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SUMMARY

For the most popular discrete nonparametric models, beyond the Dirichlet process, the prior
guess at the shape of the data-generating distribution, also known as the base measure, is assumed
to be diffuse. Such a specification greatly simplifies the derivation of analytical results, allowing
for a straightforward implementation of Bayesian nonparametric inferential procedures. However,
in several applied problems the available prior information leads naturally to the incorporation
of an atom into the base measure, and then the Dirichlet process is essentially the only tractable
choice for the prior. In this paper we fill this gap by considering the Pitman–Yor process with an
atom in its base measure. We derive computable expressions for the distribution of the induced
random partitions and for the predictive distributions. These findings allow us to devise an effec-
tive generalized Pólya urn Gibbs sampler. Applications to density estimation, clustering and
curve estimation, with both simulated and real data, serve as an illustration of our results and
allow comparisons with existing methodology. In particular, we tackle a functional data analysis
problem concerning basal body temperature curves.

Some key words: Bayesian nonparametric inference; Functional data; Pitman–Yor process; Predictive distribution;
Random partition; Spike and slab base measure.

1. INTRODUCTION

Two-component mixture priors represent the most popular choice in Bayesian variable selec-
tion and when investigating sparsity phenomena. Such mixtures are commonly referred to as
spike and slab priors, a terminology that was introduced in Mitchell & Beauchamp (1988), who
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use a mixture whose components are a degenerate distribution at zero, referred to as a spike, and
a diffuse distribution, referred to as a slab. The seminal contribution of George & McCulloch
(1993), where a mixture of two normal distributions with zero mean and different variances is
considered, originated a huge amount of literature. Further developments, along with an insightful
discussion of connections with frequentist procedures, can be found in Ishwaran & Rao (2005).

The present paper investigates the use of a spike and slab prior specification for Bayesian
nonparametric inference on the clustering structure featured by the data. Among several possible
motivating applications we consider a functional data analysis problem, where the data represent
the basal body temperature curves of women. The daily basal body temperature of a healthy
woman during the menstrual cycle is known to follow a distinctive biphasic trajectory, which can
be described by a specific parametric function of time as

f ∗(t) = a + b
exp(ct)

1 + exp(ct)
(1)

and admits a clear clinical interpretation; see § 4·2. However, unhealthy women may display a far
more irregular functional form that does not preserve the S-shape yielded by (1). It is then natural
to think of these functional data as being generated on average by a mixture probability distribution
having a spike at the functional form in (1) and a diffuse component that accommodates irregular
basal body temperature behaviour; see Scarpa & Dunson (2009). In our fully nonparametric
framework this idea translates into the use of a nonparametric prior P̃ whose base measure is
a convex linear combination of a point mass at the function f ∗ in (1) and a diffuse distribution
P∗ on a suitable set of functions, i.e., E(P̃) = ζ δf ∗ + (1 − ζ )P∗. Introducing an atom in the
base measure, corresponding to the regular S-shape, allows us to embed useful prior information
while maintaining the natural flexibility of the nonparametric approach, which is needed to model
the potentially very irregular shape of unhealthy female body temperature curves. Motivated by
different applications, with real-valued data, Dunson et al. (2008), MacLehose et al. (2007),Yang
(2012) and Barcella et al. (2016) adopted a Dirichlet process with base measure featuring an atom
at zero: this allows them to simultaneously perform clustering and variable selection. In fact, an
atom at zero represents a natural way to incorporate the belief that some coefficients might be null
with positive probability in the prior. The same construction is used in Suarez & Ghosal (2016)
to model wavelet coefficients of functional data so as to induce sparsity. Applications to multiple
testing problems can be found in Bogdan et al. (2008) and in Kim et al. (2009). Among other
contributions proposing testing procedures based on a Dirichlet process, whose base measure is
a two-component mixture, we mention Guindani et al. (2009) and Do et al. (2005). When using
the Dirichlet process the presence of the atom in the base measure does not impact the structure
of the predictive distributions because of its conjugacy. Indeed, the predictive distribution can
be determined as a linear functional of the posterior distribution, which is still the distribution
of a Dirichlet process regardless of the presence of atoms in the base measure P0. However,
when P̃ is not a Dirichlet process, an atom in P0 considerably changes the posterior structure of
the process and induces some challenging technical issues that need to be addressed in order to
perform Bayesian inference.

In this work we investigate the distributional properties of perhaps the most popular gener-
alization of the Dirichlet process, namely the Pitman–Yor process (Perman et al., 1992; Pitman
& Yor, 1997). We show that, even when an atom is included in the base measure, the process
still preserves considerable analytical tractability. We derive explicit expressions for the associ-
ated exchangeable partition probability function, the predictive distributions and the distribution
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of the a priori number of distinct values Kn in an n-sample X (n) = (X1, . . . , Xn). These expres-
sions represent the building blocks of a generalized Blackwell–McQueen–Pólya urn scheme. The
resulting algorithm is then used to perform an extensive study involving both scalar and functional
data. This empirical analysis uncovers some interesting features of the model and allows useful
comparisons with alternatives. First we assess the different inferential behaviour of Dirichlet
and Pitman–Yor process-based models, when the base measure has an atomic component. Our
findings show that, somewhat similar to what happens in the case of a diffuse base measure
(Lijoi et al., 2007; Jara et al., 2010; De Blasi et al., 2015), models based on the Pitman–Yor
process are more flexible and more robust with respect to prior misspecification of the clustering
structure of the data. Moreover, we compare the Pitman–Yor process, with spike and slab base
measure, with an alternative two-component mixture model defined as a linear combination of an
atomic component and a Pitman–Yor process with diffuse base measure, in the spirit of Scarpa &
Dunson (2009). Finally, we draw a comparison between models whose base measure is diffuse
and models having a fixed atom in the base measure as in (5). The convenience of an atomic
component in the base measure, to reflect prior information, has already been pointed out in
existing literature on the Dirichlet process for the case of scalar data. Here, instead, we consider
functional data in the more general Pitman–Yor set-up and evaluate the potential gain in terms
of inferential performance. An atom in the base measure defined on some functional space turns
out to be greatly beneficial in terms of classification of functions.

2. SOME PRELIMINARIES ON RANDOM PARTITIONS

Since our goal is to study the clustering structure of the data from a Bayesian nonparametric
standpoint, it is natural to consider a discrete random probability measure P̃ and to look at

the exchangeable random partition associated with P̃. Assume that the data Xi | P̃
iid∼ P̃, for

i = 1, . . . , n, take values in some space X, where

P̃ =
∑
j�1

p̃j δZj (2)

is a discrete random probability measure such that
∑

j�1 p̃j = 1 almost surely, with the Zj being
independent and identically distributed X-valued random elements having common distribution
P0. Due to the discreteness of P̃, the n-sample X (n) = (X1, . . . , Xn) induces a partition, say�n, of
[n] = {1, . . . , n} such that i and j are in the same partition set when Xi = Xj. The corresponding
probability distribution pr(�n = {C1, . . . , Ck}), where Cj for j = 1, . . . , k are the unique cluster
labels for any k � n, is also known as the exchangeable partition probability function. See Pitman
(1995). Once the exchangeable partition probability function is available, one can determine the
predictive distributions associated with the exchangeable sequence (Xi)i�1. If the sample X (n)

contains k distinct values x∗
1, . . . , x∗

k , then

pr
(

Xn+1 ∈ dx
∣∣∣X (n)

)
= w(0)k ,n P0(dx)+

k∑
j=1

w(j)k ,n δx∗
j
(dx), (3)

where E(P̃) = P0 and the weights {w(j)k ,n : j = 0, 1, . . . , k} can be expressed in terms of the
underlying exchangeable partition probability function. Closed-form expressions for predictive
distributions in (3) are available for broad classes of discrete random probability measures under
the crucial assumption that P0 is diffuse (Pitman, 2003; Lijoi et al., 2005, 2007; James et al., 2009).
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Beyond the Dirichlet process, the literature on instances where the assumption of diffuseness of P0
can be relaxed is essentially confined to theoretical investigations with no actual implementation.
James et al. (2006) consider homogeneous normalized random measures and study the predictive
distribution for grouped data when the base measure has an atomic component. Their work
sheds light on the technical problems arising when considering an atomic component in the base
measure. A related result, confined to the Dirichlet case, can be found in Regazzini (1978). On
the other hand, Sangalli (2006) studies the predictive distribution of Poisson–Kingman models
when the base measure has an atomic component. Although in principle the results we present in
this work could be derived from the more general but rather involved expressions in James et al.
(2006) and Sangalli (2006), we opted to present a direct derivation that is less cumbersome and,
importantly, better illustrates the learning mechanism corresponding to such random measures.

