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Abstract

Discrete nonparametric priors play a central role in a variety of Bayesian procedures, most

notably when used to model latent features as in clustering, mixtures and curve fitting. They

are effective and well developed tools, though their infinite-dimensionality is unsuited to several

applications. If one confines oneself to a finite-dimensional simplex, there are few nonparametric

priors beyond the traditional Dirichlet-multinomial process, which is mainly motivated by conju-

gacy. Here we introduce an alternative based on the Pitman–Yor process, which ensures greater

flexibility while preserving analytical tractability. Urn schemes and posterior characterizations are

obtained in closed form, leading to exact sampling methods. In addition, our proposal can be used

to accurately approximate the infinite-dimensional Pitman–Yor process, improving over existing

truncation-based approaches. An application to convex mixture regression for quantitative risk

assessment serves as an illustration of our results and allows comparisons with existing methodolo-

gies.

1 Introduction

The statistical investigation of discrete random structures has been a very lively area of research in

recent years. Parametric and nonparametric Dirichlet priors have found wide applicability in numerous

settings that include, among others, density estimation, model-based clustering, density regression,

functional data analysis, and hidden Markov models. However, Dirichlet-based priors might be a

restrictive modeling choice, for example, because the induced random partition is controlled by a

single parameter. In the nonparametric case, the limitations of the Dirichlet process are successfully

circumvented, for instance, by considering the more flexible Pitman–Yor process (Pitman and Yor,

1997) or a number of other alternatives broadly summarized in Lijoi and Prünster (2010). These

remarkable advances in the nonparametric literature have not been paralleled by a similar wealth of

proposals in the finite-dimensional setting, where only few alternatives are known beyond Dirichlet-like

structures and most of them outside the Bayesian realm. For example, there is an interesting piece of

literature on compositional data spurred by the pioneering work in Aitchison (1985) on general classes

of distributions on the simplex. However, to the best of our knowledge, none of them has been used
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as a prior distribution for modeling either the data or some latent feature. Indeed, the lack of deep

theoretical results has prevented the development of more flexible classes of priors, as well as simple

sampling algorithms that may facilitate their implementation. We fill this gap by introducing a novel

random probability measure, the Pitman–Yor multinomial process. We show that this prior may be

seen as a finite-dimensional analogue of a Pitman–Yor process with discount parameter σ ∈ [0, 1) and

naturally generalizes the Dirichlet multinomial process, a finite-dimensional prior which may be defined

as a Pitman–Yor process with negative discount parameter. Besides gaining modeling flexibility, our

proposal preserves analytical and computational tractability.

The Pitman–Yor multinomial process further serves as a very effective tool for computational

purposes in a nonparametric setting. A popular class of Markov chain Monte Carlo algorithms for

nonparametric mixture models, usually referred to as the blocked Gibbs sampler, relies on the trunca-

tion of a stick-breaking representation of the mixing Pitman–Yor process. If (νj)j≥1 is a sequence of

independent random variables with νj ∼ Beta(1− σ, α+ jσ), where σ ∈ [0, 1) and α > −σ, and P is a

probability measure defined over Θ, then a prior on the space of density functions is the distribution

of

f̃(y) =

∫
Θ
K(y; θ) p̃∞(dθ), p̃∞ =

∞∑
h=1

ξh δφ̃h , φ̃h
iid∼ P, (1)

where ξ1 = ν1, ξh = νh
∏h−1
j=1 (1− νj) for h ≥ 2 with K a transition kernel such that

∫
R
K(y; θ) dy = 1

for any θ ∈ Θ. When it comes to evaluating Bayesian inferences, the infinite series defining p̃∞ in

(1) cannot be computed and one conveniently relies on a suitable finite-dimensional approximation

obtained by truncating p̃∞ at some level H, i.e.

p̃H,tr =

H−1∑
h=1

ξh δφ̃h + (1− |ξ(H−1)|) δφ̃H , |ξ(H−1)| = ξ1 + · · ·+ ξH−1. (2)

This approach has some limitations since one can hardly identify marginal probabilistic structures of

interest such as, for example, the law of the induced exchangeable random partition, the probability

distribution of the number of clusters or the prediction rule associated to (2). The results that are dis-

played in the next sections successfully address the above issues by replacing p̃H,tr with the Pitman–Yor

multinomial process, which stands as an alternative finite-dimensional approximation of p̃∞ with H

components. We show that for non-informative specifications of p̃∞, namely those corresponding to val-

ues of σ > 1/2, the Pitman–Yor multinomial process is a more accurate approximation of p̃∞ compared

to p̃H,tr. In addition, the distributional results we achieve allow for a straightforward implementation

of novel generalised Blackwell–MacQueen sampling schemes as well as conditional algorithms.

On top of its computational relevance in Bayesian nonparametrics, the Pitman–Yor multinomial

process has important applications in finite mixture modeling. As for the Dirichlet multinomial special
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case, the value H represents a conservative upper bound for the number of mixture components. Such

an approach has been motivated by asymptotic arguments in Rousseau and Mengersen (2011) and

it has been supported by Malsiner-Walli et al. (2016) on the basis of more empirical arguments. As

an alternative, following for example the works of Richardson and Green (1997); Gnedin and Pitman

(2005) or, more recently, Miller and Harrison (2018); Argiento and De Iorio (2019), one may assume

a hyperprior on H. Hence, the Pitman–Yor multinomial process stands as a natural generalisation

of these methods and it translates the advantages of the Pitman–Yor process into finite-dimensional

settings allowing a much finer control of the underlying random partition and a more robust specifica-

tion of the cluster distribution, which is typically very informative in the Dirichlet setting (Lijoi et al.,

2007).

Our proposal, and the related distributional results, are illustrated through a covariate-dependent

mixture model that is reminiscent of the one proposed in Canale et al. (2018), who consider a toxico-

logical study originally conducted by Longnecker et al. (2001).

2 The Pitman–Yor multinomial process

The Pitman–Yor multinomial process is built upon the Pitman–Yor process p̃∞ (Perman et al., 1992;

Pitman and Yor, 1997) in equation (1). The probability distribution P of the atoms φ̃h is often referred

to as the baseline measure because E(p̃∞) = P . We will henceforth use the notation p̃∞ ∼ py(σ, α;P )

with P typically chosen to be diffuse, i.e. P ({θ}) = 0 for any θ ∈ Θ. The Pitman–Yor multinomial

process corresponds to the case where P is replaced by some discrete random probability measure with

finitely many support points, as in the following definition.

Definition 1. A discrete random probability measure p̃H is a Pitman–Yor multinomial process with

parameters σ ∈ [0, 1) and α > −σ if it admits the hierarchical representation

p̃H | p̃0,H ∼ py(σ, α; p̃0,H), p̃0,H =
1

H

H∑
h=1

δθ̃h , H ≥ 1, (3)

where θ̃h are independent and identically distributed Θ-valued random variables with common distri-

bution P . We will write p̃H ∼ pym(σ, α,H;P ).

When σ = 0, the random probability measure p̃H in Definition 1 reduces to the Dirichlet multino-

mial process, which indeed admits such a hierarchical representation (Ishwaran and Zarepour, 2000),

although it may also be regarded as a py(−α/H,α;P ), where σ = −α/H < 0. Though p̃H is finite-

dimensional, one can give an alternative and equivalent definition in terms of the infinite-dimensional

counterpart p̃∞ ∼ py(σ, α;P ). Indeed, for any finite and measurable partition B1, . . . , Bd of Θ the vec-

tor {p̃∞(B1), . . . , p̃∞(Bd−1)} identifies a probability distribution on the simplex known as ratio-stable
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(Carlton, 2002), so that

{p̃∞(B1), . . . , p̃∞(Bd−1)} ∼ rs{σ, α;P (B1), . . . , P (Bd)},

where p̃(Bi) = 0 almost surely if P (Bi) = 0, for any i = 1, . . . , d. Moment formulae for ratio-stable laws

can be found in Carlton (2002). Unsurprisingly, the weights of a Pitman–Yor multinomial process follow

a ratio-stable distribution, as summarized in the following proposition, whose proof is straightforward.

