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Abstract

In this paper we analyze the asymptotic behaviour of a large class of non-
parametric priors, namely Gibbs-type priors, which represent a natural general-
ization of the Dirichlet process. After determining their topological support, we
specifically investigate consistency of such priors according to the “what if ”, or
frequentist, approach, which postulates the existence of a “ true ” distribution P0.
We provide a full taxonomy of their limiting behaviours: consistency holds es-
sentially always for discrete P0, whereas inconsistency may occur for di↵use P0.
Such findings are further illustrated by means of three specific priors admitting
closed form expressions and exhibiting a wide range of asymptotic behaviours. For
both Gibbs-type priors and discrete nonparametric priors in general, the possible
inconsistency should not be interpreted as evidence against their use tout court.
It rather represents an indication that they are designed for modeling discrete
distributions, at which consistency holds true, and a neat evidence against their
use in the case of di↵use P0.

Key words and phrases: Asymptotics, Bayesian consistency, Bayesian nonpara-
metrics, Gibbs–type priors, Foundations, Species sampling.

1 Introduction

In this paper we study the posterior consistency of Gibbs–type priors recently intro-
duced in Gnedin and Pitman (2005). They identify a large class of discrete nonpara-
metric priors, which means they select almost surely (a.s.) discrete distributions, and
represent probably the most natural generalization of the Dirichlet process as will be
argued in Section 2. Several members of this class of nonparametric priors are widely
used in practice, for instance, in the contexts of mixture models (Ishwaran and James,
2001; Ishwaran and James, 2003; Lijoi, Mena and Prünster, 2007c), linguistics and in-
formation retrieval in document modeling (Teh, 2006; Teh and Jordan, 2010), species
sampling (Lijoi, Mena and Prünster, 2007a,b; Navarrete, Quintana and Müller, 2008)
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and, implicitly, in the context of exchangeable product partition models (Hartigan,
1990; Quintana and Iglesias, 2003).

A simple way to introduce Gibbs-type priors is through the system of predictive
distributions they induce. To this end, we first lay out the basic framework. Let
(X

n

)
n�1 be an (ideally) infinite sequence of observations, with each X

i

taking values
in a complete and separable metric space X. Moreover, PX is the set of all probability
measures on X endowed with the topology of weak convergence. In the most commonly
employed Bayesian models (X

n

)
n�1 is assumed to be exchangeable which means there

exists a probability distribution Q on PX such that

X
i

|p̃ iid⇠ p̃, p̃ ⇠ Q (1)

Hence, p̃ is a random probability measure on X whose probability distribution Q is
also termed de Finetti measure and acts as a prior for Bayesian inference. Whenever Q
degenerates on a finite dimensional subspace of PX, the inferential problem is usually
called parametric. On the other hand, when the support of Q is infinite-dimensional
then one typically speaks of a nonparametric inferential problem and it is generally
agreed (Ferguson, 1974) that having a large topological support is a desirable property
for a nonparametric prior: we will come back to this point later in Section 2. Given a
sample (X1, . . . , Xn

), the predictive distribution coincides with the posterior expected
value of p̃, that is

P(X
n+1 2 · |X1, . . . , Xn

) =

Z

PX
p( · )Q(dp|X1, . . . , Xn

). (2)

As mentioned above, we will deal with discrete priors Q, which implies that a sample
(X1, . . . , Xn

) will feature ties with positive probability: X⇤
1 , . . . , X

⇤
k

denote the k  n

distinct observations and n1, . . . , n
k

their frequencies for which
P

k

i=1 ni

= n. Gibbs-
type priors are characterized by predictive distributions (2) of the form

P(X
n+1 2 · |X1, . . . , Xn

) =
V
n+1,k+1

V
n,k

P ⇤( · ) +
V
n+1,k

V
n,k

kX

i=1

(n
i

� �)�
X

⇤
i
( · ), (3)

where � 2 (�1, 1), P ⇤(dx) := E[p̃(dx)] is a di↵use probability measure representing
the prior guess at the shape of p̃ and {V

n,k

: k = 1, . . . , n; n � 1} is a set of non-negative
weights satisfying the recursion

V
n,k

= (n� �k)V
n+1,k + V

n+1,k+1. (4)

Therefore, Gibbs-type priors are characterized by predictive distributions, which are a
linear combination of the prior guess and a weighted version of the empirical measure.
The most widely known prior within this class is the Dirichlet process (Ferguson, 1973).

In this paper we will focus on the asymptotic behaviour of Gibbs-type priors and,
in particular, investigate posterior consistency according to the “what if ” approach of
Diaconis and Freedman (1986). Such an approach consists in assuming that the data
(X

n

)
n�1 are independent and identically distributed from some “ true ” P0 2 P

X

and
in verifying whether the posterior distribution Q( · |X1, . . . , Xn

) accumulates in any
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neighborhood of P0, under a suitable topology. Since Gibbs-type priors are defined on
PX and are discrete, the appropriate notion of convergence is convergence in the weak
topology. Therefore, we aim at establishing whether Q(A

✏

|X1, . . . , Xn

) ! 1, a.s.-P1
0 ,

as n ! 1 and for any ✏ > 0, where A
✏

denotes a weak neighborhood of P0 of radius "
and P1

0 is the infinite product measure P0 ⇥ P0 ⇥ · · · . In pursuing this plan we first
show that “genuinely nonparametric” Gibbs-type priors (a notion that will be clarified
in Section 2) have full weak support. We then prove a general structural result on
Gibbs-type priors showing that the posterior distribution converges to a point mass at
the limiting predictive distribution

↵P ⇤ + (1� ↵)P0 ↵ 2 [0, 1] (5)

which is a linear combination of the prior guess P ⇤ and the “ true ” distribution P0.
This points out that Gibbs-type priors are well-behaved in the limit in the sense of
convergence taking place rather than implying consistency. As for the latter to happen,
one needs ↵ = 0 in (5), a feature clearly satisfied in the Dirichlet case. Since a few
particular cases of Gibbs-type priors with � 2 (0, 1) have already been considered
in Jang, Lee and Lee (2010) and James (2008), attention is focused on the case of
� 2 (�1, 0) for which nothing is known to date and which yield competitive estimators
for species estimation in Ecology (Favaro, Lijoi, Mena and Prünster, 2012). A full
taxonomy of the asymptotic behaviours is provided. In fact, in deriving the results it
is fundamental to distinguish the cases of P0 discrete and di↵use: in the former case
one essentially always has consistency, whereas in the latter we provide a su�cient
condition for consistency, which has the merit of being close to necessary. This is
shown by exhibiting specific priors, which, by a minimal violation of the su�cient
condition, already lead to inconsistency. Moreover, we are able to provide two new
and completely explicit priors exhibiting the two extreme limit behaviours, ↵ = 0 and
↵ = 1. In particular, the latter corresponds to the worst case scenario where the
posterior tends to concentrate around the prior guess P ⇤ and no learning at all takes
place: we will refer to such a pathological situation as “total” inconsistency. A third
specific prior yields the whole spectrum of ↵ 2 (0, 1) and serves as interpretation of
the two extreme cases.

