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ABSTRACT. One of the main research areas in Bayesian Nonparametrics is the proposal
and study of priors which generalize the Dirichlet process. In this paper we provide a com-
prehensive Bayesian nonparametric analysis of random probabilities which are obtained
by normalizing random measures with independent increments (NRMI). Special cases of
these priors have already shown to be useful for statistical applications such as mixture
models and species sampling problems. However, in order to fully exploit these priors,
the derivation of the posterior distribution of NRMIs is crucial: here we achieve this goal
and, indeed, provide explicit and tractable expressions suitable for practical implementa-
tion. The posterior distribution of a NRMI turns out to be a mixture with respect to
the distribution of a specific latent variable. The analysis is completed by the derivation
of the corresponding predictive distributions and by a thorough investigation of the mar-
ginal structure. These results allow to derive a generalized Blackwell–MacQueen sampling
scheme, which is then adapted to cover also mixture models driven by general NRMIs.
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1 Introduction

The starting problem in Bayesian nonparametric inference is the definition of a prior dis-
tribution on the space of all probability measures. After the introduction of the Dirich-
let process by Ferguson (1973), various approaches for constructing random probability
measures, whose distribution acts as a nonparametric prior, have been undertaken with
the aim of overcoming some of the drawbacks of the Dirichlet process. See Müller and
Quintana (2004) for a recent review. In the present paper we focus on priors derived by
a suitable normalization procedure. To this end, it is worth recalling that the Dirichlet
process can be defined by normalizing the increments of a gamma process (see Fergu-
son, 1973). Indeed, the idea of constructing random probability measures by means of
a normalization procedure has been exploited and developed in a variety of contexts
not closely related to Bayesian inference. See, as an early example, Kingman (1975)
where a random discrete distribution generated by the stable subordinator is consid-
ered in connection with optimal storage problems. Other interesting applications of the
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“normalization” approach can be found in various areas such as computer science, pop-
ulation genetics, statistical physics, excursion theory, combinatorics and number theory.
For further details and references on this see Pitman (2006).

Even though the analysis of Kingman (1975) is developed without any reference to
possible implications for Bayesian inference, these are e⇧ectively pointed out by A.F.M.
Smith in the discussion of Kingman (1975): “... Ferguson’s Dirichlet process is a special
case of a rather more general class of processes. The question of interest to a Bayesian
statistician is whether there are any other processes in this class which are tractable”.
In Regazzini et al. (2003) the class of normalized random measures with independent
increments (NRMI) is formally introduced as normalization of suitably time–changed
independent increment processes and distributional results for their means derived: this
work shows that, at least in terms of means, such processes are indeed tractable. See
also James (2002). In Lijoi et al. (2005) attention is focused on a special case of NRMI,
namely the normalized inverse Gaussian (N–IG) process: the quantities relevant for its
implementation in the context of mixture models are derived and it shown that such a
prior exhibits an interesting and useful clustering behaviour, quite di⇧erent from that
of the Dirichlet process. The N–IG process is then embedded in a larger subclass of
NRMI in Lijoi et al. (2007a) thus allowing for an additional parameter which greatly
influences the clustering structure. Special NRMIs turn out to be useful also in relation
to species sampling problems, in particular, for the analysis of expressed sequence tags
(ESTs) in genomics as shown in Lijoi et el. (2007b). In order to both understand better
the structural properties of and go beyond the specific processes dealt with in the above
mentioned papers, it is clear that the knowledge of the posterior distribution of a NRMI
is required. Here we fill this gap and provide a complete and implementable description
of the posterior distribution, thus addressing the issue of tractability raised by A.F.M.
Smith, which in a Bayesian setting, necessarily coincides with the tractability of the
posterior distribution.
Before proceeding, the important contributions in Perman et al. (1992), Pitman and
Yor (1997) and Pitman (2003) related to Kingman’s construction, albeit not directly in
Bayesian nonparametrics, are to be noted. In Pitman (1996, 2003) a thorough analysis of
two parameter Poisson-Dirichlet family, which can be generated by a stable subordinator,
is provided. The utility of this family for Bayesian mixture models is discussed in
Ishwaran and James (2001, 2003).

1.1 Preliminaries

The results achieved in the paper are heavily based on the notion of completely ran-
dom measure. Hence, it is worth providing a brief preliminary description of the main
concepts involved in the rest of the paper.

For any topological space T , B(T ) will denote the Borel �–field of subsets of T . Let
(⌅,F ,P) be some probability space and X be complete, separable and endowed with
a metric dX . Having set S := R+ ⇤ X, we denote by Ñ a Poisson random measure on
(S,B(S)) defined on (⌅,F ,P) whose intensity measure is ⌦. This means that

(i) for any C in B(S) such that ⌦(C) = E[Ñ(C)] < ↵, the probability distribution
of the random variable Ñ(C) is Poisson(⌦(C));

(ii) for any finite collection of pairwise disjoint sets, A1, . . . , Ak, in B(S), the random
variables Ñ(A1), . . . , Ñ(Ak) are mutually independent.
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Moreover, the measure ⌦ must satisfy the following conditions

!

(0,1)
s ⌦(ds, X) < ↵ ⌦([1,↵) ⇤ X) < ↵.

See Daley and Vere–Jones (1988) for an exhaustive account on Poisson random measures.
If (M,B(M)) is the space of boundedly finite measures on (X,B(X)), denote by µ̃

a random element defined on (⌅,F ,P) and with values in (M,B(M)) which can be
represented as a linear functional of the Poisson random measure Ñ , with intensity ⌦,
as follows

µ̃(B) =
!

R+⇥B
s Ñ(ds,dx) �B � B(X). (1)

It can be easily seen from the properties of Ñ that µ̃ is, in the terminology of Kingman
(1967), a completely random measure on X, i.e. for any collection of disjoint sets in
B(X), A1, A2, . . ., the random variables µ̃(A1), µ̃(A2), . . . are mutually independent
and µ̃(⇣j⌅1Aj) =

⌧
j⌅1 µ̃(Aj) holds true a.s.-P. It is well–known that µ̃ is uniquely

characterized by its Laplace functional

E
"
e� X h(x) µ̃(dx)

#
= e� S[1�e�s h(x)]⇧(ds,dx). (2)

where h : X � R+ is a measurable function. For a proof of such a representation, see
Theorem 2 in Kingman (1967). Details and further references on completely random
measures can be found in Kingman (1993).

From this preliminary illustration, it is apparent that both the Poisson random
measure Ñ and the completely random measure µ̃ are identified by the corresponding
intensity measure ⌦. This suggests a simple and useful distinction of the random mea-
sures we deal with according to the decomposition of ⌦. Letting H be a non–atomic and
�–finite measure on X, we have:

(a) if ⌦(ds,dx) = �(ds) H(dx), for some measure � on R+, we say that the corre-
sponding Ñ and µ̃ are homogeneous;

(b) if ⌦(ds,dx) = �(ds|x) H(dx), where � : B(R+) ⇤ X � R+ is a kernel i.e. x ��
�(C|x) is B(X)–measurable for any C � B(R+) and �( · |x) is a �–finite measure
on B(R+) for any x in X, we say that the corresponding Ñ and µ̃ are non–
homogeneous.

Recall that in our framework ⌦ always admits a disintegration as in (b); this follows e.g.
from Theorem 15.3.3 in Kallenberg (1986).

Remark 1. Note that the construction which led us to define a random measure via
equation (1) can be extended by considering more general linear functionals of the
Poisson measure Ñ . For example, James (2002), using an approach closely connected
to Perman et al. (1992), considers the so–called h–biased random measures, that is�
S⇥X h(s) Ñ(ds,dx), where h : S � R+ and S is any complete and separable metric

space. The results we provide in the next sections can be also extended to h–biased
random measures.
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1.2 Construction of NRMI

Since the aim is to define random probability measures by means of normalization of
completely random measures, the total mass T := µ̃(X) needs to be finite and positive,
almost surely. This happens if ⌦(S) = +↵ and the Laplace exponent

⇣(�) :=
!