Proposition 1. A Pitman–Yor multinomial process p̃H ∼ pym(σ, α,H;P ) with parameters σ ∈ [0, 1)

and α > −σ admits the following marginal representation in distribution

p̃H =
H∑
h=1

πhδθ̃h , (π1, . . . , πH−1) ∼ rs(σ, α; 1/H, . . . , 1/H), θ̃h
iid∼ P. (4)

The density function of the weights (π1, . . . , πH−1) is generally not available in closed form, with

some notable exceptions. The Dirichlet multinomial process is identified by σ = 0 and the weights

have a symmetric Dirichlet distribution with parameters (α/H, . . . , α/H). When σ = 1/2 the density

function is available in closed form, and it was firstly obtained by Carlton (2002). The lack of a closed

form expression of the density function is not a concern for Bayesian inference, since a ratio-stable

distribution can be sampled for any admissible value of σ and α both a priori and a posteriori, as

detailed henceforth. The proposed algorithm will arise from a hierarchical representation of ratio-

stable distributions in terms of tempered-stable and gamma random variables, which can be easily

simulated. To this end, we briefly recall that a positive random variable J is tempered-stable if for

some c > 0, σ ∈ (0, 1) and κ ≥ 0, its Laplace transform is E(e−λJ) = exp [−c{(λ+ κ)σ − κσ}], with

λ > 0, and we shall use the notation J ∼ ts(c, σ, κ). Note that such a random variable can be efficiently

sampled, for instance by means of the algorithm of Ridout (2009). When σ = 1/2, the random variable

J ∼ ts(1/H, 1/2, κ) has inverse Gaussian distribution, while setting κ = 0 leads to the positive-stable

distribution. The main result we will rely on for computational purposes is the following, that may

also be obtained from Proposition 21 in Pitman and Yor (1997).

Proposition 2. Let p̃H ∼ pym(σ, α,H;P ) with σ ∈ (0, 1) and α ≥ 0. Then the weights of p̃H in (4)

admit the representation (π1, . . . , πH) = (J1/
∑H

h=1 Jh, . . . , JH/
∑H

h=1 Jh) and

Jh | U
iid∼ ts(1/H, σ, U), Uσ ∼ Ga(α/σ, 1),

where we agree that U = 0 almost surely if α = 0.

Although the above hierarchical representation holds only for α ≥ 0, one can make it fully general

through the following argument. For any α one can conveniently represent the distribution of weights
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in Proposition 1 as (π1, . . . , πH) = W (G1, . . . , GH) + (1−W )(π∗1, . . . , π
∗
H), where the random variable

W ∼ beta(1 − σ, α + σ), and the random vectors (G1, . . . , GH) ∼ multinom(1/H, . . . , 1/H) and

(π∗1, . . . , π
∗
H−1) ∼ rs(σ, α + σ; 1/H, . . . , 1/H) are mutually independent. See Carlton (2002). Since

α+ σ is positive, the simulation of (π∗1, . . . , π
∗
H) can be addressed by means of Proposition 2 and this

allows sampling of (π1, . . . , πH) for any α > −σ.

Remark 1. The simulation of each Jh in Proposition 2 might be the source of numerical issues, for val-

ues of σ close to 0. This occurs because the distribution of U places mass on very large values that might

cause overflows. However, such a problem can be circumvented by considering the rescaled random vari-

ables J̃h = Jh/{(σ/α)1/σ} whose distribution is J̃h | Ũ ∼ ts{α/(σH), σ, Ũ} with Ũσ ∼ Ga(α/σ, α/σ).

This leads to more stable algorithms because E(Ũσ) = 1. The rescaling constant cancels in the nor-

malization and therefore one has equivalently that (π1, . . . , πH) = (J̃1/
∑H

h=1 J̃h, . . . , J̃H/
∑H

h=1 J̃h).

The hierarchical representation of Proposition 2 is a useful practical tool for simulating ratio-stable

random vectors. However, a further and extremely useful characterisation of the random variables

J1, . . . , JH is available as their law can be obtained via polynomial tilting of a collection of independent

and identically distributed positive-stable random variables. Such a construction is reminiscent of

the change of measure formula given in Pitman and Yor (1997), for the infinite-dimensional case.

The connection is of great theoretical importance for the derivation of posterior characterisations, as

detailed in the Supplementary Material.

Proposition 3. Let p̃H ∼ pym(σ, α,H;P ) with σ ∈ (0, 1) and α > −σ. Then the vector of jumps

(J1, . . . , JH) identifying the weights of p̃H in Proposition 2 is such that

E

{
exp

(
−

H∑
h=1

λhJh

)}
=

Γ(α+ 1)

Γ(α/σ + 1)
E


(

H∑
h=1

J
(σ)
h

)−α
exp

(
−

H∑
h=1

λhJ
(σ)
h

) ,

for any λ1, . . . , λH > 0, where J (σ)
h

iid∼ ts(1/H, σ, 0).

3 Distributional properties

Due to its discreteness, p̃H defines an attractive prior if one is interested in investigating the clustering

structure featured by the data, with a finite maximum number H of groups in the population being

allowed. In other terms, if θ1, . . . , θn | p̃H
iid∼ p̃H , with p̃H ∼ pym(σ, α,H;P ), the n–sample θ(n) =

(θ1, . . . , θn) will display ties with positive probability. Let Kn,H = k ≤ min{n,H} be the number of

distinct values, say θ∗1, . . . , θ∗k in θ(n) and n1, . . . , nk their respective frequencies, so that
∑k

j=1 nj = n.

This is reflected in a random partition Ψn,H of [n] = {1, . . . , n} into k sets C1, . . . , Ck such that i and j

are in the same set if and only if θi = θj . The probability distribution of Ψn,H is known as exchangeable
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partition probability function and is defined by

ΠH(n1, . . . , nk) = pr(Ψn,H = {C1, . . . , Ck}) =
∑

i1 6=···6=ik

E

 k∏
j=1

π
nj
ij

 ,

where nj = card(Cj) and the sum runs over all the positive and distinct integers (i1, . . . , ik) in

{1, . . . ,H}. As discussed in Pitman (1996), when P is diffuse ΠH characterises the underlying random

probability measure and yields, as a by-product, the system of predictive distributions. Such a construc-

tion clearly parallels the well-known infinite-dimensional case, namely when φ1, . . . , φn | p̃∞
iid∼ p̃∞, with

p̃∞ ∼ py(σ, α;P ) and P is diffuse. The corresponding exchangeable partition probability function is

Π∞(n1, . . . , nk) = {
∏k−1
j=1(α+ jσ)}{

∏k
j=1(1−σ)nj−1}/(α+ 1)n−1, where (a)n = a(a+ 1) · · · (a+n−1)

for any real a and integer n ≥ 1 is the ascending factorial, with (a)0 = 1. Moreover, if one con-

ditions on φ(n) = (φ1, . . . , φn) featuring k distinct values φ∗1, . . . , φ∗k, the predictive distribution is

pr(φn+1 ∈ A | φ(n)) = {(α + kσ)/(α + n)}P (A) +
∑k

j=1{(nj − σ)/(α + n)}δφ∗j (A). The next theorem

provides the finite-dimensional counterpart to Π∞ and is expressed in terms of the generalized factorial

coefficients C (n, k;σ) = (k!)−1
∑k

j=0(−1)jk!{j!(k−j)!}−1(−jσ)n. Henceforth, we shall further assume

that P is diffuse and σ ∈ (0, 1), so that the well-known Dirichlet multinomial case might be obtained

by taking the limit as σ → 0.

Theorem 1. The exchangeable partition probability function induced by a Pitman–Yor multinomial

process p̃H ∼ pym(σ, α,H;P ) is

ΠH(n1, . . . , nk) =
H!

(H − k)!

1

(α+ 1)n−1

∑
(`1,...,`k)

Γ(α/σ + |`(k)|)
σΓ(α/σ + 1)

k∏
j=1

C (nj , `j ;σ)

H`j
,

where the sum runs over all the vectors `(k) = (`1, . . . , `k) such that `j ∈ {1, . . . , nj} and |`(k)| =

`1 + · · ·+ `k.

Based on this result, one may determine the system of predictive distributions corresponding to

the Pitman–Yor multinomial process and the related urn-scheme. This admits a tractable form if

one conditions on `(k) = (`1, . . . , `k) that will act as latent variables, thus simplifying computations.

