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1 Log-linearized Models of Stock and Bond Re-

turns

1.1 Stock Returns and the dynamic dividend growthmodel

Consider the one-period total holding returns in the stock market, that are

defined as follows:1


+1 ≡

+1 ++1


− 1 = +1 −  ++1


=
∆+1


+

+1


 (1)

where  is the stock price at time ,  is the (cash) dividend paid at time

, and the superscript  denotes “stock”. The last equality decomposes a dis-

crete holding period return as the sum of the percentage capital gain and of

(a definition of) the dividend yield, +1 Given that one-period returns are

usually small, it is sometimes convenient to approximate them with logarithmic,

continuously compounded returns, defined as:

+1 ≡ log
¡
1 +

+1

¢
= log

µ
+1 ++1



¶
= log (+1 ++1)− log () 

(2)

Interestingly, while linear returns are additive in the percentage capital gain and

the dividend yield components, log returns are not as

log

µ
+1 ++1



¶
6= log

µ
+1



¶
+ log

µ
+1



¶
However, it is still possible to express log returns as a linear function of the log

of the price dividend and the (log) dividend growth. Dividing both sides of (1)

by
¡
1 +

+1

¢
and multiplying both sides by  we have:





=
1¡

1 +
+1

¢+1



µ
1 +

+1

+1

¶


1The use of ‘≡’ emphasizes that (1) provides a definition. Moreover, ∆+1 denotes the

first difference of a generic variable, or ∆+1 ≡ +1 −.
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Taking logs (denoted by lower case letters, i.e.,  ≡ log for a generic variable

), we have:
2

 −  = −+1 +∆+1 + ln
¡
1 + +1−+1

¢
(3)

as log(+1) = log+1 − log = ∆ log+1 = ∆+1. Taking a first-

order Taylor expansion of the last term about the point ̄ ̄ = ̄−̄ (where
the bar denotes a sample average), the logarithm term on the right-hand side

can be approximated as:

ln
¡
1 + +1−+1

¢ ' ln(1 + ̄−̄) +
̄−̄

1 + ̄−̄
[(+1 − +1)− (̄− ̄)]

= − ln(1− )−  ln

µ
1

1− 
− 1
¶
+ (+1 − +1)

= + (+1 − +1)

where

 ≡ ̄−̄

1 + ̄−̄
=

̄ ̄

1 + (̄ ̄)
 1  ≡ − ln(1− )−  ln

µ
1

1− 
− 1
¶


Although  ∈ (0 1) is just a factor that depends on the average price-dividend
ratio, in what follows it will be used in a way that resembles a discount factor.

At this point, substituting the expression for the approximated term in (3), we

obtain that the log price-dividend ratio is defined as:3

 −  ' − +1 +∆+1 + (+1 − +1)

Re-arranging this expression shows that total stock market returns can be writ-

ten as:

+1 = +  (+1 − +1) +∆+1 − ( − ) 

or a constant , plus the log dividend growth rate (∆+1), plus the (discounted,

at rate ) change in the log price-dividend ratio,  (+1 − +1) − ( − ) =

2−+1 follows from

log
1

1 +
+1

 = log 1− log 1 +
+1


= − log 1 +

+1


= −+1

based on our earlier definitions and the fact that log 1 = 0 for natural logs. Moreover, notice

that
+1

+1

= log(+1+1) = log+1−log+1 = +1−+1

3The approximation notation ‘'’ appears to emphasize that this expression is derived from
an application of a Taylor expansion.
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∆(+1 − +1)− (1− ) (+1 − +1). Moreover, by forward recursive substi-

tution one obtains:

( − ) = − +1 +∆+1 + (+1 − +1)

= − +1 +∆+1 + 
¡
− +2 +∆+2 + (+2 − +2)

¢
= (+ )− (+1 + +2) + (∆+1 + ∆+2) + 2(+2 − +2)

= (+ )− (+1 + +2) + (∆+1 + ∆+2)+

+ 2(− +3 +∆+3 + (+3 − +3))

= (1++2)− (+1++2+2+3) + (∆+1+∆+2+2∆+3) + 3(+3 − +3)