S

"
1 � e�⇤ s

#
⌦(ds, dx) (3)

is finite for any positive �. A proof of this fact can be found, e.g., in Regazzini et
al. (2003), p. 563 and Proposition 1, respectively. When these conditions hold true,
a normalized random measure with independent increments (NRMI) on (X,B(X)) is
given by

P̃ ( · ) =
µ̃( · )
T

. (4)

Note that, when X = R, this definition coincides with the one given in Regazzini et
al. (2003) in terms of increasing additive processes. Indeed, it is worth remarking that
an increasing additive process can always be seen as the càdlàg distribution function
induced by a completely random measure on R. Moreover, as shown in James (2003),
NRMI select almost surely discrete distributions. Before proceeding, we recall that T
is assumed to be a random variable whose distribution is absolutely continuous with
respect to the Lebesgue measure on R and denote its density as fT . Such a regularity
assumption allows to avoid some technical di�culties and it is commonly adopted in this
framework. The interested reader is referred to Section 3 of Pitman (2003) for further
details.

It is worth noting that some priors that are used in Bayesian nonparametric inference
can be defined as in (4). For instance, consider the Dirichlet process with parameter
measure H = ⌃ P0. Then, as already noted by Ferguson (1973), such a prior can be
recovered by considering a gamma random measure with Laplace functional

E
"
e� X h(x)µ̃(dx)

#
= e�⇥ S[1�e�sh(x)] e�s

s ds P0(dx) = e�⇥ X log[1+h(x)] P0(dx)

for any h : X � R+ such that
�

log[1+h(x)]P0(dx) < ↵. Other examples are, e.g., the
normalized stable process (Kingman, 1975); the normalized inverse–Gaussian process
(Lijoi et al., 2005); the generalized gamma process (James, 2002; Lijoi et al., 2007a). It
is interesting to note that the two latter models as well as the two parameter Poisson–
Dirichlet process are derivable from a stable subordinator by a change of measure. See
Pitman (2003).

We close this subsection by pointing out that P̃ in (4) admits a series representation
of the kind

⌧
i⌅1 p̃i ⇤Xi( · ), where ⇤x denotes the point mass at x. The most notable

example is the Sethuraman (1994) representation of the Dirichlet process. In the case
of a general NRMI, if the underlying intensity ⌦ is homogeneous, then the weights p̃is
are independent from the locations Xi and P̃ is a species sampling model. See Pitman
(1996, 2003). On the other hand, when ⌦ is non–homogeneous, the weights and the
locations are no longer independent and P̃ is not a species sampling model.

1.3 Outline of the paper

In this paper we consider Bayesian inference by exploiting the law of a NRMI as a
nonparametric prior distribution. Under the usual assumption of exchangeability of the
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observation process, we derive in Section 2 a representation for the posterior distrib-
ution of P̃ in terms of a mixture with respect to the distribution of a suitable latent
variable. In Section 3 we determine the prediction rule and thoroughly study the mar-
ginal distribution of the observations. Relying on these results, a generalization of the
Blackwell–MacQueen sampling scheme is also provided. In Section 4 the results are
adapted to cover mixture models driven by NRMIs and the corresponding simulation
algorithm is described in detail. Finally, Section 5 provides some concluding remarks.
In order to ease the flow of ideas, proofs are given in the Appendix.

2 Posterior distributions for NRMIs

In this section we aim at deriving a tractable expression for the posterior distribution of
a NRMI. This represents a challenging issue since, with the exception of the Dirichlet
process, NRMIs are not conjugate as shown in James et al. (2006). Indeed, apart from
its simplicity and ease of interpretation, the popularity of the Dirichlet process is also
due to its conjugacy property which makes posterior inferences more tractable from an
analytic point of view. However, we are able to show that, conditional on a specific
latent variable, the posterior distribution of a NRMI coincides with the distribution of
another NRMI having a rescaled intensity and fixed points of discontinuity. This can
be seen as a kind of conditional conjugacy.

Let us first introduce a sequence (Xn)n⌅1 of exchangeable observations defined on
(⌅,F ,P) and with values in X in such a way that, given P̃ , the Xi’s are i.i.d. with
distribution P̃ , i.e.

P

�
X1 � C1, . . . , Xn � Cn

⇤⇤⇤⇤ P̃
 

=
n 

i=1

P̃ (Ci). (5)

Moreover, set X = (X1, . . . , Xn). It is clear that one can always represent X as (Y ,�),
where Y = (Y1, . . . , Yn(�)) denotes the distinct observations within the sample and �
stands for a partition of {1, . . . , n} of size n(�) recording which observations within the
sample are equal. The number of elements in the j-th set of the partition is indicated
by nj , for j = 1, . . . , n(�), so that

⌧n(�)
j=1 nj = n. The partition mechanism is ideally

suited to carry out posterior analysis when data contain ties: this is certainly the case
for discrete random probability measures and thus, in particular, for NRMIs.

Before stating the main theorem, we define a positive random variable Un as follows.
Let �n be a gamma random variable with scale parameter 1 and shape parameter n
which is independent from the total mass T . Then, set Un = �n/T . It is immediate to
show that, for any n ⌃ 1, the density function of Un is given by

fUn
(u) =

un�1

�(n)

!

R+
tn e�ut fT (t) dt (6)

where fT is the density function of T . It will be shown that the posterior distribution
of Un, given X, is of great importance for our analysis.

Proposition 1.



6 L.F. James, A. Lijoi and I. Prünster

Let P̃ be a NRMI. Then, the conditional distribution of Un, given X, admits a density
function coinciding with

f
X

Un
(u) ⌦ un�1

n(�) 

i=1

�ni(u|Yi) e�⌃(u) (7)

where �ni(u|Yi) =
�
R+ sni e�us �(ds|Yi) for i = 1, . . . , n(�).

Even though its proof is based on the result of the next Theorem 1, it is worth
introducing it in advance because of the key role played by this latent random variable
Un for developing the posterior analysis of NRMIs. In what follows, for any pair of
random elements Z and W defined on (⌅,F ,P), we use the symbol Z(W ) to denote
a random element on (⌅,F ,P) whose distribution coincides with a regular conditional
distribution of Z, given W . Let us provide the main result concerning a posterior
characterization of the completely random measure itself.

Theorem 1.
Let P̃ be a NRMI with intensity ⌦(ds,dx) = �(ds|x) H(dx). Then

µ̃(Un,X) d= µ̃(Un) +
n(�)�

i=1

J (Un,X)
i ⇤Yi

where

(i) µ̃(Un) is a completely random measure with intensity

⌦(Un)(ds,dx) = e�Uns �(ds|x) H(dx)

(ii) Yi, for i = 1, . . . , n(�), are the fixed points of discontinuity and the J (Un,X)
i ’s are

the corresponding jumps whose density is proportional to snie�Uns�(ds|Yi)

(iii) µ̃(Un) and J (Un,X)
i (i = 1, . . . , n(�)) are independent.

Given the importance of Theorem 1, we provide two alternative proofs in the Appen-
dix, which rely on di⇧erent general techniques for deriving posterior distributions. The
first works with the underlying Poisson random measure, which constitutes the core of
many discrete random measures, and is due to James (2002, 2005a). The second proof
exploits the approach set forth in Prünster (2002) and works directly at the level of the
completely random measure µ̃.

