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Risk Measurement

Once the portfolio weights (ŵ) are chosen, possibly exploiting
the predictability of the distribution of the relevant future
returns, the distribution of a portfolio returns can be described
as follows:

Rp ∼ D
(
µp, σ

2
p

)
µp = µ′ŵ σ2

p = ŵ′Σŵ

Having solved the portfolio problem and having committed to a
given allocation described by ŵ, there is a further role that
econometrics can play : measuring portfolio risk.
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Value at Risk (VaR)
The VaR is the percentage loss obtained with a probability at
most of α percent:

Pr
(
Rp

t+1 < −V aRα

)
= α.

• even if portfolio is constructed with a long-run perspective
risk can be measured at high frequency ( the question what
is the risk of my portfolio today is relevant even if the
portfolio is built with a ten-year perspective)

• VaR depends on the predictive distribution of returns at
high frequency

• once α is chosen, V aRα is defined by the predictive
distribution of returns
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VaR with the CER

• given some estimates of the unknown parameters in the model (µ, Σ
in our case).

rt,t+1 = µ̂+ ϵ̂t+1

ϵ̂t+1 ∼ D
(
0, Σ̂

)
• an assumption is made on the distribution (MC) of ϵ̂t+1, or the

empirical residuals are considered (Bootstrap)

• Then an artificial sample for ϵ̂t+1 of the desired length can be
computer simulated.

• The simulated residuals are then mapped into simulated returns via
the model.

• This exercise can be replicated N times to construct the distribution
of model predicted returns. Once the distribution is derived, then
VaR is available
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VaR with the CAPM:An application

• suppose you are invested in a specific portfolio and apply the CAPM
to derive the distribution of its future returns

RPort
t+1 = γ0 + γ1R

Mkt
t+1 + σPortv1,t+1

RMkt
t+1 = µ+ σMktzt+1

vi,t+1 ∼ IID N (0, 1),

zt+1 ∼ IID N (0, 1),

• estimate parameters, and get residuals for a training sample

• Then, at each point in time after your training sample generate an
artificial sample for the residuals.

• Map the simulated residuals into simulated returns via the model.

• construct the distribution of model predicted returns. Derive the VaR
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The Evidence from high frequency data

• Data at high-frequency (monthly or higher) show:

• very little or no persistence in first moments

• persistence in the variance

• non-normality

• These features of the data can be used to measure VaR,
using appropriate models for heteroscedasticity and
non-normality
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• Visibly, volatility “clusters” in time: high (low) volatility
tends to be followed by high (low) volatility
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A general model for high-frequency data

The CER posits:

Rt+1 = µ+ σut+1

ut+1 ∼ IID N (0, 1).

At high frequency the data suggest a different modelling framework :

Rt+1 = σt+1ut+1

σ2
t+1 = f(It) ut+1 ∼ IID D(0, 1).

The following features of the model are noteworthy:

1. The distribution of returns is centered around a mean of zero, and the zero mean model
dominates any alternative model based on predictors.

2. The variance is time-varying and predictable, given the information set, It, available at
time t.

3. The distribution of returns at high frequency is not normal, i.e., D(0, 1) may often differ
from N (0, 1)

Favero The Empirical Application of Finance 7/30



GARCH

A parsimonious model capable of capturing all the features of
high-frequency returns:

Rt+1 = µt + σt+1zt+1 zt+1 ∼ IID N (0, 1),

σ2
t+1 = ω + α (Rt − µt)

2 + βσ2
t

α+ β < 1

where returns have a constant mean (that is usually zero) and a
time varying GARCH(1,1) structure.
In a model like this the innovation ϵt ≡ σtzt has zero mean and
is serially uncorrelated at all lags j ⩾ 1. Where µt is often, but
not necessarily, set to 0.
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GARCH Properties
Rt+1 has a finite unconditional long-run variance of ω