The results of the present paper briefly outlined above are to be read at two dis-
tinct levels. The first immediate one is that we provide a comprehensive analysis of
consistency properties of a large and intuitive class of nonparametric priors. This fills
in a gap in the current rapidly growing literature on asymptotic properties of Bayesian
nonparametric procedures. See Ghosal (2010) for a recent review. The relevance of the
results we achieve is further witnessed by the increasing use of these priors in statistical
practice. The second level at which the results of the present paper should be read con-
cerns general foundational and methodological questions. In particular, by providing
neat asymptotic results we highlight that discrete nonparametric priors are actually
designed to model discrete distributions and that they should under no circumstance be
used to model data coming from di↵use distributions. This is an important point since
most Bayesian nonparametric approaches to survival analysis rely on discrete priors
such as neutral to the right processes or cumulative hazards modeled as independent
increments processes. The fact that discrete nonparametric priors typically have full
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weak support, as the ones considered in the present paper, has often led to think that
they could represent suitable models also for di↵use distributions. Consequently, the
famous example of inconsistency due to Diaconis and Freedman (1986), involving the
use of a Dirichlet process in a semiparametric location problem, was interpreted as an
indication of the fact that one needs to be careful with Bayesian nonparametric models
in general and more specifically with modeling di↵use data with the Dirichlet process.
In our opinion, this essentially represented a misunderstanding: its reason probably
lies in the fact that the Dirichlet process combines full weak support with consistency
for independent and identically distributed data generated from a di↵use P0, which is
more of a coincidence than a structural property nonparametric priors should possess.
It is simply wrong to use discrete priors in such contexts and we hope to be able to
demonstrate such a claim by means of our explicit illustrations. In particular, we also
exhibit a specific nonparametric prior which in the case of di↵use P0 may produce
either consistency or “total” inconsistency by simply tuning a scalar parameter. On
the other hand, and this is not a coincidence, consistency is the rule for discrete data
generating distributions P0 or even for di↵use P0 provided the Gibbs-type prior is used
as mixing measure in a hierarchical model. The latter claim immediately follows from
Ghosal, Ghosh and Ramamoorthi (1999); Lijoi, Prünster and Walker (2005).

The outline of the paper is as follows. In Section 2 Gibbs–type priors are concisely
reviewed and their topological support is investigated. Section 3 contains the general
results on the asymptotic behaviour whereas Section 4 illustrates the above mentioned
specific priors which highlight the various possible asymptotic regimes. Some con-
cluding remarks, concerning mainly the foundational implications, are provided in
Section 5.

2 Gibbs-type priors and their topological support

As mentioned in the Introduction, modeling data according to a discrete priorQ implies
that a sample (X1, . . . , Xn

) will feature ties with positive probability. Recall that
X⇤

1 , . . . , X
⇤
k

denotes the k  n distinct observations and n1, . . . , n
k

their frequencies

for which
P

k

i=1 ni

= n. In choosing a specific predictive structure the key quantity to
consider is the probability of obtaining a new distinct observation, that is

P(X
n+1 = “new” |X1, . . . , Xn

). (6)

If ⇥ is a finite-dimensional parameter entering the specification of p̃, there are three
possibilities for modeling (6): (i) P(X

n+1 = “new”|X1, . . . , Xn

) = f(n,⇥), which
means that the probability of obtaining a new observation depends on the sample
size n but not on the number of distinct observations k and on their frequencies
n1, . . . , n

k

; (ii) P(X
n+1 = “new”|X1, . . . , Xn

) = f(n, k,⇥), which means that depen-
dence is now on both n and k but not on the frequencies n1, . . . , n

k

; (iii) P(X
n+1 =

“new”|X1, . . . , Xn

) = f(n, k, n1, . . . , n
k

,⇥) which depends on all the sample informa-
tion. As shown in Zabell (1982), (i) holds if and only if the prior is a Dirichlet process
with parameter measure ✓P ⇤, which corresponds to P(X

n+1 = “new”|X1, . . . , Xn

) =
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f(n,⇥) = ✓/(✓ + n). Case (ii) corresponds to Gibbs-type priors for which

P(X
n+1 = “new” |X1, . . . , Xn

) =
V
n+1,k+1

V
n,k

(7)

with the V
n,k

’s satisfying (4). In the general situation (iii), which in principle would
be the most desirable, serious tractability issues arise: priors have to be studied on a
case-by-case basis and typically lead to quite complicated expressions (Favaro, Prünster
and Walker, 2011). In light of the above considerations, the simplifying assumption
underlying Gibbs–type priors seems to represent the right compromise between flexi-
bility and tractability. In fact, it is only the probability of obtaining a new observation
that does not depend on the frequencies and not the complete prediction rule (3). To
clarify this point it is useful to interpret (3) by means of a two step procedure. The
first step concerns the probability of X

n+1 being “ new ” or “ old ”: X
n+1 is new with

probability V
n+1,k+1/Vn,k

, whereas it coincides with one of the previously observed
X⇤

1 , . . . , X
⇤
k

with probability 1 � V
n+1,k+1/Vn,k

= (n � k�)V
n+1,k/Vn,k

; as mentioned
above these probabilities do not depend on the frequencies n1, . . . , n

k

. The second
step is as follows: given X

n+1 is new, it is sampled independently from P ⇤; given X
n+1

is “ old ”, it coincides with X⇤
i

with probability (n
i

� �)/(n � k�) for i = 1, . . . , k,
which depends explicitly on n1, . . . , n

k

. Moreover, when compared to the Dirichlet
process, the Gibbs–type framework leads to apparent advantages in species sampling
problems (Lijoi, Mena and Prünster, 2007a,b) and also to more robust estimates of the
number of components in mixture models (Lijoi, Mena and Prünster, 2007c). As for
species sampling, it is enough to think of having two samples of size n = 10 featuring,
respectively, k

0
= 1 and k

00
= n distinct species: with the Dirichlet process the proba-

bility of observing a new species is ✓(✓+ n)�1 in both situations, whereas it explicitly,
and meaningfully, depends on k for other Gibbs-type priors. For instance, if one uses
the two-parameter Poisson-Dirichlet process (Pitman, 1996), a notable member of the
family of Gibbs-type priors, one has a wide spectrum of modeling possibilities for the
specific application at hand: indeed, one has that

P(X
n+1 = “new” |X1, . . . , Xn

) =
✓ + k�

✓ + n
, (8)

where the possible value of the parameters (�, ✓) are � 2 [0, 1) and ✓ > �� or � 2
(�1, 0) and ✓ = x|�| for some x 2 N; therefore, (8) is monotonically increasing in k
for � 2 (0, 1) and monotonically decreasing in k for � < 0.

In addition, to the predictive structure which completely characterizes Gibbs-type
priors, it is also worth to recall some features of the underlying de Finetti measure
Q whose posterior expected value yields the predictive distributions (2). Gibbs-type
priors are species sampling models (Pitman, 1996) and therefore they can be seen as
laws of random probability measures representable as

p̃( · ) =
X

i�1

p̃
i

�
Yi( · ), (9)

where the weights (p̃
n

)
n�1 take value on the infinite probability simplex, while the (Y

i

)’s
are independent and identically distributed from a di↵use P ⇤ and are independent from
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the p
i

’s. Clearly, E[p̃( · )] = P ⇤( · ) which explains the terminology prior guess adopted
for P ⇤. Such a framework allows to give an alternative definition of Gibbs-type priors,
which coincides with the original one in Gnedin and Pitman (2005): Gibbs-type priors
are species sampling models (9) for which the probability of obtaining in a n-size sample
k distinct observations with frequencies n1, . . . , n

k

has, for any n � 1, product form

V
n,k

kY

i=1

(1� �)
ni�1, (10)

with � 2 (�1, 1), the V
n,k

’s satisfying (4) and (a)
m

denoting the rising factorial
(a)

m

= a(a + 1) · · · (a + m � 1). Such a distribution, which in fact corresponds to
a distribution of the partition of the positive integers N induced by an exchangeable
sequence, is known as exchangeable partition probability function. This concept was
introduced by J. Pitman and plays a major role in modern probability theory. See
Pitman (2006) and references therein. The above mentioned special case of the two-
parameter Poisson-Dirichlet process corresponds to

V
n,k

=

Q
k�1
i=1 (✓ + i�)

(✓ + 1)
n�1

, (11)

with, as before, (� 2 [0, 1); ✓ > ��) or (� 2 (�1, 0); ✓ = x|�|;x 2 N). From (11)
one immediately obtains (8) via (7). For our purposes it is to be noted that the two-
parameter Poisson-Dirichlet model with (� 2 (�1, 0); ✓ = x|�|;x 2 N) corresponds to
an x-variate symmetric Dirichlet distribution with parameter vector (|�|, . . . , |�|).