The result in Theorem 1 sheds some light on the deep structure of the random mea-
sures at issue. It essentially shows that, given some latent variable, a posteriori µ̃ is still
a completely random measure with fixed points of discontinuity corresponding to the
locations of the observations. The reader may note that this characterization is some-
how reminiscent of the posterior characterization of neutral to the right priors provided
by Ferguson (1974). Recall that the class of neutral to the right priors, introduced in
Doksum (1974) and of great popularity in the context of survival analysis, is defined
via an exponential transformation of increasing additive processes. Indeed, Ferguson’s
characterization studies the posterior distribution of the increasing additive process (in-
stead of its transformation) and identifies it as a process with updated Poisson intensity
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and with fixed points of discontinuity at the location of the observations. See also Hjort
(1990), Walker and Muliere (1997), Kim (1999), James (2006). Besides the analogy, it
is worth remarking two substantial di⇧erences. The first is due to the non–conjugacy
of NRMIs: in contrast to the neutral to the right case, here we first have to identify
an appropriate latent variable and then, conditionally on it, look for a posterior char-
acterization of µ̃. The second is due to the type of transformation of µ̃ employed for
defining the random probability measures: NRMIs are obtained via normalization while
neutral to the right measures via an exponential transformation. This clearly a⇧ects the
updating mechanism of the intensity measure and the distribution of the jumps which
are very di⇧erent. The previous result is also essential for deriving the posterior distrib-
ution for the class of NRMIs. In the following by posterior distribution of P̃ , given Un,
we always refer to the distribution of P̃ given the data X and Un.

Theorem 2.
If P̃ is a NRMI with intensity ⌦(ds,dx) = �(ds|x) H(dx), then the posterior distribution
of P̃ , given Un, is again a NRMI (with fixed points of discontinuity). In particular, it
coincides in distribution with the random measure

w
µ̃(Un)

T (Un)
+ (1 � w)

⌧n(�)
i=1 J (Un,X)

i ⇤Yi⌧n(�)
i=1 J (Un,X)

i

where T (Un) = µ̃(Un)(X), w = T (Un){T (Un) +
⌧n(�)

i=1 J (Un,X)
i }�1. The distributions of

µ̃(Un) and J (Un,X)
i (i = 1, . . . , n(�)) and the distribution of Un, given X, are those

specified in Theorem 1.

We close the present section by introducing two examples of NRMIs, thus pointing
out how the results obtained so far can be applied in order to determine the posterior
distributions. It is worth remarking that other examples can be easily obtained by
simply plugging into Theorem 1 any Poisson intensity leading to a well–defined NRMI
(4).

Example 1. We first consider a NRMI based on the homogeneous intensity measure

⌦(ds,dx) =
1
2↵

e�
1
2 s

s
3
2

dsH(dx). (8)

Since ⌦(R+⇤X) = ↵, then T is positive almost surely and finiteness of (3) is equivalent
to requiring H to be a finite measure. Hence, H can be represented as H = ⌃ P0, where
⌃ > 0 and P0 is a probability distribution on X. The resulting prior P̃ , obtained through
(4), is also known as normalized inverse–Gaussian (N–IG) process. Note that for this
process a description of the family of finite–dimensional distributions has been provided
in Lijoi et al. (2005). Here, based on Theorem 1, we provide a characterization of the
posterior distribution of this useful prior. It can be easily checked that �j(u|x) = �j(u) =
2j�1 �(j � 1

2)(


↵ [2u + 1]j�1/2)�1, for any j ⌃ 1. Moreover, ⇣(u) = ⌃(


2u + 1 � 1).
From Proposition 1, one then gets

f
X

Un
(u) ⌦ un�1 e�⇥

⌥
2u+1

(2u + 1)n�n(�)/2
.



8 L.F. James, A. Lijoi and I. Prünster

Given Un, the posterior distribution of µ̃ coincides with the distribution of µ̃(Un) +⌧n(�)
i=1 J (Un,X)

i ⇤Yi where µ̃(Un) is a completely random measure with intensity

1
2↵

e�s( 1
2+Un)

s
3
2

dsH(dx),

and the jumps J (Un,X)
i are gamma distributed with scale parameter Un +1/2 and shape

parameter ni�1/2, for i = 1, . . . , n(�). By replacing (8) with the intensity corresponding
to generalized gamma random measures, which include the inverse Gaussian process as
a special case, one obtains the class of NRMI considered in Lijoi et al. (2007a) and
applied, within a hierarchical model, to clustering problems. Theorem 1 allows to derive
their posterior distribution in a straightforward way.

Example 2. Let us now consider a NRMI based on the non–homogeneous intensity

⌦(ds,dx) =
e��(x)s

s
dsH(dx)

where ⇥ : X � R+. Dykstra and Laud (1981) discussed such a random measure for
the case X = R and termed it extended gamma process with parameters (H,⇥). This
model described on more abstract spaces is discussed in Lo (1982) and is termed a
weighted gamma process. Much attention has been paid to extended gamma processes
in the Bayesian literature, with particular emphasis on problems related to survival
analysis. In order to exploit the extended gamma process for defining a NRMI, we
need to ensure that T is positive and finite almost surely. Since ⌦(S) = ↵, posi-
tiveness follows. Moreover, finiteness is equivalent to the requirement that H and ⇥
are such that

�
X log(1 + �⇥(x)�1) H(dx) < ↵, for every � ⌃ 0. Given these, the

corresponding extended gamma NRMI with parameter (H, ⇥) is well defined. Since
�j(u|x) = �(j)[⇥(x)+u]�j , for any j ⌃ 1 and x in X, and ⇣(u) =

�
X log[⇥(x)+u]H(dx),

from Proposition 1 it is possible to deduce that

f
X

Un
(u) ⌦ un�1 exp

⌦
�
!

X
log[⇥(x) + u]H⇤(dx)

↵
, (9)

where H⇤( · ) = H( · )+
⌧n(�)

i=1 ni ⇤Yi( · ). As for the posterior distribution, by Theorem 1
one has that, conditionally on Un, the posterior distribution of µ̃ coincides with the
distribution of the sum of an extended gamma process with parameter (H,⇥ + Un) and
n(�) jumps corresponding to the distinct observations Y . Conditionally on Un and X,
the i–th jump is gamma distributed with parameters (⇥(Yi)+Un, ni), for i = 1, . . . , n(�).
Thus, for any function h : X � R+ such that

�
X log[h(x) + ⇥(x)]H(dx) < ↵,

E

�
e� X h(x)µ̃(dx)

⇤⇤⇤⇤Un,X

 
= e� X[h(x)+�(x)+Un] H(dx)� n(�)

i=1 ni log[h(Yi)+�(Yi)+Un]

= e� X log[h(x)+�(x)+Un] H⇥(dx)

and one easily concludes that the extended gamma NRMI, given Un and X, is still an
extended gamma NRMI with parameter (H⇤,⇥+Un). It is worth noting that priors based
on non–homogeneous measures have always played an important role in the Bayesian
nonparametric inference for modeling survival data and spatial phenomena: see, e.g.,
Ferguson (1974), Lo (1982), Hjort (1990), Walker and Muliere (1997), Wolpert and
Ickstadt (1998). Up to now NRMI based on non–homogeneous intensities appeared to
be untractable, but thanks to Theorem 1 this seems not to be the case anymore.
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3 Predictive and marginal distributions

Apart from the posterior distribution, a Bayesian can be also interested in a rule for
predicting future values of the observations, given those already observed, and a sampling
scheme for generating observations governed by a NRMI. When P̃ is a Dirichlet process,
with parameter measure ⌃ P0, it is well–known that the predictive distribution has the
following simple form

P[Xn+1 � C|X] =
⌃

⌃ + n
P0(C) +

n

⌃ + n

1
n

n�

i=1

⇤Xi(C) (10)

for any C in B(X). Moreover, the marginal distribution of the observations can be
expressed in terms of the celebrated Ewens sampling formula. More precisely, given
that the distribution of X is characterized by the joint distribution of (Y ,�), one has
that the latter coincides with

�

⇢
n(�) 

i=1

P0(dYi)

✏

� ⌃n(�)

(⌃)n

n(�) 

i=1

�(ni) (11)

where (⌃)n = �(⌃ + n)/�(⌃) is the Pochhammer symbol. The Ewens sampling formula
is the best–known case of exchangeable partition probability function (EPPF) and it
basically represents the marginal distribution of the partition �. A detailed illustration
of the EPPF concept can be found in Pitman (2006). Its role in a Bayesian context, for
the homogeneous case, can be deduced from Pitman (1996) and Ishwaran and James
(2003) whereas for the non–homogeneous case one can refer to James (2006). In this
section we provide the analogues of (10) and of (11) for the more general class of NRMIs.

