitman–Yor
process [32] leading to a Hierarchical Pitman–Yor process (HPYP); see, e.g., [11, 33]. Also the

Pitman–Yor process admits a stick-breaking representation as (7) with Vi
ind⇠ B(# + i�, 1 � �) for

� 2 (0, 1) and # > 0. Pitman–Yor processes are more flexible than Dirichlet processes in that the
probability of sampling a new value depends on the number of distinct observations in the sample
and not only on the total number of data. This allows for richer predictive structures. See [7] for
details. More recently hierarchical processes have been investigated from an analytical viewpoint
in [3], where the authors derived the partition structure, the prediction rules and the posterior
distribution of (p̃1, . . . , p̃d) for hierarchical structures, when p̃i are normalized random measures.
In such a general context HDP and HPYP follow as particular cases.

If PY(�,#;P0) denotes a Pitman–Yor process with parameters � 2 (0, 1), # > 0 and base
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measure P0, we consider the following prior distribution Qd for the model in (2)

p̃i|p̃0
iid⇠ PY(�,#; p̃0), i = 1, . . . , d

p̃0 ⇠ PY(�0,#0;P0)
(9)

being �,�0 2 (0, 1), #,#0 > 0 and P0 is a non-atomic probability measure on (X,X ). The
random probability measures p̃1, . . . , p̃d in (9) are almost surely discrete, thus allowing for ties
within the same sample and across di↵erent samples. Such ties induce a random partition and one
is naturally led to determine its probability distribution, also referred to as partially exchangeable

partition probability functions (pEPPF). This is of paramount importance to carry out posterior
inference.

The problem has been successfully addressed in [3] for a broad and general class of hierarchical
priors. Here we specialize the result of [3] to the case of Pitman–Yor priors. Moreover, let d = 2
for the sake of illustration. The partition structure may be better explained in terms of a culinary
metaphor, known as the Chinese Restaurant Franchise (CRF) representation and introduced by
[34]. There are d = 2 restaurants sharing the same menu, the two samples X(n1)

1 and X(n2)
2 repre-

sent the dishes’ labels eaten by the n1 +n2 customers of the overall franchise. Discreteness entails
that the number of distinct dishes being tasted in the whole franchise is k 2 {1, . . . , n1 + n2} and
we let X⇤

1 , . . . , X
⇤
k denote their respective labels. We suppose that in restaurant i there are ni,j � 0

customers eating dish j, and the frequencies are reported in the vector ni ⌘ (ni,1, . . . , ni,k), for
i = 1, 2. Each table is served the same dish, chosen by the first seated customer, and the same
dish can be served at di↵erent tables within the same restaurant or across di↵erent restaurants.

In order to obtain a more tractable expression of the pEPPF, one needs to introduce sets of
latent variables T (ni)

i = (Ti,1, . . . , Ti,ni), for i = 1, 2. Roughly speaking, and still in terms of the
Chinese restaurant franchise, Ti,j is the table where the jth customer is seated in restaurant i
eating dish Xi,j . The introduction of latent tables corresponds to a refinement of the partition
determined by data, in fact the ni,j customers eating dish j in restaurant i may be partitioned
into `i,j tables, each one containing qi,j,t clients, for t = 1, . . . , `i,j . In particular we have that

ni,j =
P`i,j

t=1 qi,j,t.
To fix the notation we write `i ⌘ (`i,1, . . . , `i,k), qi,j ⌘ (qi,j,1, . . . , qi,j,`i,j ), while ` = (`1, `2)

and q denotes the overall tables frequencies, finally dots in the indexes denote that we are summing
over that index, e.g., `•j =

Pd
i=1 `i,j . If �

(n)
k,0 and �(n)

k,i denote the exchangeable partition probability
functions (EPPFs) induced by p̃0 and p̃i, respectively, then