Firstly, it can be easily noted that

pr(`1 = l1, . . . , `k = lk | θ(n)) ∝ Γ(α/σ + |l(k)|)
k∏
j=1

C (nj , lj ;σ)

H lj
, (5)

for any l(k) = (l1, . . . , lk) such that lj ∈ {1, . . . , nj}, and is zero elsewhere. These latent random

variables can be interpreted in terms of the multiroom Chinese restaurant metaphor (Camerlenghi

et al., 2018), but we do not pursue the discussion here. An efficient algorithm for sampling independent

6



values from (5) is derived and presented in Section 4. This is very useful since it enables the Monte

Carlo approximation of its expectation.

Theorem 2. Let θ1, . . . , θn | p̃H
iid∼ p̃H and p̃H ∼ pym(σ, α,H;P ). If θ(n) = (θ1, . . . , θn) displays k

distinct values θ∗1, . . . , θ
∗
k with frequencies n1, . . . , nk, then

pr(θn+1 ∈ A | θ(n)) =

(
1− k

H

)(
α+ |¯̀(k)|σ
α+ n

)
P (A)

+
k∑
j=1

(
1

H

α+ |¯̀(k)|σ
α+ n

+
nj − ¯̀

jσ

α+ n

)
δθ∗j (A),

(6)

having set ¯̀(k) = (¯̀
1, . . . , ¯̀

k) = E(`(k) | θ(n)), |¯̀(k)| = ¯̀
1 + · · ·+ ¯̀

k and `(k) = (`1, . . . , `k) is the vector

of integer-valued random variables whose distribution is described in (5).

The well-known predictive distribution of the Dirichlet multinomial process is recovered with σ = 0.

In this special case, the predictive law (6) does not depend on the conditional expectations of the

underlying latent variables. Moreover, as H → ∞ one can easily see that ¯̀
j → 1 and |¯̀(k)| → k

in probability. This unsurprisingly implies that, as H increases, the predictive distributions of the

infinite-dimensional Pitman–Yor and (6) get closer.

The closed form expression of ΠH(n1, . . . , nk) in Theorem 2 is essential for determining the probabil-

ity distribution of Kn,H . Besides its theoretical relevance, the law of Kn,H is often of great importance

in applications, e.g. for mixture modeling or clustering. Compared to the Dirichlet multinomial case,

which is recovered as σ → 0, the Pitman–Yor multinomial process induces a richer parametrization for

Kn,H , hence enhancing model flexibility.

Theorem 3. If θ1, . . . , θn | p̃H
iid∼ p̃H and p̃H ∼ pym(σ, α,H;P ), the probability distribution of the

number of distinct values Kn,H in θ(n) equals

pr(Kn,H = k) =
H!

(H − k)!

1

(α+ 1)n−1

n∑
`=k

1

H`

Γ(α/σ + `)

Γ(α/σ + 1)
S (`, k)C (n, `;σ),

for any k ≤ min{H,n}, where S (`, k) = 1/k!
∑k

r=0(−1)k−rk!{r!(k − r)!}−1r` is the Stirling number

of the second kind.

The parameter α controls the location of Kn,H , while σ regulates both the location and the variabil-

ity. As suggested by Figure 1, the choice σ = 0 leads to very informative prior distributions, implying

that the choice of the location parameter α in the Dirichlet multinomial process is tricky and heavily

influences the inferential results. Clearly, one might mitigate this issue by placing a prior distribution

on α. However, this would lead to a specification for which Bayesian inferences of interest lack closed
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Figure 1: Distribution of the number of clusters pr(Kn,H = k) in the Dirichlet case (σ = 0), when
n = 100, H = 50, and for various choices of the location parameter α.

form expressions and in addition it would require a Metropolis step in the posterior sampling. In con-

trast, the Pitman–Yor multinomial process, with σ > 0, exhibits a degree of flexibility that does not

require the specification of hyperpriors on (σ, α) and, as a result, the Gibbs sampler we rely on features

a much faster mixing. Additionally, in view of our results it is apparent that the presence of σ > 0 does

not impact the analytical tractability of this more general model. In practice, the parameters (σ, α)

can be selected by fixing the mean E(Kn,H) and the variance var(Kn,H) equal to some pre-specified

constants, and then numerically solving this system of equations in the variables (σ, α). Alternatively,

one may choose the parameters (σ, α) by direct inspection of the distribution in Theorem 3. As an

illustration, we depict in Figure 2 the distribution of Kn,H for different choices of (σ, α), keeping its

expectation fixed. As the discount parameter σ increases, the law of Kn,H becomes less informative.

This is further reflected in a higher degree of flexibility and robustness of the Pitman–Yor multinomial

process compared to the Dirichlet case. See also De Blasi et al. (2015) and Canale and Prünster (2017)

for further discussions on the robustness issue.

4 Posterior distribution and latent variables sampling

The use of the Pitman–Yor multinomial process in applications is greatly facilitated by the availability

of its posterior distribution. Indeed, the posterior law of a Pitman–Yor multinomial, conditionally

on the set of latent variables (5), is available in closed form and it equals the distribution of a linear

combination of Dirichlet and ratio-stable distributions. Such a representation parallels the quasi-

conjugate posterior characterization of the Pitman–Yor process (Lijoi et al., 2008) in the infinite-

dimensional case. When the sample θ(n) = (θ1, . . . , θn) displays k < H distinct values θ∗1, . . . , θ∗k, we

let θ̄k+1, . . . , θ̄H represent the point masses in p̃H that are not included in θ(n), up to a permutation.
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Figure 2: Distribution of the number of clusters pr(Kn,H = k) in the Pitman–Yor multinomial case
when n = 100, H = 50, and for various choices of (σ, α) so that the expected value E(Kn,H) = 25 is
fixed.

Theorem 4. Let θ1, . . . , θn | p̃H
iid∼ p̃H and p̃H ∼ pym(σ, α,H;P ) with P diffuse. Moreover, let

`(k) = (`1, . . . , `k) be a collection of random variables having distribution (5). Then, the posterior

distribution of p̃H conditional on θ(n) and `(k) is

p̃H | θ(n), `(k) =
k∑
j=1

(Wj +Wk+1Rj)δθ∗j +Wk+1

H∑
j=k+1

Rjδθ̄j ,

where θ̄k+1, . . . , θ̄H are independent and identically distributed from P . Moreover, the two vectors

(W1, . . . ,Wk) and (R1, . . . , RH−1) are conditionally independent, given (θ(n), `(k)), and

(W1, . . . ,Wk | θ(n), `(k)) ∼ dir(n1 − `1σ, . . . , nk − `kσ, α+ |`(k)|σ),

(R1, . . . , RH−1 | θ(n), `(k)) ∼ rs(σ, α+ |`(k)|σ; 1/H, . . . , 1/H).

The ratio-stable distribution appearing in Theorem 4 is such that α+ |`(k)|σ > 0, for any σ and α,

implying that the hierarchical representation of (R1, . . . , RH | θ(n), `(k)) in terms of tempered-stable

random variables, as for Proposition 2, can be used for simulation purposes. It is easy to check that as

σ → 0 the posterior distribution of the Dirichlet multinomial is recovered, while also being independent

on (`1, . . . , `k).

Therefore, provided that we can simulate independent values from (5), we can obtain independent

posterior samples for p̃H without the need of Markov chain Monte Carlo. To this end, note that the law

of (`1, . . . , `k) in (5) is discrete with finite support, meaning that in principle one could directly sample

from it. However, standard strategies are computationally feasible only in very simple cases, because

the number of support points rapidly increases with n and (n1, . . . , nk). We address this issue with
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a data-augmentation step. Indeed, by expanding over the gamma integral in (5), we recognize that,

conditionally on a latent variable V , the discrete random variables (`1, . . . , `k) become independent

and therefore much easier to simulate. Specifically, we have

pr(`1 = l1, . . . , `k = lk | θ(n), V ) ∝
k∏
j=1

(
V

H

)lj
C (nj , lj ;σ),

where V is a positive random variable on (0,∞) having density, conditional on θ(n), given by

f(v) ∝ e−vvα/σ−1
k∏
j=1

nj∑
`j=1

( v
H

)`j
C (nj , `j ;σ).