3.1 The prediction rule

Once we have derived the posterior distribution of a NRMI, the determination of the
corresponding predictive distributions is quite straightforward.

Proposition 2.
Let P̃ be a NRMI with intensity ⌦(ds,dx) = �(ds|x) H(dx). Then the predictive distri-
bution for Xn+1 given X coincides with

P [Xn+1 � dx |X] = w(n) H( dx ) +
1
n

n(�)�

j=1

w(n)
j ⇤Yj ( dx ) (12)

where, for j = 1, . . . , n(�),

w(n) =
1
n

!

R+
u �1(u|x) f

X

Un
(u) du, w(n)

j =
!

R+
u

�nj+1(u|Yj)
�nj (u|Yj)

f
X

Un
(u) du.

These predictive distributions have quite intuitive forms, since they consist of a linear
combination of H and of a weighted version of the empirical distribution. Note that the
prediction rule reduces to the one provided by Pitman (2003) in the homogeneous case.
See also James (2002) and Prünster (2002).
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3.2 The marginal distribution

It is apparent from the previous results on the posterior and the predictive distributions,
that the use of partitions is of great help. The same can be said when facing the issue
of characterizing the marginal distribution of the vector of (exchangeable) observations
X = (X1, . . . , Xn), for any n ⌃ 1. Indeed, the marginal distribution of X can be
described in terms of the distribution of (Y ,�), where, as before, � is a partition of the
n integers {1, . . . , n} into n(�) sets, Y = (Y1, . . . , Yn(�)) is the vector of distinct values
among the Xi’s. Note that n(�) � {1, . . . , n} since, as was mentioned before, NRMIs
select discrete distributions on X with probability 1. This allows us to confine ourselves
to the determination of the distribution of (Y ,�). Before describing the distribution
M of X, let us introduce the following quantity

⌥nj (u) =
!

X
�nj (u|x) H(dx)

which is the cumulant of order nj of the conditional distribution of the total mass T ,
given Un = u.

Proposition 3.
Let P̃ be a NRMI. Then the distribution of (Y ,�) coincides with

1
�(n)


⇠

�

!

R+
un�1 e�⌃(u)

⇣

✓
n(�) 

j=1

�nj (u|Yj)

⌘

◆ du

�
⇡

⌫

n(�) 

j=1

H(dYi). (13)

Moreover, the marginal distribution of � yields the EPPF and it is given by

⇤(n)(�) =
1

�(n)

!

R+
un�1 e�⌃(u)

⇣

✓
n(�) 

j=1

⌥nj (u)

⌘

◆ du. (14)

The EPPF given in (14) was first obtained by Pitman (2003). For a concrete use of
the marginal distribution of the Xi’s, we will generally need a simpler description of M
and of the corresponding EPPF. This can be achieved by working conditionally on the
latent variable Un. As for the EPPF, a tractable form we wish to obtain is of the kind

⇤(n)(�) = Vn,n(�)

n(�) 

i=1

Wni , (15)

where Vn,n(�) is a positive quantity not depending on the specific (n1, . . . , nn(�)) and
each Wni is a positive number depending solely on the corresponding ni. A random
partition having such an EPPF is said to be of a Gibbs type. See Pitman (2006) for
the notion of infinite and finite Gibbs partitions. However, it is worth recalling that
the only infinite EPPF admitting such a representation are the EPPF’s derived from a
Dirichlet process and those derived from a stable law of index 0 < � < 1 (see Pitman,
2006). Among them, we mention the two parameter Poisson–Dirichlet process and the
generalized gamma class of processes.

Now, by examining (13) an augmentation and an application of Bayes rule makes it
apparent that, for fixed u > 0 and �

P [Yi � dy|Un = u, �] =
�ni(u|y)H(dy)

⌥ni(u)
=: Hi,n(dy|u) (16)
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for any i = 1, . . . , n(�). At this point we can provide a characterization of M , condi-
tional on Un.

Proposition 4.
Let P̃ be a NRMI. Conditional on Un and on the partition �, the n(�) distinct values
Y1, . . . , Yn(�) among the Xi’s are independent and the distribution of Yi is given by (16),
for any i = 1, . . . , n(�). Moreover, the conditional distribution of the random partition
�, given Un = u, coincides with

⇤(n)(�|u) =
e�⌃(u)�n(�)

i=1 ⌥ni(u)�
R+ tne�utfT (t)dt

. (17)

Hence, conditional on Un, � is a finite Gibbs partition.

Note that in the homogeneous case the distinct observations are independent and
identically distributed (i.i.d.) with common distribution P0.

In the light of Proposition 4, an interesting quantity to consider is the number
n(�) of distinct observations in a sample X of size n. For example, in nonparametric
mixture models, n(�) stands for the number of clusters in the sample of observations.
Because of this, the literature has devoted much attention to it. In the Dirichlet case,
the distribution of n(�) has been investigated by Korwar and Hollander (1973) and
exploited in the context of mixture models by Antoniak (1974) and Lo (1984), where it
takes on the interpretation of prior distribution on the number of components. In Pitman
(2003, 2006) this distribution is described for the case of the two parameter Poisson-
Dirichlet process. More recently, the distribution of n(�) for N–IG and generalized
gamma mixture models has been studied in Lijoi et al. (2005, 2007a). See also Lijoi et
al. (2007b), where such distributions are used for devising a Bayesian nonparametric
estimator of the discovery probability in genomics problems. In our case, using the fact
that, conditionally on Un, � is a finite Gibbs partition one can determine the distribution
of n(�), given Un, as follows

P [n(�) = k |Un = u] =
e�⌃(u)

�
R+ tne�utfT (t)dt

n!
k!

�

(n1,...,nk)

k 

j=1

⌥nj (u)
nj !

(18)

for k = 1, . . . , n. The sum above runs over all configurations (n1, . . . , nk) of n of size k.
An important related issue to consider in this setting, is the distribution of the

random vector (|⇤1,n|, . . . , |⇤n,n|), where |⇤i,n| denotes the number of clusters of size i.
According to this definition, one obviously has

⌧n
i=1 |⇤i,n| = n(�) and

⌧n
i=1 i |⇤i,n| = n.

Combination of Proposition 4 and of formula (52) in Ch.1 of Pitman (2006) yields

P [|⇤j,n| = mj , 1 ⇧ j ⇧ n |Un = u] =
n!e�⌃(u)

�
R+ tne�utfT (t)dt

n 

j=1

⌃
⌥j(u)

j!

⌥mj 1
mj !

(19)

where
⌧n

j=1 mj = k and
⌧n

j=1 jmj = n. Equivalently (19) is the conditional distribu-
tion, given Un, of the number of values of (X1, . . . , Xn) appearing 1 time, 2 times etc,
corresponding to the numbers (m1, . . . ,mn). Moreover, equation (19) is a generalization
of the well–known Ewens sampling formula.
Remark 2. It is interesting to note that all our results conditioned on Un, contain the
known unconditional results for the Dirichlet process. This is because the Dirichlet
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process is independent of Un. To see this, recall that the Dirichlet process with total
mass ⌃ > 0, corresponds to the choice of �(ds) = ⌃s�1e�sds. It follows that for each j
that ⌥j(u) = ⌃(1 + u)�j�(j) and E[T (Un) |X] = E[T (Un)] = (1 + Un)�n[�(⌃)/�(⌃ + n)].
Additionally

f
X

Un
(u) := fUn

(u) ⌦ un�1(1 + u)�(n+⇥),

that is Un = �n/T is a gamma-gamma random variable independent of X. Or, equiva-
lently, 1/(1 + Un) is a Beta(⌃, n) random variable. Hence, (19), specializes to

P [|⇤j,n| = mj , 1 ⇧ j ⇧ n |Un = u] =
n!�n

i=1(⌃ + i � 1)

n 

j=1

⌃
⌃

j

⌥mj 1
mj !