In Gnedin and Pitman (2005) a complete characterization of the underlying de
Finetti measure Q is also provided and distinguishes three cases according to the value
of �: (i) if � = 0, p̃ is either a Dirichlet process or a mixture of Dirichlet processes
w.r.t. the total mass parameter ✓; (ii) if � 2 (0, 1), then Q is essentially a Poisson-
Kingman model based on the stable random measure, whose description goes beyond
the scope of the present paper and we refer the reader to Pitman (2006) and references
therein; (iii) if � < 0, Q is a mixture of the corresponding two-parameter model (11)
with (� 2 (�1, 0); ✓ = |�|x;x 2 N), that is

V
n,k

=
X

x�k

Q
k�1
i=1 (x|�|+ i�)

(x|�|+ 1)
n�1

⇡(x), (12)

where ⇡ is a probability measure on N and the sum obviously runs over x � k since the
numerator in the summands corresponding to x < k is 0. Therefore, since in the case
of negative � the two-parameter model coincides with a x-variate symmetric Dirichlet
distribution, one can also describe such Gibbs-type priors in terms of a mixture model

(p̃1, . . . , p̃
k

) ⇠ Dirichlet(|�|, . . . , |�|)
k ⇠ ⇡(·) (13)

Using the species metaphor, one can describe (12) or equivalently (13) as putting a
prior ⇡ on the number of species k and, conditionally on the number of species being
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x, these are distributed as a x-variate symmetric Dirichlet distribution. In contrast
to the case of � � 0 where the model assumes the existence of an infinite number of
species, the case of � < 0 assumes a possibly random but finite number of species.
Therefore, in light of the previous considerations, one deduces that if the probability
of observing a new species is assumed to depend on n and k but not on n1, . . . , n

k

and
moreover the a priori number of species is assumed to be finite (either random or not
random), then the model is necessarily (13).

Before proceeding to studying the support properties of Gibbs-type priors, let us
restrict attention to “ genuinely nonparametric ” Gibbs-type priors: specifically, we
will henceforth consider Gibbs-type priors whose realizations are discrete distributions
whose support contains a finite number of points that can be equal to any positive
integer. This is the same as saying that we concentrate on Gibbs-type priors with
either � 2 [0, 1) or � < 0 such that the support of ⇡ in (12) is the whole set of positive
integers N. Note that for the “ parametric ” case of � < 0 and ⇡ supported by a finite
subset of N one immediately has consistency for any P0 in its support by the results
of Freedman (1963).

Now we move on to considering the topological support of Gibbs-type priors. It
is widely accepted (Ferguson, 1974) that nonparametric priors should have a large
topological support. Since we are dealing with a class of discrete nonparametric priors
this requirement translates in asking Q to have large support in the weak topology. In
fact, the next result shows that Gibbs-type priors have full weak support, that is their
topological support coincides with the space of probability measures whose support
is included in the support of the prior guess P ⇤. In particular, if the support of P ⇤

coincides with X, the support of Q is the whole space PX. Such a property is already
known in the Dirichlet process case (Ferguson, 1973; Majumdar, 1992) and has been
recently extended to a class of predictor-dependent nonparametric priors, known as
dependent Dirichlet processes in Barrientos, Jara and Quintana (2011).

Proposition 1. Let Q be a Gibbs-type prior with prior guess P ⇤ and, in the case
� < 0, mixing measure ⇡ such that ⇡(x) > 0 for any x 2 N. Then the topological
support of Q coincides with

{p 2 PX : supp(p) ⇢ supp(P ⇤)} .

The proof is deferred to the Appendix. The property stated in Proposition 1 makes
Gibbs-type priors even more appealing for modeling purposes. When used to model
directly the data in species sampling contexts, it ensures that weak neighborhoods of
any given distribution (whose support is included in the support of the prior guess
P ⇤) have a priori positive probability. It is also a desirable property in the context of
mixture models where p̃ acts as a mixing distribution: indeed, it ensures a high degree
of flexibility of the model for any given kernel and has relevant implications in terms of
consistency since one can extend results known for Dirichlet mixtures (Ghosal, Ghosh
and Ramamoorthi, 1999; Lijoi, Prünster and Walker, 2005).
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3 Posterior consistency of Gibbs–type priors

Having provided a concise account of Gibbs-type priors and a result concerning their
support, we now move on to studying their asymptotic behaviour. For brevity, in the
sequel we use the notation Q

n

for denoting the posterior distribution Q( · |X1, . . . , Xn

)
of the random probability measure p̃ in (1), conditional on the sample X1, . . . , Xn

.
Assuming the data are independent and identically distributed from some “true” dis-
tribution P0 in PX, we are interested in checking whether Q

n

tends to concentrate,
as the sample size n increases, in a weak neighbourhood of some element, say P 0, in
PX, almost surely with respect to the infinite product measure P1

0 . If A0
"

is a weak
neighbourhood of P 0 with radius " > 0, we intend to establish conditions under which

Q
n

(A0
"

) ! 1 a.s.-P1
0 (14)

as n ! 1 and for any " > 0. More importantly, we would like to identify cases when
P 0 = P0, which corresponds to Q being weakly consistent in the frequentist sense.

Weak consistency of the Dirichlet process prior is quite straightforward to prove by
investigating the asymptotic behaviour of the corresponding posterior expected value
(i.e. the predictive distributions (2)) and the posterior expected variance. Given the
Dirichlet process prior is a special case of Gibbs-type prior, we adopt a similar strategy
in this more general framework. Since the predictive distributions in (3) characterize
Gibbs-type priors, it is apparent that the validity of (14) will depend on the limiting
behaviour of the weights V

n,n . We shall use the notation 
n

, in which the dependence
on n is made explicit, to denote the number of blocks in the partition of the first n
observations, that is 

n

:= 1 +
P

n

j=2 1Dj�1(Xj

) with D
j�1 = {X1, . . . , Xj�1}c. Given

the asymptotics of 
n

with respect P1
0 is considered, di↵erent choices of P0 yield

di↵erent limiting behaviours for 
n

. On the one hand, if P0 is discrete with N point
masses, for any N 2 N[{1}, then P1

0 (lim
n


n

= N) = 1 and P1
0 (lim

n

n�1
n

= 0) =
1 even if N = 1. On the other hand, if P0 is di↵use, P1

0 (
n

= n) = 1 for any n � 1.
Henceforth we shall focus on these two cases and adopt the shorter notation 

n

⌧
a.s.

n
and 

n

⇠
a.s.

n, which stand for 
n

/n ! 0 and 
n

/n ! 1 a.s.-P1
0 , respectively. See

Remark 2 below for a discussion of the case where P0 is a combination of a discrete
and a di↵use component.

Based on the above intuition, in order to establish the validity of (14), for some
P 0, one needs to investigate the asymptotics for V

n+1,n+1/Vn,n under P1
0 . Indeed,

in what follows we shall assume that the probability of recording a new distinct obser-
vation at step n+ 1

V
n+1,n+1

V
n,n

converges a.s.-P1
0 (H)

as n ! 1, and the limit is identified by some constant ↵ 2 [0, 1]. For all Gibbs-
type priors for which an explicit expression of the V

n,n ’s is known, (H) holds true
regardless as to whether P0 is discrete or di↵use. Hence, assuming (H) does not signif-
icantly restrict the generality of our results given it serves only to exclude pathological
behaviours. The role of condition (H) is also transparent: since it determines the
asymptotics of the predictive distribution, it also identifies the possible element P 0
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in PX for which (14) holds true. The following theorem shows that (H) is actually
su�cient to establish weak convergence at such P 0.