A draw from the above density can be simulated using acceptance-rejection strategies. We ob-

tained very good empirical performance with the classic ratio-of-uniform acceptance-rejection algo-

rithm applied on the logarithmic scale log V ; see e.g. Devroye (1986). We remark that the general-

ized factorial coefficients appearing in the above distributions should not be computed directly from

their definition, since one can more efficiently rely on the recursive relationships C (n + 1, k;σ) =

C (n, k;σ)(n − kσ) + σC (n, k − 1;σ), with initial conditions C (0, 0;σ) = 1, C (n, 0;σ) = 0 for n > 0

and C (n, k;σ) = 0 for k > n.

Remark 2. For the sake of exposition, we have confined ourselves to highlighting the posterior dis-

tribution of the random probability measure p̃H . However, Theorem 4 also yields, with the obvious

modifications, the posterior distribution of the random probabilities (π1, . . . , πH) under multinomial

sampling. In such a setting, the frequencies n1, . . . , nk correspond to the k occupied cells in a multi-

nomial distribution having probability vector (π1, . . . , πH) and a ratio-stable prior. Then the posterior

of (π1, . . . , πH) will coincide with the weights of p̃H in Theorem 4.

5 Weak limit representation of the Pitman–Yor process

In this section we draw a sharp connection between the Pitman–Yor multinomial process and the

infinite-dimensional Pitman–Yor, which is recovered as limiting case when H → ∞. This formal

relationship sheds some further light on the interpretation of (σ, α), while motivating the use of

p̃H ∼ pym(σ, α,H;P ) as an approximation of the infinite-dimensional process p̃∞ ∼ py(σ, α;P ).

Our next theorem relies on the notion of weak convergence for random measures (Daley and Vere-

Jones, 2008) and on the convergence of the exchangeable partition probability functions. However,

one may alternatively adapt the arguments used in Kingman (1975), who proved the analogous of our

theorem in the Dirichlet case.
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Figure 3: Distribution of the number of clusters pr(Kn,H = k) in the Pitman–Yor multinomial case
(upper plot), and in the truncated stick-breaking case (lower plot), when n = 100, H = 50, and α = 1,
for various choices of σ. The distribution of the truncated stick-breaking is obtained averaging over
104 Monte Carlo simulations.

Theorem 5. Let p̃H ∼ pym(σ, α,H;P ) and p̃∞ ∼ py(σ, α;P ). Then the law of the process p̃H weakly

converges to the law of p̃∞ as H →∞.

In view of the above theorem, it is quite natural to draw a comparison between the Pitman–Yor

multinomial process and the truncated stick-breaking representation p̃H,tr in (2). Despite its popularity,

the truncated stick-breaking construction lacks a deep theoretical understanding as one cannot rely

on results analogous to the ones that we have displayed in the previous sections Specifically, the

exchangeable partition probability function, the associated predictive schemes and the distribution of

the number of clusters are not available. Hence, the use of p̃H,tr as prior law can be motivated only

when H is large enough, so that one can consider sampled trajectories of p̃H,tr, conditional on the

data, as reasonable approximations of the realizations of the posterior infinite-dimensional process. In

contrast, the Pitman–Yor multinomial can be studied and used even for small values of H.

In terms of quality of the approximation, there is a rather striking argument in favor of the Pitman–

Yor multinomial process. It is well-known that the truncation level H required to be reasonably

close to p̃∞ might be exceptionally large, especially when the discount parameter σ approaches 1.

In practice, one would typically choose the largest truncation level H which maintains computations

feasible. However, this might lead to very poor approximations of the infinite process if the truncated

stick-breaking p̃H,tr were employed. Suppose we are given a sample of n = 100 observations and a

conservative truncation level H = 50 is selected. Then, one might expect that a higher value of σ

11



implies an increase in the expected number of clusters, thus paralleling the behavior of the Pitman–

Yor process. Unfortunately, this is not the case with p̃H,tr, as shown in Figure 3. Indeed, the mode

of the distribution of Kn,H initially increases but then decreases as a function of σ and a similar

mechanism would hold also for the parameter α. Broadly speaking, this occurs because of the stick-

breaking truncation: large values of either σ or α push, on average, the mass of p̃H,tr towards the

last atom, possibly forcing p̃H,tr to collapse to a single random mass. This is a strongly undesirable

behavior which has no modeling justification, and furthermore it undermines one of the most appealing

property of the probabilistic structure of the Pitman–Yor process prior, namely the ability of controlling

the variability of the cluster distribution. On the other hand, the Pitman–Yor multinomial process

preserves the peculiar features of the Pitman–Yor process, as shown in Figure 3, while still being

computationally tractable.

We now conduct a formal comparison between p̃H and p̃H,tr within the context of mixture modeling.

If the data Y1, . . . , Yn are conditionally independent and identically distributed draws from the random

density f̃ in (1), then the marginal density of the sample is

m∞(Y (n)) = E

{
n∏
i=1

f̃(Yi)

}
= E

{
n∏
i=1

∫
Θ
K(Yi; θ)p̃∞(dθ)

}
, (7)

where Y (n) = (Y1, . . . , Yn) and the expected value is taken with respect to the prior law of p̃∞. Similarly,

we define the marginal densities mH and mH,tr as in (7), having replaced p̃∞ with the approximations

p̃H and p̃H,tr, respectively. Upper-bounds for the total variation distance between these marginal den-

sities were obtained by Ishwaran and James (2001) in the truncated Pitman–Yor case and Ishwaran

and Zarepour (2000, 2002) in the Dirichlet multinomial case. When σ = 0, the the total variation

distance between m∞ and mH,tr vanishes exponentially fast. On the basis of this result, Ishwaran

and Zarepour (2000) argued that the truncated stick-breaking representation p̃H,tr might constitute a

better approximation than p̃H in the Dirichlet case. However, the aforementioned exponential decay

does not occur for general values of σ and furthermore the quality of the truncated stick-breaking

approximation deteriorates as σ increases. These aspects are clarified in the following proposition.

Proposition 4. Let m∞, mH and mH,tr be the marginal densities defined in (7). If σ ∈ (0, 1) and P

is diffuse then

dtv {mH,tr,m∞} ≤ 2

[
1−

{
1−

(
α
σ + 1

)
H−1(

α
σ + 1

σ

)
H−1

}n]
= O(H−

1
σ

+1), H →∞.
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If Ψn,H and Ψn,∞ are the random partitions associated to p̃H and p̃∞ respectively, then

dtv {mH ,m∞} ≤ dtv{pr(Ψn,H), pr(Ψn,∞)} = O
(

1

H

)
, H →∞.

The total variation distance dtv{pr(Ψn,H), pr(Ψn,∞)} can be obtained explicitly, although the ac-

tual computation could be cumbersome, since it requires the summation over the space of the partitions

of [n]. The proportionality constants relative to the above convergence rates are known and they are

reported in the Supplementary Material.

Hence, when σ > 1/2 the convergence rate of dtv{pr(Ψn,H), pr(Ψn,∞)} is linear regardless the value

of σ. In contrast, the upper-bound in the truncated stick-breaking case displays slower converge rates

as σ increases, and it is not anymore exponential when σ > 0. This fact, together with the qualitative

findings illustrated in Figure 3, suggests that the Pitman–Yor multinomial prior might be preferable

especially when σ is large. When σ < 1/2 the truncated stick-breaking approximation might behave

better than the Pitman–Yor multinomial in terms of convergence rates, but the unappealing behavior

of p̃H,tr highlighted in Figure 3 will still be present.

6 Simulation study

The additional flexibility of the Pitman–Yor multinomial prior is illustrated on a synthetic dataset of

n = 3000 independent and identically distributed observations from the mixture

1

4
N (y;−2, 0.22) +

1

8
N (y;−1, 0.22) +

1

4
N (y; 0, 0.22) +

1

8
N (y; 1, 0.22) +

1

4
N (y; 2, 0.22),

with N (y;µ, σ2) denoting the Gaussian density function with mean µ and variance σ2. The model is

given by f̃(y) =
∑H

h=1 πhK(y; θ̃h), where the random weights and the random locations have Pitman–

Yor multinomial distribution. The true number of mixture components is 5 and the goal is to infer

it from the data. To this purpose, we rely on the approach advocated by Rousseau and Mengersen

(2011). In such a setting H is assumed to be large enough and the optimal number of clusters is

inferred by inspecting the posterior distribution of Kn,H . As discussed in Section 3, in the Dirichlet

multinomial case the results may depend on the choice of α and therefore we leverage the Pitman–Yor

multinomial prior to allow for a more robust specification. This is achieved by increasing the prior

variability of Kn,H , which is low in the Dirichlet case.