=  = 

X
=1

−1 +
X
=1

−1(∆+ − +) +  (+ − +) 

Under the assumption that there can be no rational bubbles, i.e., that4

lim
−→∞

 (+ − +) = 0

from

lim
−→∞

X
=1

−1 =
1

1− 

if  ∈ (0 1) we get

( − ) =


1− 
+

X
=1

−1
¡
∆+ − +

¢


This result shows that the log price-dividend ratio, ( − ), measures the value

of a very long-term investment strategy (buy and hold) which–apart from a

constant (1−)–is equal to the stream of future dividend growth discounted
at the appropriate rate, which reflects the risk free rate plus risk premium

required to hold risky assets, + ≡  + (+ −  ).5 Therefore, for long

investment horizons, econometric methods may hope to infer from the data

two different types of “information”: information concerning the forecasts of

future (continuously compounded) dividend growth rates, i.e., ∆+1 ∆+2

..., ∆+ as  −→ ∞, which are measures of the cash-flows paid out by the
risky assets (e.g., how well a company will do); information concerning future

discount rates, and in particular future risk premia, i.e., (+1− ), (+2− )
..., (+− ) as −→∞. Note that, under the null hypothesis of constancy of
returns, the volatility of the price dividend ratio should be completelyt explained

4This assumption means that as the horizon grows without bounds, the log price-dividend

ratio (hence, the underlying price-dividend ratio) may grow without bounds, but this needs

to happen at a speed that is inferior to 1  1 so that when + − + is discounted at

the rate  the limit of the quantity  (+ − +) is zero.
5Here we have assumed that the risk-free interest rate is approximately constant. We shall

see that, at least as a first approximation, this is an assumption that holds in practice.
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by that of the dividend process. The empirical evidence is strongly against this

prediction (see the Shiller(1981) and Campbell-Shiller(1987)).

If we decompose future variables into their expected component and the un-

expected one (an error term) we can write the relationship between the dividend-

yield and the returns one-period ahead and over the long-horizon as follows:

+1 = +  (+1 − +1) +∆+1 − ( − ) + 

+1 + ∆+1

X
=1

−1+ =


1− 
+

X
=1

−1 (∆+)− ( − ) +  (+ − +)+



+ +

X
=1

−1∆+

These two expressions illustrate that when the price dividends ratio is a

noisy process, such noise dominates the variance of one-period returnsand the

statistical relation between the price dividend ratio and one period returns is

weak. However, as the horizon over which returns are defined gets longer, noise

tends to be dampened and the predictability of returns given the price dividend

ratio increases.

1.2 Bond Returns

The relationship between price and yield to maturity of a constant coupon ()

bond is given by:

 
 =

³
1 +  



´ + ³
1 +  



´2 + +
1 + 

(1 +  )
− 

When the bond is selling at par, the yield to maturity is equal to the coupon

rate. To measure the length of time that a bondholder has invested money for

we need to introduce the concept of duration:


 =



(1+ 
 )

+ 2 

(1+ 
 )

2 + + ( − ) 1+

(1+ )
−

 


=


−P
=1



(1+ 
 )

 +
(−)

(1+ )
−

 



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Note that when a bond is floating at par we have:


 =  



−X
=1

³
1 +  



´ + ( − )

(1 +  )
−

=  


³
( − ) 1

1+ 


− ( − )− 1
´

1

(1+ 
 )

−+1 +
1

1+ 
³

1− 1
1+ 



´2 +
( − )

(1 +  )
−

=
1− ¡1 +  



¢−(−)
1−

³
1 +  



´−1 

because when ||  1
X

=0

 =
(− − 1)+1 + 

(1− )
2



Duration can be used to find approximate linear relationships between log-

coupon yields and holding period returns. Applying the log-linearization of

one-period returns to a coupon bond we have:

 −  = −+1 +  +  (+1 − )

+1 =  + +1 + (1− ) −  

When the bond is selling at par,  = (1 + )
−1
=
¡
1 +  



¢−1
. Solving this

expression forward to maturity delivers:

+1 = 
 


 −

¡

 − 1

¢
+1 

1.3 A simple model of the term structure

Consider the relation between the return on a riskless one period short-term bill,

 and a long term bond bearing a coupon  the one-period return on the long-

term bond  is a non-linear function of the log yield to maturity   Shiller

(1979) proposes a linearization which takes duration as constant and considers

the following approximation in the neighborhood  = +1 =
_
 = :

 '   − ( − 1) +1

 =
1− −−1

1− 
=

1

1− 

 =
n
1 +

_

£
1− 1(1 + _

)−−1
¤−1o−1

lim
−→∞

 =  = 1(1 +
_
)
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solving this expression forward we generate the equivalent of the DDG model

in the bond market:

 =

−−1X
=0

 (1− )+ + −−1

In this case, by equating one-period risk-adjusted returns, we have:



∙
 − +1

1− 
| 
¸
=  +  (4)

From the above expression, by recursive substitution, under the terminal

condition that at maturity the price equals the principal,we obtain:

 = ∗ + [Φ | ] = 1− 

1− −

−−1X
=0

[+ | ] +[Φ | ] (5)

where the constant Φ is the term premium over the whole life of the bond:

Φ =
1− 

1− −

−−1X
=0

+

For long-bonds, when  −  is very large, we have :

 = ∗ +[Φ | ] = (1− )

−−1X
=0

[+ | ] +[Φ | ]

Subtracting the risk-free rate from both sides of this equation we have:

 =  −  =

−1X
=1

[∆+ | ] +[Φ | ]

= ∗ +[Φ | ]

2 Linearized Present Value models for Consump-

tion

The accumulation equation for aggregate wealth may be written as:

+1 = (1 ++1) ( − ) (6)

Define +1 = log (1 ++1), and use lowercase letters to denote log

variables throughout. As LL we follow Campbell and Mankiw (1989) and as-

sume that the consumption—aggregate wealth ratio is stationary. In this case the
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budget constraint may be approximated by taking a first-order Taylor expansion

of equation (6)  to obtain

∆+1 = +1 +  +

µ
1− 1



¶
( − ) (7)

 = 1− exp
³_____
− 

´
where  is a constant of normalization, not relevant for the problem at hand.

By solving (7)forward, we have :

 −  = 

⎡⎣ ∞X
=1

 (+ −∆+)
⎤⎦+ 

1− 
(8)

LL point out that (8) shows that the consumption—wealth ratio is a function

of expected future returns to the market portfolio in a broad range of optimal

consumption models, so they concentrate in finding a proxy for  −  and in

assessing its performance for forecasting market returns.

To illustrate how we take equation (??) to the data note that, following

Campbell(1996), we approximate the log of total wealth as:

 =  + (1− )

where  is a constant of linearization, equal to the average share of asset

holdings in total wealth,  is the log of asset holdings and  is the log of human

capital. While we have available data for financial wealth, the measurement of

 is not immediate. To find an empirical counterpart of this variable consider

that labour income can be interpreted as a dividend on human capital (see

Julliard(2004)):

1 ++1 =
+1 + +1



Log-linearizing this relation around the steady state human capital-labor

income ratio ( 

= 1


− 1) we have:

+1 = (1− )  +  (+1 − +1)− ( − ) +∆+1

By solving this relation forward and by imposing the transversality condition

we have:

 =  +

∞X
=1

−1 (∆+ − +) + 

so the log of human capital to income ratio is determined by discounted sum

of future labour income growth and human capital returns.

Consistently with our linearization for wealth, the total return on wealth

can be approximated by:
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 =  + (1− )  + 

we decompose the unobservable  into a part correlated with  and a

part orthogonal to it:

 =  + 

By substituting all these relationships in the optimality condition we have:

 −  − (1− )  = (1− )

⎡⎣ ∞X
=1

 ( + (1− )) +

⎤⎦+  +

∞X
=1


−1
 (∆+ − +) +  (9)

 =

∞X
=1


−1
 +

where  is an unobservable stationary component.

because when ||  1

3 Present ValueModels and Forecasting Regres-

sions for Stock market Returns

Forecasting regressions for stock market returns can be interpreted in the frame-

work of the dynamic dividend growth model.