We first recall the definition of the Pitman–Yor process and introduce some notation used
throughout. Let P̃ be as in (2) and assume that (p̃j)j�1 and (Zj)j�1 are independent. Then P̃ is a
Pitman–Yor process, P̃ ∼ PY(σ , θ ; P0) with σ ∈ [0, 1) and θ > −σ , if the p̃i are constructed
according to the following stick-breaking procedure (Perman et al., 1992): p̃1 = V1, p̃j =
Vj

∏j−1
i=1(1 − Vi) for j � 2, and (Vi)i�1 is a sequence of independent random variables with

Vi ∼ Be(1 − σ , θ + iσ). For a diffuse P0 the corresponding exchangeable partition probability
function equals

pr{�n = (C1, . . . , Ck)} = �
(n)
k (n1, . . . , nk ; σ , θ) =

∏k−1
j=1 (θ + jσ)

(θ + 1)n−1

k∏
j=1

(1 − σ)nj−1, (4)

where (a)n = �(a + n)/�(a) for any integer n � 0 and nj = card(Cj) are positive integers such
that

∑k
i=1 ni = n. See Pitman (1995). However, if one assumes

P0 = ζ δx0 + (1 − ζ )P∗ (5)

for some x0 ∈ X and diffuse probability measure P∗ on X, then (4) is no longer true.
Before stating the main results in the next section, we highlight a key difference between

P̃ ∼ PY(σ , θ ; P0) with P0 as in (5) and the alternative spike and slab prior specification

Q̃ = ζ δx0 + (1 − ζ ) Q̃∗, (6)

where Q̃∗ ∼ PY(σ , θ ; P∗) and P∗ is diffuse as in (5). Henceforth, we shall refer to P̃ ∼
PY(σ , θ ; P0) with P0 as in (5) as the inner spike and slab model. Similarly, Q̃ as in (6) will
be referred to as the outer spike and slab model. The model with an outer spike and slab (6) has
been used in Scarpa & Dunson (2009) when Q̃∗ is a Dirichlet process. Both processes share the
same two-component mixture centring, since it is apparent that E(Q̃) = E(P̃) = P0.

Remark 1. The inner and outer spike and slab models yield structurally different priors. An
interesting comparison can be made when σ = 0, which implies that both Q̃∗ and P̃ are Dirichlet
processes. If one sets ζ ∼ Be(1, θ), Q̃ can be represented as

∑
j�0 πj δYj with the random prob-

ability masses πj admitting the same stick-breaking representation characterizing the weights
of a Dirichlet process. Nonetheless, Q̃ is not a Dirichlet process since the location associated
with the first stick-breaking weight, namely Y0, equals x0 and therefore the random variables of
the sequence (Yj)j�0 are not independent and identically distributed. The substantial difference
between the two models can be further appreciated and in some sense quantified through Propo-
sition 1, which shows that the variabilities of P̃ and Q̃ around the shared mean, P0, are different.
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Pitman–Yor process 685

PROPOSITION 1. If f : X → R is any function such that
∫

f 2 dP∗ < ∞, then

var
(∫

f dP̃

)
− var

(∫
f dQ̃

)
= ζ(1 − ζ )

1 − σ

θ + 1

∫
{ f (x0)− f }2 dP∗ � 0. (7)

Hence, the prior uncertainty associated with a Pitman–Yor process with a spike and slab base
measure is larger than the uncertainty induced by an outer spike and slab model. In this sense,
our fully nonparametric prior is less informative and provides more flexibility than that used in
Scarpa & Dunson (2009). A simple illustration of this may be obtained by choosing f to be an
indicator function. If f = 1[0,t] for some t > 0, one obtains the random survival functions

S̃P̃(t) = 1 −
∫ ∞

0
1[0,t](x) dP̃(x), S̃Q̃(t) = 1 −

∫ ∞

0
1[0,t](x) dQ̃(x),

defined as functionals of the inner and outer spike and slab models P̃ and Q̃, respectively. By
setting x0 = 0, S̃P̃ and S̃Q̃ can be conveniently used as nonparametric prior distributions assigning
positive probability to the event occurring at time t = 0, which in reliability applications may
be interpreted as the failure of an item during its production. Let P∗ be any diffuse probability
measure on R

+, and let S∗ denote the corresponding survival function. It is straightforward to
show that both models have the same prior guess E{S̃P̃(t)} = E{S̃Q̃(t)} = (1 − ζ )S∗(t). A direct
application of Proposition 1 implies that, for every t � 0,

var
{

S̃P̃(t)
}

− var
{

S̃Q̃(t)
}

= ζ(1 − ζ )
1 − σ

θ + 1
S∗(t),

thus indicating that the random survival function based on the inner spike and slab model P̃ is
less concentrated around the prior guess than that based on the outer spike and slab model Q̃.

3. PITMAN–YOR PROCESS WITH SPIKE AND SLAB BASE MEASURE

The following result concerns a Pitman–Yor process having a point mass in its base mea-
sure and provides a closed-form expression for its exchangeable partition probability function,
denoted by 
(n)k (n1, . . . , nk). The expression is given in terms of generalized factorial coeffi-
cients C (nj, i; σ) = (i!)−1 ∑i

r=0(−1)r i!/{r!(i − r)!} (−rσ)nj ; see Charalambides (2005). In this
section we assume that σ ∈ (0, 1); the Dirichlet case is obtained by taking the limit σ → 0.

THEOREM 1. The exchangeable partition probability function induced by P̃ ∼ PY(σ , θ ; P0),
where P0 = ζ δx0 + (1 − ζ )P∗ as in (5), is



(n)
k (n1, . . . , nk) = (1 − ζ )k

∏k−1
j=1 (θ + jσ)

(θ + 1)n−1

k∏
j=1

(1 − σ)nj−1 + (1 − ζ )k−1
k∑

j=1

∏k−2
r=1 (θ + rσ)

(θ + 1)n−1

×
∏
� |=j

(1 − σ)n�−1

nj∑
i=1

ζ i
(
θ

σ
+ k − 1

)
i
C (nj, i; σ). (8)

A simple rearrangement of (8) yields a nice probabilistic interpretation of the result. Recall
that the posterior distribution of a PY(σ , θ ; P0), conditional on a sample of size n − nj
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featuring k − 1 distinct values x∗
1, . . . , x∗

k−1, all different from the fixed atom x0, is equal to
the law of

k−1∑
i=1

πi,j δx∗
i
+ πk ,jP̃k−1 (9)

with P̃k−1 ∼ PY{σ , θ + (k − 1)σ ; P0}, (π1,j, . . . ,πk−1,j) having a (k − 1)-variate Dirichlet
distribution with parameters {n1 − σ , . . . , nj−1 − σ , nj+1 − σ , . . . , nk − σ ; θ + (k − 1)σ } and
πk ,j = 1−∑k−1

i=1 πi,j. Moreover, (π1,j, . . . ,πk−1,j) and P̃k−1 are independent. The distribution of
the number of distinct values Kn ∈ {1, . . . , n} in a sample of size n from a PY(σ , θ ; P0) process
depends on the parameters (σ , θ , ζ ), so we will use the notation pr{Kn = k; (σ , θ , ζ )} for it. In
particular, ζ = 0 corresponds to a diffuse base measure leading to

pr{Kn = k; (σ , θ , 0)} =
∏k−1

r=1 (θ + rσ)

(θ + 1)n−1

C (n, k; σ)

σ k
.