Theorem 1. Let p̃ be a Gibbs-type prior with prior guess P ⇤ = E[p̃], whose support
coincides with X, and assume condition (H) holds true. Moreover (X

i

)
i�1 is a sequence

of independent and identically distributed random elements from some probability dis-
tribution P0 which is either discrete or di↵use. Then the posterior converges weakly,
a.s.-P1

0 , to a point mass at ↵P ⇤(·) + (1� ↵)P0(·).
According to Theorem 1, achievement of weak consistency is guaranteed in the

trivial case of P ⇤ = P0, which will be excluded henceforth, and when ↵ = 0: therefore,
it is su�cient to check whether the probability of obtaining a new observation, given
previously recorded data, converges to 0, a.s.-P1

0 . One might also wonder whether
there are circumstances leading to ↵ = 1, which corresponds to the posterior concen-
trating around the prior guess P ⇤, a situation we refer to as “total” inconsistency. A
specific prior exhibiting such a pathological behaviour is provided in Section 4. Note
also that Theorem 1 includes as a special case Proposition 1 of James (2008) which is
confined to p̃ being a two-parameter Poisson-Dirichlet process with parameters (�, ✓)
such that � 2 [0, 1) and ✓ > ��. In fact, in the two-parameter Poisson-Dirichlet case,
it is immediate to see from (8) that when P0 is discrete (

n

⌧
a.s.

n) we have ↵ = 0,
implying consistency. When P0 is di↵use (

n

⇠
a.s.

n), we have ↵ = �, hence incon-
sistency, unless � = 0, which corresponds to the Dirichlet case. See also Jang, Lee
and Lee (2010, Theorem 1). Let us now provide a proof of the stated result. The key

ingredient is represented by an upper bound on the posterior variance Var[p̃(A) |X(n)
n ],

which is of independent interest and is discussed in some detail in Remark 1 below.

Proof of Theorem 1. The strategy we are going to use in the proof amounts to showing

that, under (H), the posterior variance of p̃(A), given a sample X(n)
n = (X1, . . . , Xn

)
featuring 

n

 n distinct values, converges to 0, a.s.-P1
0 . To this end, we shall deduce

an upper bound for Var[p̃(A) |X(n)
n ].

As in Freedman and Diaconis (1983), we consider the class of semi-norms on PX
defined by kP1�P2k2A =

P1
i=1[P1(Ai

)�P2(Ai

)]2 for a generating sequence of measur-
able partitions A = {A

i

}1
i=1 of X. Indeed, convergence under such semi-norms implies

weak convergence. Note that E
⇥
k p̃ � E[ p̃|X(n)

n ] k2A |X(n)
n

⇤
=
P1

i=1Var[p̃(Ai

)|X(n)
n ].

Hence, we are going to show that
1X

i=1

Var[p̃(A
i

)|X(n)
n

] ! 0 a.s.-P1
0

as n ! 1 for any partition A.
This would imply that the posterior concentrates in a weak-neighbourhood of the

predictive distribution. See also James (2008) for a similar approach in the specific
case of the two-parameter Poisson-Dirichlet process. To this end, let us first simplify
the notation and set ga,b

c,d

(n) = V
n+a,n+b

/V
n+c,n+d

with a, b, c and d non-negative
integers such that a � c and b � d. Exchangeability implies

E[p̃(A)2|X(n)
n

] =

Z

A

P(X
n+2 2 A |X(n)

n
, X

n+1 = x)P(X
n+1 2 dx|X(n)

n
)

9



= g1,10,0(n)

Z

A

P(X
n+2 2 A |X(n)

n
, X

n+1 = x) P ⇤(dx)

+ g1,00,0(n)
nX

j=1

�
X

⇤
j
(A) (n

j

� �) P(X
n+2 2 A |X(n)

n
, X

n+1 = X⇤
j

)

for any A 2 X , where X⇤
1 , . . . , X

⇤
n

are the 
n

distinct values that partition X(n)
n .

After some tedious and lengthy algebra, one gets to

E[p̃(A)2|X(n)
n

] = g2,00,0(n)
kX

i,j=1

(n
i

� �)(n
j

+ �
i,j

� �)�
X

⇤
i
(A)�

X

⇤
j
(A)

+ 2g2,10,0(n)
nX

i=1

(n
i

� �)�
X

⇤
i
(A)P ⇤(A) + g2,20,0(n)P

⇤(A)2 + g2,10,0(n)(1� �)P ⇤(A),

where �
i,j

is the Kronecker � function and note that we have also relied on the di↵use-
ness of P ⇤. Letting

P̃
n,k

=
1

n� 
n

�

nX

j=1

(n
j

� �)�
X

⇤
j

(15)

denote a weighted empirical distribution at the distinct observations, one can use the
above expression for the posterior second moment of p̃(A) and obtain

Var[p̃(A)|X(n)
n

] =

✓
g2,00,0(n)� (g1,00,0(n))

2

◆
(n� �

n

)2P̃
n,n(A)2

+ g2,00,0(n)(n� �
n

)P̃
n,n(A)

+ 2

✓
g2,10,0(n)� g1,00,0(n)g

1,1
0,0(n)

◆
(n� �

n

)P̃
n,n(A)P ⇤(A)

+

✓
g2,20,0(n)� (g1,10,0(n))

2

◆
P ⇤(A)2 + g2,10,0(n)(1� �)P ⇤(A).

This can be re-expressed in a more convenient form in terms of the quantity

I(n,
n

) := 1� V
n+2,n+1

V
n+1,n+1

V
n,n

V
n+1,n

. (16)

Indeed, one has

Var[p̃(A)|X(n)
n

] = �I(n,
n

)
⇣
E[p̃(A)|X(n)

n
]
⌘2

+W
n,n(A),

where, using the identities (A1) and (A2) of Lemma 1 in Appendix,

W
n,n(A) = g2,10,0(n)(n� �

n

)P̃
n,n(A)

10



⇥

(g2,01,0(n)� g2,11,1(n))(n� �

n

)P̃
n,n(A) + g2,01,0(n)

�

+ g1,10,0(n)P
⇤(A)


(g2,21,1(n)� g2,11,0(n))P

⇤(A) + g2,11,1(n)(1� �)

�

= I(n,
n

)E[p̃(A)|X(n)
n

] + g1,10,0(n)(g
2,2
1,1(n)� g2,11,0(n))P

⇤(A)
h
P ⇤(A)� 1

i

+ g1,00,0(n)
⇣
g2,01,0(n)� g2,11,0(n)

⌘
(n� �

n

)2P̃
n,k

(A)
h
P̃
n,k

(A)� 1
i
.

Since (P̃
n,k

(A) _ P ⇤(A))  1, the following upper bound for Var[p̃(A)|X
nk

(n)] holds
true

Var[p̃(A)|X(n)
k

]  I(n,
n

)E[p̃(A)|X(n)
n

]
⇣
1� E[p̃(A)|X(n)

n
]
⌘
+ Z

n,n(A),

where

Z
n,n(A) = g1,00,0(n)(n� �

n

)2P̃
n,k

(A) (g2,11,1(n)� g2,01,0(n))+

+ g1,10,0(n)P
⇤(A) (g2,11,0(n)� g2,21,1(n))+ (17)

where, for any a in R, a+ := max{a, 0}. Use again identities (A1) and (A2) of Lemma 1
to get

Z
n,n(A) = g1,00,0(n)(n� �

n

)P̃
n,n(A)(g2,01,0(n)� I(n,

n

))+

+ g1,10,0(n)P
⇤(A)(g2,11,1(n)(1� �)� I(n,

n

))+

Set now, for any a 2 R, a� := a� a+ and define

J(n,
n

) :=

✓
V
n+2,n+1

V
n+1,n+1

(1� ��)� I(n,
n

)

◆

+

(18)

One, thus, notes that (g2,11,1(n)(1� �)� I(n,
n

))+  J(n,
n

), and

(g2,01,0(n)� I(n,
n

))+  (g2,11,1(n)� I(n,
n

))+  J(n,
n

).

This implies that Z
n,n(A)  J(n,

n

)E[p̃(A)|X(n)
n ], which in turn yields

Var[p̃(A)|X(n)
n

]  I(n,
n

)E[p̃(A)|X(n)
n

]
⇣
1� E[p̃(A)|X(n)

n
]
⌘

+ J(n,
n

)E[p̃(A)|X(n)
n

] (19)

for any A in X . The upper bound (19), combined with x(1�x)  1 for any x 2 [0, 1],
leads to

1X

i=1

Var[p̃(A
i

)|X(n)
n

]  I(n,
n

) + J(n,
n

).