⇧(n1+n2)
k (n1,n2; `, q) = �(`••)

k,0 (`•1, . . . , `•k)
2
Y

i=1

�(ni)
`i•,i

(qi,1, . . . , qi,k). (10)

See Theorem 1 in [3]. For the HPYP, (10) boils down to

⇧(n1+n2)
k (n1,n2; `, q)

=

Qk�1
r=1(✓0 + r�0)

(✓0 + 1)`••�1

k
Y

t=1

(1� �0)`•�1

Q`1•�1
r=1 (✓ + r�)

(✓ + 1)n1�1

k
Y

v=1

`1,v
Y

t=1

(1� �)q1,v,t�1

⇥
Q`2•�1

r=1 (✓ + r�)

(✓ + 1)n2�1

k
Y

v=1

`2,v
Y

t=1

(1� �)q2,v,t�1

(11)
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with the convention (1� �)�1 ⌘ 1. The closed form expression displayed in (11) is a fundamental
tool to derive the full conditional distributions of the Gibbs sampler described in Section 5. As for
the actual determination of ⇧(n1+n2)

k , a proof can be found in [3].

5 Algorithm for predictions

Once the probability distribution of the underlying partially exchangeable random partition has
been determined through (10), one can address the issue of predicting m future outcomes of a
certain experiments as mentioned in Section 2. To be more specific, conditional on observed data
X(ni)

i , interest lies in predicting specific features of additional and unobserved samples X(mi|ni)
i ,

for i = 1, 2. Had one solely been interested in estimating Li,j
s,m, in view of Theorem 1 it would

have been enough to determine the single-step prediction (m = 1) and obtain the estimate for a
general m by linearity. However, since we also aim at identifying highest posterior density (HPD)
regions of Li,j

s,m, a general m-step prediction algorithm is mandatory (of which m = 1 represents

a simple special case). Furthermore, the simulation of realizations of X(mi|ni)
i , for i = 1, 2, is of

interest if one is also willing to infer other quantities of interest in species sampling problems such
as, e.g., the number of new species that will be observed or the so-called discovery probability.
See [19]. Finally, note that despite the presentation concerns the multiple-samples case, obvious
modifications allow one to devise an algorithm for the exchangeable case (d = 1).

Our goal is to generate samples X1,n1+1, . . . , X1,n1+m1 and X2,n2+1, . . . , X2,n2+m2 , conditional
on X(n1) and X(n2), for any two positive integers m1 and m2. In order to employ (11) one needs
to introduce n1 +m1 + n2 +m2 latent variables T1,1, . . . , T1,n1+m1 , T2,1, . . . , T2,n2+m2 , which are
the labels identifying the tables at which the di↵erent costumers are seated in the restaurants. If
the additional m = m1 +m2 data induce j new distinct observations not included in X(n1) and
X(n2), the determination of the full conditionals follows immediately from the pEPPF, which is
easily deduced from (11). One finds

⇧(n1+n2+m)
k (n1,n2; `, q)

= �(`••)
k+j,0(`•1, . . . , `•k+j)

2
Y

i=1

�(ni+mi)
`i•,i

(qi,1, . . . , qi,k+j)

=

Qk+j�1
r=1 (✓0 + r�0)

(✓0 + 1)`••�1

k+j
Y

t=1

(1� �0)`•t�1

Q`1•�1
r=1 (✓ + r�)

(✓ + 1)n1+m1�1

k+j
Y

v=1

`1,v
Y

t=1

(1� �)q1,v,t�1

⇥
Q`2•�1

r=1 (✓ + r�)

(✓ + 1)n2+m2�1

k+j
Y

v=1

`2,v
Y

t=1

(1� �)q2,v,t�1.