.

This coincides with the Ewens sampling formula derived by Ewens (1972), which is
equivalent to an important result in Antoniak (1974). Finally, note that (17) becomes,

⇤(n)(�|u) :=
⌃n(�)�n(�)

j=1 (ej � 1)!
�n

i=1(⌃ + i � 1)
. (20)

which is the variant of Ewens sampling formula, often called the Chinese restaurant
process. See Pitman (2006) and Ishwaran and James (2003). The calculations for the
Dirichlet process involving Un may be found in James (2005b), where it is shown that
Un and its variants still play a significant role.

Let us illustrate the results concerning the predictive and marginal distributions
provided in this Section by referring to the two examples initiated in Section 2.

Example 1 (continued). With reference to the N–IG process, as shown in Lijoi et al.
(2005), an application of Proposition 2 leads to a predictive distribution of the form (12)
with

w(n) =
⌧n

r=0

�n
r

⇥
(�⌃2)�r+1�(n(�) + 1 + 2r � 2n; ⌃)

2n
⌧n�1

r=0

�n�1
r

⇥
(�⌃2)�r�(n(�) + 2 + 2r � 2n; ⌃)

(21)

w(n)
j =
⌃

nj �
1
2

⌥ ⌧n
r=0

�n
r

⇥
(�⌃2)�r+1�(n(�) + 2r � 2n; ⌃)

⌧n�1
r=0

�n�1
r

⇥
(�⌃2)�r�(n(�) + 2 + 2r � 2n; ⌃)

, (22)

where �(a, b) =
�⇧
b xa�1 e�x dx is the incomplete gamma function. The EPPF corre-

sponding to the N–IG process turns out to be

e⇥ (�⌃2)n�1

2n(�)�1 �(n)

n�1�

r=0

⌃
n � 1

r

⌥
(�⌃2)�r�(n(�) + 2 + 2r � 2n; ⌃)


⇠

�

n(�) 

j=1

⌃
1
2

⌥

nj�1

�
⇡

⌫ .

With reference to the conditional representations, we have, for instance, that the con-
ditional distribution of the random partition �, given Un = u, coincides with

⇤(n)(�|u) =


↵ e�⇥ 2n�n(�)�1/2

(⌃


1 + 2 u)n�n(�)+1/2 Kn�1/2(⌃


1 + 2 u)

n(�) 

i=1

(1 � �)ni�1,

where K⇧ denotes the modified Bessel function of second kind with index ⌦.
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Example 2 (continued). According to Proposition 2, the weights of the predictive dis-
tribution are given by

w(n) =
1

n KX

!

R+
un e� R+ log[u+�(y)] H⇥

x(dy) du

w(n)
j =

nj

KX

!

R+
un e� R+ log[u+�(y)] H⇥

Yj
(dy) du

where H⇤
v (dy) = H(dy) +

⌧n(�)
i=1 ni ⇤Yi(dy) + ⇤v(dy), for any v in X, and KX is the

normalizing constant in (9). The predictive distribution can now be given a simplified
representation as

P [Xn+1 � dx |X] =
1

n KX

!

R+
un e� X log[u+�(y)]H⇥

x(dy)du H⇤(dx).

If one exploits Proposition 4, it is possible to describe the partition structure induced
by the normalized extended gamma prior through its conditional EPPF

⇤(n)(�|u) =
e� X log[u+�(x)]H(dx)

⌅n

n(�) 

i=1

!

X

�(ni)
[u + ⇥(y)]ni

H(dy)

where ⌅n :=
�
R+ tn e�ut fT (t) dt. It is worth remarking the nice and simple Gibbs struc-

ture featured by the above conditional EPPF. Moving to the unconditional EPPF, we
resort to Proposition 3 and obtain

�n(�)
i=1 �(ni)
�(n)

!

Xn(�)

!

R+
un�1 e� X log[u+�(x)]H⇥(dx) du H(dy1) · · · H(dyn(�))

where H⇤(dx) = H(dx) +
⌧n(�)

i=1 ni ⇤yi(dx).

3.3 A generalized Blackwell-MacQueen sampling scheme

Proposition 2, combined with the representation of the latent variable Un in Proposi-
tion 1, suggests a simple scheme for sampling from the marginal distribution of the obser-
vations governed by a general NRMI. This yields an extension of celebrated Blackwell–
MacQueen sampling scheme for the Dirichlet process. Let us provide a description of
the algorithm. Firstly, introduce a sequential formulation for partitions and related
functions: for r = 1, . . . , n, let �r = {C1,r, . . . , Cn(�r),r} denote a partition of the in-
tegers {1, . . . , r} into n(�r) ⇧ r distinct sets. For each j = 1, . . . , n(�r), one now has
Cj,r = {i � {1, . . . , r} : Xi = Yj} and the size of each set Cj,r is denoted by nj,r. Note
that �n = �. The main idea of the algorithm is to exploit the simple structure of the
predictive conditional on the latent variable Un. Indeed, such a predictive distribution
can be represented as follows

m(dXi|X1, . . . , Xi�1, Ui�1) = m(dXi|Y ,�i�1, Ui�1) (23)

⌦ ⌥1(Ui�1)H1,1(dXi|Ui�1) +
n(�i�1)�

j=1

�nj,i�1+1(Ui�1|Yj)
�nj,i�1(Ui�1|Yj)

⇤Yj (dXi)

for any i ⌃ 2 and m(dX1|u) ⌦ ⌥1(u) H1,1(dX1|u). The computational recipe works,
then, as follows
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(1) Sample U0 from q0(u) = e�⌃(u)
�

X �1(u|x) ⇧(dx)

(2) Sample X1 from m(dX1|U0)

(3) For any i ⌃ 2
(3a) Sample Ui�1 from f

Xi�1

Ui�1
(u) where Xi�1 = (X1, . . . , Xi�1)

(3b) Sample Xi from m(dXi|X1, . . . , Xi�1, Ui�1)

(4) Go to (3)

The sampling scheme can be applied once the Poisson intensity of the underlying com-
pletely random measure is assigned: indeed all relevant densities from which to sample
are known at least up to a proportionality constant. For instance, in the N–IG case,
(23) reduces to

m(dXi|X1, . . . , Xi�1, Ui�1) =
⌃ (1 + 2Ui�1)

1
2

⌃ (1 + 2Ui�1)
1
2 + 2 (i � 1) � n(�i�1)

P0(dXi)

+
2

⌃ (1 + 2Ui�1)
1
2 + 2 (i � 1) � n(�i�1)

n(�i�1)�

i=1

⌃
ni �

1
2

⌥
⇤Yi(dXi), (24)

which is straightforward to compute in contrast to the unconditional predictive which
is of the form (12) with weights (30)–(22). Having established a computational scheme
for generating from the marginal distribution of the observations, the most natural
application to think of is Bayesian nonparametric inference within hierarchical mixtures.
This is the topic of the next section.

4 Hierarchical mixture models

In terms of statistical applications, owing to the success of the Dirichlet process, one of
the most fruitful ways for exploiting NRMIs is their potential use as basic building blocks
in hierarchical mixture models. In this setting, X are missing values which capture the
clustering structure within the data. This class of models was first introduced, for the
Dirichlet process, by Lo (1984) and later popularized by the development of suitable
MCMC techniques in Escobar and West (1995). Recently, mixtures of Dirichlet process
have been generalized to mixtures of stick–breaking priors (Ishwaran and James 2001,
2003) and of particular NRMIs (Lijoi et al. 2005, 2007a).