1−α−β

σ2 = E
(
σ2
t+1

)
= ω + αE (Rt − µ)2 + βσ2

= ω + ασ2 + βσ2

=
ω

1− α− β

Substituting ω out of the GARCH expression:

σ2
t+1 = (1− α− β)σ2 + αR2

t + βσ2
t

= σ2 + α
(
(Rt − µ)2 − σ2

)
+ β

(
σ2
t − σ2

)
which illustrates the relation between predicted variance and
long-run variance in a GARCH model.
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GARCH Forecasting

σ2
t+1|t = σ2 + α

[
(Rt − µt)

2 − σ2
]
+ β

(
σ2
t − σ̄2

)
,

σ2
t+2|t = σ2 + (α+ β)σ2

t+1|t

σ2
t+n+1|t = σ2 + (α+ β)n σ2

t+1|t
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Testing for GARCH

A (Lagrange multiplier) test for (G)ARCH in returns/disturbances has
been proposed by Engle (1982). The methodology involves the following
two steps:

• First, use simple OLS to estimate the most appropriate regression
equation or ARMA model on asset returns and let {ẑ2t } denote the
squares of the standardized returns (residuals), for instance coming
from a homoskedastic model, ẑ2t = R2

t/σ̂
2;

• Second, regress these squared residuals on a constant and on q lagged
values ẑ2t−1, ẑ

2
t+2, ..., ẑ

2
t−q (et is a white noise shock):

ẑ2t = ξ0 + ξ1ẑ
2
t−1 + ξ2ẑ

2
t−2 + ...+ ξq ẑ

2
t−q + et.

If there are no ARCH effects, the estimated values of ξ1 through ξq should
be zero, ξ1 = ξ2 = ... = ξq.
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MLE Estimation

• OLS estimation cannot be applied to GARCH models as
σt+1 is not observed

• Maximum Likelihood methods are necessary in this case
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MLE Estimation

The assumption of IID normal shocks (zt),

Rt+1 = σt+1zt+1 zt+1 ∼ IID N (0, 1),

implies (from normality and identical distribution of zt+1) that
the density of the time t observation is:

lt ≡ Pr(Rt;θ) =
1

σt(θ)
√
2π

exp

(
−1

2

R2
t

σ2
t (θ)

)
,

where the notation σ2
t (θ) emphasizes that conditional variance

depends on θ ∈ Θ.
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MLE Estimation

Because each shock is independent of the others (from
independence over time of zt+1), the total probability density
function (PDF) of the entire sample is then the product of T
such densities:

L(R1, R2, ..., RT ;θ) ≡
T∏
t=1

lt =

T∏
t=1

1

σt(θ)
√
2π

exp

(
−1

2

R2
t

σ2
t (θ)

)
.

taking logs

L(R1, R2, ..., RT ;θ) = −T

2
log 2π− 1

2

T∑
t=1

log σ2
t (θ)−

1

2

T∑
t=1

R2
t

σ2
t (θ)
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MLE Estimation

Substituting an expression for σ2
t (θ)(given by the chosen

GARCH specification) given the observations on the returns
and given an initial observation for variance

L(R1, R2, ..., RT ;θ) = −T

2
log 2π − 1

2

T∑
t=1

log
[
ω + αR2

t−1 + βσ2
t−1

]
−1

2

T∑
t=1

R2
t

ω + αR2
t−1 + βσ2

t−1

,

σ2
0 =

ω

1− α− β

maximizing the log-likelihood to select the unknown parameters

will deliver the MLE, denoted as θ̂
ML
T
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Quasi MLE Estimation

• The QMLE result says that we can still use MLE
estimation based on normality assumptions even when the
shocks are not normally distributed, if our choices of
conditional mean and variance function are defendable, at
least in empirical terms (i.e. conditional mean and
conditional variance are correctly specified).