Simple algebra leads to the following result.

COROLLARY 1. The exchangeable partition probability function of P̃ ∼ PY(σ , θ ; P0) with P0
as in (5) can be represented as



(n)
k (n1, . . . , nk) = (1 − ζ )k �

(n)
k (n1, . . . , nk ; σ , θ)+ (1 − ζ )k−1

k∑
j=1

(θ + kσ − σ)nj

(θ + n − nj)nj

× �
(n−nj)

k−1 (n1, . . . , nj−1, nj+1, . . . , nk ; σ , θ)

×
nj∑

i=1

ζ i pr{Knj = i; (σ , θ + kσ − σ), 0}, (10)

with �(n)k (n1, . . . , nk ; σ , θ) defined as in (4).

The first summand on the right-hand side of (10) corresponds to the case where none of the k
partition sets is identified by x0, its probability being (1−ζ )k . The second summand corresponds
to the case where one of the partition sets is at x0. The probabilistic interpretation is as follows.

For any j = 1, . . . , k: (i) with probability �
(n−nj)

k−1 (n1, . . . , nj−1, nj+1, . . . , nk ; σ , θ) a partition of
n − nj observations into k − 1 groups is generated through the diffuse component of the base
measure; (ii) conditional on the k −1 clusters generated by n−nj observations through the diffuse
component, {θ + (k − 1)σ }nj/(θ + n − nj)nj is the probability that the remaining nj observations
are generated by P̃k−1 in (9), which is the only component containing x0; (iii) conditional on
having nj observations generated by P̃k−1 and equal to x0, i of them are from the base measure
and, if we label them as if they generate separate clusters, the remaining nj − i are assigned to
any of these i labelled groups. In other terms, according to (iii), it is as if the nj observations are
further split into i fictitious subclusters all identified by x0.

Having derived a closed-form expression for the exchangeable partition probability function,
we can obtain the distribution of the number of distinct values Kn in X (n), for any vector of
parameters (σ , θ , ζ ), with ζ ∈ [0, 1].
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Pitman–Yor process 687

THEOREM 2. If Xi | P̃
iid∼ P̃ for i = 1, . . . , n and P̃ ∼ PY(σ , θ ; P0) with P0 as in (5), the

probability distribution of the number of distinct values Kn in X (n) equals

pr {Kn = k; (σ , θ , ζ )} = (1 − ζ )kpr{Kn = k; (σ , θ , 0)}

+ (1 − ζ )k−1
n−k+1∑

r=1

(
n

r

)
(θ + kσ − σ)r

(θ + n − r)r

× pr{Kn−r = k − 1; (σ , θ , 0)}
r∑

i=1

ζ i pr{Kr = i; (σ , θ + kσ − σ , 0)}.

The predictive distributions associated with the exchangeable sequence (Xi)i�1 directed by
P̃ ∼ PY(σ , θ ; P0), with P0 as in (5), can also be readily obtained from the corresponding
exchangeable partition probability function. Suppose the observed sample X (n) displays k distinct
values x∗

1, . . . , x∗
k with respective frequencies n1, . . . , nk .

THEOREM 3. Let Xi | P̃
iid∼ P̃ for i = 1, . . . , n and P̃ ∼ PY(σ , θ ; P0) with P0 as in (5). The

corresponding predictive distribution is

(i) if x0 �∈ {x∗
1, . . . , x∗

k },

pr(Xn+1 ∈ A | X (n)) = θ + kσ

θ + n
P0(A)+ 1

θ + n

k∑
j=1

(nj − σ) δx∗
j
(A);

(ii) if x0 = x∗
j for some j = 1, . . . , k,

pr(Xn+1 ∈ A | X (n)) = (1 − ζ )
θ + (k − 1)σ

θ + n

∑nj
i=1 ζ

i C (nj, i; σ)
(
θ
σ

+ k
)

i∑nj
i=1 ζ

i C (nj, i; σ)
(
θ
σ

+ k − 1
)

i

P∗(A)

+ 1

θ + n

∑nj+1
i=1 ζ i C (nj + 1, i; σ)

(
θ
σ

+ k − 1
)

i∑nj
i=1 ζ

i C (nj, i; σ)
(
θ
σ

+ k − 1
)

i

δx∗
j
(A)

+ 1

θ + n

∑
� |=j

(n� − σ) δx∗
�
(A).

The predictive distribution for case (i) coincides with that of the Pitman–Yor case with diffuse
base measure. Moreover, if ζ = 0 in (5), the predictive distribution reduces to that of case (i), as
required.Analogously it is easy to see that with ζ = 0 in (5) the exchangeable partition probability
function in Theorem 1 reduces to that of the nonatomic case in (4). Theorem 3 provides the basic
ingredients for devising the Pólya urn-type algorithm that will be used in § 4 and whose details
are provided in the Supplementary Material.

4. ILLUSTRATION

4·1. Synthetic data

The previous results pave the way to a straightforward implementation of the inner spike and
slab nonparametric model. For P̃ ∼ PY(σ , θ ; P0) with P0 a diffuse probability measure, there is
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Table 1. Posterior number of mixture components for the
location-scale mixture simulation experiment

E(Kn) σ n = 50 n = 100

3 0 3·14 3·04
0·25 3·40 3·35
0·50 4·13 3·94
0·75 5·71 4·68

15 0 11·99 11·33
0·25 11·49 10·21
0·50 10·50 8·07
0·75 8·42 5·58

extensive literature on the effects of σ on posterior inferences for the Pitman–Yor process and
allied nonparametric priors (Lijoi et al., 2007; Jara et al., 2010; De Blasi et al., 2015). Here, we
aim to understand whether these features are preserved when one allows the base measure P0 of
the Pitman–Yor process to have an atom. To this end we perform a simulation study with R = 100
replicated samples of size n = 50, 100 to mimic a quality control application. In this context a
given random element X is supposed to have a precise nominal value and the goal of the analysis
is to assess whether the nominal value is plausible or not on the basis of an observed random
sample X (n) of X . We assume that the measurements of X1, . . . , Xn are taken with a measuring
instrument with known precision. Data are simulated from a location-scale mixture of Gaussian
kernels, i.e.,

g0(X ) =
5∑

h=1

πhφ(X ; mh, t−1
h ),

where φ(·; m, t−1) is the normal density with mean m and precision t. We further set m1 = 0 and
t−1
1 = 0 ·04 as the nominal value of X and the variance of the measuring instrument, respectively.

Data are analysed assuming

Xi | (μi, τi)
ind∼ N (μi, τ

−1
i ), (μi, τi) | P̃

iid∼ P̃, P̃ | ζ ∼ PY(σ , θ ; P0).

