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This appendix displays all detailed proofs of the theorems in the
main manuscript ”Distribution theory for hierarchical processes” and
a specialization of the Blackwell-MacQueen Pdélya urn scheme to the
hierarchical Pitman—Yor process.

APPENDIX A: PROOFS
A.1. Proof of Theorem 1. For the sake of notational simplicity set

I, = /000 ue_cw(“)Tq(u) du, Tyo = /000 ue_c"wo(“)%o(u) du.
From [2, Proposition 1] one has Var(pg(A)) = coPo(A)(1 — Py(A)) Zz o and
Var(p;(A) | po) = cpo(A)(1 — po(A)) Zo. Hence, for any i =1,...,d,
Var(5i(A)) = E Var(5i(A) | fo) + Var(fo(A))

=coPo(A)(1 — Po(A)){CCo T2y + 1-270}.

Moreover, for any i # j,

COV(ﬁi(A%ﬁj(A)) E[pi(A)p;(A)lpo] — (E E[pi(A)[po]) (B E[p;(A)[po])
[ [5i(A)[po] B (A)|po]] — (E[po(A)))?
= E[Po(A)] — (E[po(A)])* = Var(po(4)),

and the result follows. O

A.2. Proof of Theorem 2. The same line of reasoning in the proof of
Theorem 1 may be used to establish that Cov(p;(A),p;(A)) = Var(po(A)).
Moreover, by the definition of Pitman—Yor process in Section 2, one has

5 — _ a3 (1 — oo) > Botoo—1 —u0
Var(po(A)) = Po(A)(1 — Py(A)) 500 + DT (80 /o) u e du
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Furthermore, Var(p;(4)) = EVar(p;(A)|po) + Var(po(A)) holds and one
obtains

= Po(A)(1 - Po(4))

Var(i(4)) = g3 E fo(A)(1 — ol 4)) + 5P (A)(1 — R(4)
= PO(A)é(l) J_r fO(A)) {(1 —00) + (6o + 00) é :r?} ;
from which (10) easily follows. O

A.3. Proof of Theorem 3. In order to prove Theorem 3, we first need
to display a useful technical lemma, which follows from a formula by Faa di

Bruno. See e.g., [1]. According to it, the n-th order derivative of e~™¥(1)
with ¢ (u) = [(°[1 — e ] p(v) dv, is given by
qr dl=l d/8l
Al = —map(u) — —max
(A1) dur Zﬂ: dzlml (e7™) z=1)(u) lgr du|B|¢(u)

where m € R, and the sum is extended over all partitions 7w of [n] =
{1,...,n}. Clearly (A.1) can be rewritten as

n

LTI S ST Sl §
dum n du |B|

i=1 m:|w|=i BET

Since to each unordered partition 7 of size ¢ there correspond i! ordered
partitions of the set [n] into ¢ components, which are obtained by permuting
the elements of 7 in all the possible ways, one has

n

A" () Jio—muu |B|
dur :Z( Z H U|B|

1=1 mi|w|=i Bem

1 n dQI in
— 2 : z —ml/; 2 : L.
Z‘ = (ql7 e ql> duq1 ¢(U) duqi ¢(u)

where ¢ is the sum over the ordered partitions of the set [n] while the sum
(*) runs over all vectors (¢, - , ;) of positive integers such that Z;zl g =
n. The second equality follows upon noting that the derivative of 1) depends
only on the number of elements within each component of the partition 7
and that the number of partitions 7 of the set [n| containing i elements
(By, -+, Bj), with (|Byl],---,|Bi]) = (q1, - ,¢), equals the multinomial
coeflicient above. In view of these remarks, one has
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LEMMA 1. If7y(u) = [(¥v?e ™ p(v) dv and

1 n
02 et =3 5(,

the following relation holds

an _ S
(A.3) (=1)"q e ) = e N "mi, i (u)
i=1
In view of this, for any 21 # --- # z; in X and k£ > 1, one can evaluate
ko d
My, .. ng(dzy, ... dog) = H H m” (dz;)
where n; = (ni1,...,n%), for i = 1,...,d, and it is apparent that there

may be n; ;’s equal to zero, though Zle n;,; > 1. Indeed, if one sets A; . =
B(zj;¢e) a ball of radius € around z;, with ¢ > 0 small enough so that
Aj.NAj. = for any i # j, then

d
Mnl,...,nd(ALE X oo X Aka = F HE[H ..m]