11



Therefore, we need to show that J(n,
n

) + I(n,
n

) ! 0 a.s.-P1
0 as n ! 1. In

the sequel we shall omit the a.s.-P1
0 specification and explicitly use it when possible

confusion may arise. By virtue of condition (H), with the limit identified by a value ↵
in [0, 1], one has (V

n+1,n/Vn,n)(n� �
n

) ! (1� ↵). Hence

1� I(n,
n

) =
V
n+2,n+1

V
n+1,n+1

�
V
n+1,n

V
n,n

⇠ n� 
n

�

n+ 1� (
n

+ 1)�

and one can conclude that I(n,
n

) ! 0, as n ! 1. It follows also that J(n, k) ! 0
as long as (1���)Vn+2,n+1/Vn+1,n+1 ! 0, but the latter is also implied by condition
(H) since V

n+2,n+1/Vn+1,n+1 ⇠ (1� ↵)/(n+ 1� �(
n

+ 1)). The proof is completed
after noting that, if P0 is either discrete or di↵use, the weighted empirical distribution
P̃
n,k

in (15) converges uniformly to P0 as n ! 1, a.s.-P1
0 , as it can be shown by a

suitable adaptation of Glivenko-Cantelli’s theorem.

Remark 1. The upper bound for the posterior variance (19) derived within the
proof of Theorem 1 is crucial for the determination of the asymptotic behaviour of
the posterior distribution and it sheds some light on a distributional property of p̃
that is of independent interest. Its usefulness is also motivated by the fact that the
exact expression of posterior variances is typically involved. See, e.g., Jang, Lee and
Lee(2010) for species sampling models and James, Lijoi and Prünster (2006) for nor-
malized random measures with independent increments. It should be noted that the
bound can be simplified under some further assumptions. Indeed, a close inspection
of the arguments used in the proof of Theorem 1 suggests that

Var[p̃(A)|X(n)
n

]  I(n,
n

)E[p̃(A)|X(n)
n

]
⇣
1� E[p̃(A)|X(n)

n
]
⌘
, (20)

namely J(n,
n

) = 0, whenever one of the following two inequalities is satisfied

V
n+2,n

V
n+1,n

� V
n+2,n+1

V
n+1,n+1

� 0, (21)

V
n+2,n+2

V
n+1,n+1

� V
n+2,n+1

V
n+1,n

� 0, (22)

see (17). Specifically, (21) implies (22) when � 2 [0, 1), and (22) implies (21) when � <

0 as implied by inequality (A3) of Lemma 1 in the Appendix. Since Var[p̃(A)|X(n)
n ] 

E[p̃(A)|X(n)
n ]
�
1�E[p̃(A)|X(n)

n ]
�
, for any n � 1 and A in X , the validity of one of (21)-

(22) implies that a sharper bound is obtained with the addition of the multiplicative
factor I(n,

n

). Such a simplification indeed occurs for the two most widely used
instances of Gibbs-type priors. For example, when p̃ is a Dirichlet process with baseline
measure ✓P ⇤, then I(n,

n

) = 1/(✓ + n+ 1) and

Var[p̃(A)|X(n)
n

] =
1

✓ + n+ 1
E[p̃(A)|X(n)

n
]
⇣
1� E[p̃(A)|X(n)

n
]
⌘

(23)

For the two-parameter Poisson-Dirichlet process model with ✓ > 0 and � 2 (0, 1), we
recover the bound given in James (2008) as a special case of our general result. Indeed,

12



one can easily check that (21) is valid, I(n,
n

) = 1/(✓ + n + 1) and (23) holds true
with equality replaced by strict inequality. ⇤

In order to complete the picture one needs to identify those situations in which
↵ = 0 so that P 0 = P0 and weak consistency is achieved. As already mentioned,
for the case of � 2 (0, 1), some results for the special instances of Gibbs-type priors
admitting closed form predictive structure have been derived in James (2008) and Jang,
Lee and Lee (2010). In contrast, for the case � < 0, to date no results are available in
the literature and therefore we focus attention on this subclass of Gibbs-type priors.
Theorem 2 gives neat su�cient conditions for consistency in terms of the tail behaviour
of the mixing distribution ⇡ on the positive integers N in (13).

Theorem 2. Let p̃ be a Gibbs-type prior with parameter � < 0, mixing measure ⇡ and
prior guess P ⇤ whose support coincides with X. Then the posterior is consistent

(i) at any discrete P0 if for su�ciently large x

⇡(x+ 1)

⇡(x)
 1; (T1)

(ii) at any di↵use P0 if for su�ciently large x and for some M < 1

⇡(x+ 1)

⇡(x)
 M

x
. (T2)

Before proving the result, it is worth remarking a few implications arising from
(T1) and (T2) above. Note that condition (T1) is an extremely mild assumption on the
regularity of the tail of the mixing ⇡: it requires x 7! ⇡(x) to be ultimately decreasing,
a condition met by the commonly used probability measures on N. Nonetheless, one
could construct ad hoc examples where such a condition fails to be true. For instance,
a mixture of geometric distributions of the type

⇡(x) = a(1� p1)p
x�1
1 1[k{2k}(x) + (1� a)(1� p2)p

x�1
2 1[k{2k+1}(x)

for some a, p1 and p2 in (0, 1), does not satisfy (T1). However, this would not be a sign
of inconsistency but rather of presumably consistent cases not covered by the su�cient
condition (T1) which stands only for technical reasons needed for pinning down the
proof. On the other hand, condition (T2) requires the tail of ⇡ to be su�ciently light.
This is indeed a binding condition and it is particularly interesting to note that such
a condition is also close to being necessary. This will become clear when we deal
with some specific priors in Section 4. As a matter of fact, we will describe situations
ranging from weak consistency, where (T2) holds true, to inconsistency and “total”
inconsistency according as to the heaviness of the tails of the mixing distribution ⇡
that is chosen. The heavier the tails and the further apart from P0 the limiting P 0 in
(14) will be.

Proof of Theorem 2. The proof amounts to showing that, under the stated hypothesis,
(H) holds true with ↵ = 0 so that consistency follows by Theorem 1. Let V

n,n =

13



P
x�n

V �,x

n,n ⇡(x) where

V �,x

n,n
=

|�|k�1 Qk�1
i=1 (x� i)

(x|�|� 1)
n+1

.

One, then, has V
n,n =

P
y�0 vn,n(y) where

v
n,n(y) =

|�|n�n (y + 1)
n�1

(
n

+ y + 1
|�|) · · · (n + y + n�1

|�| )
⇡(y + 

n

).

After some algebra,

V
n+1,n+1 =

X

y�0

x
n,n(y)

⇡(
n

+ y + 1)

⇡(
n

+ y)
v
n,n(y), (24)

where x
n,n(y) = (

n

+ y)a
n,n(y)/(n/|�|+ 

n

+ y + 1) and

a
n,n(y) =

n�1Y

i=1

⇣

n

+ y + i

|�|

⌘

⇣

n

+ y + 1 + i

|�|

⌘ .

We start by considering the case of P0 discrete. This yields 
n

⌧
a.s.

n and we shall
assume P1

0 [lim
n


n

= 1] = 1: indeed when P1
0 [lim

n


n

< 1] = 1 the proof of
Theorem 2(i) is straightforward. For n large enough

V
n+1,n+1

V
n,n

 1

V
n,n

X

y�0

x
n,n(y)vn,n(y)

 x
n,n(n)

P
n
y=0 vn,n(y)

V
n,n

+
X

y�n+1

x
n,n(y)

v
n,n(y)

V
n,n

 x
n,n(n) +

1

V
n,n

X

y�n+1

v
n,n(y), (25)

where we used (T1) in the first inequality, the monotonicity of y 7! x
n,n(y) in the

second inequality and x
n,n(y)  1 in the last inequality. Note that, as n ! 1,

x
n,n(n) =

2
n

n

|�| + 2
n

+ 1
a
n,n(n) ! 0 (26)

a.s.-P1
0 , since a

n,n(y)  1 for any y and n. As for the second summand in (25), note
that

1

V
n,n

X

y�n+1

v
n,n(y) =

v
n,n(n)

V
n,n

X

y�0

v
n,n(n + y + 1)

v
n,n(n)

 v
n,n(n)

v
n,n(n � 1)

X

y�0

yY

j=0

v
n,n(n + j + 1)

v
n,n(n + j)

.
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By virtue of
v
n,n(y + 1)

v
n,n(y)

=

n

+ y

y + 1
a
n,n(y)

⇡(
n

+ y + 1)

⇡(
n

+ y)

and (T1), for n large enough one has

1

V
n,n

X

y�n+1

v
n,n(y)  2a

n,n(n � 1)
X

y�0

yY

j=0

2
n

+ j


n

+ j + 1
a
n,n(n + j).