Let the kernel K(y; θ) be a Gaussian density having mean µ and variance σ2, with θ = (µ, σ2). We

choose conditionally conjugate priors for the atoms θ̃h = (θ̃1h, θ̃2h) (h = 1, . . . ,H), and in particular we

assume independent gamma ga(aσ, bσ) priors for the precisions θ̃−1
2h and independent Gaussian priors

for the locations θ̃11, . . . , θ̃1H , with mean µµ and variance σ2
µ. We set the hyperparameters consistently
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Figure 4: Prior and posterior distributions of the number of clusters pr(Kn,H = k) corresponding to
the four scenarios described in Table 1. The a posteriori distributions are obtained averaging over 5000
Markov chain Monte Carlo samples.

with the data generating process to make the prior distributions centered on the true values but still

relatively vague. More precisely, we set µµ = 0 and σ2
µ = 1000, whereas we let aσ = 2.5 and bσ = 0.1.

We let H = 20, a fairly conservative upper bound for the true number of mixture components,

which is 5 in our simulation study. We consider four different prior specifications for the ratio-stable

parameters σ and α, as summarized in Table 1. In two of these scenarios, the discount parameter σ

is set to 0, corresponding to the Dirichlet multinomial, which we aim at comparing with the Pitman–

Yor prior. As displayed in Table 1, two hyperparameters settings are well calibrated, in the sense

that the expected values of the number of clusters Kn,H are both close to 5 a priori. Under these

calibrated choices, we expect the model to be able to recover the correct number of clusters a posteriori.

However, in real applications one does not know the true number of components and therefore she

might inadvertently adopt a miscalibrated prior for the data at hand. This scenario is mimicked by

considering hyperparameters that lead to a priori expectations for Kn,H close to the upper bound,

leading to an “overfitted” mixture model.

Calibrated Dirichlet Calibrated py Miscalibrated Dirichlet Miscalibrated py
α 1 -0.18 20 -0.02
σ 0 0.40 0 0.80
E(Kn,H) 5.42 5.42 18.81 18.81

Table 1: Hyperparameter settings for the simulation study
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Posterior samples for Kn,H in each scenario can be obtained via Markov chain Monte Carlo. The

details are given in the Supplementary Material. We run the algorithm for 7000 iterations and hold

out the first 2000 as burn-in period. From the results in Figure 4 it is evident that both the calibrated

choices are able to recover the correct number of clusters. Conversely, in the overfitted scenarios

the differences are marked: under the Dirichlet multinomial specification the distribution of Kn,H

struggles to deviate from the prior, whereas in the Pitman–Yor multinomial case the posterior law

of Kn,H correctly recovers the true number of mixture components. This behavior motivates the use

of the Pitman–Yor multinomial to robustify mixture modeling, with applications beyond the convex

mixture regression modeling presented in this paper.

7 Convex mixture regression modeling

Dichlorodiphenyldichloroethylene (DDE) is a persistent metabolite of the pesticide DDT, and it is

measured in the maternal serum during the third quarter of pregnancy. The presence of DDT has

been linked to preterm birth, a major contributor to infant mortality (Longnecker et al., 2001). Hence,

there is strong interest in relating the dose level of the DDE to the corresponding risk of premature

delivery. We assume that the gestational ages at delivery Y1, . . . , Yn for n = 2312 are conditionally

independent draws from the mixture density

f̃x(y) = {1− β(x)}
H∑
h=1

πhK(y; θ̃h) + β(x)K(y; θ̃∞), x ≥ 0, (8)

where x represents the DDE covariate associated to each woman and θ̃1, . . . , θ̃H , θ̃∞ are random vari-

ables in Θ. We extend the approach of Canale et al. (2018) by assuming a ratio stable law for the

mixing weights, namely (π1, . . . , πH−1) ∼ rs(σ, α; 1/H, . . . , 1/H). The smooth transition between the

two components in (8) is regulated by a nondecreasing bounded function β(x) ∈ [0, 1] defined for each

DDE level x ≥ 0 with β(0) = 0. In quantitative risk assessment one customarily assumes that β(x)

can be expressed as a linear combination of pre-specified basis functions β(x) =
∑M

m=1 ψm(x)γm where

ψ1(x), . . . , ψM (x) are nondecreasing and such that ψm ∈ [0, 1] (m = 1, . . . ,M). Under this choice, the

constraints on β(x) are satisfied if 0 ≤ γm ≤ 1 and
∑M

m=1 γm = 1. Hence, we let (γ1, . . . , γM−1) ∼

rs(σγ , αγ ; 1/M, . . . , 1/M). Although several alternatives are available for ψ1(x), . . . , ψM (x), a tractable

default choice is the I-splines basis (Ramsay, 1988), with the knots placed on the empirical quantiles

of the DDE. This is slightly different from the approach of Canale et al. (2018), who consider I-splines

with equally spaced knots. Moreover, we set ψM (x) = 0 for any x ≥ 0 to allow asymptotes in β(x).

Compared to more complex covariate-dependent approaches, the convex mixture regression model

is appealing for quantitative risk assessment because of its intuitive interpretation. Specifically, when

15



Low V Dirichlet Low V Pitman–Yor High V Dirichlet High V Pitman–Yor
α 1 0 1 0
σ 0 0.3 0 0.3
αγ 20 1.1 2 -0.7
σγ 0 0.9 0 0.9
sd(γm) 0.07 0.07 0.17 0.17

Table 2: Hyperparameter settings for the convex mixture regression model

there is no exposure to DDE (x = 0), observations are drawn from a mixture model
∑H

h=1 πhK(y; θ̃h)

because β(0) = 0. Conversely, at high exposure levels (x → ∞), observations smoothly shift towards

a more adverse health profile, represented by K(y; θ̃∞). Such a transition is regulated by the function

β(x), which has an explicit interpretation. Let F̃x(y) be the cumulative distribution function associated

to the density f̃x(y) in equation (8). A common risk assessment measure is the additional risk function

F̃x(a)− F̃0(a), which is evaluated in some fixed clinical threshold a. Hence, one can show that β(x) ∝

F̃x(a)− F̃0(a), implying that β(x) constitutes a standardized measure of risk.

We estimate the convex mixture regression model under different hyperparameters settings, which

are reported in Table 2. Moreover, we let H = M = 10, to parallel the choices of Canale et al. (2018).

Since the true data generating mechanism is unknown, there is no clear notion of calibrated model.

Hence, to emphasize the differences between Dirichlet and Pitman–Yor priors, we consider two different

variability levels for the vector (γ1, . . . , γM ) appearing in the specification of β(x). The variance of

each weight γm can be obtained from the formula var(γm) = H−1(1 − H)−1(1 − σγ)/(αγ + 1); see

Carlton (2002). In the low variance scenarios, the prior is centered around its prior expectation, and

vice versa in the high variance ones.

Consistently with Canale et al. (2018), let the kernel function K(y; θ) be a Gaussian density having

mean µ and variance σ2, with θ = (µ, τ). Under this choice, the prior distributions for each atom

θ̃h = (θ̃1h, θ̃2h) (h = 1, . . . ,H), in equation (8) and for the adverse health profile atom θ̃∞ = (θ̃1∞, θ̃2∞)

can be chosen conditionally conjugate. In first place, we assume independent gamma ga(aσ, bσ) priors

for the precisions θ̃−1
2h , independently also on θ̃2∞ ∼ ga(aσ, bσ). Moreover, we specify truncated

independent Gaussian distributions for the locations θ̃11, . . . , θ̃1H and θ̃1∞ with mean µµ and variance

σ2
µ. The truncations are imposed to met an adversity health profile property, namely that θ̃1∞ <

θ̃1h (h = 1, . . . ,H) almost surely. Broadly speaking, such a constraint enforces large values of the

DDE (x → ∞) to be associated on average with a greater risk of premature birth. We set the

hyperparameters consistently with previous works, so that aσ = bσ = 2 and σ2
µ = 10, whereas we set

µµ = 39.27.

Markov chain Monte Carlo is required for approximating the posterior distribution of model (8).