We first recall the model as set up by Lo (1984). Suppose {f( · |x) : x � X} is a
family of non–negative kernels defined on a complete and separable metric space W such
that
�
Y f(w|x) �(dw) = 1 for any x in X and for some �–finite measure �. Next, let

W = (W1, . . . ,Wn) be a vector of W–valued random elements such that

Wi |Xi
ind⌥ f( · |Xi)

Xi|P̃
iid⌥ P̃ (25)

P̃ ⌥ NRMI

This is the same as supposing that W1, . . . ,Wn are exchangeable draws from the random
density f̃( · ) =

�
X f( · |x) P̃ (dx). One is naturally interested in the determination of the
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distribution of the posterior density f̃ , given the observations W , which coincides with
the distribution of the random density

!

X
f( · |x) P̃W (dx)

where P̃W is the (posterior) random probability measure whose distribution is
!
P(dp|X)P(dX|W ) (26)

Notice that in the previous integral P(dp|X) is the posterior distribution of the NRMI
P̃ , given X, which is provided by Theorem 2 and P(dX|W ) is the distribution of the
latent variables, given the data W , which can be determined via Bayes’ theorem as

{
�n

i=1 f(Wi|Xi)} m(dX)�
{
�n

i=1 f(Wi|Xi)} m(dX)

where m(dX) is the marginal distribution of the latent variables as described in (13).
See Ishwaran and James (2003). It is apparent that the main di�culties arise from
the evaluation of the integral in (26). In fact, one has to integrate with respect to all
possible partitions of the n latent variables X. The impossibility of achieving an exact
analytical evaluation of the posterior distribution of f̃ , given W , makes it necessary to
devise a computational scheme for drawing samples from the posterior. To this end, the
generalization of the Blackwell–MacQueen urn scheme as described in Subsection 3.3 is
important. As a first step, generate a sample X1,0, . . . , Xn,0 of i.i.d. values of the latent
variable from E[P̃ (dx)] =

�⇧
0 �1(u|x)e�⌃(u)duH(dx). Then, for any t ⌃ 1, proceed as

follows

(1) draw U t
n from fXt�1

Un
(u) where Xt�1 = (X1,t�1, . . . , Xn,t�1) is the vector of latent

variables sampled in the previous step t � 1;

(2) draw the latent X1,t, . . . , Xn,t from the Pólya urn scheme as follows: for any i
sample Xi from

P

⌃
Xi,t � ·

⇤⇤⇤⇤X
t
�i,W , U t

n

⌥
=q⇤i,0(U

t
n) H1,1(dXi,t|U t

n) f(Wi|Xi,t)+
ki,t�

j=1

q⇤i,j(U
t
n) ⇤Yj ( · ),

where Xt
�i = (X1,t, . . . , Xi�1,t, Xi+1,t�1, . . . , Xn,t�1), Yj are the ki,t distinct values

in the vector Xt
�i. The mixing proportions are given by

q⇤i,0(U
t
n) ⌦ ⌥1(U t

n)
!

X
f(Wi|x) H1,1(dx|U t

n) q⇤i,j(U
t
n) ⌦

�nj+1(U t
n|Yj)

�nj (U t
n|Yj)

f(Wi|Yj),

subject to the constraint
⌧ki,t

j=0 q⇤i,j(U
t
n) = 1.

This represents a generalization of the Escobar and West (1995) algorithm and, by
resorting to the latent variable Un, allows the generation of a sample from a mixture
model governed by any NRMI.

It is well–known that the performance, in terms of mixing speed, of the Escobar and
West (1995) algorithm can be improved by implementing an acceleration step which basi-
cally consists in adding a further iteration to the algorithm we have just described. Such
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a variation of the MCMC algorithm for MDP models has been proposed by MacEach-
ern (1994, 1998). See also Ishwaran and James (2001). Indeed, step (2) above is used
in order to fix the number of clusters and the cluster memberships for the latent vari-
ables. In order to generate the representative of each cluster, i.e. the unique distinct
values Yj , one proceeds as follows. Suppose that from step (2) one has kt clusters with
memberships identified by the sets of indices I1,t, . . . , Ikt,t. Then

(3) Draw the unique values Y1,t, . . . , Ykt,t from the full conditional

P
�
Yj,t � dx | W ,Xt, U t

n

⇥
⌦
 

i⌃Ij,t

f(yi|x) H1,1(dx|U t
n).

One can see that an important point of the algorithm is the evaluation of the weights
q⇤i,0. In order to obtain an explicit form for them, one can choose a conjugate pair
{f( · | · ), P0}.

Numerical example. As an illustration we analyze a dataset concerning the environ-
mental problem of acidification, which consists of measurements of an acid neutralizing
capacity (ANC) index in a sample of 155 lakes in North–Central Wisconsin, USA. A
low value of ANC can lead to a loss of biological resources. The identification of clusters
of lakes is important for the determination of lake characteristics which can be used to
predict higher acidification. Also these data were studied by several authors and were
considered on a log–scale as we do. Most previous studies support the existence of 2–3
clusters. See, e.g., Crawford (1994) McGrory and Titterington (2007).

Here we compare Dirichlet and N–IG mixtures in terms of the posterior distribution
on the number of components. The model we adopt is a normal mixture where both
means and variances are random and chosen according to either a Dirichlet or a N–IG
process, i.e.,

(Wi | mi, Vi)
ind⌥ N(Yi | mi, Vi), i = 1, . . . , n

(mi, Vi | P̃ ) iid⌥ P̃

P̃ ⌥ Dir or N–IG,

where N is a normal kernel. In order to appreciate the di⇧erent behaviours, we fix the
prior parameters for both mixtures so to that the prior distribution on the number of
components n(�) has mode in 20, thus far away from the low number of components
estimated in previous studies. This is achieved by setting the total mass parameter ⌃
equal to 5.9 in the Dirichlet case and equal to 1.29 in the N–IG case. Figure 1 displays
the corresponding prior distributions for n(�).

The general phenomenon of the N–IG process inducing a relatively flat prior, in
contrast to the Dirichlet process inducing a highly peaked distribution, is apparent from
the plot. For the remaining part concerning P0, we employ the nowadays quite stan-
dard semiparametric prior specification of Escobar and West (1995), namely P0(dxdv) =
N(x|µ, �v�1) Ga(v|1, 1) dxdv, where Ga( · |c, d) is the density corresponding to a gamma
distribution with mean c/d. A further hierarchy is assumed for µ and � , i.e. µ ⌥
N( · |0, .001) and ��1 ⌥ Ga( · |1, 100). Simulations for the Dirichlet process mixture
were carried out using the usual Blackwell–MacQueen sampling scheme with accelera-
tion step. As for the N–IG mixture, we resorted to the algorithm detailed above: the
possibility of using the predictive distributions conditionally on Un given in (24) reduced
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Figure 1: Prior distributions for the number of components n(�) corresponding to the
Dirichlet and the N-IG mixtures for the 155 acidity data. Their parameters are specified
such that the mode of the prior distribution of n(�) is in 20. The probabilities are
connected by lines only for visual simplification.
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the computational burden significantly with respect to the unconditional scheme used
in Lijoi et al. (2005) where computation of the weights in (30)–(22) were required. All
inferences are based on 20000 iterations after a burn–in period of 5000 sweeps. Table 1
reports the posterior distribution on the number of components in the mixture: the
N–IG mixture favours 2–3 components and, though starting from a prior tuned on 20
components, more than 90% of the mass is concentrated on 1–6 components. In contrast,
the Dirichlet mixture is still stuck on a significantly higher number of components: the
posterior mode is in 6 components and the shortest interval cumulating 90% posterior
probability is given by [3, 11] components. On the other hand, by tuning the mode of
the prior distribution on the number of components on a smaller number of clusters (e.g.
⌃ = 1.63, which corresponds to a median in 8 components) also the Dirichlet mixture
leads to infer the existence of 2–3 components. This clearly highlights the fact that
N–IG mixtures are more robust with respect to wrong prior specifications.