In view of (25) and (26) one just needs to prove that

a
n,n(n � 1) ! 0 (27)

as n ! 1, and
X

y�0

yY

j=0

2
n

+ j


n

+ j + 1
a
n,n(n + j) < 1 (28)

for su�ciently large n. To this aim, note that

a
n,n(n � 1) =

n�1Y

j=1

✓
1� |�|

2
n

|�|+ j

◆
.

If S
n,k

= |�|
P

n�1
j=1 (k|�| + j)�1, basing on the inequalities (1 � R)x/R  1 � x  e�x

for any 0  x  R  1, it easily follows that

✓
1� 1

2
n

◆2nSn,2n

 a
n,n(n � 1)  e�Sn,2n . (29)

Moreover, (1� 1/(2
n

))2n ! e�1 and, as n ! 1,

S
n,2n ⇠ log

✓
n+ 2

n

|�|� 1

2
n

|�|

◆|�|
. (30)

These, combined with (29), lead to the following asymptotic evaluation

a
n,n(n � 1) ⇠

✓
|�|2

n

n+ |�|2
n

� 1

◆|�|
(31)

as n ! 1. As for (28), the y-th term of the series can be written as '
n

(0)'
n

(1) · · ·'
n

(y)
where

'
n

(y) =
2

n

+ y


n

+ y + 1
a
n,n(n + y) =

2k
n

+ y


n

+ y + 1

n�1Y

j=1

✓
1� |�|

(2
n

+ y + 1)|�|+ j

◆
.

Adapting the arguments used in (29) and (30), it can be shown that

'
n

(y) ⇠ 2
n

+ y


n

+ y + 1

✓
|�|(2

n

+ y + 1)

|�|(2
n

+ y + 1) + n� 1

◆|�|

15



as n ! 1, cfr. (31). Next, for y ! 1, use a first order Taylor expansion that yields

'
n

(y) ⇠
✓
1 +


n

� 1


n

+ y + 1

◆✓
1� n� 1

|�|(2
n

+ y + 1) + n� 1

◆|�|

=

✓
1 +


n

� 1


n

+ y + 1

◆✓
1� |�|(n� 1)

|�|(2
n

+ y + 1) + n� 1

◆
+O(y�2)

= 1 +

✓

n

� 1


n

+ y + 1
� |�|(n� 1)

|�|(2
n

+ y + 1) + n� 1

◆
+O(y�2)

= 1� n� 
n

y
+O(y�2).

Finally, the series in (28) is convergent since n�
n

> 0 (Pólya, and Szegö, 1978). This
completes the proof of (i).

Let us now deal with the case where P0 is di↵use. Hence 
n

= n, a.s.-P1
0 and

V
n+1,n+1

V
n,n

 1

V
n,n

X

y�0

x
n,n

(y)
M

n+ y
v
n,n

(y)

 1

V
n,n

M

n/|�|+ n+ 1

X

y�0

a
n,n

(y)v
n,n

(y)

 1

V
n,n

M

n/|�|+ n+ 1

X

y�0

v
n,n

(y) =
M

n/|�|+ n+ 1
,

where we used (T2) for x = n+y in the first inequality, n/|�|+n+y+1 > n/|�|+n+1
in the second inequality and a

n,n

(y)  1 in the last inequality. Since the last term goes
to 0 for n ! 1, the proof is complete.

4 Illustrations

We have learned from Theorem 2 that Gibbs-type priors are consistent when P0 is
discrete, condition (T1) being valid for most commonly used mixing measures ⇡. On
the other hand, when P0 is di↵use one needs to closely investigate the tail behaviour
of ⇡ and check whether (T2) holds true. One is then naturally led to wondering what
happens when (T2) is not satisfied: may in such a case consistency fail to occur even
if the “true” P0 is in the weak support of p̃?

In this section we consider three di↵erent Gibbs-type priors with � = �1: each
prior is characterized by a specific choice of the mixing distribution ⇡. For all such
elicitations we immediately have consistency at a discrete discrete P0 by Theorem 2(i)
and therefore we focus on the case of P0 di↵use, for which di↵erent conclusions are
reached. As we shall see, according as to heaviness of the tails of ⇡ one can move
from a situation where the weight ↵ of the convex linear combination of P ⇤ and P0 in
Theorem 1 is equal to 0, thus yielding consistency, to a situation where ↵ increases up
to its largest value ↵ = 1. We shall note that the heavier the tail of ⇡ and the larger
↵, i.e. the lighter the weight assigned to the “true” P0 in the limiting distribution
identified in Theorem 1.
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The first prior is characterized by a heavy-tailed mixing distribution ⇡, which does
not admit a finite expected value: condition (T2) is not met and it turns out that
↵ = 1 so that the posterior concentrates around the prior guess P ⇤, referred to as
“ total ” inconsistency. The second specific prior, where the mixing ⇡ has light tails
that satisfy (T2) in Theorem 2, results in a consistent asymptotic behaviour. In the
third case ↵ takes values over the whole unit interval [0, 1] according to a parameter
that determines the heaviness of the tail of ⇡.

The illustration we provide is also useful to appreciate the role of condition (T2)
in Theorem 2. As we shall see, if the upper bound in (T2) on the ratio ⇡(x+ 1)/⇡(x)
does not hold true, consistency is not achieved and, therefore, (T2) cannot be replaced
by a milder condition intermediate between (T1) and (T2). This leads to infer that
(T2) is also close to being necessary.

4.1. Gnedin’s Gibbs–type prior. We consider a family of Gybbs-type priors with
� = �1 recently introduced by A.V. Gnedin in Gnedin (2010). It is characterized by
the mixing distribution

⇡(x) =
�(1� �)

x�1

x!
1{1,2,...}(x)

for some � 2 (0, 1). This distribution arises in discrete renewal theory (Feller, 1971,
Chapter XII) and in connection with the two-parameter Poisson-Dirichlet process (Pit-
man, 2006). It is characterized by a heavy tail admitting moments of order less than
�. In order to establish consistency one would like to apply Theorem 2. For a dis-
crete P0, condition (T1) clearly holds true and weak consistency is achieved. In con-
trast, for a di↵use P0, the corresponding su�cient condition (T2) is not satisfied:
⇡(x + 1)/⇡(x) = (x � �)/(x + 1) for any positive integer x and cannot be eventu-
ally bounded by M/x for some constant M . Therefore one has to establish by direct
calculation whether consistency or inconsistency occurs.

In terms of the corresponding Gibbs–type prior, in Gnedin (2010) it is shown that
the V

n,n ’s admit a simple closed form expression given by

V
n,n =

(
n

� 1)!(1� �)
n�1(�)n�n

(n� 1)!(1 + �)
n�1

and, consequently, the weights of the prediction rule simplify to

V
n+1,n+1

V
n,n

=

n

(
n

� �)

n(� + n)
. (32)

From (32) it is easy to to see that, if P0 is di↵use implying 
n

= n, condition (H) holds
true with ↵ = 1. Therefore, by Theorem 1 it follows that the weak limit coincides
with the prior guess P ⇤, whatever the “true” distribution of the data P0. This means
we are in the case of “ total ” inconsistency apart of the trivial case of P ⇤ = P0 we
have already excluded. In this completely explicit setup, it is also interesting to have a
closer look at the structure of the bound on the posterior variance discussed in Remark
1: it is easy to check that (22) holds true and, thus, the bound (23) applies with
I(n,

n

) = (2n+ �+1)/[(n+1)(�+n+1)], which does not depend on 
n

. Now, since
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I(n,
n

) ! 0, as n ! 1, the posterior concentrates, as n increases, at some P 0 inPX, in
accordance with the general result stated in Theorem 1. Finally note that consistency
for the case of discrete P0, already established by means of Theorem 2(i), can also be
deduced from (32) combined with Theorem 1: if P0 is discrete then 

n

⌧
a.s.

n and
(32) converges to ↵ = 0 implying convergence to P0 in Theorem 1.