1
k ~
< T e 5 (4, ) o]

J
_E ﬁ 1 / % N1 gcb(w)po(X2)
L(Ni) Jo

1k
<11 ((_WWL —e(w)pol j,g)) du

duii
where X} = X\(U;?:lAj,e). If€ = (£y,...,£4) whereeach £; = (¢;1,...,4; i) €
x?zl{l, ...,Mi;}, by virtue of (A.3) one obtains

Mnl,...,nd(Al,a X oo X Ak,s)

M5

d k
_ 1 * Ni—1 —cv(u) ‘.
= gy [ I8 o o
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d

Zic o k
. [ j=1

and we further agree that, whenever n; ; = 0, we have ¢; ; = 0 and Zgi =1 =
1. If we set ’

MO

.17 ’Z

(Aic,.... Ape) =F H oed

as € — 0 the non—atomicity of Py implies

k
Ml?.h j.k(dxl,...,dxk ]EHpO (dz;) = H (dz;)
CIS /OO u|£| 1 —coto(u H
-
r'(le) Jo ool
k
<H ) |’£|)(€017"'7Z0k)‘
Then

k
Mnhm,nd(dxl,...,dxk) = (H ) Z |£|) .1,...,Z.k)

j=1 ¥4

N;—1 —c¢(u Hé-nlw 0,

=1 =

X
::1&
-
E BN
:;/ [ ]
c\
El
\_/

and the result follows by virtue of (A.2) and by noting that
H,E:n)(TLl?...,nd) - anl,_,_7nd(d$1,...7dl’k).
X

O]

A.4. Proof of Theorem 4. This can be deduced by working along
the same lines as for the Proof of Theorem 3. One only needs to take into
account the change of measure (8) in order to work directly with CRMs.
Indeed, using the same notation, one has

Mnl,...,nd(Al,s X oo X Ak,e)
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r0+1) 1 Ry
— E +N;—1 —¢(u)
rafe 4 ) }_[11“ 9+N /0 “ ¢
k N, j .
< T D 507 (o) €yt (w) du
j=1 £; j=1
T40 +1) ( L
= E || 507 (4je)
rd( 4+ 1) ze: ]1:11 . )
d 1 00 k
X ( / uNi—le=¥ () &ny 0, (u du)
g L(Ni) Jo 31;[1 s ()
where ¥ (u) 7 and
olii o big
- g i,j _
Sty () = uii ~tigo g 5 zq: (%’,1 Qi,zi,j> 71_[1(1 Tar

1
= ) %(ni,j,&,j; O').

whini i,

The result now easily follows upon noting that, as ¢ | 0,

7 i ~ (8o + o) b
E | | 5 ( | | [[(1 =00,
sy ) 90 + 1) g1 j:l( PO e

where A\, . = O( H?:l PO(A]'»E))‘ -

A.5. Proof of Theorem 5. Let Ny = 0and, foreachi=1,...,d, N; =
23‘21 Nj;. Further suppose 71, ..., T4 denote independent random partitions
of IN such that the restriction 7; n, of 7; to [N;] = {N;—1 +1,...,N;} has
probability distribution <I>2 9 as defined in (13). Furthermore, 7 is a random
partltlon of IN such that, condltlonal on (T1,ny,---,7d,N,), its restriction 7 p,

to [h] has probability distribution <I>§CO) in (11), where h = Zle |7t v, | with
|7t n;| the number of blocks in the partition 7; n,. Relying on Theorem 3 we
have

d

N
(e oma) = 3 [T Pl = (Bias - Big,)]

h=ki=1 (x)
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X IP[fro,h ={C1,...,Cy} ) ﬁ {ﬁi,Ni ={Bi1,.. -,Bz‘,cq-,}H
) i=1

(%

where the sums are taken over all partitions such that Z;‘i:l (; = h, for any

he{k...,N}, and

Z card(B;;) = n;j

{t: 6¢,1+t60j}ﬂ{1,...,@}

where (o = 0 and § = Zf«:l (r, for each ¢ = 1,...,d. Note that one may
have {t: {1+t € C;}N{l,...,¢} = @, in which case n; ; = 0, and in the
Chinese restaurant franchise terminology it would mean that the j—th dish is
not served in restaurant i. According to this notation, one has Kj y. = |7; v,
and KOJL = |ﬁ'07h‘ and 7