(12)

Based on (12) one can devise a Gibbs sampler that generates (Ti,1, . . . , Ti,ni), for i = 1, 2, and
(Xi,ni+r, Ti,ni+r), for r = 1, . . . ,mi and i = 1, 2, from their respective full conditionals. Details
are provided for i = 1, the case i = 2 being identical with the appropriate adaptations. If V is a
variable that is a function of (Ti,1, . . . , Ti,ni+mi) and of (Xi,ni+1, . . . , Xi,ni+mi), use V

�r to denote
the generic value of the variable V after removal of Ti,r, for r = 1, . . . , ni, and of (Xi,r, Ti,r), for
r = ni + 1, . . . , ni +mi.

(1) At t = 0, start from an initial configuration X(0)
i,ni+1, . . . , X

(0)
i,ni+mi

and T (0)
i,1 , . . . , T

(0)
i,ni+mi

, for
i = 1, 2.
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(2) At iteration t � 1,

(2.a) With X1,r = X⇤
h generate latent variables T (t)

1,r , for r = 1, . . . , ni, from

P(T1,r = “new”| · · · ) / wh,r
(✓ + `�r

1• �)

(`�r
•• + ✓0)

,

P(T1,r = T ⇤,�r
1,h,| · · · ) / (q�r

1,h, � �) for  = 1, . . . , `�r
1,h,

where wh,r = `�r
•h � �0 if `�r

•h > 0 and wh,r = 1 otherwise. Moreover, T ⇤,�r
1,h,1 , . . . , T

⇤,�r

1,h,`�r
1,h

are

the tables at the first restaurant where the hth dish is served, after the removal of T1,r.

(2.b) For r = 1, . . . ,m1, generate (X(t)
ni+r, T

(t)
ni+r) from the following predictive distributions

P(X1,r = “new”, T1,r = “new”| · · · ) = (✓0 + (k + j�r)�0)

(✓ + n1 +m1 � 1)

(✓ + `�r
1• �)

(✓0 + `�r
•• )

while, for any h = 1, . . . , k + j�r and  = 1, . . . , `�r
1,h,

P(X1,r = X⇤,�r
h , T1,r = “new”| · · · ) =

(`�r
•h � �0)

(✓ + n1 +m1 � 1)

(✓ + `�r
1• �)

(✓0 + `�r
•• )

,

P(X1,r = X⇤,�r
1,h , T1,r = T ⇤,�r

1,h,| · · · ) =
q�r
1,h, � �

✓ + n1 +m1 � 1
.

6 Illustrations

We are now ready to apply the algorithm devised in Section 5 to face prediction in species sampling
problems. To this end, we assume that the observations originate from d di↵erent populations of
individuals that can be grouped into classes identified by di↵erent types or species. One can think,
for example, of data related to communities of plants or animals from di↵erent species in unknown
proportions. In this case, p̃i in (2) is the distribution of the species in the ith community and
similarities between communities motivate dependence across the p̃i’s.

Here we focus on the analysis of genomic data known as Expressed Sequence Tags (ESTs).
These are generated by partially sequencing randomly isolated gene transcripts that have been
converted into cDNA. In very simplified terms, ESTs are tool for gene identification and an EST
sample of size n consists of Kn distinct genes, with expression levels, i.e., frequencies, N1, . . . , NKn ,
where N1 + · · ·+NKn = n. A large amount of literature, both frequentist and Bayesian, has been
developed for addressing prediction problems related to exchangeable data in several application
areas, most notably in Ecology, Biology and Genomics. ESTs represent an important instance of
genomics application.

Given a basic observed sample of size n and a potential additional sample of sizem various types
of prediction problems can be addressed. For instance, one may consider estimation of the number
of new genes arising in the additional sample of size m or the m-discovery probability, which is
the probability of discovering a new gene at the (n+m+ 1)th draw, without having observed the
additional sample of size m. The frequentist approach dates back to the pioneering contributions
of Good and Toulmin [12, 13] and has seen countless contributions since then. Among them we
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mention [2, 5, 24, 30] and references therein. A Bayesian nonparametric approach to this type of
prediction problems in the exchangeable setting was first proposed in [19] and developments to
date are accounted for in [7]. A method for comparing and testing across di↵erent EST libraries
is set forth in [20]. However, species’ prediction problems within a rigorous partially exchangeable
framework have not been considered in the literature yet.