The dynamic dividend growth model of Campbell and Shiller(1988) uses

a loglinear approximation to the definition of returns on the stock market to

express the log of the price-dividend ratio  −  as a linear function of the

future discounted dividend growth,∆+  and of future returns,

+ :

( − ) =


1− 
+

X
=1

−1
¡
∆+ − +

¢


This basic relation allows to classify virtually all forecasting regression of

stock market returns in terms of different approaches to proxying the future

expected variables included in the linearized relations.

• The classical Gordon-growth model posits constant dividend growth∆+ =

 and constant returns 

+ = In this case we have

∗ =  +  +


1− 
− 

1− 

8



• The Lander et al.(1997) model also known as the FED model can be un-
derstood by substituting out the no-arbitrage restrictions in (??) 


+ =



¡
+ + +

¢
and then by assuming constant dividend growth and a

close relation between the risk premium on long-term bonds and the risk

premium on stocks in this case we have:

∗ =  +  +


1− 
− 

where  is th yield to maturity on long-term bonds

• Asness(2003) considers the assumption of proportionality between the
stock market risk premium and the bond market risk premium as prob-

lematic and corrects the FED model with the following specification:

∗ =  +  +


1− 
− 1 − 2




where


is the ratio between the historical volatility of stock and bonds.

• Lamont(2004) argues that the log dividend payout ratio ( − ) is the

most appropriate proxy for future stock market returns to consider the

following model:

∗ =  +  +


1− 
+ 1 ( − )

• Ribeiro(2005) higlight the importance of labour income in predicting fu-
ture dividends and posits VECM error correction model for dividend

growth and future returns with two cointegrating vectors defined as ( − )

and ( − ), hence the implicit equilibrium stock market price is:

∗ =  +  +


1− 
+ 1 ( − )

9



The empirical investigation of the dynamic dividend growth model has

established a few empirical results:

(i) dp is a very persistent time-series and forecasts stock market returns and

excess returns over horizons of many years (Fama and French (1988), Campbell

and Shiller (1988), Cochrane (2005, 2007).

(ii) dp does not have important long-horizon forecasting power for future

discounted dividend-growth (Campbell (1991), Campbell, Lo and McKinlay

(1997) and Cochrane (2001)).

(iii) the very high persistence of dp has led some researchers to question the

evidence of its forecasting power for returns, especially at short-horizons. Care-

ful statistical analysis that takes full account of the persistence in dp provides

little evidence in favour of the stock-market return predictability based on this

financial ratio ( Nelson and Kim (1993); Stambaugh (1999); Ang and Bekaert

(2007); Valkanov (2003); Goyal and Welch (2003) and Goyal and Welch (2008)).

Structural breaks have also been found in the relation between dp and future

returns (Neely and Weller (2000), Paye and Timmermann (2006) and Rapach

and Wohar (2006)).

(iv) More recently, Lettau and Ludvigson (2001, 2005) have found that divi-

dend growth and stock returns are predictable by long-run equilibrium relation-

ships derived from a linearized version of the consumer’s intertemporal budget

constraint. The excess consumption with respect to its long run equilibrium

value is defined by the authors alternatively as a linear combination of labour

income and financial wealth, cay or as a linear combination of aggregate div-

idend payments on human and non-human wealth, cdy. cay and cdy are

much less persistent than dp they are predictors of stock market returns and

dividend-growth, and, when included in a predictive regression relating stock

market returns to dp they swamp the significance of this variable. Lettau

and Ludvigson (2005) interpret this evidence in the light of the presence of a

common component in dividend growth and stock market returns. This compo-

nent cancels out from (??), cay and cdy are instead able to capture it as the

linearized intertemporal consumer budget constraint delivers a relationship be-

tween excess consumption and expected dividend growth or future stock market

returns that is independent from their difference.
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4 The Dog that did not bark

Consider the following DGP:

+1 =  +  + 1+1

∆+1 =  +  + 2+1

+1 =  +  + 3+1

given that

+1 =  +  + 2+1 − ( +  + 3+1) + 

+1 = ( − ) + (1− + )  + 2+1 − 3+1

we have

+1 = ∆+1 − +1 + 

 = 1− + 

1+1 = 2+1 − 3+1

In particular, as long as  is nonexplosive,   1/ 1.04, we cannot choose

a null in which both dividend growth and returns are unforecastable, i.e. in

which both  = 0 and  = 0. To generate a coherent null with  =0, we must

assume an equally large  of the opposite sign, and then we must address the

failure of this dividend growth forecastability in the data.

5 Time varying mean for dp

A recent strand of the empirical literature has related the contradictory evi-

dence on the dynamic dividend growth model to the potential weakness of its

fundamental hypothesis that the log dividend-price ratio is a stationary process

(Lettau and Van Nieuwerburgh (2008), LVN henceforth). LVN use a century of

US data to show evidence on the breaks in the constant mean dp. We report

the time series of US data on dp over the last century in Figure 1. As a mat-

ter of fact, the evidence from univariate test for non-stationarity and bivariate

cointegration tests does not lead to the rejection of the null of the presence

of a unit-root in dp. So far lineariztion of the dividend price ratio has been

implemented around a constant. An interesting possibility is to allow for a

time-varying mean in  :

11



Time Series of Log Dividend-Price Ratio

∆+1 = 1+1 (10)

+1 = 22 + 23+1 + 2+1 (11)

+1 = ∆+1 − 
£
+1 − +1

¤
+
£
 − 

¤
+ 3+1 (12)⎡⎣ 1

2
3

⎤⎦ ∼

⎡⎣⎛⎝ 0

0

0

⎞⎠ Σ

⎤⎦
Where+1 is a a time-varying variable that determines the mean of +1In

Appendix B of their paper, Lettau&VanNieuwerburgh (2008) derive the follow-

ing log-linear approximation of returns6:

¡
+1 − +1

¢
=
¡
∆+1 −∆+1

¢− 
£
+1 − +1

¤
+
£
 − 

¤
+∆+1

(13)

We obtain our equation (??) from (13) by assuming that of the three processes

for returns, dividend growth and the dividend-price ratio only the last one is

persistent
¡
 = ∆ = 

¢
, that the time-varying mean of the dividend-price

ratio is very slowly evolving, i.e. ∆+1 ≈ 0 and that the linearization parame-
6+1 = ln


+1++1






 = ln





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ter is constant, =.
7 We introduce an error term 3+1 to capture the effect

of our approximation8.

The speed of mean reversion towards a constant mean of the dividend-price

ratio is very different from that of annual real returns and annual real dividend

growth. We model this feature of the data by introducing a time-varying mean

for the dividend-price ratio, driven by +1. In practice, without this step it

would be very hard to reconcile the time-series properties of  with those of

 and ∆+ 

By solving eq. (??) forward we obtain:

X
=1

−1
¡
+

¢
=

£
 − 

¤
+

X
=1

−1 (∆+)− 
£
+ − +

¤
(14)

+

X
=1

−1 (1+ + 3+)

Eq. (14) clearly shows that deviations of the dividend/price ratio from its

equilibrium value at time  have a predictive power for -period ahead stock

market returns (and/or dividend growth) that increases with the horizon, as

the larger is  the smaller is the effect of future noise in the dividend-price

ratio
£
+ − +

¤
 However, this term cannot be ignored in the computa-

tion of the term structure of stock market risk that considers typically horizons

from 1-year onwards. To bring (14) to the data, an observable counterpart of

the time varying linearization value for the dividend-price must be considered.