Given the prior information on the nominal value and on the precision of the measuring instrument,
the base measure P0 assigns positive mass to the pair (m1, t1) and thus is a mixture of a point
mass and a diffuse density,

P0 = ζ δ(m1,t1) + (1 − ζ )P∗,

where P∗ is normal-gamma. In order to also learn the proportion of observations that can be
suitably modelled by the spike at (m1, t1), we further assume that ζ has a uniform prior between
zero and one. The analysis is repeated with different choices of σ and θ . Specifically we take
σ ∈ {0, 0·25, 0·5, 0·75} and we fix θ , using the results of Theorem 2, to have a prior expected
number of mixture components equal to 3 or 15 thus corresponding, respectively, to under-
estimation and overestimation of the true number of components. Details on the values of θ and
on the Markov chain Monte Carlo sampling algorithm employed to sample from the posterior
distribution of the parameters are reported in the Supplementary Material. The results, displayed
in Table 1, are consistent with the findings in the case of nonparametric mixtures with nonatomic
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Pitman–Yor process 689

Table 2. Posterior proportion of subjects allocated to the
spike for the location-scale mixture simulation experiment.

The largest Monte Carlo standard error is 0·08
σ n = 50 n = 100

Inner 0 0·43 0·41
0·25 0·42 0·40
0·50 0·41 0·39
0·75 0·42 0·39

Outer 0 0·50 0·49
0·25 0·49 0·49
0·50 0·49 0·49
0·75 0·49 0·49

base measures (Lijoi et al., 2007; De Blasi et al., 2015). Specifically, for larger values of σ ,
the estimated number of mixture components is closer to the true value. This nicely showcases
the effectiveness of the additional model flexibility conferred by σ in overcoming possible prior
misspecifications. The numerical estimates are reported in Table 1, with the largest Monte Carlo
standard errors being equal to 0·75 and 1·25 for the first and last four rows, respectively.

The second simulation experiment compares the inner and outer spike and slab models in terms
of estimation of the proportion of observations allocated to the spike component. A straightfor-
ward application of Proposition 1 with f = 1{x0} shows that the variance of the random mass
assigned by the inner model to the atom x0 exceeds the variance of the corresponding mass
assigned by the outer model by ζ(1 − ζ )(1 − σ)/(θ + 1). This difference suggests that the inner
spike and slab model should provide more robust posterior inference on the proportion of obser-
vations allocated to the spike, when ζ is fixed and its value misspecified. In order to check this
we consider the same simulated data as in the first experiment and keep x0 = (m1, t1). For both
inner and outer models, we fix ζ = 0·8 instead of assigning it a uniform prior. Given that the true
value is 0·4, this amounts to a strong misspecification. For every value of σ ∈ {0, 0·25, 0·5, 0·75}
we set the parameter θ in both models so that the prior expected number of components is equal
to five, the true number of components in our simulations. Details on how we set θ are reported
in the Supplementary Material. The results displayed in Table 2 show that the inner spike and
slab model is clearly better than the outer model in overcoming prior misspecifications.

A third simulation experiment aims to highlight the benefit of including the spike in the base
measure when there is supporting prior information. One might be tempted to think that the
flexibility of the Pitman–Yor process alone is enough to detect the spike and assign sufficient
posterior mass to it. Our simulation study shows that this is not the case. We simulate R = 50
datasets that mimic the characteristics of the basal body temperature functional data of our
motivating application. The daily basal body temperature of a healthy woman is known to follow
a distinctive biphasic trajectory that can be described, in simplified terms, as a function of time t,

f (t) = et

1 + et . (11)

Unhealthy women, however, tend to exhibit far more irregular shapes. For each dataset, we
simulate n = 50 functional data from the data-generating process

Xit | fi
ind∼ N {fi(t), σ 2}, fi

iid∼ P, P =
5∑

j=1

δf ∗
j
πj, (12)
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Table 3. Confusion matrix for the third simulation experiment.
The largest Monte Carlo error for the global accuracy is equal

to 0·07
Spike and slab base measure Diffuse base measure

Accuracy 0·834 0·747
False positive 0·305 0·557
False negative 0·072 0·049

where f ∗
1 is (11) and π1 = 0·4. The remaining curves f ∗

j , for j = 2, . . . , 5, and values of the
parameters are reported in the Supplementary Material. Data are analysed assuming

Xit | fi
ind∼ N { fi(t), σ 2}, fi | P̃

iid∼ P̃, P̃ | ζ ∼ PY(σ , θ ; P0)

with two different specifications for P0, which will be assumed as being either a mixture of a point
mass at (11) and a diffuse measure over the space of functions, or a plain nonatomic measure.
For both choices of P0 we set σ = 0·5 and fix θ so as to have the same prior expected number of
mixture components. Additional details on the prior specification and posterior computation are
reported in the Supplementary Material.

The results highlight the benefits of including the spike in the prior specification. Ignoring
prior information concerning a prevalent functional form for the data and consequently using a
diffuse base measure leads to a significant worsening of the inferences. This can be deduced, for
example, from the posterior clustering structure and, in particular, from the binary classification
of a subject into a cluster with or without biphasic shape. For the model with spike and slab P0
this corresponds to checking if a subject belongs to the cluster represented by the fixed atom.
For the model with diffuse P0, we label as biphasic the cluster in which the majority of the data
from (11) are clustered. The numerical results are reported in Table 3. The better performance
provides clear evidence in favour of the spike and slab specification of P0.

Another appealing inferential implication of the spike and slab base measure specification
is that the subject-specific posterior functional means are more precise for the subjects coming
from (11). Figure 1 displays the estimated functional mean and 90% pointwise posterior credible
bands for two subjects having true mean (11). The functional mean and limits of the credible
bands are estimated with the empirical mean and the 0·05 and 0·95 quantiles from the Markov
chain Monte Carlo iterations. The plots refer to one of the R = 50 datasets, though qualitatively
similar results can be found in almost any replicate.

Figure 1(a) concerns a subject classified in the true cluster with the spike and slab model for
more than 99·9% of the Markov chain Monte Carlo iterations. In such a case, as the cluster’s
shape is not estimated but fixed, there is no credible band around the continuous line. In contrast,
for the model without spike the curve’s shape cannot coincide with (11) since it is estimated
from the data, and it is worth noting that this estimate is erratic on the left and right parts of the
domain. Figure 1(b) concerns a borderline subject classified as biphasic in 85% of the Markov
chain Monte Carlo iterations for the spike and slab model and in only 60% of the iterations for
the nonatomic model. This leads to wider credible bands in both cases.

4·2. Basal body temperature functional data

We study a dataset on daily measurements of basal body temperature, consisting of 1118 non-
conception cycles from n = 157 women in the Verona centre of the Colombo & Masarotto (2000)
study. As shown in Fig. 2(a), the basal body temperature curve trajectory over time of healthy
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Fig. 1. Posterior functional means, conditional on simulated data from (12), for two observations having true mean
equal to (11): solid lines correspond to the model with spike and slab base measure, and dashed lines to the model with
nonatomic base measure. Shaded areas depict the posterior pointwise 90% credible bands. Panel (a) corresponds to

a subject clearly belonging to (11), panel (b) to a borderline case.
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Fig. 2. Panels (a) and (b) show the basal body temperature data for two cycles along with pointwise posterior means
and 95% credible bands.

women of reproductive age follows a biphasic trajectory that can be described by (11) or, more
generally, by the following parametric function of time t � 0:

f (t; τ1, τ2, λ,ω) = τ1 + τ2

{
exp

( t−λ
ω

)
1 + exp

( t−λ
ω

)
}

, (13)
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where τ1, τ2, λ � 0 and ω > 0. The representation in (13) is particularly convenient, since the
parameters have a clear clinical interpretation. For example, τ1 represents the value of hypother-
mia during the follicular phase of the cycle, λ can be interpreted as the moment of ovulation,
(τ1+τ2) is the level that the basal body temperature reaches after the sharp increase, controlled by
ω, which happens just before the ovulation. In contrast, unhealthy women tend to have different
curve shapes as shown, for example, in Fig. 2(b).

The nonparametric model with spike and slab base measure perfectly fits the present set-up:
it allows one to assign prior positive mass to curves with the typical healthy women’s shape,
and also to account for abnormal deviations from this standard shape via an extremely flexible
nonparametric functional data mixture model. The same dataset was analysed by Scarpa &
Dunson (2009), with similar goals by means of the outer model.