Here we drop the exchangeability assumption and address prediction in the more general and
realistic framework of multiple populations. We consider two di↵erent cDNA libraries of fruits
of a citrus clementina, namely FlavFr1 and RindPdig24, which, for simplicity, we refer to as
FRUIT 1 and FRUIT 2, respectively. The EST sample corresponding to FRUIT 1, X(n1)

1 , contains
n1 = 1593 ESTs with Kn1 = 806 distinct genes, whereas the sample corresponding to FRUIT 2,
X(n2)

2 , is made of n2 = 900 ESTs with Kn2 = 687 unique genes. Moreover, the two libraries
share 183 distinct genes and, in particular, 520 and 317 ESTs of, respectively, FRUIT 1 and
FRUIT 2 refer to these common genes. The details of the two EST samples and the sample
obtained by merging the two are given in Table 1. These data are freely available at the website
http://www.ncbi.nlm.nih.gov/unigene/.

Expression level FRUIT 1 FRUIT 2 FRUITS

1 561 549 905

2 148 99 231

3 37 20 79

4 18 12 32

5 6 4 11

6 5 9

7 12 1 11

8 1 1 4

9 1 6

10 3 1 2

11 1 3

12 2 3

13 1

14 3 1

15 2 1

16 1 2

17 2

19 1

20 1

22 1

23 1 1

24 2

26 1

58 1 1

117 1 1

n 1593 900 2493

Kn 806 687 1310

Table 1: Citrus clementina: EST clustering profile of cDNA libraries of di↵erent fruits. FRUITS
is FRUIT 1 + FRUIT 2.

Given EST data, the main inferential goal consists in prediction of the outcomes of additional
sequencing, in our case from the two clementina libraries. More precisely, we focus on the number
of genes coinciding with new values to be detected in an additional sample of size m, which
can be distinguished into: (a) L0,0

s,m for s = 1, 2; (b) L0,1
1,m and L1,0

2,m; (c) L0
1,m = L0,0

1,m + L0,1
1,m and
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L0
2,m = L0,0

2,m+L1,0
2,m. Recall that (a) and (b) were defined right before Theorem 1. Since closed form

expressions for estimators of these quantities are not available under hierarchical nonparametric
models (2), we approximate all the predictions by resorting to the algorithm described in Section 5.
Indeed, at every iteration t, we generate the trajectory X(t)

i,ni+1, . . . , X
(t)
i,ni+m in order to evaluate

the quantities of interest. For example, we have

L̂0
s,m =

1

T

T
X

t=1

m
X

r=1

1{Xs,1,...,Xs,ns}c(X(t)
s,ns+r)

for s = 1, 2 and m 2 N. Here we compare the predictions obtained in the simple exchangeable case,
in which the quantities are estimated separately for the two datasets, with the results obtained
in the partially exchangeable case. Note that the latter is a more natural choice, since the two
libraries share a high number of genes, and the assumption of partial exchangeability triggers the
borrowing of strength phenomenon across the libraries. The following numerical outputs are based
on 10,000 iterations of the Gibbs sampler after 5,000 burn-in sweeps.