Consistently with (??), we assume that the relevant linearization value for com-

puting returns from time  to time  + is the conditional expectation of the

dividend-yield for time  + , given the information available at time . We

then have

X
=1

−1
¡
+

¢
=  −

⎡⎣22 + X
=1


−1
22 23++1−

⎤⎦+ + (15)

= (1− 22)  −
X
=1


−1
22 23++1− + +

+ =

X
=1

−1 (1+ + 3+)− 
X
=1


−1
22 2++1−

Note that the specification of the model requires that future values of  are

used to predict return. One alternative, followed by Lettau and Van Niuewen-

7Rytchkov (2008) estimates a system of equation similar to ours and study how sensitive

ML parameters are to variation in this parameter. He concludes that there is almost no

sensitivity to the choice of  (see Table 1 in his paper).
8The validity of these assumptions will be subject to a test in the empirical section where we

shall evaluate the "restricted" model generated by all our assumptions against an unrestricted

one.
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burgh is to allow for shift in the mean, another possibility, followed by Favero

et al., is to make  function of demographic variables.
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Table 3: System Estimation (1910-2008)

+1 = 20 + 22 + 23+1 + 2+1

UM: 1√


X
=1

¡
+

¢
= 0 +

1√

 +

2√


⎛⎝ X
=1


−1
22 +

⎞⎠+ +  = 1  10

RM: 1√


X
=1

¡
+

¢
= 0 +

1√

(1− 22)  − 23√



⎛⎝ X
=1


−1
22 +

⎞⎠+ +

horizon  in years

UM 1 2 3 4 5 6 7 8 9 10

1
(−)

049
(1193)

065
(1739)

071
(2115)

076
(2489)

077
(2424)

077
(2802)

077
(2775)

078
(2687)

079
(2496)

078
(1880)

2
(−)

096
(719)

086
(762)

083
(754)

083
(721)

083
(701)

084
(683)

086
(677)

090
(685)

094
(690)

098
(695)

22
(−)

052
(1007)

23
(−)

−095
(−628)

RM

22
(−)

077
(2094)

23
(−)

−051
(412)

213 1728
(019)

220 10644
(000)

  0198 0201 0191 0190 0188 0181 0180 0178 0174 0171

+ UM 0.213 0.191 0.170 0.154 0.141 0.132 0.124 0.119 0.114 0.117

+ RM 0.191 0.181 0.165 0.154 0.143 0.135 0.127 0.122 0.117 0.114

2 UM − 010 020 034 043 047 051 056 058 059

2 RM 007 019 025 034 042 044 049 054 055 055

Table 1: The restricted system is estimated using GMM with optimal Newey-

West bandwidth selection to compute GMM standard errors. AnnUnc is

the annualized unconditional standard deviation. Ann() is the annualized

conditional standard deviation of the compounded (over  periods) returns, i.e.

our measure of stock market risk. The effective sample period is 1910-2008.
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Figure 1.2: 20-year real US stock market returns and demographic trends
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5.1 Spurious Regressions and the predictability of returns

at different frequencies

The evidence for cointegration between price and dividends is not so clear-cut.

In fact, the log of the price-dividends ratio is a very persistent time series and the

possibility that it contains a unit root cannot be rule-out a priori. As a matter of

fact we have used in our empirical analysis so far the UK dividend price ratio but

the evidence from US data speaks less favorably in favour of a mean-reverting

(log) of dividend price ratio. A widespread use empirical evidence in favour of

the dynamic dividend growth model, that supports the stationarity of the log

dividend yield, is the one based on multi-period predictive regressions for stock

market returns. The performance of the log dividend yield as a predictor of stock

market returns improves as the length of the horizon at which returns are defined

increases. Table 3.4 illustrates this evidence by reporting the performance of

predictive regression for stock UK 1-quarter, 1-year, 2-year and 3-year stock

market returns based on the dividend yield.

Table 3.4. Forecasting UK Stock-Market Returns at different horizons

Dependent variable

X
=1

(h

+), regression by OLS, 1973:1-2011:4

horizon 0 1 R2 S.E

1-quarter 0304
(0093)

0087
(0028)

0.0631 0.0069

1-year 108
(016)

031
(005)

0.21 0.02

2-year 185
(0198)

052
(006)

0.34 0.0325

3-year 249
(02)

070
(006)

0.46 0.0432

X
=1

(h

+ ) = 0 − 1 (p − d) + +

k = 1 4 8 12

h are log total annualized real UK stock market returns.