4.2. Gibbs–type prior with Poisson mixing. The second Gibbs-type prior we
consider is characterized by � = �1 and a Poisson mixing distribution ⇡ with parameter
� > 0 restricted to the positive integers, i.e.

⇡(x) =
e��

1� e��

�x

x!
1{1,2,...}(x).

Such a ⇡ has light tails and condition (T2) is satisfied since ⇡(x+1)/⇡(x) = �/(x+1).
Therefore, by Theorem 2(ii), the posterior is consistent when P0 is di↵use and, a
fortiori, when P0 is discrete. Given the Gibbs-type prior at issue admits closed form
expressions, the same conclusion can be drawn by direct calculation. The V

n,n ’s can
be expressed as

V
n,n = ⇡(

n

)V �1,n
n,n 1F1(n;n + n;�),

where 1F1(a; b; z) =
P

j�0
(a)j
j! (b)j

zj is, for any a, b and z in R, the confluent hypergeo-

metric function. Therefore, one has that

V
n+1,n+1

V
n,n

=
�

n

(n+ 
n

+ 1)(n+ 
n

)
1F1(n;n + n;�)

1F1(n + 1;
n

+ n+ 2;�)
. (33)

With P0 di↵use, 
n

= n for any n a.s.–P1
0 . Now, by virtue of Eq. (17) of Erdélyi,

Magnus, Oberhettinger and Tricomi (1953, Section 6.13.2), the functions 1F1(n; 2n;�)
and 1F1(n+ 1; 2n+ 2;�) have the same asymptotic expansion as n ! 1, namely

p
2⇡�(2n)p

n/2�(n)�(n)
e�/2

✓
1

2

◆2n⇥
1 +O(1/n)

⇤
.

This means that
1F1(n; 2n;�)

1F1(n+ 1; 2n+ 2;�)
! 1

as n ! 1, and
V
n+1,n+1

V
n,n

⇠ �

2(2n+ 1)
! 0 (34)

as n ! 1. Hence, for the case of di↵use P0, we have shown by direct calculation that
the probability of observing a new species converges to ↵ = 0, which by Theorem 1
implies consistency. This is clearly in agreement with the conclusion drawn from
Theorem 2(ii) by looking at the tails of the mixing distribution ⇡.

4.3. Gibbs–type prior with geometric mixing. The last sub-family of Gibbs-type
priors with � = �1 is identified by a geometric mixing distribution

⇡(x) = (1� ⌘)⌘x�1 1{1,2,...}(x)
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for some ⌘ 2 (0, 1). Note that ⇡(x+1)/⇡(x) = ⌘ so that condition (T2) does not hold
true. Therefore, in this case, one can only apply Part (i) of Theorem 2 leading to state
consistency solely for the case of discrete P0. It is therefore interesting to investigate
what happens for the case of P0 di↵use which is not covered by Theorem 2. By direct
calculation it turns out that

V
n,n = ⇡(

n

)V �1,n
n,n 2F1(n,n + 1;

n

+ n; ⌘),

where 2F1(a, b; c; z) =
P

j�0
(a)j (b)j
j! (c)j

zj for any a, b, and c in R and for any z such that

|z| < 1, is the Gauss hypergeometric function. Moreover, one has

V
n+1,n+1

V
n,n

=
⌘

n

(
n

+ 1)

(n+ 
n

+ 1)(n+ 
n

)
2F1(n,n + 1;

n

+ n; ⌘)

2F1(n + 1,
n

+ 2;
n

+ n+ 2; ⌘)
. (35)

With P0 di↵use, one can replace 
n

with n in the ratio above. Then, by Eq. (16)
in Erdélyi, Magnus, Oberhettinger and Tricomi (1953, Section 2.3.2), one obtains the
following asymptotic expansions, as n ! 1,

2F1(n+ 1, n+ 2; 2n+ 2; ⌘) ⇠
 
2

⌘

◆4+2n�
2� ⌘ � 2

p
1� ⌘

�
n+2

C(⌘)

2F1(n, n+ 1; 2n; ⌘), ⇠
 
2

⌘

◆2+2n�
2� ⌘ � 2

p
1� ⌘

�
n+1

C(⌘),

where C(⌘) =
⇥
(1 + 2

p
1� ⌘/⌘)2 � ((2� ⌘)/⌘)2

⇤� 3
2 . On the basis of these asymptotic

equivalences one has

V
n+1,n+1

V
n,n

! ↵ =
2� ⌘ � 2

p
1� ⌘

⌘
2 [0, 1]. (36)

The limit ↵ in (36) can be any point in [0, 1] according to the value of ⌘: by Theorem 1
it follows that we can obtain the whole spectrum of weak limits ↵P ⇤(·) + (1� ↵)P0(·)
ranging from consistency (↵ = 0) to “ total ” inconsistency (↵ = 1). In particular, ↵
is increasing in ⌘, so the larger ⌘, the heavier the limiting mass assigned to the prior
guess. Small values of ⌘ identify a situation similar to the one discussed in Section 4.2
since they yield a light-tailed ⇡. Conversely, large values of ⌘ are more in line with
what happens with in Section 4.1 giving rise to heavy-tailed ⇡. Finally, it is worth
remarking that a minimal deviation from condition (T2) already produces inconsistent
behaviours, even extreme ones, showing that (T2) is close to being necessary.

5 Concluding remarks

Among various criteria one can use for the validation of a statistical model, and of
the corresponding inferences, consistency plays a major role. Even in a Bayesian
framework, an important prerequisite to any inferential procedure is the specification
of a prior that, among others, is consistent according to the frequentist approach.
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If X is finite, P0 in the weak support of a discrete nonparametric prior p̃ guarantees
consistency (Freedman, 1963). When X is infinite, inconsistent behaviours may appear.
To approach such a problem one can essentially undertake two paths: (i) try to identify
classes of priors which are consistent whatever the choice of P0 and dismiss the others;
(ii) try to identify the data generating mechanisms the various classes of nonparametric
priors are designed for and study consistency w.r.t. choices of P0 that are compatible
with such mechanisms. The seminal contribution to (i) is due to Freedman (1963)
(see also Fabius, 1964), where the author identifies a class of nonparametric priors,
the family of “ tail-free ” priors, which are consistent for any P0, either discrete or
di↵use, in its weak support. Notably, the Dirichlet process and Pólya-tree priors
(Ferguson, 1974; Lavine, 1992) belong to this class. However, ensuring consistency
for any P0 is not for free. On the one hand, all tail-free priors (with the exception
of the Dirichlet process), and the inferential results they yield, heavily depend on
the sequence of nested partitions defining them. On the other hand “ tail-freeness ”
appears to be a quite fragile property: as shown in Freedman and Diaconis (1983) and
Diaconis and Freedman (1986), inconsistency can already appear when one considers
mixtures of the Dirichlet process. Therefore, one might wonder whether it is worth
pursuing such a path. Or, alternatively, whether it is not better to establish what
kind of inferential issues a prior can address and study consistency for compatible
P0’s. In this paper we adhered to this second option: Gibbs-type priors are discrete
nonparametric priors and therefore consistency has to be investigated w.r.t. discrete
P0’s. The answer we have been able to provide is completely positive in the sense
that they are (essentially) always consistent w.r.t. discrete P0’s. It is also worth noting
that, given the nature of the phenomenon to be studied, one can establish in advance
whether the “true” distribution of the data is discrete or not. When one considers
a di↵use data generating P0, which does not fit a framework within which Gibbs-
type priors are used, not surprisingly inconsistency may arise and one can even face
completely erratic behaviours such as “ total ” inconsistency. However, this should not
be interpreted as indication to dismiss Gibbs-type priors, thus dropping very natural
prediction rules as pointed out in Section 2. Such inconsistent behaviours, combined
with consistency in the case of discrete P0, should rather be seen as strong general
methodological evidence against the use of discrete nonparametric priors for modeling
data generated from di↵use distributions, a common practice, for instance, in survival
analysis applications.

Appendix

A.1 Proof of Proposition 1. Without loss of generality we assume that the support
of the prior guess E[p̃( · )] = P ⇤ coincides with X. Let us start by considering the case
of � < 0. Let dX be the distance on X and let d

w

denote the Prokhorov distance
on PX. We wish to show that any weak-neighborhood of G0 has positive Q mass for
any probability measure G0 2 P

X

. Since X is separable, it is well-known that the
set of discrete distributions with a finite number of point masses is dense in PX, with
respect to d

w

. Hence, for any ✏ > 0 there exists a positive integer k0, vector of weights
(p01, . . . , p

0
k0
) in the k0-dimensional simplex �

k0 and points x01, . . . , x
0
k0

in X such that
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d
w

(G
p

0
,x

0 , G0) < ✏/2, where G
p

0
,x

0 =
P

k0
i=1 p

0
i

�
x

0
i
. For any ⌘, � > 0 introduce the sets

U0(⌘) = {p = (p1, . . . , p
k0) 2 �

k0 : |p
i

� p0
i

| < ⌘ for any i = 1, . . . , k0}
V0(⌘) = {x = (x1, . . . , x

k0) 2 Xk0 : dX(xi, x
0
i

) < � for any i = 1, . . . , k0}

and W0(⌘, �) stands for the set of discrete probability distributions G
p,x

=
P

k0
i=1 pi�xi

for p 2 U0(⌘) and x 2 V0(�). Recall that, conditionally on K = k0, the vector
(p1, . . . , p

k

0) has symmetric Dirichlet distribution with parameter |�|. This fact, com-
bined with the assumptions on ⇡ and on P ⇤, entails Q(W0(⌘, �)) > 0. The proof is
completed by showing that, for appropriate choices of ⌘ and �, any G

p,x

in W0(⌘, �) is
such that d

w

(G
p,x

, G0) < ✏. But this follows by standard arguments. Since

d
w

(G
p,x

, G0)  d
w

(G
p,x

, G
p

0
,x

0) +
✏

2
,

we next show that ⌘ = �/k0 implies that d
w

(G
p,x

, G
p

0
,x

0) < � so that � = ✏/2 would
work. For A 2 X , the set A⇢ stands for A enlarged by its dX-neighbourhood with
radius ⇢, A⇢ = {x : dX(x,A) < ⇢}. When ⇢ > �, it is obvious that x0

i

2 A implies
that x

i

2 A⇢ whenever x = (x1, . . . , x
k0) is in V0(�). One can equivalently say that if

I0 = {i : x0
i

2 A} and I = {i : x
i

2 A⇢}, then I � I0 and

G
p

0
,x

0(A)�G
p,x

(A⇢) =
X

i2I0\I
(p0

i

� p
i

)�
X

i2I\I0

p
i


X

i2I
(p0

i

� p
i

)  ⌘ card(I) = ⌘k0 = � < ⇢.

On the other hand, if ⇢ < �, then there exists some set A in X such that x0
i

2 A and
x
i

/2 A⇢ so that is not possible to bound G
p

0
,x

0(A)�G
p,x

(A⇢) by ⇢. This completes the
proof of the case � < 0. The Dirichlet case is well known (Ferguson, 1973; Majumdar,
1992) and the general � = 0 case follows by direct extension of the results concerning
the Dirichlet process. The case of � > 0 follows immediately from the representation
of Gibbs-type partitions with � > 0 in terms of stable completely random measures
(Gnedin and Pitman, 2005, Theorem 12 (iii)). ⇤

A.2 Auxiliary results. Here we collect some useful results on various quantities
related to the weights V

n,k

defining the partition distribution induced by Gibbs–type
prior. The main ingredient is the application of the backward recursion (4) for various
combination of n and k. Recall that I(n, k) is the factor (16) appearing in the bound
(19) of Theorem 1.

Lemma 1. Let I(n, k) be defined as in (3.3). Then

I(n, k) =

✓
V
n+2,k

V
n+1,k

�
V
n+2,k+1

V
n+1,k+1

◆
(n� �k) +

V
n+2,k

V
n+1,k

(A1)

I(n, k) =
V
n+2,k+2

V
n+1,k+1

�
V
n+2,k+1

V
n+1,k

+
V
n+2,k+1

V
n+1,k+1

(1� �) (A2)

V
n+2,k

V
n+1,k

�
V
n+2,k+1

V
n+1,k+1

(A3)
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
(>)

[n+ 1� �(k + 1)]

✓
V
n+2,k+2

V
n+1,k+1

�
V
n+2,k+1

V
n+1,k

◆
for

0  � < 1

(� < 0)

Proof. The proof relies on the backward recursion defining the weights of Gibbs-type
priors, which is stated in (1.4). As for equation (A1),

✓
V
n+2,k

V
n+1,k

�
V
n+2,k+1

V
n+1,k+1

◆
(n� �k) +

V
n+2,k

V
n+1,k

=
V
n+2,k

V
n+1,k

(n+ 1� �k)�
V
n+2,k+1

V
n+1,k+1

(n� �k)

= 1�
V
n+2,k+1

V
n+1,k

�
V
n+2,k+1

V
n+1,k+1

(n� �k)

= 1�
V
n+2,k+1

V
n+1,k

✓
1 +

V
n+1,k

V
n+1,k+1

(n� �k)

◆

= 1�
V
n+2,k+1

V
n+1,k

V
n,k

V
n+1,k+1

= I(n, k)

where we used the backward recursion (1.4) for (n + 1, k) in the second equality and
for (n, k) in the last equality.

As for equation (A2), we use the backward recursion (1.4) for (n+ 1, k + 1) to get
V
n+2,k+2 + V

n+2,k+1(1� �) = V
n+1,k+1 � (n� �k)V

n+2,k+1. Then

V
n+2,k+2

V
n+1,k+1

�
V
n+2,k+1

V
n+1,k

+
V
n+2,k+1

V
n+1,k+1

(1� �)

=
V
n+1,k+1 � V

n+2,k+1(n� �k)

V
n+1,k+1

�
V
n+2,k+1

V
n+1,k

= 1�
V
n+2,k+1

V
n+1,k+1

(n� �k)�
V
n+2,k+1

V
n+1,k

= 1�
V
n+2,k+1

V
n+1,k+1

✓
(n� �k) +

V
n+1,k+1

V
n+1,k

◆

= 1�
V
n+2,k+1

V
n+1,k

V
n,k

V
n+1,k

= I(n, k)

where we used again the backward recursion for (n, k) in the last equality.
As for equation (A3), use the backward recursion (1.4) for (n+1, k+1) and (n+1, k)

on the right hand side, respectively, to get

V
n+2,k+2

V
n+1,k+1

�
V
n+2,k+1

V
n+1,k

=

✓
1�

V
n+2,k+1

V
n+1,k+1

(n+ 1� �(k + 1))

◆
�
✓
1�

V
n+2,k

V
n+1,k

(n+ 1� �k)

◆

= (n+ 1� �(k + 1))

✓
V
n+2,k

V
n+1,k

n+ 1� �k

n+ 1� �(k + 1)
�

V
n+2,k+1

V
n+1,k+1

◆
.

Finally, consider that n+1��k

n+1��(k+1) � 1 for 0  �  1 implies the first inequality and

that n+1��k

n+1��(k+1) < 1 for � < 0 implies the second inequality.
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