6.1 Independent exchangeable datasets

We first analyze the two libraries separately, which is equivalent to assuming independence of
the p̃i’s and the prediction rule takes on the form displayed in (3). The corresponding model
specification is

(X1,i, X2,j) | (p̃1, p̃2)
iid⇠ p̃1 ⇥ p̃2,

(p̃1, p̃2) | (p̃1,0, p̃2,0) ⇠ PY(�1, ✓1; p̃1,0)⇥ PY(�2, ✓2; p̃2,0),

(p̃1,0, p̃2,0) ⇠ PY(�1,0, ✓1,0;P0)⇥ PY(�2,0, ✓2,0;P0)

and one can rely on a suitable adaptation of the algorithm devised in Section 5 in order to obtain
approximation predictions. We also set independent non-informative priors for (�i,0, ✓i,0) and
(�i, ✓i), for i = 1, 2 given by

(�i,0,�i, ✓i,0, ✓i)
iid⇠ U(0, 1)⇥ U(0, 1)⇥ G(300, 5�1)⇥ G(300, 5�1),

where U(0, 1) stands for the uniform distribution on the interval (0, 1) and G(a, b) denotes the
Gamma distribution with parameters (a, b); the values of (�i,0,�i, ✓i,0, ✓i) are generated through
a Metropolis–Hastings step. In other terms, the two samples are independent and inferences with
data from one sample do not impact inferences concerning the other sample. Given that there are
183 shared observations, the independence assumption is quite restrictive but it serves as a useful
exercise for drawing comparisons with the more appropriate partial exchangeability assumption.
The estimators of L0

s,m for s = 1, 2 are summarized, for di↵erent sizes of the additional sample

m, in Table 2. In accordance with Theorem 1, L̂1,m increases linearly in m, with a slope which
is larger for the second dataset FRUIT 2, consequence of a higher probability of sampling a new
value at step n+1 for library 2. Finally, the posterior estimates for the parameters of the marginal
PY processes are equal to

(✓̂1,0, �̂1,0, ✓̂1, �̂1) = (1213.4, 0.4676, 1387.5, 0.0545),

(✓̂2,0, �̂2,0, ✓̂2, �̂2) = (1428.1, 0.2726, 1543.3, 0.6532).
(13)
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Citrus clementina: FRUIT 1 Citrus clementina: FRUIT 2

m L̂0
1,m HPD (95%) L̂0

2,m HPD (95%)
200 68.21 (54, 83) 122 (106, 138)
400 136.21 (114, 159) 244 (219, 269)
600 204.28 (175, 235) 366 (331, 401)
800 272.34 (236, 310) 488 (444, 531)
1000 340.37 (297, 385) 610 (557, 662)
1200 408.48 (358, 461) 731 (670, 792)
1400 476.51 (419, 536) 853 (783, 924)
1600 544.71 (481, 611) 975 (897, 1054)
1800 612.74 (542, 687) 1097 (1011, 1185)
2000 680.83 (604, 760) 1219 (1124, 1314)

Table 2: Posterior expected number of new ESTs with corresponding 95% highest posterior density
intervals for FRUIT 1 and FRUIT 2 in the independent exchangeable setting for the HPYP.

Citrus clementina: FRUIT 1 Citrus clementina: FRUIT 2

m L̂0
1,m HPD (95%) L̂0

2,m HPD (95%)
200 53.21 (41, 66) 85.32 (71, 100)
400 106.45 (87, 126) 170.70 (149, 192)
600 159.69 (136, 184) 256.04 (228, 284)
800 212.99 (185, 242) 341.37 (307, 376)
1000 266.13 (233, 300) 426.74 (387, 467)
1200 319.28 (282, 357) 512.13 (467, 558)
1400 372.45 (331, 414) 597.53 (547, 648)
1600 425.78 (380, 473) 682.86 (627, 739)
1800 479.01 (429, 530) 768.17 (708, 829)
2000 532.37 (479, 587) 853.59 (788, 920)

Table 3: Posterior expected number of new ESTs with corresponding 95% highest posterior density
intervals for FRUIT 1 and FRUIT 2 in the independent exchangeable setting for the HDP.

It is useful to briefly compare the results of HPYP with the more familiar HDP, which arises
by setting �i = �i,0 = 0 for i = 1, 2. The estimated values of L0

s,m for s = 1, 2 for the HDP
are reported in Table 3. Not surprisingly, given the findings in [19], the Dirichlet process leads to
strong underestimation. Clearly, if the HDP were the appropriate model to use in this case, the
estimates of the � parameters for the two samples would have all been close to 0, whereas it is
clear from (13) that they are not.