N
P[Ky = k] = P[ U U Ky =tn... Ky, =t K= k}]
t=k (tl,...,td)GAdyt

The result, then, follows from independence of Kj y ,..., K} y, and from
the fact that

P[Kos = k| K]y, =t1,...,Kjn, = ta] = P[Kos = k] 1a,,(t1,. .. tq).
O

A.6. Proof of Theorem 6. The proof follows exactly the same lines as
the proof of Theorem 5, the only difference being that K n, are the number
of blocks corresponding to independent random partitioné from PY (o, 6; Hy)
processes, for some diffuse probability measure Hy, and Ko is the number
of blocks of a random partition from a PY(oy, 6o; Pp). O

A.7. Proof of Theorem 7. First note that the combination of partial
exchangeability, which entails conditional independence across samples, and
the hierarchical structure of (p1, ..., pq), which implies the sharing of atoms
across samples, lead to K, = Kq¢(v) almost surely. Moreover, in view of
the growth assumptions, let

K(]n a.s. z/n a.s. / .
A nASCA (i=1,...,d
)\O(n) 0 )\(n) 7 (2 ) 5 )



HIERARCHICAL PROCESSES 7

as n — 0o, where My and the M/s are positive and finite random variables.
Moreover, one has {(IN) = Z?Zl K! . and

d
E(N) s, -
N = Z M;=n
=1
as N* — oo. Exploiting (H1) and recalling that N = dN*, one then obtains

Koeny  M(E(N))  Kogny/ME(N))  as,

= — 1,
Koy AomAN*)) Kopav=)/Xo(nA(N*))
which entails, as N* — oo,
K K K Y as
N - 0,¢(N) O,n)\(N*) LENGYA
A (MAN*))  Kopav+) Ao(mA(N*))
If (p1,...,pq) is a vector of hierarchical Dirichlet processes, then \o(n) =
A(n) =logn and (H1) holds true. Moreover, n = dc and
A
AN
Ao(A(NV))
as N — oo, and the result follows. ]

A.8. Proof of Theorem 8. In this case, \o(n) = n? and \(n) = n?.
Hence (H1) holds and one may work out the proof along the same lines as
for Theorem 7. O

A.9. Proof of Theorem 9. The technique introduced for proving The-
orem 3 can be suitably adapted and extended to establish also the poste-
rior characterization. Our goal is the determination of the posterior Laplace
functional of fig

~ ]Ee_lLO ~M5, 5
(A.4) E{e_"o(f) ‘X} — lim HJ 1 anzl P; 7 (Aje)
=40 EHJ 11—[1 1D; ]( ]E)

for any measurable f : X — R™, where the A; . notation is the same used in
the Proofs of Theorems 3-4. The denominator is My, n, (A1 X -+ X Ak o)
that has been defined in the proof of Theorem 3 and, as € | 0, equals

HPO ]E ZZ@W -1,"'7Zok)
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N
( lJ > 57 z(qz la"'aqi,k)+>\k,8
qi,5,1,° " ,q’i,j,ﬂi,j

where A\, . = 0(]_[;?:1 PO(ALE)) In a similar fashion one can proceed to

determine the numerator of (A.4) and

kod d
Ee—ﬁo(f) H Hﬁ?” (Aj,s) = Ee—ﬁo(f) H E [ﬁ?” (Aj,s) /10}

j=1li=1 i=1
d Cﬁgo o0 N () k
— i—1 ,—cyY(u
a Zz:;l:[l F(N’L) /0 “ ¢ j]:[lgn”,fw(u) du
ko _
« (Ee—uo(f) Hﬁg-y (A],s))
j=1

It can now be seen that, with X} = X'\ (U§:1Aj,a) and as € | 0,

1 & =
Fe—fio(f) H 59 (A,) = i /O u|e|—1(Ee—uo(<f+u>nx;)>

k [e's)
_ Hj:l co Po(Aje) / w1 g—coto(f+u)
r(lef) 0

XHTE (u+ f(X7)) du+ Age

7j=1
Hence, one has
k d k
EeAo(f) H H ~?w (Aje) = H Py(4;.)
j=1i=1 7=1
d k .