Let nij denote the duration of cycle j = 1, . . . , ni of woman i = 1, . . . , N . For every
t = 1, . . . , nij, the basal body temperature Xij(t) is observed. We assume that the measurements
Xij(t) can be modelled as

Xij(t) = τ1ij + τ2ij fij

(
t − λij

ωij

)
+ εij(t),

where εij(t) are independent measurement errors modelled as εij(t) ∼ N (0, σ 2), and fij is a
smooth random function with prior

fij | P̃
iid∼ P̃, P̃ | ζ ∼ PY(θ , σ ; P0),

where P0 has a spike and slab structure of the type

P0 = ζ δf0 + (1 − ζ )P∗,

with f0(t) = et/(1 + et) representing the biphasic curve and P∗ being a nonatomic probability
measure on a function space. The almost sure discreteness of the Pitman–Yor process induces
ties among the fij, with positive probability. We denote these atoms by f ∗

h for h = 1, . . . , k .
As the probability measure on the function space we consider the prior induced by a cubic

B-spline basis expansion, namely

g ∼ P∗, g(t) = B(t)Tβ, β ∼ Np(β0,�0),

with B(·) denoting the B-spline basis, Np(m, V ) the multivariate normal distribution of suitable
dimension p with mean vector m and variance matrix V , β a finite vector of basis coefficients,
β0 a p-dimensional vector of zeros and �0 the p-dimensional identity matrix. The Bayesian
specification of the model is then completed by eliciting prior distributions for all the remaining
parameters, which we assume to be independent. We let

(τ1ij, τ2ij) ∼ N2(αi,�), αi ∼ N2(α0, R),

λij ∼ U (bij + 10, bij + 20), ωij ∼ Ga(1/2, 1), (14)

1/σ 2 ∼ Ga(1/2, 1/2), ζ ∼ U (0, 1),

where bij denotes the first day after menstruation for cycle i of woman j, U (a, b) denotes the
uniform distribution over (a, b) and Ga(c, d) stands for the gamma distribution with expected
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value c/d. For simplicity � and R are identity matrices while α0 is a bidimensional vector of
zeros. The specifications in (14) allow us to model within- and between-woman heterogeneity
thanks to the presence of the woman-specific parameters αi. The parameters of the Pitman–Yor
process are θ = 1 and σ =0·25, while a uniform prior on ζ , the prior proportion of cycles
belonging to the parametric atom, is assumed in order to allow the model to learn this feature
from the data.

Posterior sampling is performed with the Gibbs sampler described in the Supplementary Mate-
rial. For the parametric part, its derivation is straightforward and follows standard results on linear
regression and spline interpolation. For the nonparametric part, the sampler is obtained by using
the results of § 3. We run the algorithm for 8000 iterations and discard the first 3000 as burn-in.
Convergence was assessed by visual inspection of the traceplots, which provided no evidence
against it.

The posterior probability of being allocated to the biphasic component f0 was greater than 50%
for 94·09% of the cycles under study. The posterior mean of ζ is 0·9283 with a 95% quantile
based posterior credible interval equal to (0·9097, 0·9450).

Figure 2(a) displays the pointwise posterior mean and 95% credible bands for a biphasic cycle
of a healthy woman. For this observation, as for all observations falling in the biphasic cluster,
we can perform inference on features such as the day of ovulation and the levels of the low and
high plateaus.

The cycles that do not fit the biphasic pattern are clustered in separate groups by our model.
More specifically, the posterior median number of clusters is equal to 4 with the first and third
quartiles equal to 4 and 5, respectively. These are potentially abnormal or related to unhealthy
women. Figure 2(b) shows an example.
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Supplementary material available at Biometrika online contains further details on the model
specifications and the derivation of the computational schemes employed in § 4.

APPENDIX

Proof of Proposition 1

One may proceed along the same lines as in Proposition 1 in James et al. (2006) and show that for a
Pitman–Yor process H̃ with parameters (σ , θ) and any type of base measure H0, i.e., diffuse or atomic or
combinations thereof, one has

var
(∫

f dH̃

)
= 1 − σ

θ + 1

{∫
f 2 dH0 −

( ∫
f dH0

)2
}

.

Specializing this for P̃ and Q̃ as in the statement yields (7).
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Proof of Theorem 1

In order to prove the result we resort to an alternative construction of the Pitman–Yor process that
makes use of completely random measures and is more convenient when the goal is to derive distributional
properties. See Lijoi & Prünster (2010) for a review of nonparametric priors using completely random
measures as a unifying concept. Recall that a completely random measure is a random measure μ̃ on X

such that, for any collection of pairwise disjoint subsets A1, . . . , Ak of X and k � 1, the random variables
μ̃(A1), . . . , μ̃(Ak) are mutually independent. For homogeneous and almost surely finite completely random
measures without fixed points of discontinuity, which are of interest here, the Laplace functional is of
the form

E
{

e− ∫
X f (x) μ̃(dx)

}
= exp

[
−

∫
R+×X

{
1 − e−sf (x)

}
ρ(s) ds cP0(dx)

]

for any f : X → R+, with ρ(s) cP0(dx) the Lévy intensity characterizing μ̃. The σ -stable completely
random measure (Kingman, 1975) is identified by setting ρ(s) = σ s−1−σ /�(1 − σ) for some σ ∈ (0, 1)
and letting Pσ denote its probability distribution. The construction of the Pitman–Yor process, due to
Pitman &Yor (1997), is then as follows. For any θ � 0, introduce another probability measure Pσ ,θ , which
is absolutely continuous with respect to Pσ and such that

dPσ ,θ

dPσ

(m) = �(θ + 1)

�(θ/σ + 1)
m−θ (X).

The resulting random measure μ̃σ ,θ with distribution Pσ ,θ is almost surely discrete while not completely
random. Moreover, P̃ = μ̃σ ,θ /μ̃σ ,θ (X) is a Pitman–Yor process P̃ ∼ PY(σ , θ ; P0).

Given this, the proof amounts to determining

E

{∫
Xk

P̃n1(dx1) · · · P̃nk (dxk)

}
(A1)

for any k-tuple of positive integers n1, . . . , nk such that
∑k

i=1 ni = n and integration variables such that
x1 |= · · · |= xk . By virtue of Fubini’s theorem and the definition of the Pitman–Yor process, (A1) equals

�(θ + 1)

�(θ/σ + 1)

1

�(θ + n)

∫
Xk

∫ ∞

0
uθ+n−1E

{
e−uμ̃σ ,0(X)

k∏
j=1

μ̃
nj
σ ,0(dxj)

}
du, (A2)

where μ̃σ ,0 denotes the σ -stable completely random measure. Let us focus on the determination of
E{∏k

j=1 P̃nj (dxj)}, i.e., the inner integral in (A2). If none of the xj equal x0, only the diffuse component P∗

of P0 contributes to the integral and the integrand boils down to the known expression of the Pitman–Yor
process with diffuse base measure, i.e.,

E

{
k∏

j=1

P̃nj (dxj)

}
∼=

{
k∏

j=1

(1 − ζ )P∗(dxj)

}
σ k

(θ + 1)n−1 �(θ/σ + 1)

×
∫ ∞

0
uθ+n−1 e−uσ

{
k∏

j=1

1

�(1 − σ)

∫ ∞

0
snj−σ−1 e−us

}
du, (A3)

where each dxj stands for an infinitesimal neighbourhood around xj. Hence, (A3) is a first-order approxima-
tion of E{∏k

j=1 P̃nj (dxj)} and the higher-order terms vanish when computing the integral over Xk in (A2).
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The right-hand side of (A3) can be rewritten as

{
k∏

j=1

P∗(dxj)

}
(1 − ζ )kσ k

{∏k
j=1(1 − σ)nj−1

}
(θ + 1)n−1 �(θ/σ + 1)

∫ ∞

0
uθ+kσ−1 e−uσ du

=
{

k∏
j=1

P∗(dxj)

}
(1 − ζ )k

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
j=1

(1 − σ)nj−1.