6.2 Partially exchangeable samples

The presence of 183 shared genes across the two libraries indicates that a more elaborate model
accounting for dependence among the two samples is appropriate. The hierarchical structure (2),
with d = 2 and p̃1, p̃2 and p̃0 as in (9), seems ideally suited to account for interactions among the
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two samples. This corresponds to assuming the data to be exchangeable within each library and
conditionally independent across the two libraries. Hence, the number of new genes to be detected
in the additional sample for each library depends also on the sample of the other library. Moreover,
there is a single shared set of parameter values (✓0,�0, ✓,�) for which we set independent priors as
follows

(�0,�, ✓, ✓0) ⇠ U(0, 1)⇥ U(0, 1)⇥ G(300, 5�1)⇥ G(300, 5�1).

In a similar fashion as in the exchangeable framework, these parameters are generated through
a Metropolis–Hastings step embedded within the Gibbs sampler. The generalized Blackwell–
MacQueen urn scheme in Section 5, then, yields the simulated trajectories that are used to ap-
proximate posterior inferences. The relevant numerical summaries arising from the algorithm are
reproduced in Table 4. The estimates of L0,1

1,m and L1,0
2,m show how many of the ESTs become

“shared” as the size of the additional sample increases. For instance, after m = 2000 additional
sequencing, we predict that in FRUIT 1 we will detect 144.67 ESTs originally observed only in
FRUIT 2. By comparing L0,1

1,m and L1,0
2,m it is apparent that the rate of detection for new values

specific to the FRUIT 1 sample in library FRUIT 2 is faster than vice versa. Also the number
of new genes not previously recorded in any of the two samples, L0,0

1,m and L0,0
2,m, is larger when

sampling additional genes for the FRUIT 2 library.

Citrus clementina: FRUIT 1 Citrus clementina: FRUIT 2

m L̂0,0
1,m L̂0,1

1,m L̂0
1,m L̂0

1,m–HPD L̂0,0
2,m L̂1,0

2,m L̂0
2,m L0

2,m–HPD
200 67.65 14.45 82.09 (68, 97) 82.88 25.34 108.22 (93, 123)
400 135.28 28.89 164.17 (142, 186) 165.84 50.78 216.62 (193, 240)
600 202.84 43.37 246.20 (218, 275) 248.67 76.25 324.91 (294, 355)
800 270.52 57.86 328.38 (293, 364) 331.66 101.63 433.29 (396, 470)

1000 338.19 72.33 410.51 (369, 452) 414.57 127.08 541.65 (498, 585)
1200 405.82 86.80 492.61 (445, 540) 497.42 152.55 649.97 (600, 699)
1400 473.41 101.27 574.68 (521, 628) 580.21 177.97 758.19 (702, 814)
1600 541.03 115.76 656.79 (597, 716) 663.09 203.40 866.50 (805, 927)
1800 608.67 130.24 738.91 (675, 804) 745.92 228.88 974.80 (906, 1042)
2000 676.25 144.67 820.92 (750, 891) 828.90 254.24 1083.14 (1009, 1157)

Table 4: Citrus clementina: posterior expected number of new ESTs and 95% highest posterior
density intervals for the two libraries of fruits in the partially exchangeable framework for the
HPYP.

In accordance with Theorem 1, the posterior estimates of the quantities of interest turn out to
be linear in m. Thanks to Theorem 1 we also obtain estimates of the following one-step predictions
probabilities

P(X1,n1+1 2 A0,1 |X(n1)
1 ,X(n2)

2 ) ⇡ 0.0723,

P(X2,n2+1 2 A1,0 |X(n1)
1 ,X(n2)

2 ) ⇡ 0.127.

Hence, the slope of the linear estimator L̂0,1
2,m is higher than that of L̂1,0

1,m. This is also apparent
from Figure 1.

It is also interesting to compare Table 2 with Table 4. The appropriate quantities to focus
on are L0

s,m from which the desired phenomenon of borrowing of strength is apparent. This is
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(a) (b)

Figure 1: HPYP: total number of new ESTs L̂0
i,m in the exchangeable (a) and partially exchange-

able (b) settings as the size m of additional sample increases.

even more explicit in Figure 1, which depicts the posterior estimates of L0
1,m and L0

2,m as m
increases both in the exchangeable (Figure 1(a)) and partially exchangeable (Figure 1(b)) settings.
We may conclude that the discrepancies between L̂0

1,m and L̂0
2,m are much lower in the partially

exchangeable case. Furthermore the 95% HPD intervals are significantly narrower for the partial
exchangeable model, showing the beneficial influence of the borrowing of strength, which reduces
the uncertainty about the estimates. Besides, the estimates of the model parameters equal

(�̂0, �̂, ✓̂, ✓̂0) = (0.3449, 0.5595, 1241.40, 1044.54). (14)

Finally, we also consider the HDP case, which corresponds to � = �0 = 0. The estimated
quantities are reported in Table 5 and can be directly compared to those in Table 4 corresponding
to the HPYP. Figure 2 displays the posterior estimates of L0

1,m and L0
2,m, as m increases, for both

the exchangeable (Figure 2(a)) and partially exchangeable (Figure 2(b)) settings. The previous
considerations clearly apply also to the HDP. A first noteworthy, though not surprising, di↵erence
is that the rate of detection of new genes is much slower in the HDP case. Moreover, the shrinking
phenomenon in the partially exchangeable setup is less evident for the HDP. This means that,
besides the growth rate of new species being detected in additional samples, the key parameters
� and �0 have also a considerable e↵ect on the intensity of the shrinkage phenomenon. Finally,
one may argue as in Section 6.1 and note that there is no doubt about the HPYP yielding the
better performance: if the HDP were the model to use, the posterior estimates of � and �0 would
have been close to 0, namely consistent with the HDP model, which is clearly not the case as the
numerical values displyed in (14) illustrate.
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Citrus clementina: FRUIT 1 Citrus clementina: FRUIT 2

m L̂0,0
1,m L̂0,1

1,m L̂0
1,m L̂0

1,m–HPD L̂0,0
2,m L̂1,0

2,m L̂0
2,m L0

2,m–HPD
200 48.94 14.90 63.84 (51, 78) 62.54 26.83 89.37 (75, 104)
400 98.08 29.79 127.87 (108, 149) 125.10 53.66 178.76 (157, 200)
600 147.09 44.67 191.76 (166, 218) 187.46 80.53 267.00 (240, 296)
800 196.14 59.54 255.68 (225, 287) 249.81 107.34 357.17 (323, 391)
1000 245.13 74.41 319.55 (284, 356) 312.34 134.15 446.49 (407, 485)
1200 294.16 89.25 383.41 (344, 425) 374.73 160.99 535.71 (491, 580)
1400 343.22 104.04 447.26 (403, 494) 437.25 187.80 625.05 (575, 676)
1600 392.21 118.87 511.07 (462, 562) 499.90 214.54 714.43 (659, 770)
1800 441.33 133.72 575.05 (521, 631) 562.50 241.30 803.80 (744, 864)
2000 490.32 148.53 638.84 (581, 699) 625.06 268.09 893.14 (827, 958)

Table 5: Citrus clementina: posterior expected number of new ESTs and 95% highest posterior
density intervals for the two libraries of fruits in the partially exchangeable framework for the HDP.

(a) (b)

Figure 2: HDP: total number of new ESTs L̂0
i,m in the exchangeable (a) and partially exchangeable

(b) settings as the size m of additional sample increases.
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