• However, because the maintained model still has that
Rt+1 = σt+1zt+1 with zt+1 ∼ IID D(0, 1), the shocks will
have to be anyway IID: you can just do without normality,
but the convenience of zt+1 ∼ IID D(0, 1) needs to be
preserved.
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An example

Because we know that the long-run (ergodic) variance from a
GARCH(1,1) is σ̄2 = ω/(1− α− β), instead of jointly
estimating ω, α, and β, you simply set

ω̃ = (1− α− β)

[
1

T

T∑
t=1

R2
t

]

for whatever values of α and β. Note that (i) you impose the
long-run variance estimate on the GARCH model directly and
avoid that the model may yield nonsensical estimates;(ii) you
have reduced the number of parameters to be estimated in the
model by one. These benefits must be carefully contrasted with
the well-known costs, the loss of efficiency caused by QMLE.
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From GARCH to VaR

After estimation a GARCH model can be simulated using
bootstrap or Monte-Carlo to derive the distribution of returns
and the relevant VaR

Rt+1 = µ+ σt+1zt+1 zt+1 ∼ IID N (0, 1),

σ2
t+1 = ω + α (Rt − µt)

2 + βσ2
t

α+ β < 1

Given estimation, derive ẑt =
Rt
σ̂t
. At time t you can now predict

σ2
t+1 and the distribution of Rt+1 can now be simulated via the

preferred method.
Recursion can then be applied to derive the distribution of Rt+n

with n > 1.
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GARCH with factors

Think of modelling the returns of many assets at a high
frequency with a (single) factor model

Ri
t+1 = γ0 + γ1ft+1 + σivi,t+1

ft+1 = µt + σt+1zt+1

σ2
t+1 = ω + α (Rt − µt)

2 + βσ2
t

vi,t+1 ∼ IID N (0, 1),

zt+1 ∼ IID N (0, 1),

α+ β < 1

one GARCH estimation will allow to model many returns
distribution. Again factor models allow parsimonious
representation.
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Backtesting VaR

How do we test the validity of a VaR model ? The relevant evidence to
judge a VaR model are violations:

Min(Rt+1 − V aRp
t+1, 0)

(a) A good VaR model should not feature neither too few nor too many
violations.
(b) We have to few violations when a VaR at the confidence level of alpha
shows less then 100*alpha violations in a sample of 100 observations. In
this case the VaR model is too conservative.
(c) when we have violations there are two interesting aspects of that: their
number and their timing. A five per cent VaR that feature 5 violations in
five successive periods cannot be taken as a valid VaR model as violations
are not independent. Clustering of violations is a problem that should lead
to reject specific VaR models.
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Unconditional Coverage Testing

Given a time-series of VaR and observed returns the ”hit sequence” of VaR
violations is defined as follows:

It+1 = 1, if Rt+1 > V aRp
t+1

It+1 = 0, if Rt+1 > V aRp
t+1

If the VaR is a valid model violations should not be predictable: the
probability of a VaR violation should be p every day. The hit sequence in
this case should be distributed over time as a Bernoulli variable that takes
the value 1 with probability p and the value 0 with probability 1− p. So

H0 : It+1 ∼ i.i.d. Bernoulli (p)

f (It+1, p) = (1− p)1−It+1 pIt+1

Favero The Empirical Application of Finance 21/30



Unconditional Coverage Testing

The first test of validity of a VaR is therefore constructed as follows. Take a
Bernoulli distribution (It+1, x) for the that the number of violations, derive
a maximum likelihood estimator x̂ of x, and test using a likelihood ratio
test that x̂ is not statistically different from p.