Table 1: Posterior probabilities on the number of components n(�) corresponding to
the Dirichlet and the N–IG mixtures for the 155 acidity data.

n(�) 1 2 3 4 5 6 7 8 9 � 10

Dirichlet mixture 0.007 0.031 0.074 0.117 0.157 0.160 0.145 0.118 0.078 0.113
N–IG mixture 0.151 0.226 0.212 0.166 0.104 0.063 0.038 0.019 0.011 0.010

5 Concluding remarks and computational issues

The present paper has aimed at providing the theoretical framework for a complete
Bayesian analysis of NRMIs. Particular cases of these priors have been shown to be
useful in various settings such as, e.g., mixture modeling or prediction problems arising
when one needs to evaluate the probability of discovering a new species. The main
goal is now to study novel concrete examples of NRMIs and evaluate their suitability
to the specific applications. Hence, within the class of NRMIs, one has a wide range of
nonparametric priors to resort to and does not need to confine herself to the Dirichlet
process motivating her choice with the intractability of other options.
Employing the terminology of Papaspiliopoulos and Roberts (2007), one can set up either
a conditional or a marginal algorithm and, for both cases, the results of the present paper
are essential. As for the latter class of algorithms, one can refer to Subsection 3.3, on
the generalization of the Blackweel–MacQueen sampling scheme, and to Section 4, on
application to hierarchical mixture models. As for the former, the representation of
the posterior distribution in Theorem 1 can be used in order to build a Ferguson–Klass
type algorithm (see Ferguson and Klass, 1972, and Walker and Damien, 2000): at any
iteration of the algorithm one samples a Un value, given the data X, from f

X

Un
and

then simulates a realization of µ̃(Un,X). This, combined with a standard Gibbs sampler,
allows to exploit any NRMI as a basic building block in complex hierarchical mixture
models. A preliminary investigation on this simulation approach is provided in Nieto–
Barajas and Prünster (2007): the authors resort to it in order to develop a sensitivity
analysis for nonparametric density estimation based on NRMIs.

Finally, it is worth mentioning a recent interesting contribution heavily relying on
NRMIs: they are used in order to define time dependent random probability measures.
See Gri�n (2007).
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Appendix: Proofs

Proof of Theorem 1. We can show the validity of the statements in Theorem 1 by working
directly on the underlying Poisson process Ñ . The basic idea is to use the fact that, µ̃ being
a function of Ñ through (1), the posterior distribution of µ̃ given X can be deduced from the
posterior distribution of Ñ given X. First, let P⇥ denote the distribution of the Poisson random
measure Ñ with intensity ⌦ and, consequently, E⇥ [ · ] represents the expected value computed
with respect to P⇥ . The proof of Theorem 1, then, follows from an application of the approach
of James (2005a) in conjunction with the introduction of the latent variable Un.

First notice that P̃ (dy) = T�1µ̃(dy) is a special case of the random probability measure
described in James (2005a, eq. (22), p. 1780) as

Pµ̃(dy) = q(y, µ̃)µ̃(dy).

That is seen by recalling that T := µ̃(X) and setting

T�1 = q(y, µ̃).

Note further that in our setting we use the notation (Yj , Jj) to play the role of the unique
points (Y ⇥

j , Jj,n) for j = 1, . . . , n(�) described in James (2005a). The (Jj) = (J1, . . . , Jn(�)) now
represent the unique values of n latent variables say J̃ = (J̃1, . . . , J̃n). The (Yj) represent the
unique values of X. Now, let N⇥

n = N
⇤
+
⌧n(�)

j=1 ⇤Jj ,Yj and

µ⇥n(dy) =
! ⌅

0
sN⇥

n(ds, dy) := µ⇤(dy) +
n(�)�

j=1

Jj⇤Yj (dy),

where µ⇤ and N ⇤ are of the same form as µ̃ and Ñ respectively. Hence, it follows that µ⇥n(X) =
T ⇤ +
⌧n(�)

l=1 Jl, where T ⇤ = µ⇤(X). Furthermore, for j = 1, . . . , n(�)

q(Yj , µ
⇥
n) =

1

(T ⇤ +
⌧n(�)

l=1 Jl)

which does not depend on Yj or j. This implies that,

n(�) 

j=1

[q(Yj , µ
⇥
n)]nj =

1

(T ⇤ +
⌧n(�)

i=1 Ji))
n .

Furthermore specializing a definition in James (2005a, p. 1781), we have that

✏n(J̃,X) =
!

P⇥(dN)

(T +
⌧n(�)

i=1 Ji))
n =
! ⌅

0

fT (t)

[(t +
⌧n(�)

j=1 Jj)]
n dt.

Now from Theorem 3.2 in James (2005a) it can be deduced that the posterior distribution of
µ̃|X is equivalent to that of µ⇥n|X and is determined by the posterior distribution of N |X which
is equivalent to the distribution of N⇥

n|X. That is, statement (i) of Theorem 3.2 in James
(2005a) shows that the posterior distribution of Ñ , given X, coincides with the distribution
of the random measure N⇥

n = N ⇤ +
⌧n(�)

i=1 ⇤Ji,Yi , where the joint law of (N ⇤, (Jj)), given X,
evaluated at some point (N, s1, . . . , sn(�)), is proportional to the joint measure

1

(T +
⌧n(�)

i=1 si))
nP⇥(dN)

n(�) 

i=1

[si]
ni�(dsi|Yi). (27)

This in turn determines the posterior distribution of µ̃|X. Additionally, given the form of ✏n,
statements (ii) and (iii) of Theorem 3.2 in James (2005a) can be exploited in order to provide
a preliminary description of the posterior distribution of P̃ .
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Now to obtain the generally more tractable distributions given Un,X we first apply the
gamma identity,

1

(T +
⌧n(�)

i=1 Ji)
n =

1
�(n)

!

R+
e�u[T+ n(�)

i=1 Ji] un�1 du.

An augmentation of the previous expression combined with (27) yields a joint distribution of
(N ⇤, (Jj), Un,X) proportional to

un�1e�uTP⇥(dN)
n(�) 

i=1

sni
i e�usi�(dsi|Yi)H(dYi). (28)

Now applying Proposition 2.1 of James (2005a), with uT := N(f) :=
�

f(s, y)N(ds, dy) where
f(s, y) = us, yields the equivalence of measures

e�uTP⇥(dN) = P⇥u(dN)e�⌅(u)

where ⌦u(ds, dx) = e�us�(ds|y)H(dy) and E⇥ [e�uT ] = e�⌅(u). Applying this equality to (28)
yields a further description of the joint distribution of (N ⇤, (Jj), Un,X) proportional to

un�1e�⌅(u)P⇥u(dN)
n(�) 

i=1

sni
i e�usi�(dsi|Yi)H(dYi). (29)

A description of the distribution of N ⇤, (Jj)|Un,X and hence that of Ñ |Un,X and µ̃|Un,X
follows from application of Bayes rule to (29). Moreover, conditionally on Un and X, N ⇤ and
the Ji’s have the same distribution as Ñ (Un) and the J (Un,X)

i ’s, respectively. �

Alternative Proof of Theorem 1. We provide an alternative proof which obtains the posterior
Laplace functional via a limiting argument. We first compute the Laplace functional of µ̃ given
X. To this end, consider n(�) disjoint subsets C1, ..., Cn(�) of X and set Cn(�)+1 = (⇣n(�)

j=1 Cj)c.
Moreover, for notational simplicity, we set µ̃j = µ̃(Cj) for j = 1, . . . , n(�) and n(�) = k. If
one combines the assumption of exchangeability of the observations as outlined in (5) with the
definition of the NRMI P̃ as given in (4), the conditional Laplace functional of µ̃ is given by

E

⌃
e� X h(x)µ̃(dx)

⇤⇤⇤⇤Y � ⇤k
j=1Cj

⌥
=
E
⌅
e� X h(x)µ(dx)T�n µ̃n1

1 · · · µ̃nk
k

⇧

E (T�n µ̃n1
1 · · · µ̃nk

k )

Let us first focus on the numerator which can be rewritten as

1
�(n)

!