Our algorithm resembles the one of Canale et al. (2018), with adjustments in the updates of (π1, . . . , πH)
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Figure 5: Posterior summaries of β(x) in the four scenarios described in Table 2. Solid lines correspond
to the posterior means, whereas the shaded areas denote 95% pointwise credible intervals.

and (γ1, . . . , γM ), according to Theorem 4. We run the Gibbs sampler for 60000 iterations with the

first 10000 samples discarded as burn in. The estimated curves β(x) and related credible bands,

under the four scenarios of Table 2, are depicted in Figure 5. In the low variance case the Dirichlet

multinomial prior slightly overestimates the function β(x) compared to the other estimates and to the

results in Canale et al. (2018), while also underestimating its variability. Conversely, the Pitman–Yor

multinomial prior has the same prior variability as the Dirichlet, but recovers a posteriori essentially the

same variability level of the high variance scenarios. This is due to the robustness of the Pitman–Yor

multinomial prior discussed in Section 3.

A Supplementary material

Background on the Pitman–Yor process

Throughout the Supplementary Material, we will make extensive use of an alternative construction of

the Pitman–Yor process based on completely random measures. Refer to Lijoi and Prünster (2010)

for a review on nonparametric priors using completely random measures as a unifying concept. Any

homogeneous and almost surely finite completely random measures without fixed points of discontinuity

is characterized by the Laplace functional

E
{

e−
∫
Θ f(θ)µ̃(dθ)

}
= exp

[
−
∫
R+×Θ

{
1− e−sf(θ)

}
ρ(s) cP (dθ) ds

]
,
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for any f : Θ→ R+ and with ρ(s) cP (dθ) ds the Lévy intensity function associated to µ̃. The σ-stable

process (Kingman, 1975) is identified by setting c = 1, ρ(s) = σs−1−σ/Γ(1 − σ), for some σ ∈ (0, 1),

and letting Pσ denote its probability distribution, that is obviously defined on the space of boundedly

finite measure on Θ. Let Pσ,α be another probability measure which is absolutely continuous with

respect to Pσ and such that
dPσ,α
dPσ

(g) =
Γ(α+ 1)

Γ(α/σ + 1)
g−α(Θ). (9)

The resulting random measure µ̃σ,α with distribution Pσ,α is almost surely discrete while not completely

random. Clearly when α = 0 then µ̃σ = µ̃σ,0 is a σ-stable completely random measure. Moreover,

p̃∞ = µ̃σ,α/µ̃σ,α(Θ) is a Pitman–Yor process p̃∞ ∼ py(σ, α;P ).

Proofs of Propositions 1,2 and 3

If we consider the partition {(θ̃1), . . . , (θ̃H−1),Θ \ (θ̃1, . . . , θ̃H−1)} of Θ, by definition one has

(π1, . . . , πH−1 | p̃0,H) = {p̃H({θ̃1}), . . . , p̃H({θ̃H−1}) | p̃0,H} ∼ rs(σ, α; 1/H, . . . , 1/H),

since p̃0,H({θ̃h}) = 1/H (h = 1, . . . ,H). This entails that

p̃H =
∞∑
h=1

ξhδφ̃h =
H∑
h=1

πhδθ̃h , πh =
∑

j:φ̃j=θ̃h

ξj ,

and the vectors (π1, . . . , πH−1) and (θ̃1, . . . , θ̃H) are independent, thus proving Proposition 1.

Let, now, σ ∈ (0, 1) and α > 0. By virtue of (9), conditionally on p̃0,H the Pitman–Yor multinomial

process can be represented as µ̃σ,α/µ̃σ,α(Θ), where the Laplace functional transform of µ̃σ,α | p̃0,H is

E
{

e−
∫
Θ f(θ)µ̃σ,α(dθ) | p̃0,H

}
=

Γ(α+ 1)

Γ(α/σ + 1)
E
{
µ̃σ(Θ)−αe−

∫
Θ f(θ)µ̃σ(dθ) | p̃0,H

}
=

α

Γ(α/σ + 1)

∫ ∞
0

uα−1e−u
σ
E
{

e−
∫
Θ f(θ)µ̃

(u)
σ (dθ) | p̃0,H

}
du,

(10)

for any measurable function f : Θ → R+ where µ̃(u)
σ | p̃0,H is a generalised gamma process, namely a

completely randommeasure with Lévy intensity ρ(u)(s) = σ/Γ(1−σ)s−1−σe−us and baseline probability

measure p̃0,H . Moreover, conditionally on (U, p̃0,H), the random variable µ̃(u)
σ (A) is tempered stable

for any set A such that p̃0,H(A) > 0. Hence

(π1, . . . , πH−1 | U, p̃0,H) =

(
J1∑H
h=1 Jh

, . . . ,
JH−1∑H
h=1 Jh

| U, p̃0,H

)
,
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with Uσ ∼ Ga(α/σ, 1) and Jh | U, p̃0,H = µ̃
(u)
σ ({θ̃h}) | U, p̃0,H ∼ ts(1/H, σ, U) independently and

identically distributed for h = 1, . . . ,H, which concludes the proof of Proposition 2 for α > 0. The

case where α = 0 s straightforward since the Laplace functional of µ̃σ | p̃0,H is already that of a σ-stable

completely random measure.

The proof of Proposition 3 is a direct consequence of the first equality in equation (10).

Proof of Theorem 1

The exchangeable partition probability function by definition is

ΠH(n1, . . . , nk) =
∑

i1 6=···6=ik

E

 k∏
j=1

π
nj
ij

 =
H!

(H − k)!
E

 k∏
j=1

π
nj
j

 ,

where the sum runs over all the vectors (i1, . . . , ik) of distinct positive integers such that ij ∈ {1, . . . ,H},

whereas the second equality is a consequence of the symmetry of the weights πj . By virtue of (9), one

further has

E

 k∏
j=1

π
nj
j

 = E


k∏
j=1

J
nj
j

(
∑H

h=1 Jh)nj


=

1

Γ(α/σ + 1)

1

(α+ 1)n−1

∫ ∞
0

uα+n−1e−u
σ

k∏
j=1

Vnj (u)du,

where each Vm(u) is defined, for every m ≥ 1 and u > 0, as

Vm(u) =

{
(−1)m

∂m

∂um
e−u

σ/H

}
eu

σ/H =

m∑
`=1

H−`C (m, `;σ)u−m+`σ. (11)

The last equality may be proved through combinatorial arguments similar to those used in Lemma 1

in Appendix A.3 and the results in Appendix A.4 of the supplementary material of Camerlenghi et al.

(2019). Hence

ΠH(n1, . . . , nk) =
H!

(H − k)!

1

Γ(α/σ + 1)

1

(α+ 1)n−1

×
∑

(`1,...,`k)

∫ ∞
0

uα+|`(k)|σe−u
σ
du

k∏
j=1

H−`jC (nj , `j ;σ),

where the sum runs over `(k) = (`1, . . . , `k) for `j ∈ {1, . . . , nj}. The change of variable v = uσ in the

above integral yields the desired result.

19



Proof of Theorem 2

By definition, the predictive distribution can be determined as follows

pr(θn+1 ∈ A | θ(n)) ∝ ΠH(n1, . . . , nk, 1)P (A) +
k∑
j=1

ΠH(n1, . . . , nj + 1, . . . , nk)δθ∗j (A)

and the exchangeable partition probability functions acting as coefficients are mixtures over `(k). In-

deed, if Vn,k =
∏k−1
j=1(α+ jσ)/(α+ 1)n−1, from Theorem 1

ΠH(n1, . . . , nk, 1) =
H!

(H − k − 1)!

∑
(`1,...,`k)

Vn+1,|`(k)|+1

H |`
(k)|+1

k∏
j=1

C (nj , `j ;σ)

σ`j
.

Moreover, the recursion C (nj + 1, `j ;σ) = C (nj , `j ;σ)(nj − `jσ) + σC (nj , `j − 1;σ) (Charalam-

bides, 2002), combined with some algebraic manipulations, yields the following representation for

ΠH(n1, . . . , nj + 1, . . . , nk)

H!

(H − k)!

∑
(`1,...,`k)

{
Vn+1,|`(k)|+1

H |`
(k)|+1

k∏
i=1

C (ni, `i;σ)

σ`i
+

Vn+1,|`(k)|

H |`
(k)|

(nj − `jσ)
k∏
i=1

C (ni, `i;σ)

σ`i

}
.