L (It+1, x) =
T

Π
i=1

(1− x)1−It+1 xIt+1

= (1− x)T0 xT1

where T1 is the number of violations of the VaR observed in the sample,
and T0 = T − T1.
The maximum likelihood estimator x̂ = T1

T
.
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Unconditional Coverage Testing

A likelihood ratio test of the null hypothesis x̂ = p, can then be
constructed as follows:

LRuc = −2 ln

[
L (p)

L (x̂)

]
which is distributed as a χ2 with one degree of freedom.
Note that usually the number of violations and the number of
observations available will not be large, so rather than relying
upon the χ2 distribution, it is adviceble to use Monte-Carlo
simulations to build the relevant distribution to conduct the
test. In this case the simulated P-values would be obtained by
drawing an artificial sample of the relevant size from the null,
and using as a P-value the share of simulated test that are
larger than the observed one.
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Independence Testing

We concentrate now on a test able to reject a VaR with clustered
violations. In this case the hit sequence is dependent over time and its
evolution over time can be described by a so called Markov sequence where
the transition from the relevant states (violation and no violation) can be
described by the following transition probability matrix

X1 =

[
x00 1− x00

1− x11 x11

]
where:

x00 = Pr (It+1 = 0 | It = 0)

1− x00 = Pr (It+1 = 1 | It = 0)

x11 = Pr (It+1 = 1 | It = 1)

1− x11 = Pr (It+1 = 0 | It = 1)
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Independence Testing

If we observe a sample of T observations the likelihood function of a first
order Markov process can be written as follows:

L (X1, It+1) = xT00
00 (1− x00)

T01 (1− x11)
T10 xT11

11

The maximum likelihood estimates of the relevant parameters are then

x̂00 =
T00

T00 + T01

x̂11 =
T11

T10 + T11

and so

X̂1 =

[
T00

T00+T01

T01
T00+T01

T10
T10+T11

T11
T10+T11

]
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Independence Testing

Under independence

X̂id
1 =

[
1− x̂ x̂
1− x̂ x̂

]
and therefore the independence hypothesis (1− x̂00) = x̂11 can be tested
using a likelihood ratio test

LRind = −2 ln

L
(
X̂id

1

)
L
(
X̂1

)
 ∼ χ2

1
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Independence Testing

As for the unconditional coverage test small sample problems can be fixed
by Monte Carlo simulation of the critical values, moreover samples in which
T11 = 0 are often observed. In this cases the likelihood function is
computed as

L (X1, It+1) = xT00
00 (1− x00)

T01
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Conditional Coverage Testing

Having constructed the test for independence we can test
jointly the hypothesis of conditional coverage and independence
via the following likelihood ratio test:

LRcc = −2 ln

 L (p)

L
(
X̂1

)
 ∼ χ2

2

note that

LRcc = LRuc + LRind
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Beyond GARCH.Threshold GARCH

GARCH models can be extended A number of empirical papers have
emphasized that for many assets and sample periods, a negative return
increases conditional variance by more than a positive return of the same
magnitude does, the so-called leverage effect.
A way of capturing the leverage effect is to directly build a model that
exploits the possibility to define an indicator variable, It , to take on the
value 1 if on day t the return is negative and zero otherwise. For
concreteness, in the simple (1,1) case, variance dynamics can now be
specified as:

σ2
t+1 = ω + αR2

t + αθItR
2
t + βσ2

t It ≡
{

1 if Rt < 0
0 if Rt ≥ 0

or

σ2
t+1 =

{
ω + α(1 + θ)R2

t + βσ2
t if Rt < 0

ω + αR2
t + βσ2

t if Rt ≥ 0
.

A θ > 0 will capture the leverage effect.
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Threshold GARCH

This model is sometimes referred to as the GJR-GARCH model—from
Glosten, Jagannathan, and Runkle’s (1993) paper—or threshold GARCH
(TGARCH) model.
In this model, because when 50% of the shocks are assumed to be negative
and the other 50% positive, so that E[It] = 1/2, the long-run variance
equals:

σ̄2 ≡ E[σ2
t+1] = ω + αE[R2

t ] + αθE[ItR
2
t ] + βE[σ2

t ]

= ω + ασ̄2 + αθE[It]σ̄
2 + βσ̄2

= ω + ασ̄2 +
1

2
αθσ̄2 + βσ̄2 =⇒ σ̄2 =

ω

1− α(1 + 0.5θ)− β
.

Visibly, in this case the persistence index is α(1 + 0.5θ) + β.
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