On the other hand, if x0 = xj for some j ∈ {1, . . . , k}, the expected value in the integral in (A2) equals

E
{

e−uμ̃σ ,0({x0}) μ̃
nj
σ ,0({x0})

}
E

⎧⎨
⎩e−uμ̃σ ,0(X\{x0}) ∏

� |=j

μ̃
n�
σ ,0(dx�)

⎫⎬
⎭ , (A4)

where the factorization follows from the definition of completely random measure. The second factor on
the right-hand side of (A4) can be easily evaluated since x� |= x0 for any � |= j, and thus it involves only
the diffuse component P∗ of P0, i.e.,

E

⎧⎨
⎩e−uμ̃σ ,0(X\{x0}) ∏

� |=j

μ̃
n�
σ ,0(dx�)

⎫⎬
⎭ ∼=

⎧⎨
⎩

∏
� |=j

P∗(dx�)

⎫⎬
⎭

× (1 − ζ )k−1 e−(1−ζ )ψ(u) u(k−1)σ−n+nj−1σ k−1
∏
� |=j

(1 − σ)n�−1,

and the above approximation is to be interpreted as the one given in (A3). As for the first factor, one has

E
{

e−uμ̃σ ,0({x0}) μ̃
nj
σ ,0({x0})

}
= (−1)nj

dnj

dunj
e−ζ ψ(u) = e−ζ ψ(u)

nj∑
i=1

ζ i ξnj ,i(u)

where ψ(u) = ∫ ∞
0 (1 − e−us) ρ(s) ds and, for any n � 1,

ξn,i(u) = 1

i!
i∑

j=0

(−1)n−j

(
i

j

)
ψ i−j(u)

dn

dun
ψ j(u).

Since μ̃σ ,0 has intensity σ s−1−σ P0(dx)/�(1 − σ), we have that ψ(u) = uσ and

ξn,i(u) = uiσ−n 1

i!
i∑

j=0

(
i

j

)
(−1)j(−jσ)n = uiσ−n C (n, i; σ).

Hence

E
{

e−uμ̃σ ,0({x0}) μ̃
nj
σ ,0({x0})

}
= e−ζ uσ

nj∑
i=1

ζ i uiσ−nj C (nj, i; σ).
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To sum up, the integrand in (A2) is a linear combination of the case where x0 �∈ {x1, . . . , xk} and the case
where x0 = xj for j = 1, . . . , k , and it can be represented as follows:

E

{
k∏

j=1

P̃nj (dxj)

}
∼=

{
1 −

k∑
j=1

δx0(dxj)

} {
k∏

j=1

P∗(dxj)

}
(1 − ζ )k

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
j=1

(1 − σ)nj−1

+
k∑

j=1

δx0(dxj)

{∏
� |=j P∗(dx�)

}
(1 − ζ )k−1σ k−1

(θ + 1)n−1 �(θ/σ + 1)

⎧⎨
⎩

∏
� |=j

(1 − σ)n�−1

⎫⎬
⎭

×
nj∑

i=1

ζ i C (nj, i; σ)
∫ ∞

0
uθ+(k−1+i)σ−1 e−uσ du,

which, as before, is a first-order approximation with vanishing higher-order terms, and equals

{
1 −

k∑
j=1

δx0(dxj)

} {
k∏

j=1

P∗(dxj)

}
(1 − ζ )k

∏k−1
i=1 (θ + iσ)

(θ + 1)n−1

k∏
j=1

(1 − σ)nj−1

+
k∑

j=1

δx0(dxj)

{∏
� |=j P∗(dx�)

}
(1 − ζ )k−1σ k−2

(θ + 1)n−1 �(θ/σ + 1)

⎧⎨
⎩

∏
� |=j

(1 − σ)n�−1

⎫⎬
⎭

×
nj∑

i=1

ζ i C (nj, i; σ) �
(
θ

σ
+ k − 1 + i

)
.

If we insert this expression into (A2), simple algebra yields (8).

Proof of Theorem 2

This follows from (10) in Corollary 1 and the fact that

pr{Kn = k; (σ , θ , 0)} = 1

k!
∑
�k ,n

(
n

n1 · · · nk

)
�
(n)
k (n1, . . . , nk ; σ , θ),

where �k ,n is the set of all vectors of positive integers (n1, . . . , nk) such that
∑k

i=1 ni = n.

Proof of Theorem 3

Recall that the weights of the predictive distribution in (3) may be determined as follows:

w(0)
k ,n = 


(n+1)
k+1 (n1, . . . , nk , 1)



(n)
k (n1, . . . , nk)

, w(j)
k ,j = 


(n+1)
k (n1, . . . , nj + 1, . . . , nk)



(n)
k (n1, . . . , nk)

.

In view of Theorem 1, if x0 �∈ {x∗
1 , . . . , x∗

k }, then only the first summand on the right-hand side of (8) is
involved in the determination of w(0)

k ,n and w(j)
k ,n, for j = 1, . . . , n. It is now clear that (i) follows and, as

expected, it equals the predictive distribution one would have had if P0 were diffuse. On the other hand,
if x0 = x∗

j for some j = 1, . . . , k , then the second summand on the right-hand side of (8) determines the
predictive weights and simple algebra yields (ii).
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SUMMARY

This supplementary material contains further details on the model specifica-
tion and the derivation of the computational schemes employed in §4 of the
main paper. The R code used in the paper is available at the github repository
github.com/tonycanale/PitmanYorSpikeAndSlab/.

BLACKWELL–MACQUEEN PÓLYA URN SCHEME

Before detailing in the next section the specific algorithms we resorted to in our experiments on sim-
ulated and real data, we stress that their main ingredient is represented by the predictive distributions
derived in Theorem 3. These can be used to tailor the general Blackwell–MacQueen Pólya urn scheme for
P̃ ∼ PY(σ, θ;P0) with a spike and slab base measure P0 reported below. LetXi | P̃

iid∼ P̃ , for i = 1, . . . , n.
We assume that the distinct values of Xi are x∗0, x

∗
1, . . . , x

∗
k, where x∗0 represents the atom in the base

measure (5). If the distinct values do not contain the atom, the algorithm below simplifies to a standard
Blackwell–MacQueen Pólya urn scheme. Let furthermore pr(Xi | X\i) be the probability of Xi condi-
tionally on all the remaining quantities, k\i be the number of distinct values of x∗j labelled from 0 to
k\i − 1 and nj be the number of observations equal to x∗j . Then the induced Blackwell–MacQueen Pólya
urn scheme is obtained sampling Xi for i = 1, . . . , n, from a multinomial with cell probabilities

pr(Xi = x∗0 | X−i) ∝
1

θ + n− 1

∑n0+1
l=1 ζlC (n0 + 1, l;σ)(θ/σ + k\i − 1)l∑n0

l=1 ζ
lC (n0, l;σ)(θ/σ + k\i − 1)l

,

pr(Xi = x∗j | X−i) ∝
(nj − σ)

θ + n− 1
, for j = 1, . . . k\i − 1,

C© 2016 Biometrika Trust



2 A. CANALE, A. LIJOI, B. NIPOTI AND I. PRÜNSTER

pr(Xi = k\i | X−i) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− 1

∑n0

l=1 ζ
l C (n0, l;σ)

(
θ/σ + k\i

)
l∑n0

l=1 ζ
i C (n0, l;σ)

(
θ/σ + k\i − 1

)
l

.