R+
un�1E

"
e� X(h(x)+u) µ̃(dx)µ̃n1

1 · · · µ̃nk
k

#
du

=
1

�(n)

!

R+
un�1E

"
e� Ck+1

(h(x)+u) µ̃(dx)
# k 

i=1

(�1)ni
dni

duni
E
"
e� Cj

(h(x)+u) µ̃(dx)
#
du

Now, introduce the following functions, for any Cj ,

V (n)
Cj

(u) =
⌦

(�1)n dn

dun
e� R+⇥Cj

(1�e�(h(x)+u)s)⇤(ds|x)H(dx)
↵

⇤ e R+⇥Cj
(1�e�(h(x)+u)s)⇤(ds|x)H(dx)

for any n ⌃ 1 and set V (0)
Cj

(u) ⌅ 1. By induction, one observes that

V (n)
Cj

(u) =
!

Cj

n�1�

i=0

⌃
n � 1

i

⌥
✏n�i(u, x)V (i)

Cj
(u)H(dx) =

!

Cj

⇥(n)
Hj

(u, x)H(dx)
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where

⇥(n)
Hj

(u, x) :=
n�1�

i=0

⌃
n � 1

i

⌥
✏n�i(u, x)V (i)

Cj
(u),

✏n�i(u, x) =
�
R+ e�(h(x)+u)ssn�i�(ds|x) and Hj = H(Cj). Hence the numerator is equal to

1
�(n)

!

R+
un�1 e� S(1�e�(h(x)+u)s)⇤(ds|x)H(dx)

k 

i=1

!

Cj

⇥(nj)
Hj

(u, x)H(dx)du.

The denominator is determined via similar arguments thus yielding

E

⌃
e� X h(x)µ̃(dx)

⇤⇤⇤⇤Y � ⇤k
j=1Cj

⌥

=

�
R+ un�1 e� R+⇥X(1�e�(h(x)+u)s)⇤(ds|x)H(dx)�k

j=1

�
Cj

⇥(nj)
Hj

(u, x)H(dx)du
�
R+ un�1 e� R+⇥X(1�e�us)⇤(ds|x)H(dx)�k

j=1

�
Cj

⇥(nj)
Hj

(u, x)H(dx)du

If we set Cj = Cj,⇧ := {x � X : dX(x, Yj) < ⌘}, where dX is the distance function on X,
non–atomicity of H yields

!

Cj

⇥(nj)
Hj

(u, x)H(dx) = H(dYj)(✏nj (u, Yj) + o(H(dYj)) as ⌘  0

holds true. Hence, as ⌘  0

E

⌃
e� X h(x)µ̃(dx)

⇤⇤⇤⇤Y � ⇤k
j=1Cj

⌥

�
!

R+
e� R+⇥X(1�e�(h(x)+u)s)⇤(ds|x)H(dx)

⇤
k 

i=1

!

R+
e�h(Yi)s snie�us�(ds|Yi)

�ni(u|Yi)
un�1
�k

i=1 �ni(u|Yi)du
�
R+ un�1

�k
i=1 �ni(u|Yi)du

=
!

R+
E
⌅
e� X h(x)µ̃(u)(dx)

⇧ k 

i=1

E
⌅
e�h(Yi)J

(u,X)
i

⇧

⇤
un�1
⌅�k

i=1 �ni(u|Yi)
⇧

e�⌅(u)du
�
R+ un�1

⌅�k
i=1 �ni(u|Yi)

⇧
e�⌅(u)du

.

Thus the proof is complete. �

Proof of Proposition 1. This easily follows from an application of Bayes rule to (29). That is by
first integrating out the N , and the si’s to first obtain a joint distribution of Un,X. Note how
this also gives the �ni �

Proof of Theorem 2. For denoting a linear functional of the completely random measure µ̃ we
use the short notation µ̃(f) =

�
X f(x)µ̃(dx) for any measurable f : X � R such that µ̃(|f |) < ↵

a.s. Now, notice that for any y1, . . . , yn � (0, 1) and A1, . . . , An � B(X) one has

P
"
P̃ (A1) ⇧ y1, . . . , P̃ (An) ⇧ yn |Un,X

#
= P [µ̃(IA1 � y1) ⇧ 0, . . . , µ̃(IAn � yn) ⇧ 0 |Un,X]

By definition the latter coincides with

P
"
µ̃(Un,X)(IA1 � y1) ⇧ 0, . . . , µ̃(Un,X)(IAn � yn) ⇧ 0

#
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and the result follows since the finite dimensional distributions of µ̃(Un,X)/µ̃(Un,X)(X) coincide
with the finite dimensional distributions of P̃ given Un and X. �

Proof of Proposition 2. The proof follows from observing that

P[Xn+1 � dx|X] = E
"
P̃ (dx)|X

#
=
!

R+
E
"
P̃ (dx)|Un = u, X

#
f

X

Un
(u) du

By virtue of Theorem 1

E
"
P̃ (dx)|Un = u, X

#
= E

�
µ̃(u)(dx)

T (u)+
⌧n(�)

i=1 J (u,X)
i

�
+ E

�⌧n(�)
i=1 J (u,X)

i ⇤Yi(dx)

T (u) +
⌧n(�)

i=1 J (u,X)
i

�

= I1(u, x,X) + I2(u, x,X).

Let us now focus on I1(u, x,X). We are going to prove that
!

R+
I1(u, x,X)f

X

Un
(u) du = w(n) H(dx). (30)

To this end, one can exploit the independence, conditional on Un = u and on X, between the
J (u,X)

i s and µu and the independence of the increments of µu to show

I1(u, x,X) =
!

R+
E
"
e�v n(�)

i=1 J(u,X)
i

#
E
"
µ̃(u)(dx) e�vT (u)

#
dv

= H(dx)
!

R+

�

⇢
n(�) 

i=1

�ni(u + v|Yi)
�ni(u|Yi)

✏

� �1(u + v|x) e�⌅(u)(v) dv

where ⇣(u)(v) = � logE[e�vµ̄(u)
]. Now, observe that ⇣(u)(v)+⇣(u) = ⇣(u+ v) so that the right

hand side of (30) reduces to

H(dx)
!

R+

!

R+
un�1 e�⌅(u+v)

�

⇢
n(�) 

i=1

�ni(u + v|Yi)

✏

� �1(u + v|x) du dv.

The change of variable (w, z) = (u + v, u) and subsequent integration with respect to z immedi-
ately yield (30). The proof for the remaining weights of the predictive distribution moves along
the same lines and it is omitted. Note that one may also use proposition 3 to prove this result.�

Proof of Proposition 3. This easily follows from (29), if one integrates out N , the si’s and u. �

Proof of Proposition 4. The conditional distribution of Y , given Un and �, is obtained by
applying Bayes rule to (29). An application of Bayes rule also yields readily a description of the
conditional distribution of � given Un, the normalizing constant being

⌧
�

�n(�)
i=1 ⌥ni(Un). Here⌧

� stands for the sum over all partitions of the set of integers {1, . . . , n}. The simpler form
in (17) may be obtained by noting some known relationships between cumulants, partitions and
moments. However, for immediate clarity one can use (29) to establish that identity

fUn(u) =
1

�(n)
un�1 e�⌅(u)

�

�

n(�) 

i=1

⌥ni(u).

The result then follows by noting the form of fUn
(u) given in (6). �


