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Model Mis-specification

Each specification can be interpreted of the result of a reduction
process, what happens if the reduction process that has generated
E (y j X) omits some relevant information?
We shall consider three general cases of mis-specification.

Mis-specification related to the choice of variables included in the
regressions,
mis-specification related to ignoring the existence on constraints on
the estimated parameters
and misspecification related to wrong assumprions on the
properties of the error terms.
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Choice of variables

under-parameterization (the estimated model omits variables
included in the DGP)
over-parameterization (the estimated model includes more
variables than the DGP).
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Under-parameterization

Given the DGP:
y = X1β1+X2β2+ε, (1)

for which hypotheses (??)� (??) hold, the following model is
estimated:

y = X1β1 + ν. (2)

The OLS estimates are given by the following expression:

bβup
1 =

�
X01X1

��1 X01y, (3)
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Under-parameterization

while the OLS estimates which are obtained by estimation of the DGP,
are: bβ1 =

�
X01M2X1

��1 X01M2y. (4)

The estimates in (4) are best linear unbiased estimators (BLUE) by
construction, while the estimates in (3) are biased unless X1and X2 are
uncorrelated. To show this, consider:

bβ1 =
�
X01X1

��1
�

X01y� X01X2bβ2

�
(5)

= bβup
1 + bDbβ2, (6)

where bD is the vector of coefficients in the regression of X2 on X1 andbβ2 is the OLS estimator obtained by fitting the DGP.

Favero () Model Mis-specification 5 / 37



Clicker 10

Insert Clicker 10 here

Favero () Model Mis-specification 6 / 37



Under-parameterization

Note that if

E (y j X1, X2) = X1β1+X2β2,
E (X1j X2) = X1D,

then,
E (y j X1) = X1β1+X1Dβ2 = X1α.

Therefore the OLS estimator in the under-parameterized model is a
biased estimator of β1, but an unbiased estimator of α.

Then, if the objective of the model is forecasting and X1 is more
easily observed than X2, the under-parameterized model can be
safely used.
On the other hand, if the objective of the model is to test specific
predictions on parameters, the use of the under-parameterized
model delivers biased results.
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Over-parameterization

Given the DGP,
y = X1β1 + ε, (7)

for which hypotheses (??)� (??) hold, the following model is
estimated:

y = X1β1 + X2β2 + v. (8)

The OLS estimator of the over-parameterized model is

bβop
1 =

�
X01M2X1

��1 X01M2y, (9)
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Over-parameterization

while, by estimating the DGP, we obtain:

bβ1 =
�
X01X1

��1 X01y. (10)

By substituting y from the DGP, one finds that both estimators are
unbiased and the difference is now made by the variance. In fact we
have:

var
�bβop

1 j X1, X2

�
= σ2 �X01M2X1

��1 , (11)

var
�bβ1 j X1, X2

�
= σ2 �X01X1

��1 . (12)
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Over-parameterization

Remember that if two matrices A and B are positive definite and A� B
is positive semidefinite, then also the matrix B�1�A�1 is positive
semidefinite. We have to show that X01X1 � X01M2X1 is a positive
semidefinite matrix. Such a result is almost immediate:

X01X1 � X01M2X1 = X01 (I�M2)X1

= X01Q2X1 = X01Q2Q2X1.

We conclude that over-parameterization impacts on the efficiency of
estimators and the power of the tests of hypotheses.
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Estimation under linear constraints

The estimated model is the linear model analysed up to now:

y = Xβ+ ε,

while the DGP is instead:

y = Xβ+ ε, subject to Rβ� r = 0,

where the constraints are expressed using the so called implicit form.
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Estimation under linear constraints

A useful alternative way of expressing constraints, known as the
‘explicit form’ has been expressed by Sargan (1988):

β = Sθ+ s,

where S is a (k� (k� r)) matrix of rank k� r and s is a k� 1 vector.
To show how constraints are specified in the two alternatives let us
consider the case of β1 = �β2 on the following specification:

ln yi = β0 + β1x1i + β2x2i + εi. (13)
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Estimation under linear constraints

Using Rβ� r = 0:

�
0 1 1

�0@ β0
β1
β2

1A = (0) ,

while using β = Sθ+ s:0@ β0
β1
β2

1A =

0@ 1 0
0 1
0 �1

1A� β0
β1

�
+

0@ 0
0
0

1A .

In practice the constraints in the explicit form are written by
considering θ as the vector of free parameters.
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Estimation under linear constraints

Note that there is no unique way of expressing constraints in the
explicit form, in our case the same constraint can be imposed as:0@ β0

β1
β2

1A =

0@ 1 0
0 �1
0 1

1A� β0
β2

�
+

0@ 0
0
0

1A .

As the two alternatives are indifferent, Rβ� r = 0 and
RSθ+Rs� r = 0 are equivalent, which implies:

1 RS = 0;
2 Rs� r = 0.
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The restricted least squares (RLS) estimator

To construct RLS, substitute the constraint in the original model to
obtain:

y� Xs = XSθ+ ε. (14)

Equation (14) is equivalent to:

y�= X�θ+ ε, (15)

where y� = y� Xs, X� = XS.
Note that the transformed model features the same residuals with the
original model; therefore, if standard hypotheses hold for the original
model, they also hold for the transformed.
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The restricted least squares (RLS) estimator

We apply OLS to the transformed model to obtain:

bθ =
�
X�0X�

��1 X�0y� (16)

=
�
S0X0XS

��1 S0X0 (y� Xs) .

From (16) the RLS estimation is easily obtained by applying the

transformation bβrls
= Sbθ+ s. Similarly, the variance of the RLS

estimator is easily obtained as:

var
�bθ j X

�
= σ2 �X�0X���1

= σ2 �S0X0XS
��1 ,

var
�bβrls j X

�
= var

�
Sbθ+ s j X

�
= S var

�bθ j X
�

S0

= σ2S
�
S0X0XS

��1 S0.
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The restricted least squares (RLS) estimator

We can now discuss the properties of OLS and RLS in the case of a
DGP with constraints.

Unbiasedness
Under the assumed DGP, both estimators are unbiased, since such
properties depend on the validity of hypotheses (??)� (??), which is
not affected by the imposition of constraints on parameters.

Efficiency
Obviously, if we interpret RLS as the OLS estimator on the
transformed model (16) we immediately derive the results that the
RLS is the most efficient estimator, as the hypotheses for the validity of
the Gauss Markov theorem are satisfied when OLS is applied to (16).
Note that by posing L = (X0X)�1 X0 in the context of the transformed
model, we do not generally obtain OLS but an estimator whose
conditional variance with respect to X, coincides with the conditional
variance of the OLS estimator.
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The restricted least squares (RLS) estimator

We support this intuition with a formal argument

var
�bβ j X

�
� var

�bβrls j X
�
= σ2 �X0X��1 � σ2S

�
S0X0XS

��1 S0.

Define A as:
A =

�
X0X

��1 � S
�
S0X0XS

��1 S0.

Given that

AX0XA =
��

X0X
��1 � S

�
S0X0XS

��1 S0
�

X0X
��

X0X
��1 � S

�
S0X0XS

��1 S0
�

=
�
X0X

��1 � 2S
�
S0X0XS

��1 S0 + S
�
S0X0XS

��1 S0S
�
S0X0XS

��1 S0

=
�
X0X

��1 � S
�
S0X0XS

��1 S0

= A,

A is positive semidefinite, being the product of a matrix and its
transpose.
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Heteroscedasticity, Autocorrelation, and the GLS
estimator

Let us reconsider the single equation model and generalize it to the
case in which the hypotheses of diagonality and constancy of the
conditional variances-covariance matrix of the residuals do not hold:

y = Xβ+ ε, (17)

ε � n.d.
�

0, σ2Ω
�

,

where Ω is a (T� T) symmetric and positive definite matrix. When
the OLS method is applied to model (17), it delivers estimators which
are consistent but not efficient; moreover, the traditional formula for
the variance-covariance matrix of the OLS estimators, σ2 (X0X)�1, is
wrong and leads to an incorrect inference.
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Heteroscedasticity, Autocorrelation, and the GLS
estimator

Using the standard algebra, it can be shown that the correct formula
for the variance-covariance matrix of the OLS estimator is:

σ2 �X0X��1 X0ΩX
�
X0X

��1 .

To find a general solution to this problem, remember that the inverse
of a symmetric definite positive matrix is also symmetric and definite
positive and that for a given matrix Φ, symmetric and definite
positive, there always exists a (T� T) non-singular matrix K, such that
K0K =Ω�1 and KΩK0= IT.
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Heteroscedasticity, Autocorrelation, and the GLS
estimator

Consider the regression model obtained by pre-multiplying both the
right-hand and the left-hand sides of (17) by K:

Ky = KXβ+Kε, (18)

Kε � n.d.
�

0, σ2IT

�
.

The OLS estimator of the parameters of the transformed model (18)
satisfies all the conditions for the applications of the Gauss�Markov
theorem; therefore, the estimatorbβGLS =

�
X0K0KX

��1 X0K0Ky

=
�

X0Ω�1X
��1

X0Ω�1y,

known as the generalised least squares (GLS) estimator, is BLUE. The
variance of the GLS estimator, conditional upon X, becomes

Var
�bβGLS j X

�
= Σβ = σ2

�
X0Ω�1X

��1
.
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Heteroscedasticity, Autocorrelation, and the GLS
estimator

Consider, for example, the variances of the OLS and the GLS
estimators. Using the fact that if A and B are positive definite and
A� B is positive semidefinite, then B�1�A�1 is also positive
semidefinite, we have:�

X0Ω�1X
�
�
�
X0X

� �
X0ΩX

��1 �X0X�
= X0K0KX�

�
X0X

� �
X0K�1 �K0��1 X

��1 �
X0X

�
= X0K0

�
I�

�
K0��1 X

�
X0K�1 �K0��1 X

��1
X
0
K�1

�
KX

= X0K0M0
WMWKX,

where

MW =
�

I�W
�
W0W

��1 W
0�

, (19)

W =
�
K0��1 X. (20)
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Heteroscedasticity, Autocorrelation, and the GLS
estimator

The applicability of the GLS estimator requires an empirical
specification for the matrix K.
We consider here three specific applications where the
appropriate choice of such a matrix leads to the solution of the
problems in the OLS estimator generated, respectively,

by the presence of first-order serial correlation in the residuals,
by the presence of heteroscedasticity in the residuals
by the presence of both of them.
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Correction for Serial Correlation (Cochrane-Orcutt)

Consider first the case of first-order serial correlation in the residuals.
We have the following model:

yt = x0tβ+ut,
ut = ρut�1 + εt,

εt � n.i.d.
�

0, σ2
ε

�
,

which, using our general notation, can be re-written as:

y = Xβ+ ε, (21)

ε � n.d.
�

0, σ2Ω
�

,

σ2 =
σ2

ε

1� ρ2 , (22)
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Correction for Serial Correlation (Cochrane-Orcutt)

˘ =

26666664

1 ρ ρ2 . . ρT�1

ρ 1 ρ . . ρT�2

ρ2 . 1 . . .
. . . . . .

ρT�2 . . ρ 1 ρ
ρT�1 ρT�2 . . ρ 1

37777775 .

In this case, the knowledge of the parameter ρ allows the empirical
implementation of the GLS estimator. An intuitive procedure to
implement the GLS estimator can then be the following:

1 estimate the vector β by OLS and save the vector of residuals but;
2 regress but on but�1 to obtain an estimate bρ of ρ;
3 construct the transformed model and regress (yt � bρyt�1) on
(xt � bρxt�1) to obtain the GLS estimator of the vector of
parameters of interest.

Note that the above procedure, known as the Cochrane�Orcutt
procedure, can be repeated until convergence.
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Correction for Heteroscedasticity (White)

In the case of heteroscedasticity, our general model becomes

y = Xβ+ ε,
ε � n.d. (0,Ω) ,

Ω =

26666664

σ2
1 0 0 . . 0

0 σ2
2 0 . . 0

. . . . . .

. . . . . .
0 . . 0 σ2

T�1 0
0 0 . . 0 σ2

T

37777775 .

In this case, to construct the GLS estimator, we need to model
heteroscedasticity choosing appropriately the K matrix.
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Correction for Heteroscedasticity (White)

White (1980) proposes a specification based on the consideration that
in the case of heteroscedasticity the variance-covariance matrix of the
OLS estimator takes the form:

σ2 �X0X��1 X0ΩX
�
X0X

��1 ,

which can be used for inference, once an estimator for Φ is available.
The following unbiased estimator of Φ is proposed:

bΩ=
26666664

bu2
1 0 0 . . 0

0 bu2
2 0 . . 0

. . . . . .

. . . . . .
0 . . 0 bu2

T�1 0
0 0 . . 0 bu2

T

37777775 .
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Correction for Heteroscedasticity (White)

This choice for bΩ leads to the following degrees of freedom corrected
heteroscedasticity consistent parameters’ covariance matrix estimator:

ΣW
β =

T
T� k

�
X0X

��1

 
T

∑
t=1
bu2

t XtX
0
t

! �
X0X

��1

This estimator corrects for the OLS for the presence of
heteroscedasticity in the residuals without modelling it.
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Correction for heteroscedasticity and serial correlation
(Newey-West)

The White covariance matrix assumes serially uncorrelated residuals.
Newey and West(1987) have proposed a more general covariance
estimator that is robust to heteroscedasticity and autocorrelation of the
residuals of unknow form. This HAC (heteroscedasticity and
autocorrelation consistent) coefficient covariance estimators is given
by:

ΣNW
β =

�
X0X

��1 T
ˆ

Ω
�
X0X

��1

where
ˆ

Ω is a long-run covariance estimators
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Correction for heteroscedasticity and serial correlation
(Newey-West)

bΩ = bΓ (0) + p

∑
j=1

�
1� j

p+ 1

� hbΓ (j) + bΓ (�j)
i

, (23)

bΓ (j) =

 
T

∑
t=1
butbut�jXtX

0
t�j

!
1
T

note that in absence of serial correlation bΩ = bΓ (0) and we are back to
the White Estimator. Implementation of the estimator requires a choice
of p, which is the maximum lag at whcih correlation is still present.
The weighting scheme adopted guarantees a positive definite
estimated covariance matrix by multiplying the sequence of the bΓ (j)’s
by a sequence of weights that decreases as jjj increases.
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Fama-MacBeth(1973)

Consider the 25 portfolios and run for each of them the CAPM
regression over the sample 1962:1 2014:6. These regressions
deliver 25 betas.
Take now a second-step regression in which the cross-section of
the average (over the sample 1962:1-2014:6) monthly returns on
the 25 portfolios are projected on the 25 betas:

ri = γ0 + γ1βi + ui

Under the null of the CAPM i) residuals should be randomly
distributed around the regression line, ii) γ0 = E

�
rf � , γ1 = E

�
rm � rf �
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Fama-MacBeth(1973)
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Fama-MacBeth(1973)

The cross-sectional regression strongly rejects the CAPM.
Note however that this regression is affected by an inference
problem caused by the correlation of residuals in the cross-section
regression.
Fama and MacBeth (1973) address this problem by estimating
month-by-month cross-section regressions of monthly returns on
the betas obtained on the full sample.
The time series means of the monthly slopes and intercepts, along
with the standard errors of the means, are then used to run the
appropriate tests
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Fama-MacBeth(1973)

The application of the Fama-MacBeth on the sample 1962:1 2014:6
delivers the following results

TABLE 3.5: Statistics on the distribution of coefficients from Fama-MacBeth

γ0 γ1

Mean 2.07 -0.807
St.Dev 9.56 10.06
Obs 630 630
t-stat 5.437 -2.01

An alternative route would be to construct Heteroscedasticity and
Autocorrelation Consistent(HAC) estimators.
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