DETAILS ON § 4·1
Details on the inner spike and slab location-scale mixture

We now focus attention on the specific examples developed in §4 of the manuscript. The simulated
scalar data of § 4·1 are generated from the following location-scale mixture of Gaussian

0.4φ(0, 0.2) + 0.1φ(−3.5, 1) + 0.1φ(3.5, 1) + 0.2φ(1, 0.8) + 0.2φ(−1, 0.8).

In the first simulation experiment, data are analyzed assuming the inner model with the base measure

P0 = ζδ(m1,t1) + (1− ζ)P ∗,

where P ∗ is a prior over R×R∗, namely

P ∗(dµ,dτ) = φ(µ;µ0, κτ
−1)× Ga(τ ; a, b) dµdτ, (A8)

where µ0 = 0, a = 0.5, b = 2, and κ is set equal to the sample variance of the data. Note that the latter
is parametrized in terms of precision τ = 1/σ2. The prior on ζ is uniform, ζ ∼ U(0, 1). The analysis is
repeated with different choices of σ and θ reported in Table A1 obtained using equation (11).

Table A1: Prior parameters for the simulation experiment

θ
E(Kn) σ n = 50 n = 100

3

0 0.72 0.60
0.25 0.13 0.03
0.5 -0.35 -0.40

0.75 -0.71 -0.73

15

0 16.43 9.27
0.25 10.25 4.89
0.5 4.63 1.43

0.75 0.39 -0.44

Details on the Gibbs sampler for the inner spike and slab location-scale mixture
Given the above prior specification, in order to perform Markov chain Monte Carlo sampling from the

posterior distribution of the parameters, we use the Gibbs sampler composed by the following steps.

1. Let S1, . . . , Sn be the current cluster allocation, with Sj = 0 if Xj is allocated to the cluster of the
spike. For i = 1, . . . , n let k\i be the number of distinct values of Sj labeled from 0 to k\i − 1 and nh
is the number of observations belonging to cluster h. Then allocate the i-th observation to the cluster
of the spike, if already occupied, with probability proportional to

pr(Si = 0 | −) ∝ 1

θ + n− 1

∑n0+1
l=1 ζlC (n0 + 1, l;σ)(θ/σ + k\i − 1)l∑n0

l=1 ζ
lC (n0, l;σ)(θ/σ + k\i − 1)l

φ(Xi;µ0, τ
−1
0 ),

to one of the existing clusters, different from the spike, with probability proportional to

pr(Si = h | −) ∝ (nh − σ)

θ + n− 1
φ(Xi;µ

∗
h, τ
∗−1
h ), for h = 1, . . . k\i − 1

and finally to a new cluster with probability proportional to
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pr(Si = k\i | −) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− 1

∑n0

l=1 ζ
l C (n0, l;σ)

(
θ/σ + k\i

)
l∑n0

l=1 ζ
i C (n0, l;σ)

(
θ/σ + k\i − 1

)
l

× φ(Xi;µ∗, τ
−1
∗ ),

where (µ∗, τ∗) are new drawn from P ∗.

2. Update (µ∗h, τ
∗
h) from its conditional posterior

(µ∗h, τ
∗
h) ∼ N(µ̂h, κ̂hτ

∗−1
h )Ga(âτh , b̂τh)

with
– κ̂h = (κ−1 + nh)−1,
– µ̂h = κ̂h(κ−1µ0 + nhȳh),
– âτh = aτ + nh/2,
– b̂τh = bτ + 1/2{

∑
i:Si=h

(Xi − X̄h)2 + nh/(1 + κnh)(X̄h − µ0)2}.

3. Update ζ ∼ Beta(1 + n0, 1 + n− n0).

Details on the outer spike and slab location-scale mixture
In the second simulation experiment, we compare the inner and outer models. For the latter the mixing

distribution is defined as

Q̃ = ζ δ(m1,t1) + (1− ζ) Q̃∗,

where Q̃∗ ∼ PY(σ, θ;P ∗) and P ∗ is equal to (A8). The analysis is carried out for different choices of
σ and θ as reported in Table A2. The specific values are set so to have the prior expected number of
components equal to 5 and are determined by using (11) for the inner model and the following result for
the outer model.

PROPOSITION A1. Let Kn be the number of distinct values in an exchangeable sample X(n) from the
outer spike and slab model (6). Then

E (Kn) = 1− (1− ζ)n − θ

σ
+
θ

σ

(θ + σ)n
θn

2F1 (−n,−σ; 1− n− θ − σ; ζ) ,

where 2F1 denotes the Gaussian hypergeometric function.

Proof. Denote by n0 the number of observations inX(n) that coincide with the atom x0. Then we have

E (Kn) =

n∑
j=0

(
n

j

)
ζj(1− ζ)n−j E (Kn | n0 = j) .

If K ′n is the number of distinct values in a sample of size n from an exchangeable sequence governed by
Q̃∗, one has

E (Kn | n0 = j) = {1− δ0({j})}+ E(K ′n−n0
| n0 = j)

= {1− δ0({j})}+
θ

σ

{
(θ + σ)n−j

θn−j
− 1

}
.

for any j = 0, 1, . . . , n. Thus we have

E (Kn) =

n∑
j=1

(
n

j

)
ζj(1− ζ)n−j +

θ

σ

n∑
j=0

(
n

j

)
ζj(1− ζ)n−j

{
(θ + σ)n−j

θn−j
− 1

}

= 1− (1− ζ)n − θ

σ
+
θ

σ

n∑
j=0

(
n

j

)
ζj(1− ζ)n−j

(θ + σ)n−j
θn−j
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= 1− (1− ζ)n − θ

σ
+
θ

σ

(θ + σ)n
θn

2F1 (−n,−σ; 1− n− θ − σ; ζ) .

Table A2: Prior parameters for the simulation experiment assuming E(Kn) = 5

θ
Model σ n = 50 n = 100

Inner

0 11.86 7.24
0.25 7.11 3.66
0.5 2.90 0.91

0.75 -0.04 -0.52

Outer

0 2.03 1.22
0.25 1.07 0.46
0.5 0.19 -0.17

0.75 -0.52 -0.66

Details on the Gibbs sampler for the outer spike and slab location-scale mixture
Given the above prior specification, to perform Markov chain Monte Carlo sampling from the posterior

distribution of the parameters under the outer spike and slab location-scale mixture model, we use a Gibbs
sampler composed by the following steps.

1. Let S1, . . . , Sn be the current cluster allocation, with Sj = 0 if Xj is allocated to the cluster of the
spike. For i = 1, . . . , n let k\i be the number of distinct values of Sj labeled from 0 to k\i − 1 and nh
is the number of observations belonging to cluster h. Then allocate the i-th observation to the cluster
of the spike, if already occupied, with probability proportional to

pr(Si = 0 | −) ∝ ζφ(Xi;µ0, τ
−1
0 ),

to one of the existing clusters, different from the spike, with probability proportional to

pr(Si = h | −) ∝ (1− ζ)
nh − σ

θ + n− n0 − 1
φ(Xi;µ

∗
h, τ
∗−1
h ), for h = 1, . . . k\i − 1

and finally to a new cluster with probability proportional to

pr(Si = k\i | −) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− n0 − 1
φ(Xi;µ∗, τ

−1
∗ ),

where (µ∗, τ∗) are new drawn from P ∗.