Then, by augmenting over the set of random variables (`1, . . . , `k) and after normalization, one obtains

pr(θn+1 ∈ A | θ(n), `(k)) =

(
1− k

H

)(
α+ |`(k)|σ
α+ n

)
P (A)

+

k∑
j=1

(
1

H

α+ |`(k)|σ
α+ n

+
nj − `jσ
α+ n

)
δθ∗j (A),

(12)

and the desired predictive distribution follows after taking the expectation with respect to (5).

Proof of Theorem 3

For any k ≤ min{H,n} the probability mass function of Kn,H is

pr(Kn,H = k) =
1

k!

∑
n(k)∈∆n

(
n

n1, . . . , nk

)
ΠH(n1, . . . , nk)

=
H!

(H − k)!

n∑
t=k

Vn,t
σtHt

∑
n(k)∈∆n

∑
`(k)∈∆t(n(k))

1

k!

(
n

n1, . . . , nk

) k∏
j=1

C (nj , `j ;σ),

where the first sum n(k) ∈ ∆n runs over all vectors of positive integers n(k) = (n1, . . . , nk) such that

|n(k)| = n, while `(k) ∈ ∆t(n
(k)) denotes the sum over all the integers `(k) = (`1, . . . , `k) such that
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`j ∈ {1, . . . , nj} and |`(k)| = t. Then, by interchanging the order of the summation and exploiting

well-known combinatorial identities, we obtain

pr(Kn,H = k) =
H!

(H − k)!

n∑
t=k

Vn,t
σtHt

∑
`(k)∈∆t

1

k!

∑
n(k)∈∆n(`(k))

(
n

n1, . . . , nk

) k∏
j=1

C (nj , `j ;σ)

=
H!

(H − k)!

n∑
t=k

Vn,t
σtHt

∑
`(k)∈∆t

1

k!

(
t

`1, . . . , `k

)
C (n, t;σ)

=
H!

(H − k)!

n∑
t=k

Vn,t
σtHt

S (t, k)C (n, t;σ),

where n(k) ∈ ∆n(`(k)) denotes the summation over all the integers (n1, . . . , nk) such that nj ∈

{`j , . . . , n} and |n(k)| = n, whereas `(k) ∈ ∆t denotes the summation over all the integers (`1, . . . , `k)

such that |`(k)| = t. The result now follows from some simple algebra.

Proof of Theorem 4

We first state, without proof, the following technical lemma concerning the posterior distribution of

p̃0,H . The proof is based on elementary properties of species sampling models.

Lemma 1. Let θ(n) = (θ1, . . . , θn) be a draw from an exchangeable sequence directed by a Pitman–Yor

multinomial process and let P be diffuse. Then the following equality in distribution holds true

p̃0,H | θ(n) =
1

H

 k∑
j=1

δθ∗j +

H∑
j=k+1

δθ̄j

 ,

where θ̄k+1, . . . , θ̄H are independent and identically distributed draws from P and θ∗1, . . . , θ
∗
k are the

distinct values in θ(n).

Because of the symmetry of the weights, we can assume without loss of generality that the distinct

values θ∗1, . . . , θ∗k are associated to the first k random weights π1, . . . , πk of p̃H . Recalling representa-

tion (9), for any function f : Θ → R+, the Laplace functional of µ̃σ,α | p̃0,H given the observations

is

E
{

e−µ̃σ,α(f) | θ(n), p̃0,H

}
=
E
{

e−
∫
Θ f(θ)µ̃σ,α(dθ)∏k

j=1 π
nj
j | p̃0,H

}
E
(∏k

j=1 π
nj
j | p̃0,H

) ,
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where µ̃σ,α(f) =
∫

Θ f(θ)µ̃σ,α(dθ). Hence, following the same steps as for Theorem 1, the above Laplace

functional transform may be written as

E
{

e−µ̃σ,α(f) | θ(n), p̃0,H

}
=

=

∫∞
0 uα+n−1e−

1
H

∑k
j=1{f(θ∗j )+u}σe−

1
H

∑H
j=k+1{f(θ̃j)+u}σ∏k

j=1 Vnj{f(θ∗j ) + u}du∫∞
0 uα+n−1e−uσ

∏k
j=1 Vnj (u)du

.

where each Vm(u) is defined as in (11). Hence, by augmenting the above Laplace functional over the

set of latent variables (`1, . . . , `k) with distribution function (5), we obtain that

E
{

e−µ̃σ,α(f) | θ(n), `(k), p̃0,H

}
∝

∝
∫ ∞

0
uα+|`(k)|σ−1 e−

1
H

∑H
j=k+1{f(θ̃j)+u}σe−

1
H

∑k
j=1{f(θ∗j )+u}σ

k∏
j=1

{
1 +

f(θ∗j )

u

}−nj+`jσ
du.

Hence, after normalization

E
{

e−µ̃σ,α(f) | θ(n), `(k), p̃0,H

}
=

∫ ∞
0

H∏
j=k+1

E
{

e−f(θ̃j)J
∗
j

} k∏
j=1

E
{

e−f(θ∗j )(J∗j +Ij)
}
q∞(u)du,

where q∞(u) = σ/Γ(α/σ + |`(k)|)uα+|`(k)|σ−1e−u
σ
I(0,∞)(u) is a density function and the corresponding

random variable, say U , is such that Uσ ∼ ga(α/σ + |`(k)|, 1). Hence, conditionally on U and by

marginalizing over p̃0,H as for Lemma 1, we get the following posterior representation for the unormal-

ized Pitman–Yor multinomial process

µ̃σ,α | θ(n), `(k), U =

k∑
j=1

(J∗j + Ij)δθ∗j +

H∑
j=k+1

J∗j δθ̄j , (13)

where θ̄j are independent and identically distributed random variables from P and in addition

J∗h | θ(n), `(k), U
iid∼ ts(1/H, σ, U), (h = 1, . . . ,H),

whereas

Ij | θ(n), `(k), U
ind∼ ga(nj − `jσ, U), (j = 1, . . . , k).

Equation (13) already leads to a posterior representation of p̃H . The normalization and the subsequent

marginalization with respect to the random variable U leads to the final representation. In first place,

set

Wj =
Ij∑k

j′=1 Ij′ +
∑H

h=1 J
∗
h

, (j = 1, . . . , k), Wk+1 =

∑k
j=1 J

∗
j∑k

j=1 Ij +
∑H

h=1 J
∗
h

,

22



whereas set Rh = J∗h/
∑H

h′=1 J
∗
h′ (h = 1, . . . ,H). Note that the distribution of (W1, . . . ,Wk,Wk+1) can

be represented as follow

(W̃1(1−Wk+1), . . . , W̃k(1−Wk+1),Wk+1), W̃j =
Ij∑k
j′=1 Ij′

, (j = 1, . . . , k),

and therefore the vector (W̃1, . . . , W̃k), given θ(n) and `(k), has Dirichlet distribution and it is in-

dependent on (R1, . . . , RH), on Wk+1 and on U . Indeed, the random variable U cancels in the

ratio Ij/
∑k

j′=1 Ij′ , whereas the independence on Wk+1 is a consequence of the independence of the

Dirichlet distribution with its own total mass
∑k

j′=1 Ij′ . Because of Proposition 2, we recognize that

(R1, . . . , RH | θ(n), `(k)) follows a ratio-stable distribution. We now prove that, given θ(n) and `(k), the

random vector (R1, . . . , RH) is independent on Wk+1, which in turns is shown to be beta distributed.

Let f(s1, . . . , sH , t, u) be the density function associated to the random variables (J∗1 , . . . , J
∗
H),∑k

j=1 Ij and U , respectively, given the observations θ(n) and the latent variables `(k). Representa-

tion (13) implies that such a density factorizes as

f(s1, . . . , sH , t, u) = q∞(u)fu(t)

H∏
h=1

f (σ)
u (sh),

where q∞(u) is defined as before, where fu(t) is the density of a gamma random variable, and where each

f
(σ)
u (sh) represents the density of a tempered stable distribution. Now consider the change of variable

rh = sh/(s1 + · · ·+ sH) (h = 1, . . . ,H − 1), s = s1 + · · ·+ sH , w = (s1 + · · ·+ sH)/{t+ (s1 + · · ·+ sH)}

and u = u. The resulting density is given by

f(r1, . . . , rH−1, s, w, u) = sHw−2q∞(u)fu{s(1− w)w−1}
H∏
h=1

f (σ)
u (srh),

∝ un+α−1sn+H−|`(k)|σ−1 (1− w)n−|`
(k)|σ−1

wn−|`
(k)|σ+1

e−u{s(1−w)w−1}−uσ
H∏
h=1

f (σ)
u (srh),

∝ un+α−1e−us/wsn+H−|`(k)|σ−1 (1− w)n−|`
(k)|σ−1

wn−|`
(k)|σ+1

H∏
h=1

f (σ)(srh),

where rH = 1 − (r1 + · · · + rH−1) and where it has been exploited the relationship f
(σ)
u (srh) =

eu
σ/He−usrh fσ(srh), with f (σ)(srh) denoting the density of a positive stable distribution. Then, the

integration over u and s leads to f(r1, . . . , rH−1, w) =
∫∞

0

∫∞
0 f(r1, . . . , rH−1, s, w, u)duds and

f(r1, . . . , rH−1, w) ∝ wα+|`(k)|σ−1(1− w)n−|`
(k)|σ−1

∫ ∞
0

sH−|`
(k)|σ−α−1

H∏
h=1

f (σ)(srh)ds.
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This concludes the proof since (Wk+1 | θ(n), `(k)) ∼ beta(α+ |`(k)|σ, n− |`(k)|σ) and it is independent

on (R1, . . . , RH | θ(n), `(k)).

Proof of Theorem 5

The proof relies on the convergence of the exchangeable partition probability function in Theorem 1 to

that of the Pitman–Yor process, which can be easily checked. Indeed, for any collection of measurable

subsets A1, . . . , An of Θ it holds

pr(θ1 ∈ A1, . . . , θn ∈ An) =
∑
Ψ

ΠH(n1, . . . , nk)
k∏
j=1

P (∩i∈CjAi)

→
∑
Ψ

Π∞(n1, . . . , nk)
k∏
j=1

P (∩i∈CjAi) = pr(φ1 ∈ A1, . . . , φn ∈ An), H →∞,

with (θn)n≥1 and (φn)n≥1 being two exchangeable sequences directed by p̃H and p̃∞, respectively, and

where the sum runs over the space of partitions with Ψ = {C1, . . . , Ck}. Using de Finetti representation

theorem, the latter is equivalent to

E

{
n∏
i=1

p̃H(Ai)

}
→ E

{
n∏
i=1

p̃∞(Ai)

}
, H →∞.

Since the above convergence holds for any collection of sets A1, . . . , An and any n ≥ 1, we can write

equivalently

E


k∏
j=1

p̃H(Bj)
nj

→ E


k∏
j=1

p̃∞(Bj)
nj

 , H →∞, (14)

for any measurable collection B1, . . . , Bk. The random vector {p̃∞(B1), . . . , p̃∞(Bk)} is positive and

bounded, thus being fully determined by its cross-moments. Hence, the vector version of Theorem 30.2

in Billingsley (1995) ensures that convergence of the cross-moments (14) implies the convergence in

distribution, namely

{p̃(H)(B1), . . . , p̃(H)(Bk)} → {p̃(∞)(B1), . . . , p̃(∞)(Bk)}, H →∞,

in the sense of weak convergence. The weak convergence of the whole process is then guaranteed by

Theorem 11.1.VII in Daley and Vere-Jones (2008).
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Proof of Proposition 4

From Theorem 1 and Theorem 2 in Ishwaran and James (2001) it follows that

dtv {mH,tr,m∞} ≤ 2

[
1−

{
1−

(
α
σ + 1

)
H−1(

α
σ + 1

σ

)
H−1

}n]
.

We will say that two sequences of real numbers (aH)H≥1 and (bH)H≥1 such that limH→∞ aH =

limH→∞ bH = 0 are asymptotically equivalent, written aH ≈ bH , if limH→∞ aH/bH = 1. The or-

der of convergence stated in Proposition 4 is a direct consequence of the standard properties of the

Gamma function. Indeed, note that(
α
σ + 1

)
H−1(

α
σ + 1

σ

)
H−1

≈
Γ
(
α
σ + 1

σ

)
Γ
(
α
σ + 1

)H− 1
σ

+1, H →∞,

from which it follows that

2

[
1−

{
1−

(
α
σ + 1

)
H−1(

α
σ + 1

σ

)
H−1

}n]
≈ 2n

Γ
(
α
σ + 1

σ

)
Γ
(
α
σ + 1

)H− 1
σ

+1 = O(H−
1
σ

+1), H →∞.

Moreover, following the same steps as for Theorem 4 in Ishwaran and Zarepour (2002) we get

dtv {mH ,m∞} ≤ dtv{pr(Ψn,H), pr(Ψn,∞)}

≤ 1

2

∑
Ψ

|ΠH(n1, . . . , nk)−Π∞(n1, . . . , nk)|

≤ 1

2

∑
Ψ

Π∞(n1, . . . , nk)

∣∣∣∣1− ΠH(n1, . . . , nk)

Π∞(n1, . . . , nk)

∣∣∣∣ ,
where the sum runs over all the partitions Ψ of [n] with cardinalities n1, . . . , nk. From the proof of

Theorem 1 and Theorem 2 it follows that

ΠH(n1, . . . , nk)

Π∞(n1, . . . , nk)
=

H!

Hk(H − k)!

∑
(`1,...,`k)

Vn,|`(k)|

Vn,k

1

H |`
(k)|−k

k∏
j=1

C (nj , `j ;σ)

σ`j
1

(1− σ)nj−1
,

from which we obtain

lim
H→∞

H

∣∣∣∣1− ΠH(n1, . . . , nk)

Π∞(n1, . . . , nk)

∣∣∣∣ =
k∑
j=1

Vn,k+1

Vn,k

C (nj , 2;σ)

σ2

1

(1− σ)nj−1
,

since the term not vanishing in the summation over (`1, . . . , `k) are those for which `1 + · · ·+`k = k+1,

meaning that each `j = 1 but one equal to 2, and recalling also that C (nj , 1;σ) = σ(1−σ)nj−1. Hence,
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one get

dtv{pr(Ψn,H), pr(Ψn,∞)} ≈ 1

2H

∑
Ψ

Π∞(n1, . . . , nk)
k∑
j=1

Vn,k+1

Vn,k

C (nj , 2;σ)

σ2(1− σ)nj−1
= O

(
1

H

)
,

which concludes the proof.

Gibbs sampling algorithm

We describe here a Gibbs sampling algorithm for posterior computation of the model described in

the simulation study of Section 6, for a general kernel K(y; θ). Let Si ∈ {1, . . . ,H} be an indicator

function denoting to which mixture component each unit Yi is allocated, for i = 1, . . . , n. The symbol

“−” denotes the conditioning to all the other variables whereas f(θ) represents the prior density

associated to the baseline measure P . The Gibbs sampling algorithm alternates between the following

full conditional steps.

Step 1. Update the cluster indicators Si ∈ {1, . . . ,H} from their full conditional categorical random

variables

pr(Si = h | −) =
πhK(yi; θ̃h)∑H

h′=1 πh′K(yi; θ̃h′)
, h = 1, . . . ,H,

independently for any i = 1, . . . , n.

Step 2. Update the within-cluster parameters θ̃h independently from their full conditional distri-

bution having density proportional to

f(θ̃h | −) ∝ f(θ̃h)
∏

i:Si=h

K(yi; θ̃h)

for h = 1, . . . ,H. This is a standard step in mixture modeling and it is straightforward to simulate if

conjugate priors are chosen.

Step 3. Update the weights (π1, . . . , πH) from their full conditional distribution, by exploiting the

posterior characterization of Theorem 4. For example, if σ = 0 one has that

(π1, . . . , πH−1 | −) ∼ dir

(
α/H +

n∑
i=1

I(Si = 1), . . . , α/H +

n∑
i=1

I(SH = 1)

)
,

where I(·) denotes the indicator function. Note that the frequencies n1, . . . , nk in Theorem 4 cor-

responds to the positive values of the vector
∑n

i=1 I(Si = 1), . . . ,
∑n

i=1 I(Si = H). In general, the

full conditional of (π1, . . . , πH) will be obtained by first drawing the latent variables (`1, . . . , `k), as

described in Section 4, and then by leveraging the quasi-conjugate representation of Theorem 4.
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