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Abstract

We extend the Fundamental Theorem of Finance and the Pricing Rule Representation Theorem to

the case in which market frictions are taken into account but the Put�Call Parity is still assumed to

hold. In turn, we obtain a representation of the pricing rule as a discounted expectation with respect to

a nonadditive risk neutral probability.

1 Introduction

We extend the Fundamental Theorem of Finance and the Pricing Rule Representation Theorem to markets

with frictions.1 We assume the Put�Call Parity and the absence of arbitrage opportunities and, under these

hypotheses, we obtain a representation of the pricing rule as a discounted expectation with respect to a

nonadditive risk neutral probability. In other words, the market prices contingent claims as an ambiguity

sensitive, but risk neutral, decision maker. As a further contribution, we remove the state space structure

and the contingent claim representation that are usually assumed exogenously to model assets and markets.

In particular, this allows us to provide a unique mathematical framework where we can both discuss the

Fundamental Theorem of Finance and the Pricing Rule Representation Theorem.

Most of the fundamental theory of asset pricing relies on two main hypotheses: frictionless markets and

absence of arbitrage.2 On the other hand, frictions and transaction costs are present in �nancial markets and

play an important role. Important evidence of these facts is the existence of bid-ask spreads (see, e.g., Amihud

and Mendelson [3] and [4]). As a consequence, the Finance literature developed models that incorporate

transaction costs and taxes (see, e.g., Garman and Ohlson [17], Prisman [35], Ross [39], Jouini and Kallal

[26], and Luttmer [32]). In particular, [35], [26], and [32] observe how taxes/transaction costs generate

pricing rules that are not linear but still can be compatible with the no arbitrage assumption. Inter alia,

Prisman [35] shows that convex transaction costs or taxes generate convex pricing rules. Furthermore, if

transaction costs are di¤erent among securities but proportional to the volumes dealt, then the respective

pricing rules are sublinear, as in [26] and [32].

�Corresponding Author: Massimo Marinacci hmassimo:marinacci@unibocconi:iti, U. Bocconi, via Sarfatti 25, 20136, Milano,
ITALY. We thank Alain Chateauneuf and Paolo Guasoni for very useful discussions and comments. Simone Cerreia-Vioglio
and Fabio Maccheroni gratefully acknowledge the �nancial support of MIUR (PRIN grant 20103S5RN3_005) and of the AXA
Research Fund. Massimo Marinacci gratefully acknowledges the �nancial support of the European Research Council (advanced
grant BRSCDP-TEA) and of the AXA Research Fund.

1The combination of these two results is also known in the literature as the Fundamental Theorem of Asset Pricing (see,
e.g., [16] and [12]).

2See, e.g., Ross [36] and [38], Cox and Ross [9], and, in a dynamic setting, Harrison and Kreps [23], Harrison and Pliska
[24], and Delbaen and Schachermayer [11]. For an introduction to the topic, see Dybvig and Ross [14], Ross [40], Follmer and
Schied [16], and Delbaen and Schachermayer [12].
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Our approach is di¤erent. In a standard framework, the no friction assumption paired with the Law of

One Price yields the fundamental Put�Call Parity, �rst discovered by Stoll [44] (see also Kruizenga [30]).

Moreover, the no friction assumption also implies that when a risk-free position is added to an existing

portfolio the price of the resulting portfolio is equal to the price of the original portfolio plus the price of

the position on the risk-free asset. This last implication is basically equivalent to say that the price on the

market of the risk-free asset is linear and in particular the bid-ask spread is zero on this market. From an

applied point of view, the absence of frictions on the market of the risk-free asset and the Put�Call Parity

are two important assumptions since they can be empirically tested.3 These two joint properties are at the

center of our study.

We study price functionals and pricing rules that satisfy a version of the Put�Call Parity and exhibit

no frictions in the market of the risk-free asset. These two no frictions assumptions are conceptually much

weaker than the standard one and much easier to test empirically. As in the standard case, we further

retain a no arbitrage postulate. We show (Theorems 1 and 3) that these pricing rules can be characterized

as discounted expectations with respect to a nonadditive probability, that is, by using Choquet expecta-

tions. One important feature of our result is that Choquet pricing rules are characterized by preserving

the aforementioned �nancial identities but, a priori, they are not the direct result of assuming transaction

costs, bid-ask spreads, or short�sales constraints. Instead, making these assumptions would naturally lead

to sublinear pricing rules which have been studied exactly to account for transaction costs (as in Jouini

and Kallal [26] and Luttmer [32]; see also Kabanov and Safarian [27]). It is then natural to ask what is

the overlap between Choquet and sublinear pricing rules. Corollaries 1 and 2 show that a pricing rule is

sublinear and Choquet if and only if the nonadditive probability that represents it is concave. In this case,

the set of consistent price systems coincides with the core of this nonadditive probability. Thus, among the

others, we provide testable conditions under which transaction costs generate a sublinear pricing rule which

is also a nonadditive expectation.

Subadditive Choquet pricing rules were �rst studied and characterized by Chateauneuf, Kast, and Lapied

[8]. Theorem 1.1 of [8] o¤ers a generalized version of the Representation Theorem for Choquet pricing rules.

The main assumption in [8] is comonotonic additivity which is paired with an assumption of no arbitrage

that we also use. Comonotonic additivity is, however, a di¢ cult property to test since it requires a contingent

claim representation for the assets considered and it requires to verify the absence of frictions on a large class

of assets�pairs. On the other hand, our characterization of Choquet pricing relies on the Put�Call Parity

(henceforth, also PCP) which is easier to test. In fact, in the literature there are several studies testing the

validity of the PCP (see Stoll [44] and [45], Gould and Galai [20], Klemkosky and Resnick [29], and Kamara

and Miller [28]).

Choquet Expected Utility (henceforth, CEU) was introduced in Economics to account for deviations

from the standard model of Subjective Expected Utility (henceforth, SEU) as formulated by Savage [41]

and Anscombe and Aumann [5]. Schmeidler [43] (see also Gilboa [18]) shows instead how the CEU model

can accommodate patterns of choice not consistent with the SEU model, like the ones contained in Ellsberg

[15], while still being able to account for Ambiguity and Ambiguity Aversion.4 Despite sharing some of the

mathematical tools coming from the literature of choice under Ambiguity, conceptually, the current paper is

very di¤erent.

3The empirical validity of the Put�Call Parity condition should be tested by using European options data, like in Kamara
and Miller [28], in order to avoid issues of early exercise.

4For a comprehensive recent survey on the literature of choice under Ambiguity, see Gilboa and Marinacci [19].
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The rest of the paper is organized as follows. Section 2 contains our generalization of the Representation

Theorem in the �nite dimensional setting. We start in Section 2.1 with some mathematical preliminaries.

In Section 2.2, we brie�y review the famous Fundamental Theorem of Finance and the Pricing Rule Rep-

resentation Theorem. Section 2.3 contains our main result: Theorem 1. In Section 2.4, we discuss some

of its extensions. Appendix A provides the representation theorem on which our results hinge. Appendix

B contains our main result in its most general form: Theorem 3. This result is stated and proved in a

very general setting where we dispense with the assumptions of �nite dimensionality and of existence of an

underlying state space.

2 The Finite Dimensional Case

2.1 Mathematical Preliminaries

Consider a �nite state space 
 = f!1; :::; !mg.5 We endow 
 with the �-algebra coinciding with the power
set P (
). A nonadditive probability is a set function � : P (
)! [0; 1] such that � (;) = 0, � (
) = 1, and
� (A) � � (B) whenever A � B � 
. We say that � is a concave nonadditive probability if and only if for
each A and B

� (A \B) + � (A [B) � � (A) + � (B) :

A probability � is instead an additive set function such that � (;) = 0 and � (
) = 1. Clearly, an additive
probability can also be identi�ed with a vector in Rm. A nonadditive probability � is balanced if and only
if there exists a probability � such that � � �. If a nonadditive probability is concave, then it is balanced,
but the viceversa does not hold in general. Finally, we denote by core (�) the set of all probabilities � such

that � � �.
Unless otherwise speci�ed, Rm is endowed with the usual pointwise order. Given x 2 Rm, x+ =

max fx;0g denotes the positive part of x. With a small abuse of notation, we sometimes denote by k both
the real number k and the constant vector that takes value k. With such a notation, x^ k and x_ k denote
the minimum and the maximum between vector x and the constant vector k.

We say that a function ~� : Rm ! R is
- positive if and only if x � 0 implies ~� (x) � 0;
- monotone if and only if x � y implies ~� (x) � ~� (y);
- linear if and only if for each x;y 2 Rm and �;  2 R

~� (�x+ y) = �~� (x) + ~� (y) ;

- translation invariant if and only if for each x 2 Rm and k 2 R

~� (x+ k) = ~� (x) + k~� (1) ;

- constant modular if and only if for each x 2 Rm and k 2 R

~� (x _ k) + ~� (x ^ k) = ~� (x) + k~� (1) ;

- subadditive if and only if for each x;y 2 Rm

~� (x+ y) � ~� (x) + ~� (y) ;

- positively homogeneous if and only if for each x 2 Rm and � � 0

~� (�x) = �~� (x) ;

- sublinear if and only if ~� is subadditive and positively homogeneous.
5 In this section, we provide the mathematical preliminaries that are necessary for Section 2 and all the examples in the

paper which refer to this section. We refer the reader to Appendix A for all the other relevant mathematical notions.
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2.2 The Classical Framework

We consider a two periods market where all tradings happen at time 0. Let n be the number of primary

assets. We denote by 
 = f!1; :::; !mg the state space that we eventually use to represent the uncertainty
behind any asset evaluation at time 1. In this case, an asset or a portfolio of assets can also be represented as

a vector x 2 Rm. We denote by G the Arrow-Debreu tableau of securities�payo¤s which is a matrix with m
rows and n columns. Each row i denotes the payo¤/evaluation of each primary asset in state !i while each

column j is the primary asset j in its contingent claim form. In other words, the entry gij of G represents the

payo¤/evaluation of primary asset j in state !i. We also assume that the rows of G are di¤erent from each

other, that is, that there are not redundant states of the world in 
. The market of all tradable portfolios

can thus be represented by the vector space P = Rn, where a vector � represents the portfolio consisting
of �i units of each primary asset i. Each portfolio � 2 P has also a representation as a contingent claim

G� 2 Rm, and the space of portfolios has a contingent claim representation as C = fG� : � 2 Rng.
Assumption C \ Rm++ 6= ;:
Thus, a two periods market can be modelled in two ways: a) the space of all portfolios P , b) the space

of all tradable contingent claims C. The two spaces are connected via the linear function T : Rn ! C � Rm

that associates to each portfolio � the contingent claim T (�) = G�. Given these two representations, prices

can then be modelled in two ways: a) as a function p : P ! R, b) as a function ~� : C ! R. In the main
text, functions of the �rst kind are termed price functionals, while functions of the second kind are called

pricing rules.

In the classical framework, a further datum are the prices of the n primary assets: p1; :::; pn. The

hypothesis of no frictions in the market (NF) amounts to assume that the price functional p : P ! R is

linear, that is,

p (�) =
nX
i=1

pi�i 8� 2 Rn: (NF)

The value p (�) is the market value of �. Another fundamental assumption in Asset Pricing is the no

arbitrage assumption (NA):6

p (�) < 0 ) G� 6� 0: (NA)

It amounts to impose that there do not exist portfolios that have negative price and yield a nonnegative

payment in each contingency. It is immediate to see that under NF the no arbitrage assumption yields the

weaker Law of One Price, that is, if two portfolios �1 and �2 induce the same contingent claim (G�1 = G�2),

then p (�1) = p (�2).

Under the Law of One Price, any price functional p induces a well de�ned pricing rule ~�p : C ! R over
contingent claims. In fact, the price of a contingent claim x 2 C is de�ned by

~�p (x) = p (�)

where � 2 Rn is such that x = G�. Note that the Law of One Price yields that if �1 and �2 in P are such
that G�1 = x = G�2, then p (�1) = p (�2), showing that ~�p is well de�ned. We thus have:

Fundamental Theorem of Finance Let p : P ! R be a nonzero price functional and let ~�p : C ! R be
the associated pricing rule. The following statements are equivalent:

(i) there are no frictions in the market (NF) and no arbitrage opportunities (NA);

6A stronger version of the NA assumption (see also [31] and [40]) is p (�) � 0 implies G� 6> 0. This is a condition of strict
positivity, while NA is a condition of positivity.
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(ii) ~�p is a well de�ned positive linear pricing rule.

At the same time, also positive linear pricing rules can be characterized:

Representation Theorem Let ~� : C ! R be a nonzero pricing rule. The following statements are

equivalent:

(i) ~� is a positive linear pricing rule;

(ii) there exist a risk neutral probability � and a riskless rate r > �1 such that

~� (x) =
1

1 + r
E�x =

1

1 + r

mX
i=1

xi�i 8x 2 C: (1)

From a mathematical point of view, the NF assumption is an assumption of linearity of both: the price

functional p and the pricing rule ~�p. The NA assumption is an assumption of positivity of the pricing rule

~�p. At �rst sight, the NA condition does not seem to have a clear mathematical counterpart for p since it is

based on the contingent claim representation of portfolios. Nevertheless, the NA assumption is a positivity

condition of the price functional p whenever the space of portfolios P is endowed with the preorder induced

by G, that is,

�1 �G �2 () G�1 � G�2:

In other words, a portfolio �1 is declared at least as good as a portfolio �2 if and only if each possible

evaluation at time 1 of �1 is greater than the one of portfolio �2. The preorder �G is typically very di¤erent
from the pointwise order with which Rn is naturally endowed. In light of this observation, p satis�es the NA
condition if and only if

� �G 0 ) p (�) � 0;

which is a condition of positivity for p.

In both cases, given the linearity of p and ~�p, the positivity assumption contained in the NA condition

is equivalent to monotonicity of both p and ~�p.

2.3 Our Main Result

In this section, we focus on pricing rules ~� : C ! R and present a generalization of the Representation

Theorem (for a generalization of the Fundamental Theorem of Finance, see Appendix B). We start by

observing that, in the Representation Theorem, the probability measure � takes the name of risk neutral

probability. It is unique when the market is complete, that is, when all contingent claims are available and

C = Rm. In the rest of the section, we assume that

Assumption C = Rm and the columns of G are linearly independent.

Since the goal of our paper is to characterize pricing rules which satisfy, among the others, the Put�Call

Parity, it is natural to consider all possible calls and puts with nonnegative strike price. In light of this

fact, the assumption of market completeness is almost a necessary assumption. Indeed, it is well known

that completeness of markets can be achieved by assuming closure with the respect to option contracts (see

Ross [37] and Green and Jarrow [22]). Finally, for simplicity, we further assume that the columns of G are

linearly independent. This amounts to impose that in the market of primary assets there are not redundant

securities (see also LeRoy and Werner [31], Follmer and Schied [16], and Section B.1). Mathematically, this

translates into T being injective.
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One important consequence of the market being complete is that the risk-free asset is available, that is,

the constant unit vector belongs to C. We denote it by xrf . Given a contingent claim x in C, we denote

by cx;k the call option (resp., px;k the put option) on x with strike price k � 0. Recall that cx;k is the

contingent claim (x� kxrf )+ and px;k is the contingent claim (kxrf � x)+. We have the following well
known equality

cx;k � px;k = x� kxrf : (2)

If ~� were linear, this equality would deliver a version of the famous PCP, that is,

~� (cx;k) + ~�
�
�px;k

�
= ~� (x)� k~� (xrf ) : (PCP)

At time 0, PCP alone requires that the di¤erence between the ask price for the call option cx;k and the bid

price for the put option px;k coincides with the di¤erence between the ask price of the underlying asset x

and the price of k units of the risk-free asset. In other words, the two payo¤ equivalent strategies in (2) must

have the same cost. If there are frictions, a violation of the PCP might not lead to an immediately available

arbitrage opportunity. Nevertheless, if one of the two strategies was costing more than the other, in an

economy with rational agents, then its demand would be zero and no agent would buy the more expensive

portfolio, thus yielding an (equivalent) equilibrium price where the PCP is satis�ed.

In this paper, in terms of pricing rules ~�, we assume:

PCP The PCP holds for all x 2 C and all k � 0.
Cash Invariance For each x 2 C and each k 2 R

~� (x+ kxrf ) = ~� (x) + k~� (xrf ) :

Monotonicity If x � y, then ~� (x) � ~� (y).
We already discussed the PCP condition. On the other hand, Cash Invariance mathematically coincides

with translation invariance and it is a linearity assumption when the risk-free asset is involved. In fact,

it implies that ~� (kxrf ) = k~� (xrf ) for all k 2 R. It is a well known postulate in Mathematical Finance
(see Follmer and Schied [16]) that models the absence of frictions on the market of the risk-free asset. The

motivation behind this assumption is that the risk-free asset is a very liquid asset and frictions are inversely

proportional to liquidity (see Amihud and Mendelson [4]).

Monotonicity states that if a contingent claim yields a better payo¤ than another in each state of the

world, then the former should have an higher price. If there are frictions, a violation of Monotonicity might

not lead to an immediately available arbitrage opportunity. Nevertheless, Monotonicity is a rationality

assumption. If x � y and ~� (x) < ~� (y), in an economy with rational agents, then the demand of y would

be zero, thus yielding an (equivalent) equilibrium price where Monotonicity is satis�ed.

Those above are the three assumptions we need to state our nonlinear version of the Representation

Theorem which characterizes Choquet pricing rules. As mentioned in the introduction, Subadditive Cho-

quet pricing rules have also been characterized by Chateauneuf, Kast, and Lapied [8].7 The assumptions

characterizing ~� in [8] are Comonotonic Additivity, Subadditivity, and Monotonicity. Recall that two assets

are comonotonic if and only if the associated contingent claims x and y satisfy

(xi � xj) (yi � yj) � 0 8i; j 2 f1; :::;mg :

7Chateauneuf, Kast, and Lapied [8] proved their representation result also in an in�nite-dimensional setting.
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Comonotonic Additivity If x and y are comonotonic, then ~� (x+ y) = ~� (x) + ~� (y).

Subadditivity models the presence of transaction costs (see also Section 2.4).

Subadditivity If x;y 2 C, then ~� (x+ y) � ~� (x) + ~� (y).
Theorem (Chateauneuf, Kast, and Lapied, 1996) Let C = Rm and let ~� : C ! R be a nonzero pricing
rule. The following statements are equivalent:

(i) ~� satis�es Comonotonic Additivity, Subadditivity, and Monotonicity;

(ii) there exist a concave nonadditive risk neutral probability � and a riskless rate r > �1 such that

~� (x) =
1

1 + r

Z



xd� =
1

1 + r
max

�2core(�)
E�x for all x 2 C (3)

where the integral in (3) is a Choquet integral.

Comonotonic Additivity is a di¢ cult property to test since it requires a contingent claim representation

for the asset considered and, more importantly, it requires to verify additivity of the pricing rule over a large

class of assets�pairs. At the same time, despite being di¢ cult to test, Comonotonic Additivity is a property

that characterizes Choquet integrals (see Schmeidler [42]) and that we also exploit in our proofs. From a

mathematical point of view, the result of [8] rests on Schmeidler [42] representation result for monotone and

comonotonic additive functionals. On the other hand, our result hinges on a di¤erent representation result

(Greco [21] and Theorem 2).

Theorem 1 Let C = Rm and let ~� : C ! R be a pricing rule such that ~� 6= 0. The following statements
are equivalent:

(i) ~� satis�es PCP, Cash Invariance, and Monotonicity;

(ii) ~� is monotone, translation invariant, and constant modular;

(iii) there exist a nonadditive risk neutral probability � and a riskless rate r > �1 such that

~� (x) =
1

1 + r

Z



xd� for all x 2 C (4)

where the integral in (4) is a Choquet integral.

Moreover,

1. r and � are unique.

2. If � is balanced, then ~� (x) � �~� (�x) for all x 2 C, that is, there are positive bid-ask spreads.

3. � is a (additive) risk neutral probability if and only if ~� is linear (no frictions).