2. Update (µ∗h, τ
∗
h) from its conditional posterior

(µ∗h, τ
∗
h) ∼ N(µ̂h, κ̂hτ

∗−1
h )Ga(âτh , b̂τh)

with
– κ̂h = (κ−1 + nh)−1,
– µ̂h = κ̂h(κ−1µ0 + nhȳh),
– âτh = aτ + nh/2,
– b̂τh = bτ + 1/2{

∑
i:Si=h

(Xi − X̄h)2 + nh/(1 + κnh)(X̄h − µ0)2}.
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Details on the functional data simulation
The functional data of § 4·1 are generated on an equi-spaced grid of T = 25 points adding independent

random normal noises with fixed variance σ2 = 0.25 to the random functional means sampled from

P =

5∑
j=1

δf∗
j
πj ,

where the five f∗j are reported in Figure A1 and π = (π1, . . . , π5) = (0.4, 0.2, 0.2, 0.1, 0.1).

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
t

f

type
1

2

3

4

5

Fig. A1: Functional means for the functional data simulation experiment.

Data are analysed assuming P ∼ PY(σ, θ;P0) with two different choices for P0: (i) a mixture of a point
mass on (12) and a diffuse measure over the space of functions, (ii) a diffuse non-atomic base measure. In
both cases the diffuse measure is induced by a B-spline basis expansion, namely

f(t) = B(t)Tβ, β ∼ Np(β0,Σ0),

where B(·) denotes the cubic B-splines basis and β a finite vector of basis coefficients of size p = 3 +
number of knots. We specify the B-splines basis assuming a fixed set of knots at 2, 5, 9, 13, 17, 21, 24.
For simplicity, Σ0 is an identity matrix and β0 is a vector of zeroes. In both cases σ = 0.5 while θ = 1
and θ = 0.178 for first and second prior, respectively.

Details on the Gibbs sampler for functional data simulation
Given the above prior specification, the Gibbs sampler is composed by the following steps.

1. Let S1, . . . , Sn be the current cluster allocation, with Sj = 0 if the corresponding observation is allo-
cated to the cluster of the spike. For i = 1, . . . , n let k\i be the number of distinct values of Sj labeled
from 0 to k\i − 1 and nh is the number of observations belonging to cluster h. Then allocate the i-th
observation to the cluster of the spike, if already occupied, with probability proportional to

pr(Si = 0 | −) ∝ 1

θ + n− 1

∑n0+1
l=1 ζlC (n0 + 1, l;σ)(θ/σ + k\i − 1)l∑n0

l=1 ζ
lC (n0, l;σ)(θ/σ + k\i − 1)l

T∏
t=1

φ{Xit; f0(t), σ2},

to one of the existing clusters, different from the spike, with probability proportional to

pr(Si = h | −) ∝ nh − σ
θ + n− 1

T∏
t=1

φ{Xit; f
∗
h(t), σ2}, for h = 1, . . . k\i − 1
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and finally to a new cluster with probability proportional to

pr(Si = k\i | −) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− 1

∑n0

l=1 ζ
l C (n0, l;σ)

(
θ/σ + k\i

)
l∑n0

l=1 ζ
l C (n0, l;σ)

(
θ/σ + k\i − 1

)
l

×
T∏
t=1

φ{Xit; f∗(t), σ
2},

where f∗ is a new draw from the base measure.

2. Update the cluster baseline functions from the multivariate normal with covariance matrix and mean

Vβh
=
(

Σ−10 +
nh
σ2
BTB

)−1
mβh

= Vβh

(
Σ−10 β0 +

1

σ2

∑
Si=h

BTXi

)
.

3. Update σ2 form the conjugate inverse-gamma distribution

1/σ2 ∼ Ga

[
a+

nT

2
, b+

1

2

n∑
i=1

T∑
t=1

{yi(t)− fi(t)}2
]
.

4. Update ζ ∼ Beta(1 + n0, 1 + n− n0).

DETAILS ON § 4·2
Computational details

The Gibbs sampler used in § 4·2 is composed by the following steps.

1. For each cycle i of woman j, conditionally on Xij and on λij , ωij , and nij , the model can be written
as simple linear model, that is

Xij(t) = Zijθ + εij(t)

where

Zij =


1 zij(1)
1 zij(2)
...

...
1 zij(nij)

 , zij(t) = fij

(
t− λij
ωij

)
,

meaning that it can be seen as a standard linear regression for each pair (i, j). Hence the full conditional
distribution for τ1ij and τ2ij is (τ1ij , τ2ij)

T ∼ N(a1, V1), where

V1 = (Ω−1 + σ−2ZTijZij)
−1 a1 = V1(Ω−1αi + σ−2ZTijXij).

2. For each cycle i of woman j, conditionally on Xij and on τ1ij e τ2ij , the model can be written as

Xij(t) = f̃ij

(
t− λij
ωij

)
+ εij(t)

where f̃ij = τ1ij + τ2ijfij . We then proceed with the following two steps.

– Update the value of λij using direct sampling from the posterior. Given the uniform prior and
that the days are discrete, the full conditional posterior is simply a multinomial with probabilities
proportional to the likelihood function.

– Update ωij via Metropolis–Hastings sampling.
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3. For each i = 1, . . . , n, sample the woman specific mean αi ∼ N(a2, V2), where

V2 = (R+ niΩ
−1)−1, a2 = V2{Rα+ Ω−1

ni∑
j=1

(τ1ij , τ2ij)
T }

and ni is the total number of cycles for woman i.

4. Update the cluster allocation via Pólya urn sampling. Specifically let S1, . . . , Sn be the current cluster
allocation, with Sj = 0 if the corresponding observation is allocated to the cluster of the spike. For
i = 1, . . . , n let k\i be the number of distinct values of Sj labeled from 0 to k\i − 1 and nh is the
number of observations belonging to cluster h. Then allocate the i-th observation to the cluster of the
spike, if already occupied, with probability proportional to

pr(Sij = 0 | −) ∝ 1

θ + n− 1

∑n0+1
l=1 ζlC (n0 + 1, l;σ)(θ/σ + k\i − 1)l∑n0

l=1 ζ
lC (n0, l;σ)(θ/σ + k\i − 1)l

T∏
t=1

φ{Xit; f0(t), σ2},

to one of the existing clusters, different from the spike, with probability proportional to

pr(Sij = h | −) ∝ nh − σ
θ + n− 1

T∏
t=1

φ{Xit; f
∗
h(t), σ2}, for h = 1, . . . k\i − 1,

and finally to a new cluster with probability proportional to

pr(Sij = k\i | −) ∝ (1− ζ)
θ + (k\i − 1)σ

θ + n− 1

∑n0

l=1 ζ
l C (n0, l;σ)

(
θ/σ + k\i

)
l∑n0

l=1 ζ
l C (n0, l;σ)

(
θ/σ + k\i − 1

)
l

×
T∏
t=1

φ{Xit; f∗(t), σ
2},

where f∗ is a new draw from the base measure.

5. Update the cluster baseline functions f∗h for h = 1, . . . , k − 1 from the multivariate normal with co-
variance matrix and mean

Vβh
=

Σ−10 +
1

σ2

∑
Sij=h

τ22ijB
T
ijBij

−1 mβh
= Vβh

Σ−10 β0 +
1

σ2

∑
Sij=h

BTij(Xij − τ1ij)

 ,

where Bij = B{(t− λij)/ωij}.

6. Update σ2 form the conjugate inverse-gamma distribution

1/σ2 ∼ Ga

1

2
+

1

2

n∑
i=1

ni∑
j=1

nij ,
1

2
+

1

2

n∑
i=1

ni∑
j=1

nij∑
t=1

{Xij(t)− fij(t)}2
 .

7. Update ζ ∼ Beta(1 + n0, 1 + n− n0).

Additional plots
Figure A2 reports the estimated posterior distributions of the day of ovulation, the level of the low and

high plateau for the cycle in the left panel of Figure 2.

[Received November 2016. Revised April 2017]
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Fig. A2: Panels (a), (b), and (c) display the estimated posterior distributions of the day of ovulation, the level of the
low and high plateau for the cycle in the left panel of Figure 2.
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