The evidence that long-horizon variables seem to find significant results

where “short-term” approaches have failed, has been questioned. Valkanov(2003)

argues that long-horizon regressions will always produce “significant” results,

whether or not there is a structural relation between the underlying variables.

This result depend on the fact that a rolling summation of series integrated of

order zero behaves asymptotically as a series integrated of order one and, when-

ever the regressor is persistent, the well-know occurrence of spurious regression

between I(1) variables emerges. Having established that estimation and testing

using long-horizon variables cannot be carried out using the usual regression

methods, Valkanov(2003) provides a simple guide on how to conduct estimation

and inference using long-horizon regressions. The author proposes propose a
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rescaled t-statistic, t/
√
  for testing long-horizon regressions. the asymptotic

distribution of this statistic, although non-normal, is easy to simulate and the

results are applicable to a general class of long-horizon regressions. In deriv-

ing his correction Valkanov also illustrates that the problem related to spurious

regression goes beyond the inadequacy of statistical asymptotic approximation

when using overlapping variables. In fact he shows that, even after correcting

for serially correlated errors , using Hansen and Hodrick (1980) or Newey-West

(1987) standard errors, the small-sample distribution of the estimators and the

t-statistics are very different from the asymptotic normal distribution.

To illustrate the Valkanov rescaling procedure consider the following DGP:

1+1 = +  + 1, (16)

(1 + )  = + 2

 = 1 +


µ
1
2

¶
∼ 

µµ
0

0

¶
,

µ
11 12
12 22

¶¶
where the parameter measures deviations from the unit root in a decreasing

(at rate T) neighborhood of 1. The unit-root case corresponds to  = 0.

The long-horizon variables are

+1 =

X
=1

1+1

The regression at different horizon is run by projecting 
 on The sim-

ulation of the relevant distribution requires an estimate of the nuisance parame-

ter  To this end long-run restrictions implied by the dynamic dividend growth

model can be used.

As shown in the introductory chapter, the model implies that one-period

total return can be approximated as follows:

1+1 = 0 + +1 +∆+1 −  (17)

assuming that the log-dividends follows an autoregressive process:

+1 =  +  (18)

by substituting from (18) into (17) we have that

1+1 = 0 − 1 + +1 (19)

+1 = ∆+1 + 

1 = (1− )

where +1 is a stationary variable and therefore the 

+1 = 1 The

k-period horizon return can then be written as follows:
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+1 ≈ ̃ −  + ̃+1 (20)

 =

"
(1− )

−1X
=0:



#

Now, we can write

 =

"
(1− )

1− 

1− 

#
(21)

If  = 1 then:

 = 1−  (22)

Now, remember that  = 1 +



and we can express  in terms of the total

length of the available sample as, = b c, from which  ≈ 


. Then:

 = 1−
³
1 +





´
= 1−

µ
1 +





¶
(23)

lim
−→∞

µ
1 +





¶
= 

lim
−→∞

 = lim
−→∞

bc = 1− 

Since we can estimate  consistently, we can also find a consistent estimate

of  by using the transformation:

 =
1


log (1− )

Given the knowledge of  and , the model can be simulated under the null

to obtain the critical values of the Valkanov t-statistics.

Note that the empirical literature on predictability also cast doubts on the

validity of the cointegrating relationships between dividend and prices and dif-

ferent models have been proposed based on alternative cointegrating relation-

ships (see, for example the FED model by Lander et al.(1997) or the cay model

by Lettau and Ludgvison(2004)). The instability of parameter estimates in

econometric models has generated alternative approaches based on stationary

representations of the return dynamics ( Ferreira and Santa Clara(2011)).
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6 Risk, Returns and Portfolio Allocation with

Cointegrated VARs

Consider the continuously compounded stock market return from time  to time

 + 1, r+1 . Define μ the conditional expected log return given information

up to time  as follows:

r+1 = μ + u+1

where u+1 is the unexpected log return. Define the -period cumulative return

from period + 1 through period +  as follows:

r+ =

X
=1

r+

The term structure of risk is defined as the conditional variance of cumulative

returns, given the investor’s information set, scaled by the investment horizon

Σ() ≡ 1


 (r+ | ) (24)

where  ≡ { :  ≤ } consists of the full histories of returns as well as
predictors that investors use in forecasting returns.

6.1 Inspecting the mechanism: a bivariate case

We illustrate the econometrics of the term structure of stock market risk by

considering a simple bi-variate first-order VAR for continuously compounded

total stock market returns,   and the log dividend price,:

( −) = Φ1 (−1 −) + 

 ∼ N (0Σ)

where

 =

∙



¸
  =

∙


−

¸
Φ1 =

∙
0 12
0 22

¸
∙
1
2

¸
∼

∙µ
0

0

¶


21 12
12 22

¸
The bivariate model for returns and the predictor features a restricted dy-

namics such that only the lagged predictor is significant to determine current

20



returns
¡
11 = 0

¢
and the predictor is itself a strongly exogenous variable¡

21 = 0
¢
.

Given the VAR representation and the assumption of constant Σ

  [(+1 + + +) | ] = Σ + ( +Φ1)Σ( +Φ1)
0 + (25)

( +Φ1 +Φ
2
1)Σ( +Φ1 +Φ

2
1)
0 + 

+( +Φ1 + +Φ−11 )Σ( +Φ1 + +Φ−11 )0

from which we can derive:

Σ() =
1



−1X
=0

Σ
0


 =  +Φ1Ξ−1   0

Ξ = Ξ−1 +Φ1   0

0 ≡  Ξ0 ≡ 

Note that, under the chosen specification of the matrix Φ1 we can write the

generic term Σ
0
, as follows:

Σ
0
 =

µ
11 12

 0
12 22

¶
(26)

11 = Σ11 +Φ12Ξ
(22)
−1Σ

0
12 +Σ12Ξ

(22)0
−1 Φ

0
12 +Φ12Ξ

(22)
−1Σ22Ξ

(22)0
−1 Φ

0
12

 0
12 = Ξ

(22)
 Σ012 + Ξ

(22)
 Σ22Ξ

(22)0
−1 Φ

0
12

22 = Ξ
(22)
 Σ22Ξ

(22)0


where we have used the fact that

Ξ =

X
=0

Φ1

=

⎛⎜⎝0 12

X−1
=0



22

0
X

=0


22

⎞⎟⎠
and

 =  +Φ1Ξ−1

=

⎛⎜⎝ 12

X−1
=0



22

0
X

=0


22

⎞⎟⎠
Eq. (26) implies that, in our simple bivariate example, the term structure

of stock market risk takes the form

2() = 21 + 212121() + 212
2
222() (27)
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where

1() =
1



−2X
=0

X
=0

22   1

2() =
1



−2X
=0

Ã
X

=0

22

!2
  1

1(1) = 2(1) = 0

The total stock market risk can be decomposed in three components: i.i.d un-

certainty, 21 , mean reversion, 212121(), and uncertainty about future

predictors, 212
2
222(). Without predictability

¡
12 = 0

¢
the entire term

structure is flat at the level 21. This is the classical situation where portfolio

choice is independent of the investment horizon. The possible downward slope

of the term structure of risk depends on the second term, and it is therefore

crucially affected by predictability and a negative correlation between the in-

novations in dividend price ratio and in stock market returns (12)  the third

term is always positive and increasing with the horizon when the autoregressive

coefficient in the dividend yield process is positive.

6.1.1 An illustration

+1 =  +  + 1+1

+1 =  +  + 2+1∙
1+1
2+1

¸
∼

∙µ
0

0

¶


21 12
12 22

¸

(+1 | ) = ( +  + 1+1 | )

=  + 

(+1 | ) = ( +  + 1+1+ | )

(+1+2 | ) = ( +  +  + 2+1 + 1+2 | )

2(1) =  (+1 | ) = 21

2(2) =
1

2
 (+2 | )

=
1

2
21 +

1

2
21 +

1

2
2

2
2 + 12

22