Proof. (i) implies (ii). Since Cash Invariance coincides with ~� being translation invariant, we only need to
show that ~� is constant modular. Consider x 2 C and k � 0. First note that

cx;k + kxrf = (x� kxrf )+ + kxrf = x _ k

and

�px;k + kxrf = � (kxrf � x)
+
+ kxrf = x ^ k:
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Since ~� satis�es PCP and Cash Invariance, this implies that

~� (x _ k) + ~� (x ^ k) = ~� (cx;k + kxrf ) + ~�
�
�px;k + kxrf

�
= ~� (cx;k) + ~�

�
�px;k

�
+ 2k~� (xrf )

= ~� (x)� k~� (xrf ) + 2k~� (xrf ) = ~� (x) + k~� (xrf ) :

Since x and k were arbitrarily chosen, ~� (x _ k) + ~� (x ^ k) = ~� (x) + k~� (xrf ) for all x 2 C and all k � 0.
Since ~� satis�es Cash Invariance, the previous equality holds for all x 2 C and all k 2 R, proving constant
modularity.

(ii) implies (iii). It follows from the representation result of Greco [21] (see Theorem 2).

(iii) implies (i). By Schmeidler [42], Choquet integrals computed with a nonadditive probability are

monotone and comonotonic additive functionals. Since ~� is a positive multiple of a Choquet integral, it is

monotone, comonotonic additive, and such that

~� (kxrf ) = k~� (xrf ) 8k 2 R: (5)

It is also immediate to see that x and kxrf are comonotonic for all x 2 C and k 2 R. At the same time, by
Marinacci and Montrucchio [33, Lemma 4.6], cx;k and �px;k are comonotonic for all x 2 C and k � 0. By
(2) and since ~� is comonotonic additive, it follows that for each x 2 C and k 2 R

~� (x+ kxrf ) = ~� (x) + ~� (kxrf ) = ~� (x) + k~� (xrf ) ;

and for each x 2 C and k � 0

~� (cx;k) + ~�
�
�px;k

�
= ~�

�
cx;k � px;k

�
= ~� (x� kxrf ) = ~� (x)� k~� (xrf ) ;

proving the implication.

Assume equivalently one among (i), (ii), and (iii).

1. Consider r1; r2 > �1 and two nonadditive probabilities �1; �2 : P (
) ! [0; 1] such that (r1; �1) and

(r2; �2) represent ~� as in (4). It follows that 1
1+r1

= � (xrf ) =
1

1+r2
, proving that r1 = r2 = r. At the same

time, for each E � f1; :::;mg, de�ne by 1E the Arrow-Debreu security corresponding to the event E. We
can conclude that 1

1+r�1 (E) = ~� (1E) =
1
1+r�2 (E), proving that �1 = �2.

2. De�ne �� : P (
) ! [0; 1] by �� (E) = 1 � � (Ec) for all E � 
. By (iii) and [33, Proposition 4.12],

�~� (�x) = 1
1+r

R


xd�� for all x 2 C. Since � is balanced, it is immediate to verify that � � � � �� for some

probability �. By de�nition of Choquet integral, this implies that

~� (x) =
1

1 + r

Z



xd� � 1

1 + r

Z



xd� � 1

1 + r

Z



xd�� = �~� (�x) 8x 2 C:

3. It is a consequence of the Representation Theorem of Section 2.2. �

Given Theorem 1, a natural question regards the kind of violations of linearity (frictions) that are allowed

by Choquet pricing rules. As mentioned above, Choquet pricing rules are additive on comonotonic assets,

that is,

~� (x+ y) = ~� (x) + ~� (y)

whenever x and y are comonotonic. In order to interpret this mathematical condition, it is useful to recall

two things: the de�nition of derivative security and an equivalent characterization of comonotonicity. Given

an asset x, a derivative on x is a contingent claim whose payo¤ is a function of x (see, e.g., Follmer and

Schied [16, p. 18]). At the same time, two vectors x and y are comonotonic if and only if there exist

two increasing functions '1; '2 : R ! R and a vector z 2 Rm such that xi = '1 (zi) and yi = '2 (zi) for
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all i 2 f1; :::;mg (see, e.g., Denneberg [13, Proposition 4.5]). In other words, whenever x and y are two
derivatives written on the same underlying asset z and their payo¤s are increasing function of the underlying

asset, then a Choquet pricing rule is additive and frictions are not allowed. For example, this is the case of

a long position on a call cz;k and a short position on the put pz;k, like in the PCP. Similarly, a call cz;k and

a discount certi�cate dz;k with cap k are two derivatives on z whose payo¤s are increasing with the payo¤

of z (see also Section 2.4.2). On the other hand, if x and y are two derivatives on the same underlying asset

z but their payo¤s are not an increasing function of the underlying asset, then a Choquet pricing rule is

typically not additive, thus allowing for frictions. For example, this is the case of a call cx;k and a butter�y

spread on x. Finally, if � is balanced the ask price ~� (x) is (typically, strictly) greater than the bid price

�~� (�x).
A surprising aspect of our result is that is it enough to verify the absence of frictions on a subset of

strategies involving a particular and simple class of derivatives (options) to characterize Choquet pricing

rules. We conclude with a remark.

Remark 1 Chateauneuf, Kast, and Lapied [8] argue that Choquet pricing can account for violations of the
PCP. The PCP version they consider is the following one:

~�
�
px;k

�
= ~� (cx;k) + ~� (�x) + k~� (xrf ) :

This condition is di¤erent from ours since, under transaction costs, we have that, typically, �~�
�
px;k

�
6=

~�
�
�px;k

�
and �~� (x) 6= ~� (�x). Incidentally, note also that cx;k and �x are in general not comonotonic,

thus, as argued in [8], Choquet pricing does not imply this version of the PCP.

2.4 Some Extension

2.4.1 The Subadditive Case

One contribution of our paper is to characterize among sublinear pricing rules the ones that are Choquet

pricing rules.

One way in which nonlinear price functionals and pricing rules can arise, even in complete markets

and without short-sale constraints, is through the existence of di¤erent prices for selling and buying primary

assets (see [26], [31], and [27]). In other words, if there exist positive bid-ask spreads in the market of primary

assets, then the NF assumption fails to hold. In fact, if for each primary asset i 2 f1; :::; ng there exists a
(ask) price, pai , for immediately buying asset i, which is greater than the (bid) price, p

b
i , for immediately

selling asset i, it follows that p : P ! R is such that

p (�) =
nX
i=1

�+i p
a
i �

nX
i=1

��i p
b
i 8� 2 Rn: (6)

It is then immediate to see that p is a genuine sublinear price functional, that is, p (��) = �p (�) for all

� 2 P and all � � 0 and p (�1+�2) � p (�1) + p (�2) for all �1;�2 2 P . At the same time, under the Law
of One Price, the associated pricing rule satis�es the same properties, that is, ~�p is well de�ned, positively

homogeneous, and subadditive.

Starting from the paper of Jouini and Kallal [26], transaction costs and frictions have been modelled

by imposing sublinearity of the pricing rule. Positive homogeneity is a property shared also by Choquet

integrals, while subadditivity is not automatically satis�ed. Under Monotonicity, a sublinear pricing rule

takes the following characterization

~� (x) =
1

1 + r
max
�2R

E�x 8x 2 C

9



where R is a closed and convex set of risk neutral probabilities. An important example of sublinear pricing

rules are Choquet pricing rules generated by a concave nonadditive probability �. In that case, we have that

R coincides with the core of �. Our paper shows that these latter rules are characterized among the pricing

rules considered by Jouini and Kallal [26] and Luttmer [32] as the ones that further satisfy the PCP. In

the case of sublinear pricing, we can also weaken the Cash Invariance and Monotonicity assumptions, thus

improving on [8, Theorem 1.1]. In fact, we can consider these weaker assumptions:

No Frictions on the Risk-Free Asset For each k 2 R, ~� (kxrf ) = k~� (xrf ).
Negativity If x � 0, then ~� (x) � 0.

Corollary 1 Let C = Rm and let ~� : C ! R be such that ~� 6= 0. The following statements are equivalent:

(i) ~� satis�es PCP, No Frictions on the Risk-Free Asset, Negativity, and Subadditivity;

(ii) ~� satis�es PCP, Cash Invariance, Monotonicity, and Subadditivity;

(iii) ~� is monotone, translation invariant, constant modular, and subadditive;

(iv) there exist a concave nonadditive risk neutral probability � and a riskless rate r > �1 such that

~� (x) =
1

1 + r

Z



xd� =
1

1 + r
max

�2core(�)
E�x for all x 2 C:

Moreover, r and � are unique.

Proof. (i) implies (ii). We only need to show that ~� also satis�es Monotonicity and Cash Invariance. If
x;y 2 C are such that y � x, then 0 � x�y. Since ~� satis�es Subadditivity and Negativity, it follows that

~� (x) = ~� (y + (x� y)) � ~� (y) + ~� (x� y) � ~� (y) ;

proving that ~� satis�es Monotonicity. Similarly, by Subadditivity and No Frictions on the Risk-Free Asset,

we have that

~� (x+ kxrf ) � ~� (x) + ~� (kxrf ) = ~� (x) + k~� (xrf ) 8x 2 C;8k 2 R: (7)

By (7), we also have that

~� (x) = ~� ((x+ kxrf )� kxrf ) � ~� (x+ kxrf )� k~� (xrf ) 8x 2 C;8k 2 R: (8)

The inequalities in (7) and (8) imply Cash Invariance.

(ii) implies (iii), (iii) implies (iv), (iv) implies (i), and uniqueness of the representation. These implications

follow from Theorem 1 with the only caveat that a Choquet integral is subadditive if and only if � is concave

(see Schmeidler [42, Proposition 3] and Marinacci and Montrucchio [33, Proposition 4.12]). �

2.4.2 Discount Certi�cates and Call Options

An important class of derivatives are discount certi�cates (see [16]). A discount certi�cate on a claim x

with cap k � 0 is a contingent claim that in state !i pays xi if xi � k and k if xi > k. We will denote this
derivative security by dx;k. It is immediate to see that for each x 2 C and k � 0

cx;k + dx;k = x: (9)

When ~� is linear, this latest equality delivers the following relation

~� (cx;k) + ~� (dx;k) = ~� (x) : (10)

We term this condition DCP (Discount Certi�cate-Call Parity).

DCP ~� satis�es (10) for all x 2 C and all k � 0.

10



Proposition 1 Let C = Rm and let ~� : C ! R be a pricing rule. The following statements are equivalent:

(i) ~� satis�es PCP, Cash Invariance, and Monotonicity;

(ii) ~� satis�es DCP, Cash Invariance, and Monotonicity.

Proof. We just need to show that PCP is equivalent to DCP for a pricing rule ~� that satis�es Cash

Invariance and Monotonicity. Before starting, note that dx;k = kxrf � px;k for all x 2 C and k � 0.
(i) implies (ii). Consider x 2 C and k � 0. Since ~� satis�es PCP and Cash Invariance, it follows that

~� (x) = ~� (cx;k) + ~�
�
�px;k

�
+ k~� (xrf ) = ~� (cx;k) + ~�

�
kxrf � px;k

�
= ~� (cx;k) + ~� (dx;k) ;

proving the statement.

(ii) implies (i). Consider x 2 C and k � 0. Since ~� satis�es DCP and Cash Invariance, it follows that

~� (x) = ~� (cx;k) + ~� (dx;k) = ~� (cx;k) + ~�
�
kxrf � px;k

�
= ~� (cx;k) + ~�

�
�px;k

�
+ k~� (xrf ) ;

proving the statement. �

In light of Theorem 1 and Proposition 1, in order to characterize a pricing rule ~� as a Choquet pricing

rule, we can drop PCP and replace it with DCP. Also in this case we provide conditions for Choquet pricing

that can be empirically tested (see Jarrow and O�Hara [25]). We conclude with two remarks:

Remark 2 Chateauneuf, Kast, and Lapied [8] argue that Choquet pricing can account for violations of the
DCP when dividends are taken into account. Nevertheless, if ~� can be represented as a discounted Choquet

integral and dividends are not taken into account, it is immediate to see that (10) must hold since cx;k and

dx;k are comonotonic for all x 2 C and all k � 0.

Remark 3 In the literature, in order to consider transaction costs, often the space of marketed portfolios
has been considered to be just a convex cone (see, e.g., Luttmer [32]). For example, this is the case if short-

sale constraints are assumed. In such a case, we would have that P = Rn+ and, given the Arrow-Debreu

tableau G, the space of marketed contingent claims would be the convex cone C+ =
�
G� : � 2 Rn+

	
. In this

case, we could still provide the equivalence between points (i) and (iii) of Theorem 1 given three caveats: (a)

xrf 2 C+ � Rm+ , (b) for each x 2 C+ and k � 0 we must have that cx;k;dx;k 2 C+, and (c) the PCP
condition is replaced with the DCP condition.

A Nonlinear Integration

A.1 Choquet Integral

In this paper, Choquet integrals play a fundamental role. Consider a measurable space (S;�). Subsets of S

are understood to be in � even where not stated explicitly. Given a set function � : �! R, we will say that
� is:

(i) a nonadditive probability if � (;) = 0, � (S) = 1, and � (A) � � (B) provided A � B;

(ii) concave if � (A [B) + � (A \B) � � (A) + � (B) for all A and B;

(iii) continuous if limn!1 � (An) = � (A) whenever either An # A or An " A;

(iv) a probability if it is a nonadditive probability such that � (A [B) = � (A) + � (B) for all A and B

which are pairwise disjoint;

11



(v) a probability measure if it is a probability such that limn � (An) = 0 whenever An # ;;

(vi) balanced if � is a nonadditive probability and there exists a probability � such that

� (B) � � (B) 8B 2 �:

We denote by �(S) the set of all probabilities on �. Given a nonadditive probability �, we de�ne

core (�) = f� 2 �(S) : � � �g :

It is well known that a concave nonadditive probability is such that

� (B) = max
�2core(�)

� (B) 8B 2 �

and a nonadditive probability � is balanced if and only if core (�) 6= ;. Given a bounded and �-measurable
function f : S ! R, the Choquet integral of f with respect to a nonadditive probability � is de�ned as the
quantity Z

S

fd� =

Z
S

f (s) d� (s) =

Z 1

0

� (f > t) dt+

Z 0

�1
[� (f > t)� � (S)] dt

where the integrals on the right hand side are Riemann integrals and (f > t) = fs 2 S : f (s) > tg for all
t 2 R. If � is additive, the Choquet integral reduces to the standard additive integral. The Choquet integral
de�nes a functional on the space of bounded, real valued, and �-measurable functions: B (S;�). It is well

known that when � is concave Z
S

f (s) d� (s) = max
�2core(�)

Z
S

f (s) d� (s) :

A.2 A Representation Result

Consider a nonempty set S. We de�ne by B (S) the set of all bounded and real valued functions on S. By

L we denote a Stone vector lattice contained in B (S), that is, L is a Riesz subspace of B (S) which further

contains all constant functions. L is endowed with the pointwise order. Object of our study is a functional

I : L! R. We say that:

(i) I is monotone if and only if I (f) � I (g) provided f � g;

(ii) I is translation invariant if and only if I (f + k1S) = I (f) + kI (1S) for all f 2 L and all k 2 R;

(iii) I is constant modular if and only if I (f _ k1S) + I (f ^ k1S) = I (f) + kI (1S) for all f 2 L and all
k 2 R;

(iv) I is subadditive if and only if I (f + g) � I (f) + I (g) for all f; g 2 L;

(v) I is (bounded) pointwise continuous at 0 if and only if limn I (fn) = 0 whenever ffngn2N � L is

uniformly bounded and fn �! 0 pointwise;

(vi) I is comonotonic additive if and only if I (f + g) = I (f) + I (g) whenever f; g 2 L are such that

[f (s)� f (s0)] [g (s)� g (s0)] � 0 8s; s0 2 S:

We denote by � (L) the smallest �-algebra on S which makes measurable all the functions contained in

L. Given a monotone I : L! R such that I (1) = I (1S) > 0, we de�ne ��; �� : � (L)! [0; 1] by

�� (A) =
sup fI (f) : L 3 f � 1Ag

I (1)
and �� (A) =

inf fI (f) : L 3 f � 1Ag
I (1)

8A 2 � (L) :
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The following representation result is essentially due to Greco [21].8 Given our domain of integration L,

the original paper of Greco only requires I to be monotone, to satisfy (13), and to be such that

I (0) = 0 and I (f) = lim
n
I

�
f _ 1

n
� 1

n

�
8f 2 L: (11)

Basically, we replace (13) with constant modularity and (11) with translation invariance. Translation invari-

ance allows us to consider as domain of integration the entire space L, since Greco�s representation result

was only proved for positive (but potentially unbounded) functions f � 0. The proofs of (i) implies (ii) and
of point 2 come from the techniques of [21]. The proof of (ii) implies (i) is di¤erent and relies on Schmeidler�s

representation result.

Theorem 2 Let L be a Stone vector lattice and I : L ! R such that I 6= 0. The following statements are
equivalent:

(i) I is monotone, translation invariant, and constant modular;

(ii) there exists a nonadditive probability � : � (L)! [0; 1] and a number � 2 (0;1) such that

I (f) = �

Z
S

fd� 8f 2 L: (12)

Moreover,

1. � is unique.

2. Each nonadditive probability � : � (L)! [0; 1] that satis�es �� � � � �� represents I as in (12).

3. I is subadditive if and only if �� is concave.

4. I is subadditive and pointwise continuous at 0 if and only if there exists a concave and continuous

nonadditive probability � satisfying (12).

5. If � is continuous and concave, then � is unique among the nonadditive probabilities satisfying (12)

and with such properties.

Proof. Assume (i). De�ne �I : L ! R by �I (f) = I (f) =I (1) for all f 2 L. Since I (1) > 0, it is immediate
to see that �I is monotone, translation invariant, and constant modular. Since �I is translation invariant and

monotone, �I is supnorm continuous. For brevity, we denote by k both the real number and k1S , that is, the

constant function taking value k on S. Fix f 2 L and k 2 R. Since f + k = (f _ k) + (f ^ k), we have that
f � (f ^ k) = (f _ k)� k. Since �I is translation invariant and constant modular, this implies that

�I (f ^ k) + �I (f � (f ^ k)) = �I (f ^ k) + �I ((f _ k)� k)
= �I (f ^ k) + �I (f _ k)� k �I (1) = �I (f) + k �I (1)� k �I (1) = �I (f) :

Since f 2 L and k 2 R were arbitrarily chosen, we can conclude that

�I (f) = �I (f ^ k) + �I (f � (f ^ k)) 8f 2 L; 8k 2 R: (13)

(i) implies (ii) and 2. Since [(f ^ a)� (f ^ c)] ^ (b� c) = (f ^ b)� (f ^ c) if a > b > c in R, if we replace f
with (f ^ a)� (f ^ c) and k with (b� c) in (13), we obtain

�I ((f ^ a)� (f ^ c)) = �I ((f ^ b)� (f ^ c)) + �I ((f ^ a)� (f ^ b)) : (14)

8As suggested by the associate editor, we provide a proof for completeness.
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By de�nition of �� and �� and since pointwise comparison yields

(a� b) 1(f>a) � (f ^ a)� (f ^ b) � (a� b) 1(f>b); (15)

we have that

�� (f > a) � �I

�
(f ^ a)� (f ^ b)

a� b

�
� �� (f > b) : (16)

While, if a� b = b� c, then (15) implies

(f ^ a)� (f ^ b) � (a� b) 1(f>b) = (b� c) 1(f>b) � (f ^ b)� (f ^ c) : (17)

Let " > 0. For each f � 0 in L, since f is bounded, there exists M 2 N such that M" � f . Since f � 0 and
f = f ^ n" for all n �M , we have that

f = (f ^ ") + [� (f ^ ") + (f ^ 2")] + [� (f ^ 2") + (f ^ 3")] + :::+ [� (f ^ (M � 1) ") + (f ^M")]

= (f ^ ") +
1X
n=1

[(f ^ (n+ 1) ")� (f ^ n")] =
1X
n=1

[(f ^ n")� (f ^ (n� 1) ")] :

By (15), this implies that

f � (f ^ ") =
1X
n=1

[(f ^ (n+ 1) ")� (f ^ n")] �
1X
n=1

"1(f>n") �
1X
n=1

[(f ^ n")� (f ^ (n� 1) ")] = f: (18)

In terms of the functional �I, we have that

1X
n=1

�I ((f ^ n")� (f ^ (n� 1) ")) =
MX
n=1

�I ((f ^ n")� (f ^ (n� 1) "))

and, by (14),

�I (f) = �I ([f ^M"]� [f ^ 0"]) = �I ([f ^M"]� [f ^ (M � 1) "]) + �I ([f ^ (M � 1) "]� [f ^ 0"]) = :::

For all n 2 N, we set f"n = (f ^ n")� (f ^ (n� 1) "). By (18) and (14), we obtain that

�I (f) =
1X
n=1

�I (f"n) = �I (f ^ ") +
1X
n=1

�I
�
f"n+1

�
and �I (f � (f ^ ")) = �I (f)� �I (f ^ ") =

1X
n=1

�I
�
f"n+1

�
: (19)

Before proceeding, we prove an ancillary claim.

Claim. If L 3 g � 0, then �I (2g) = 2�I (g).
Proof of the Claim. Consider g � 0 in L and m;n 2 N. Note that (17) implies that

(2g)
21�m

n+1 =

�
2g ^ n+ 1

2m�1

�
�
h
2g ^ n

2m�1

i
= 2

�
g ^ n+ 1

2m
� g ^ n

2m

�
(20)

�
�
g ^ n+ 1

2m
� g ^ n

2m

�
+

�
g ^ n

2m
� g ^ n� 1

2m

�
=

�
g ^ n+ 1

2m

�
�
�
g ^ n� 1

2m

�
:

Now, by (14), (19), and (20) and since �I is monotone, we have that

�I

�
2g � 2g ^ 1

2m�1

�
=

1X
n=1

�I
�
(2g)

21�m

n+1

�
�

1X
n=1

�I

�
g ^ n+ 1

2m
� g ^ n� 1

2m

�

=
1X
n=1

�
�I

�
g ^ n+ 1

2m
� g ^ n

2m

�
+ �I

�
g ^ n

2m
� g ^ n� 1

2m

��

=
1X
n=1

�I
�
g2

�m

n+1

�
+

1X
n=1

�I
�
g2

�m

n

�
= �I

�
g �

�
g ^ 1

2m

��
+ �I (g) :
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By passing to the limit, we obtain �I (2g) � 2�I (g). Finally,9 �I (2g) � 2�I (g) follows from

�I (2g) =
1X
n=1

�I
�
(2g)

21�m

n

�
=

1X
n=1

�I

��
2g ^ 2n

2m

�
�
�
2g ^ 2n� 2

2m

��

=
1X
n=1

�
�I

��
2g ^ 2n

2m

�
�
�
2g ^ 2n� 1

2m

��
+ �I

��
2g ^ 2n� 1

2m

�
�
�
2g ^ 2n� 2

2m

���

�
1X
n=1

�
�I

��
g ^ n+ 1

2m

�
�
�
g ^ n

2m

��
+ �I

��
g ^ n+ 1

2m

�
�
�
g ^ n

2m

���
= 2�I

�
g �

�
g ^ 1

2m

��
;

and by passing to the limit, proving the claim. �
By the Claim and induction, �I (2mg) = 2m �I (g) for all m 2 N. Now choose any f � 0 in L and use both

(18), with � = 2�m instead of ", and (16) to show that

1X
n=1

f�n+1
�

�
1X
n=1

1(f>n�) �
1X
n=1

f�n
�
and

1X
n=1

�I

�
f�n+1
�

�
�

1X
n=1

�� (f > n�) �
1X
n=1

�� (f > n�) �
1X
n=1

�I

�
f�n
�

�
but now (19) and ��1-homogeneity imply

1

�
�I (f � (f ^ �)) = 1

�

1X
n=1

�I
�
f�n+1

�
�

1X
n=1

�� (f > n�) �
1X
n=1

�� (f > n�) � 1

�

1X
n=1

�I
�
f�n
�
=
1

�
�I (f) ;

that is, �I (f � (f ^ 2�m)) � 2�m
P1

n=1 �� (f > n2
�m) � 2�m

P1
n=1 �

� (f > n2�m) � �I (f). Since t 7!
�� (f > t) and t 7! �� (f > t) are decreasing and eventually null on [0;1), then they are Riemann integrable.
By passing to the limit, we can conclude that

�I (f) =

Z 1

0

� (f > t) dt

for all nonadditive probabilities � such that �� � � � ��. It follows that for each f 2 L such that f � 0,
�I (f) =

R
S
fd�. Since both �I and the Choquet integral are translation invariant, �I (f) =

R
S
fd� for all f 2 L.

If we now de�ne � = I (1), then we have that I = � �I, proving the implication and point 2.

(ii) implies (i). De�ne �I : L! R by

�I (f) =

Z
S

fd� 8f 2 L:

By [42] and [33, Proposition 4.8] and since I = � �I, it is immediate to see that I is monotone and comonotonic

additive. By [33, Proposition 4.11], it follows that I is translation invariant. Consider f 2 L and k 2 R.
By [33, Lemma 4.6], f ^ k1S and f _ k1S are comonotonic. Since I is comonotonic additive and translation
invariant, it follows that I is constant modular.

1. By (12), we have that I (1S) = � yielding the uniqueness of �.

3. Assume that I is further subadditive. De�ne I� : B (� (L))! R by I� (f) = inf fI (g) : L 3 g � fg for
all f 2 B (� (L)). De�ne J : B (� (L))! R by J (f) = �

R
S
fd�� for all f 2 B (� (L)). It is routine to prove

that I� and J are monotone, translation invariant, constant modular, and such that I� (f) = I (f) = J (f)

for all f 2 L. By the main statement, it follows that there exists � : � (L)! [0; 1] and �0 > 0 such that

I� (f) = �0
Z
S

fd� 8f 2 B (� (L)) :

9Replacing (20) with the analogous
�
2g ^ 2n�1

2m

�
�
�
2g ^ 2n�2

2m

�
�
�
2g ^ 2n

2m

�
�
�
2g ^ 2n�1

2m

�
�
�
2g ^ 2n+1

2m

�
�
�
2g ^ 2n

2m

�
=

2
�
g ^

�
n
2m

+ 1
2m+1

�
� g ^ n

2m

�
�
�
g ^ n+1

2m
� g ^

�
n
2m

+ 1
2m+1

��
+
�
g ^

�
n
2m

+ 1
2m+1

�
� g ^ n

2m

�
= g2

�m
n+1 .
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By [33, Theorem 4.6] and since I is subadditive, I� is subadditive implying that � is concave. It is immediate

to see that � = �0. By construction, we have that I� � J . These latter two facts prove that � � ��. On

the other hand, by point 2., we have that � � ��. We can conclude that �� = �. The opposite implication
follows from [33, Theorem 4.6].

4. and 5. Both points follow from [7, Theorem 22]. �

B The General Case

B.1 A Generalized Market Model

We consider a market and we model it as a vector spaceM . Each element x inM is interpreted as a �nancial

asset or a portfolio. Given a set of weights f�igli=1 � R and a set fxig
l
i=1 �M , we interpret

lX
i=1

�ixi

as the portfolio constructed by buying/selling xi using the quantities j�ij, with an interpretation of buying if
�i is positive and of selling if �i is negative. The goal of this section is to study a real valued price functional

� de�ned over the market M when all tradings take place at time 0 and then the value of each asset is

revealed at time 1. We remove the hypothesis that there exists an agreed state space 
 or, in other words,

we do not necessarily represent the market as a space of random variables/contingent claims. Instead, we

consider a set of evaluations maps V. That is, the value of each asset x at time 1 is determined by an
evaluation map v 2 V. We make three assumptions on V:

1. Each v 2 V is a linear mapping from M to R.

2. For each x 2M the interval [infv2V v (x) ; supv2V v (x)] is bounded.

3. If x; y 2M , then v (x) = v (y) for all v 2 V implies that x = y.

Given an element x 2M and an element v 2 V, v (x) is the value that asset x will take at period 1 under
the evaluation map v. From a practical point of view, assumption 1. is justi�ed in the following way: given

a portfolio x =
lX
i=1

�ixi and a brokerage account, at the end of a trading day the value of x, v (x), is typically

approximated by
lX
i=1

�iv (xi). In other words, the portfolio is marked to market. This does not mean that if

the portfolio x had to be sold the realized proceedings would be
lX
i=1

�iv (xi) but it provides an estimate for

a future and uncertain evaluation. From a theoretical point of view, the linearity assumption contained in

1. is in line with Debreu [10] and the fact that the market is modelled to have just two periods. Condition

2. implies that, at time 1, the value of each asset will be in a bounded range. Condition 3. imposes that

there are no redundancies. In fact, there do not exist two securities which are not equal but, in terms of

their value at time 1, are indistinguishable.10

Given the set of evaluations V, we endow this set with the �-algebra generated by the class of the following
subsets:

(fv 2 V : v (x) > tg)x2M;t2R :

10We could dispense with Condition 3. by declaring two elements x and y in M equivalent, x � y, if and only if v (x) = v (y)
for all v 2 V. Given this equivalence relation, we could then take the quotient M= �. This mathematical step would be
reasonable from a �nancial point of view since evaluating an asset x should be based just on the future evaluations of x itself
and nothing else.
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We denote this �-algebra by B. This class of subsets is not unusual in Finance and the �-algebra generated
by it is natural in Mathematics. In fact, given x 2M and t 2 R, if there exists z 2M such that

v (z) = 1fw2V:w(x)>tg (v) 8v 2 V;

then, following Nachman [34], z is a simple call option on x with exercise price t. On the other hand, if V
is endowed with a natural topology that makes it compact, in some important case, B turns out to be the
Baire �-algebra.

De�nition 1 Given a vector space M and a set of functions V on M , we will say that (M;V) is a market
if and only if V satis�es Conditions 1.�3.

Example 1 In Section 2, we represented the market of tradable assets as the vector space of all portfolios
P . Each vector � 2 P represented the portfolio where each primary asset i is held in quantity �i. In such

a case, the price functional we considered was called p. In this case, M = P and � = p. At the same time,

given the Arrow-Debreu tableau, the set of evaluations V is the set of m linear functionals induced by the

rows of G, that is, for each i = 1; :::;m

vi (�) =
nX
j=1

gij�j 8� 2 P:

Conditions 1. and 2. are then satis�ed by construction and the �nite dimensionality of P . On the other

hand, Condition 3. is satis�ed whenever it is imposed that the columns of G are linearly independent, that

is, there are not redundant securities.

Example 2 In Section 2, we also represented the market as the space of contingent claims C. The price
functional (pricing rule) we considered was called ~�. In this case, M = C and � = ~�. At the same time,

given the state space 
, the set of evaluations V is identi�ed with the set of Dirac measures f�!ig
m
i=1 and the

linear functionals induced by each of these measures, that is, for each i = 1; :::;m

vi (x) = xi 8x 2 C:

Conditions 1., 2., and 3. are then satis�ed by construction.

B.2 Put�Call Parity and Nonlinear Pricing

Given a market (M;V) and an asset/portfolio x 2M , notice that x de�nes a function over V, that is,

v 7! v (x) v 2 V:

One way in which the market could form a price for x, � (x), could be by discounting and averaging the

possible evaluations of x at time 1 under a measure of likelihood � : B ! [0; 1] and a risk-free rate r 2 (�1;1).
This is what happens in a market with no frictions and no arbitrages. In such a case, � is additive. This

reasoning could be extended to the nonadditive case where the integrals are going to be de�ned using the

concept of Choquet integration. In particular, we could have that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M: (21)

Our purpose is to characterize a price functional � :M ! R like the one in (21) when minimal assumptions
of no arbitrage are made and market frictions are also taken into account.

When modelling a market, the existence of a risk-free asset is often assumed. Such an asset has the

fundamental feature of having a constant value at time 1. In particular, this value is independent of what

might happen between time 0 and time 1. Therefore, in our context, we will de�ne the risk-free asset in the

following way:
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De�nition 2 An asset xrf in M is risk free if and only if

v (xrf ) = 1 8v 2 V:

Another important type of �nancial assets are options: call and put. Those are derivative contracts since

their value at time 1 is strictly related to the value of the underlying asset x. Those are securities that give

the right to trade an asset x at time 1 at a �xed strike price k. The call option gives the right to buy while

the put option the right to sell. The value at time 1 of a call option cx;k on x with strike price k depends on

the value of x at time 1. For each valuation v 2 V, it is v (x)� k if v (x) � k and 0 otherwise. The value at
time 1 of a put option px;k on x with strike price k depends on the value of x at time 1. For each valuation

v 2 V, it is k � v (x) if v (x) � k and 0 otherwise. Formally, we have that:

De�nition 3 Let x be an asset in M . Then,

(i) cx;k is a call option on x with strike price k if and only if

v (cx;k) = (v (x)� k)+ 8v 2 V:

(ii) px;k is a put option on x with strike price k if and only if

v (px;k) = (k � v (x))+ 8v 2 V:

In Propositions 2, 3, and 4, we study the mathematical implications on M of the assumption that either

all call options or all put options are traded. Given an asset x and a strike price k, if M allows tradings on

xrf , cx;k, and px;k, then an important relationship connects x, xrf , cx;k, and px;k:

Proposition 2 Let (M;V) be a market that contains the risk-free asset and let x 2 M and k 2 R. If cx;k
and px;k belong to M , then

cx;k � px;k = x� kxrf . (22)

Proof. Consider x 2M and k 2 R. Assume that cx;k and px;k belong to M . Consider z = cx;k � px;k 2M .
Since xrf 2M , it follows that

v (z) = v (cx;k)� v (px;k) = (v (x)� k)+ � (k � v (x))+

= (v (x� kxrf ))+ � (v (kxrf � x))+

= max fv (x� kxrf ) ; 0g �max fv (kxrf � x) ; 0g
= v (x� kxrf ) 8v 2 V:

Since V satis�es Condition 3., we have that cx;k � px;k = z = x� kxrf , proving the statement. �
In other words, the portfolio obtained by buying a call option on asset x with strike price k and selling

a put option on the same asset x with strike price k is equal to the portfolio obtained by buying a unit of

asset x and selling k units of the risk-free asset.

Proposition 3 Let (M;V) be a market that contains the risk-free asset. The following statements are

equivalent:

(i) M contains all call options;

(ii) M contains all call options with nonnegative strike price;

(iii) M contains all put options with nonnegative strike price;
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(iv) M contains all put options.

Proof. (i) implies (ii) and (iv) implies (iii). It is trivial.

(ii) implies (iv). Consider x 2 M and k 2 R. Since M contains the risk-free asset and all call options

with k � 0, it follows that ckxrf�x;0 2M . This implies that

v
�
ckxrf�x;0

�
= (v (kxrf � x)� 0)+ = (k � v (x))+ 8v 2 V;

that is, px;k = ckxrf�x;0 2M .
(iii) implies (i). Consider x 2 M and k 2 R. Since M contains the risk-free asset and all put options

with k � 0, it follows that pkxrf�x;0 2M . This implies that

v
�
pkxrf�x;0

�
= (0� v (kxrf � x))+ = (v (x)� k)+ 8v 2 V;

that is, cx;k = pkxrf�x;0 2M . �
It is immediate to see that the set of evaluations V induces a partial order on M . In fact, it is reasonable

to declare x at least as good as y if and only if the value of x at time 1 is greater than the value of y at time

1, irrespective of the evaluation function v chosen in V.

De�nition 4 Let (M;V) be a market. We say that x is at least as good as y if and only if

v (x) � v (y) 8v 2 V:

In this case, we write x �V y.

Given a market (M;V), di¤erently from Brown and Ross [6], we do not assume thatM is a vector lattice.

On the contrary, by de�ning the primitive notions of call and put options, in the following proposition, we

prove that a market (M;V), which contains the risk-free asset and all call options with nonnegative strike
price, is a vector lattice with respect to �V . Given x 2M , we de�ne x̂ : V ! R as x̂ (v) = v (x) for all v 2 V.

Proposition 4 Let (M;V) be a market. The following statements are true:

1. If M contains the risk-free asset xrf , then xrf is an order unit for (M;�V).

2. If M contains the risk-free asset xrf and all call options with k � 0, then (M;�V) is a Riesz space
with unit. In particular, this implies that

cx;k + kxrf = x _ kxrf and cx;k = (x� kxrf ) _ 0 8x 2M;8k 2 R
and

kxrf � px;k = x ^ kxrf and px;k = (kxrf � x) _ 0 8x 2M;8k 2 R:

3. If M contains the risk-free asset xrf and all put options with k � 0, then (M;�V) is a Riesz space
with unit.

4. If M contains the risk-free asset xrf and all call (resp., put) options with k � 0, then

L =
�
f 2 RV : f = x̂ for some x 2M

	
is a Stone vector lattice.

5. If M contains the risk-free asset xrf and all call (resp., put) options with k � 0, then the map

T :M ! L, de�ned by

x 7! x̂;

is a lattice isomorphism.
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Proof. We de�ne h�; �i : V �M ! R by hv; xi = v (x) for all v 2 V and for all x 2 M . Given an element
x 2 M , observe that x̂ (v) = hv; xi for all v 2 V. Since V satis�es Condition 2., we have that L � B (V).
Given a market (M;V), we study the ordered space (M;�V). In such a context, given two elements x and
y in M , we de�ne, if they exist, the elements

x ^ y = inf fx; yg and x _ y = sup fx; yg :

Step 1. �V is a partial order relation.
Proof of the Step. First, note that for each x 2M

hv; xi � hv; xi 8v 2 V;

that is, x �V x, thus �V is re�exive. Similarly, consider x; y; z 2M and assume that x �V y and y �V z. It
follows that

hv; xi � hv; yi � hv; zi 8v 2 V;

that is, x �V z, thus, �V satis�es transitivity. Finally, since V satis�es Condition 3., it follows that �V is
antisymmetric and so it is a partial order. �
Step 2. �V is such that for each x; y 2M

x �V y ) x+ z �V y + z 8z 2M
and

x �V y ) �x �V �y 8� � 0:

Proof of the Step. Consider x; y; z 2M and assume that x �V y. It follows that for each v 2 V

hv; xi � hv; yi ) hv; xi+ hv; zi � hv; yi+ hv; zi ) hv; x+ zi � hv; y + zi ;

that is, x+ z �V y + z. Similarly, consider x; y 2M , � � 0, and assume that x �V y. It follows that

hv; xi � hv; yi 8v 2 V ) � hv; xi � � hv; yi 8v 2 V ) hv; �xi � hv; �yi 8v 2 V;

that is, �x �V �y, proving the statement. �
Step 3. If M contains the risk-free asset xrf , then xrf is an order unit for (M;�V).
Proof of the Step. Consider x 2M . Since V satis�es Condition 2., we have that there exists � 2 R such that
supv2V jhv; xij � � <1. If xrf is the risk-free asset, then this implies that

hv; �xrf i � hv; xi � hv;��xrf i 8v 2 V;

that is, �xrf �V x �V ��xrf , proving that xrf is an order unit. �
Step 4. If M contains the risk-free asset xrf and all call options with k � 0, then (M;�V) is a Riesz space
with unit. In particular, this implies that

cx;k + kxrf = x _ kxrf and cx;k = (x� kxrf ) _ 0 8x 2M;8k 2 R
and

kxrf � px;k = x ^ kxrf and px;k = (kxrf � x) _ 0 8x 2M;8k 2 R:

Proof of the Step. Consider x; y 2M and cx�y;0. De�ne z = x� cx�y;0. We have that

ẑ (v) = hv; zi = hv; xi � hv; cx�y;0i = hv; xi � (hv; x� yi)+ = hv; xi � (hv; xi � hv; yi)+

= x̂ (v)� (x̂ (v)� ŷ (v))+ = x̂ (v) ^ ŷ (v) = (x̂ ^ ŷ) (v) � x̂ (v) ; ŷ (v) 8v 2 V:
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The second equality follows by de�nition of z and the linearity of each v in V. The third equality follows by
the de�nition of cx�y;0. The fourth equality follows by the linearity of each v in V. The �fth equality follows
by de�nition of x̂ and ŷ. The sixth equality follows from a well known lattice equality (see [2, Theorem 1.7]).

We can conclude that x; y �V z. Next, assume that w 2 M is such that x; y �V w. By de�nition of �V
and the previous part, it follows that

x̂ (v) ; ŷ (v) � ŵ (v) 8v 2 V ) hv; zi = (x̂ ^ ŷ) (v) � ŵ (v) = hv; wi 8v 2 V:

This implies that z �V w, that is, z is the greatest lower bound for x and y and z = x ^ y. By Steps 1,
2, and 3, (M;�V) is an ordered vector space with unit. This fact matched with the previous one implies
that (M;�V) is a Riesz space with unit. Next, consider x 2 M and k 2 R. It is immediate to check that
cx;k = cx�kxrf ;0. It follows that

cx;k + kxrf = cx�kxrf ;0 + kxrf = (x� x ^ kxrf ) + kxrf
= x+ kxrf � x ^ kxrf = x _ kxrf :

where the �rst equality is trivial, the second one follows from the previous part of the proof, that is cx�y;0 =

x� x^ y, the third follows from a simple rearrangement, and the fourth one is a well known lattice equality

(see [1, Theorem 8.6]). On the other hand, from above we have that cx;k = x_kxrf �kxrf = (x� kxrf )_0.
A similar argument delivers the equalities

kxrf � px;k = x ^ kxrf and px;k = (kxrf � x) _ 0 8x 2M;8k 2 R:

�
Step 5. If M contains the risk-free asset xrf and all put options with k � 0, then (M;�V) is a Riesz space
with unit.

Proof of the Step. By Proposition 3, M contains all call options with k � 0. By Step 4, the statement

follows. �
Step 6. The map T :M ! L, de�ned by

x 7! x̂;

is a bijective linear operator. In particular, L is a vector space and if M contains the risk-free asset xrf ,

then L contains the constant functions.

Proof of the Step. By construction, the map T is surjective. On the other hand, if we have that T (x1) =

T (x2), then it follows that

hv; x1i = x̂1 (v) = x̂2 (v) = hv; x2i 8v 2 V: (23)

Since V satis�es Condition 3., (23) implies that x1 = x2, proving that T is injective. Next, given x; y 2 M
and �; � 2 R, we have that

T (�x+ �y) (v) = hv; �x+ �yi = � hv; xi+ � hv; yi = �T (x) (v) + �T (y) (v) 8v 2 V;

that is, T (�x+ �y) = �T (x) + �T (y), proving that T is linear. Since M is a vector space and T is linear

and bijective, L is a vector space. At the same time, if xrf is the risk-free asset and xrf 2 M , then

1V = T (xrf ) 2 L. Since L is a vector space, it follows that L contains all constant functions. �
Step 7. If M contains the risk-free asset xrf and all call (resp., put) options with k � 0, then L is a Stone
vector lattice.

Proof of the Step. By Step 6, we have that L is a vector space which contains all the constant functions.

We are left to prove it is closed under �nite pointwise suprema or, equivalently, in�ma. Let us consider two
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elements f; g 2 L. By de�nition, there exist x; y 2 M such that f = T (x) and g = T (y). By the proof of

Step 4 (resp., Step 5), we have that z = x� cx�y;0 (resp., z = x� py�x;0) is such that

f ^ g = T (x) ^ T (y) = x̂ ^ ŷ = ẑ = T (z) 2 L;

proving the statement. �
Step 8. If M satis�es the hypotheses of 5., then the map T is a lattice isomorphism.

Proof of the Step. By Step 6, we have that T is a bijective linear operator. We are left to show that T preserves

the lattice operations. Consider x; y 2M . By the proof of Step 4, we have that x^ y = x� cx�y;0 2M and

T (x ^ y) = T (x) ^ T (y) ;

proving the statement. �
Step 3 proves Statement 1. Step 4 proves Statement 2. Step 5 proves Statement 3. Step 7 proves

Statement 4. Step 8 proves Statement 5. �
In the next few de�nitions, we introduce some properties for a price functional �:

De�nition 5 Let (M;V) be a market that contains the risk-free asset. The price functional � : M ! R is
said to be cash invariant if and only if

� (x+ �xrf ) = � (x) + �� (xrf ) 8x 2M;8� 2 R: (24)

The above assumption is equivalent to state that there are no frictions in the market when it comes to

trading the risk-free asset. In particular, we have that the market of the risk-free asset is frictionless and

� (�xrf ) = �� (xrf ) for all � in R.

De�nition 6 Let (M;V) be a market that contains the risk-free asset and all possible call options with k � 0.
The price functional � :M ! R is said to satisfy the Put�Call Parity if and only if

� (cx;k) + � (�px;k) = � (x)� k� (xrf ) 8x 2M;8k 2 R+:

In other words, the two equivalent trading strategies contained in (22) must have the same price.

De�nition 7 Let (M;V) be a market. The price functional � : M ! R is said to be monotone if and only
if

x �V y ) � (x) � � (y) :

This latter condition on � is simply a generalization of a no arbitrage condition. In fact, if the price

functional is cash invariant, then � (0) = 0 and the previous condition implies that � (x) � 0 whenever

x �V 0.

Example 3 In Section 2, we represented the market of tradable assets as the vector space of all portfolios P
and also as the vector space of all tradable contingent claims C. In the �rst case, Example 1, we have that V
is the set of linear evaluations induced by the rows of the Arrow-Debreu tableau G. It follows that a portfolio

�rf corresponds to the risk-free asset if and only if G�rf is the constant vector with each component equal

to 1. Similarly, given a portfolio �, a call (resp., a put) option on � with strike price k is the portfolio c�;k
(resp., p�;k) such that

Gc�;k =
�
G �� kG�rf

�+
= max

�
G �� kG�rf ;0

	
(resp., Gp�;k =

�
kG�rf �G�

�+
= max

�
kG�rf �G�;0

	
).

Finally, a discount certi�cate on a portfolio � with cap k � 0 is the portfolio d�;k such that

Gd�;k = min
�
G�; kG�rf

	
:

22



Moreover, we have that �V is equal to �G. Along the same lines, we have that c�;k (resp., p�;k) is the
positive part, with respect to �G, of the vector ��k�rf (resp., k�rf � �). On the other hand, d�;k is the
minimum, with respect to �G, between � and k�rf . The price functional p satis�es PCP if and only if

p (c�;k) + p
�
�p�;k

�
= p (�)� kp

�
�rf

�
8� 2 P;8k � 0: (25)

Similarly, p is cash invariant if and only if

p
�
� + k�rf

�
= p (�) + kp

�
�rf

�
8� 2 P;8k 2 R: (26)

Finally, p satis�es DCP if and only if

p (c�;k) + p (d�;k) = p (�) 8� 2 P;8k � 0: (27)

In the second case, Example 2, we have that V is the set of linear functionals induced by the Dirac measures
on 
. In this case, we have that a contingent claim xrf corresponds to the risk-free asset if and only if it is

the constant vector with each component equal to 1. Similarly, given a contingent claim x, a call (resp., a

put) on xwith strike price k is the portfolio cx;k (resp., px;k) such that

cx;k = (x� kxrf )+ (resp., px;k = (kxrf � x)
+ ).

Moreover, we have that �V coincides with the usual pointwise order.

Proposition 5 Let (M;V) be a market that contains the risk-free asset and all call options with k � 0 and
let � :M ! R be a cash invariant price functional. The following conditions are equivalent:

(i) � (cx;k) + � (�px;k) = � (x)� k� (xrf ) for all x 2M and all k 2 R+;

(ii) � (x _ kxrf ) + � (x ^ kxrf ) = � (x) + k� (xrf ) for all x 2M and all k 2 R+;

(iii) � (x _ kxrf ) + � (x ^ kxrf ) = � (x) + k� (xrf ) for all x 2M and all k 2 R.

Proof. (i) implies (iii). Consider x 2M and k 2 R. By Proposition 4 point 2., we have that

cx;k + kxrf = x _ kxrf and kxrf � px;k = x ^ kxrf :

Since � is cash invariant, cx;k = cx�kxrf ;0, and px;k = px�kxrf ;0, we have the following chain of implications

�
�
cx�kxrf ;0

�
+ �

�
�px�kxrf ;0

�
= � (x� kxrf )
=)

� (cx;k) + � (�px;k) = � (x)� k� (xrf )
=)

� (cx;k) + k� (xrf ) + � (�px;k) + k� (xrf ) = � (x) + k� (xrf )
=)

� (cx;k + kxrf ) + � (kxrf � px;k) = � (x) + k� (xrf )
=)

� (x _ kxrf ) + � (x ^ kxrf ) = � (x) + k� (xrf ) ;

proving the statement.

(iii) implies (ii). It is trivial.
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(ii) implies (i). Consider x 2 M and k 2 R+. By Proposition 4 point 2., M is a Riesz space with unit.

This implies that

x _ kxrf � kxrf = (x� kxrf ) _ 0 = cx;k and x ^ kxrf � kxrf = (x� kxrf ) ^ 0 = �px;k:

Since � is cash invariant, we have the following chain of implications

� (x _ kxrf ) + � (x ^ kxrf ) = � (x) + k� (xrf )
=)

� (x _ kxrf )� k� (xrf ) + � (x ^ kxrf )� k� (xrf ) = � (x)� k� (xrf )
=)

� (x _ kxrf � kxrf ) + � (x ^ kxrf � kxrf ) = � (x)� k� (xrf )
=)

� (cx;k) + � (�px;k) = � (x)� k� (xrf ) ;

proving the statement. �
Before stating the main result, we need to introduce two new objects: �?; �? : B ! [0; 1], de�ned by

�? (A) =
sup f� (x) : x̂ �V 1Ag

� (xrf )
and �? (A) =

inf f� (x) : x̂ �V 1Ag
� (xrf )

;

where � (xrf ) is assumed to be di¤erent from zero.

Theorem 3 Let (M;V) be a market that contains the risk-free asset and all call options with k � 0 and let
� :M ! R be a nonzero price functional. The following statements are equivalent:

(i) � is monotone, cash invariant, and satis�es the Put�Call Parity;

(ii) there exist a nonadditive probability � : B ! [0; 1] and a risk-free rate r > �1 such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M: (28)

Moreover,

1. r is unique.

2. Each nonadditive probability � : B ! [0; 1] that satis�es �? � � � �? represents � as in (28).

3. If B (V;B) = fx̂ : x 2Mg, then � is unique.

4. If � is balanced, then � (x) � �� (�x) for all x 2M , that is, there are positive bid-ask spreads.

Proof. Before starting, observe that � (L) = B.
(i) implies (ii). De�ne I : L! R by I = � �T�1. Since T is a lattice isomorphism such that T (xrf ) = 1V

and � 6= 0, it follows that I is well de�ned, monotone, translation invariant, and such that I 6= 0. Since �
satis�es the Put�Call Parity and by Proposition 5, we have that

� (x ^ kxrf ) + � (x _ kxrf ) = � (x) + k� (xrf ) 8x 2M;8k 2 R: (29)

Since T is a lattice isomorphism and T (xrf ) = 1V , this implies that I is constant modular. By Theorem 2 and

since L is a Stone vector lattice, we have that there exist � > 0 and a nonadditive probability � : B ! [0; 1]

such that

I (f) = �

Z
V
f (v) d� (v) 8f 2 L:
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De�ne r = 1=� � 1 > �1. Since � = I � T , we have that

� (x) = I (T (x)) =
1

1 + r

Z
V
hv; xi d� (v) = 1

1 + r

Z
V
v (x) d� (v) 8x 2M;

proving the statement.

(ii) implies (i). Consider r > �1 and a nonadditive probability � : B ! [0; 1] such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

De�ne I : L! R by
I (f) = �

Z
V
f (v) d� (v) 8f 2 L (30)

where � = 1= (1 + r). By Theorem 2, we have that I is monotone, translation invariant, and constant

modular. It is immediate to see that � = I �T . Since T is a lattice isomorphism and T (xrf ) = 1V , it follows

that � is monotone, cash invariant, and it satis�es (29). By Proposition 5, it follows that � also satis�es the

Put�Call Parity.

1. Consider r1; r2 > �1 and �1; �2 : B ! [0; 1] such that

� (x) =
1

1 + ri

Z
V
v (x) d�i (v) 8x 2M;8i 2 f1; 2g :

It follows that 1
1+r1

= � (xrf ) =
1

1+r2
, proving that r1 = r2 and so the statement.

2. Consider a nonadditive probability � : B ! [0; 1] such that �? � � � �?. De�ne I = � �T�1. It follows
that �? = �� and �? = ��. This implies that �� � � � ��. By Theorem 2, we have that I (f) = I (1V)

R
V fd�

for all f 2 L. Since � = I � T , the statement follows.
3. Assume that B (V;B) = fx̂ : x 2Mg. It follows that for each A 2 B there exists xA 2 M such that

v (x) = 1A (v) for all v 2 V. Consider (r1; �1) and (r2; �2) representing � as in (28). By point 1., we have
that r1 = r2 and

1

1 + r1
�1 (A) = � (xA) =

1

1 + r2
�2 (A) 8A 2 B:

This implies that �1 = �2, proving the statement.

4. Consider (r; �) representing � as in (28). De�ne �� : B ! [0; 1] by

�� (A) = � (V)� � (Ac) 8A 2 B:

Assume that � is balanced. It follows that there exists � 2 �(V) such that � (A) � � (A) for all A 2 B.
This implies that �� (A) � � (A) for all A 2 B. By [33, Proposition 4.12], if we de�ne I as in (30), then

�I (�f) = 1

1 + r

Z
V
f (v) d�� (v) 8f 2 L:

By the de�nition of Choquet integral and since �� � � � �, it follows that �I (�f) � 1
1+r

R
V f (v) d� (v) �

I (f) for all f 2 L. Since � = I � T and T is linear, we have that

�� (�x) = �I (�T (x)) � I (T (x)) = � (x) 8x 2M;

proving the statement. �

When (M;V) is as in Example 2, Theorem 3 naturally yields the equivalence of points (i) and (iii) in

Theorem 1. On the other hand, when (M;V) is as in Example 1, Theorem 3 yields the generalization of the

Fundamental Theorem of Finance once it is applied to the price functional p and three facts are noticed:
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(a) p has a representation as in (28) where V is the set of rows of the Arrow-Debreu tableau G;

(b) thus, p satis�es monotonicity, translation invariance, and constant modularity with the respect to �G;

(c) by monotonicity with respect to �G, the Law of One Price holds. Since T , de�ned as in Section 2,
is a lattice isomorphism, it follows that ~�p = p � T�1. It also follows that ~�p satis�es monotonicity,
translation invariance, and constant modularity with the respect to the usual order �.

B.3 The Subadditive Case

One way in which the literature introduced transaction costs in pricing has been by considering subadditive

price functionals and pricing rules (see Jouini and Kallal [26] and Luttmer [32]).

De�nition 8 Let (M;V) be a market. The price functional � :M ! R is said to be subadditive if and only
if

� (x+ y) � � (x) + � (y) 8x; y 2M:

If � is cash invariant, this assumption is particularly important since it implies the existence of positive

bid-ask spreads. In fact, we have that � (x) + � (�x) � � (0) = 0 for all x 2 M . In this context, the

assumptions of cash invariance and monotonicity, contained in De�nition 5 and De�nition 7, can be weakened

to be the following notion of linearity and positivity:

De�nition 9 Let (M;V) be a market. The price functional � :M ! R is said to be normalized if and only
if

� (kxrf ) = k� (xrf ) 8k 2 R:

De�nition 10 Let (M;V) be a market. The price functional � :M ! R is said to be negative if and only if

0 �V x ) 0 � � (x) :

Corollary 2 Let (M;V) be a market that contains the risk-free asset and all call options with k � 0 and let
� :M ! R be a nonzero price functional. The following statements are equivalent:

(i) � is negative, normalized, subadditive, and satis�es the Put�Call Parity;

(ii) � is monotone, cash invariant, subadditive, and satis�es the Put�Call Parity;

(iii) there exist a concave nonadditive probability � : B ! [0; 1] and a risk-free rate r > �1 such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

Moreover, r is unique and � can be chosen to be �?.

Proof. (i) implies (ii). We only need to show that � is monotone and cash invariant. If x; y 2 M are such

that y �V x, then 0 �V x� y. Since � is subadditive and negative, it follows that

� (x) = � (y + (x� y)) � � (y) + � (x� y) � � (y) ;

proving that � is monotone. Similarly, since � is subadditive and normalized, we have that

� (x+ kxrf ) � � (x) + � (kxrf ) = � (x) + k� (xrf ) 8x 2M;8k 2 R: (31)
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By (31), we also have that

� (x) = � ((x+ kxrf )� kxrf ) � � (x+ kxrf )� k� (xrf ) 8x 2M;8k 2 R: (32)

The inequalities in (31) and (32) imply that � is cash invariant.

(ii) implies (iii). De�ne I : L ! R by I = � � T�1. By the same argument contained in the proof of
Theorem 3, we have that I is well de�ned, monotone, translation invariant, constant modular, and such

that I 6= 0. Since � is subadditive and T is a lattice isomorphism, we have that I is also subadditive. By
Theorem 2 and since L is a Stone vector lattice, we have that there exist � > 0 such that

I (f) = �

Z
V
f (v) d�� (v) 8f 2 L:

By Theorem 2 and since I is subadditive, we have that �� = �? is concave. De�ne r = 1=� � 1. Since
� = I � T , we have that

� (x) =
1

1 + r

Z
V
hv; xi d�� (v) = 1

1 + r

Z
V
v (x) d�? (v) 8x 2M;

proving the statement.

(iii) implies (i). Consider r > �1 and a concave nonadditive probability � : B ! [0; 1] such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

De�ne I : L ! R as in (30) where � = 1= (1 + r). By Theorem 2, we have that I is monotone, translation

invariant, and constant modular. Since � is concave and by [33, Theorem 4.6], I is also subadditive. It is

immediate to see that � = I � T . Since T is a lattice isomorphism and T (xrf ) = 1V , it follows that � is

monotone, cash invariant, subadditive, and it satis�es (29). By Proposition 5, it follows that � also satis�es

the Put�Call Parity. Since � (0) = 0 and � is monotone, it follows that � is negative. Since � is cash

invariant, it follows that � is normalized.

Uniqueness of r > �1 follows from Theorem 3 and the fact that � can be chosen to be �? follows from

the previous part of the proof. �

Our last result allows us to discuss uniqueness of the nonadditive probability � also when the market

does not span the entire space of all contingent claims, that is, fx̂ : x 2Mg 6= B (V;B). In order to do so,
we need to introduce a notion of continuity for the price functional �.11

De�nition 11 Let (M;V) be a market. The price functional � : M ! R is said to be continuous if and

only if for each sequence fxngn2N �M we have that

lim
n
v (xn) = 0 8v 2 V ) lim

n
� (xn) = 0;

provided there exists l 2 R such that jv (xn)j � l for all v 2 V and for all n 2 N.

Corollary 3 Let (M;V) be a market that contains the risk-free asset and all call options with k � 0 and let
� :M ! R be a nonzero price functional. The following statements are equivalent:

(i) � is negative, normalized, subadditive, continuous, and satis�es the Put�Call Parity;

(ii) there exist a continuous and concave nonadditive probability � : B ! [0; 1] and a risk-free rate r > �1
such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

11 In reading De�nition 11, notice that continuity is required with respect to the bounded weak convergence induced by V.
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Moreover, r and � are unique.

Proof. Before starting the proof, we introduce a third point:
(iii) � is monotone, cash invariant, subadditive, continuous, and satis�es the Put�Call Parity.

(i) implies (iii). The statement follows by the same arguments used in the proof of Corollary 2.

(iii) implies (ii). De�ne I : L ! R by I = � � T�1. By the same argument contained in the proof of
Corollary 2, we have that I is well de�ned, monotone, translation invariant, constant modular, subadditive,

and such that I 6= 0. Since � is continuous and T is a lattice isomorphism, we have that I is also pointwise
continuous at 0. By Theorem 2 and since L is a Stone vector lattice, we have that there exist a continuous

and concave nonadditive probability � : B ! [0; 1] and � > 0 such that

I (f) = �

Z
V
f (v) d� (v) 8f 2 L:

De�ne r = 1=� � 1. Since � = I � T , we have that

� (x) =
1

1 + r

Z
V
hv; xi d� (v) = 1

1 + r

Z
V
v (x) d� (v) 8x 2M;

proving the statement.

(ii) implies (i). Consider r > �1 and a continuous and concave nonadditive probability � : B ! [0; 1]

such that

� (x) =
1

1 + r

Z
V
v (x) d� (v) 8x 2M:

De�ne I : L ! R as in (30) where � = 1= (1 + r). By Theorem 2 and [33, Theorem 4.6], we have that

I is monotone, translation invariant, constant modular, subadditive, and pointwise continuous at 0. It is

immediate to see that � = I � T . Since T is a lattice isomorphism and T (xrf ) = 1V , it follows that � is

monotone, cash invariant, subadditive, continuous, and it satis�es (29). By Proposition 5, it follows that

� also satis�es the PCP. Since � (0) = 0 and � is monotone, it follows that � is negative. Since � is cash

invariant, it follows that � is normalized.

Uniqueness of r > �1 and � follows from Theorem 2. �
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