ST (0 ) @)

£,q i=1j=1 4] ql,‘],l qzv]vei,j

[o¢]
« / L1 gcoto(f+u)
0
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XHTz (u+ f(X7)) du+ Ae.

To sum up, if we further condition on T, one has

fooo wlll=1 g—co Yo (f+u) ij:l us (u+ f(Xj*)) du
(I)(\el)(g.h o ,Z.k)

E[e—ﬁo(f) ‘X,T} —
and the result follows, as it is easy to check that the normalizing constant
of the density fo(-|X,T) in (20) is @(M)(fol, VARE O

A.10. Proof of Theorem 10. From elementary properties of condi-
tional expectations, one has

E [e, Sy mailfi)

X, T] - ]E[E [ef S i)

X,T,ju] | X, 7]

for any choice of measurable functions f; : X — R*, for i = 1,...,d. The
proof, then, boils down to determining posterior Laplace functional

E {e, Sy mailfi)

X7 T7 ﬂ0:| =
d ~ . ~TL1

(A6) . ]E|:e_ Zi:l Nz(fz H 1 H] 1 ; ]( ]E)

lim - -

5$0 |:H'L 1H] 1~1,1]( ) ) :|
As far as the denominator is concerned, it plainly equals

d Cg. k Lij

N;—1 fcw
N ) /0 H H TQz 3Js t

(T )

i=1j=1 i=1 ¢ j=1t=1

T, fio|

As for the numerator, set

B(f) = /X /0 Tl e @) p(s) ds fo(da)

and note that
d &

E [e* S ii(fi) H H ﬁ?” (Aje)

i=1j=1

T

d k
— HE [e—ﬂi(fi) ]3?” (A;0) | T, ﬂO]
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d k '
= (IITI 77 (4:0))
i=17=1
a clis o k Lij
Ni—1 g—cip(f+u)
X HF(Ni)/O u e u jHltl_[qumqufl( ) du

To sum up, the right-hand-side of (A.6) equals

H oo uNi—1 —cw(fz+u H] 1Ht 17—qmt(u+fi(X;))du
7 .
i=1 f uli~le~ Cw(u)H =1 11= 1qut( u)du

which entails

4 .
Efe S m00 | X, 7,0, o] = ﬁ ﬁ ) EEALERES)

i=1j=1t=1 qu‘,]‘,t(Ui)
d
X HeXp{—c/ (1- sz(w)) i p(s )dSpo(dx)}
i=1 XxRt
and the conclusion follows. 0

A.11. Proof of Theorem 11. The proof follows the similar lines as
that of Theorem 9, the main difference being the polynomial tilting that
defines the Pitman—Yor process in (8). Let fi, and ) denote stable CRMs
with respective parameters oy and o in (0,1). Moreover, the base measure
fuy is Py whereas the fi; are, conditional on fi,, independent and identically
distributed CRMs with base measure py = fi,/f)(X). When determining
the posterior Laplace functional transform as in (A.4), one has

k d
(A.7) E e Fo(f) H Hﬁ?” (Aje)

j=1li=1
. d k
— E[e—uo(f) H ]E[ H o)) QOH
i=1 j=1
It can now be seen that, for any i =1,...,d,

cscor [l

J=1
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k
= FF((Z:?) ]E[ v 1;[ )i Mo]

1 1

"0+ Dn— I‘( )
0 -
1 1 !

~ 0+ Ni-1 F( )

* / o e H % J” Aje) i, (v) dv.

’ j=1¢6; ;=1

It is clear that, in order to evaluate (A.7), one may note that as ¢ | 0

k _
E e~ fo(f) H ﬁf;'j (Aj,s)
=1

= L(0o+1) E(i (X)) fo—1#l o=ho(f) - 0 (A ))led
F(fj—g+1> (10(X)) j:Hl(Mo( i)

—_

i < fotle—1
= o+ e 1p( )(H (=i ) /o 0

k
1
f (vo+f(z))?0 Py(dx) d
X e Jo vo + A
H UO + f(X*))E.j—ao 0 ke

where A\, . = O(H;?:l Py(A;c)). If one further conditions on T', it can be seen
that

k d
o) { Bo(f) ]1;[“1;[1157” (Ajc) T]
1 f[ 10" 0 + ra)
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d

k % nlv]’ 7]7 )
X H Po(Aje)(1 - 6.3—1 H
j=1

oo o o
« / wfoHkon=1 =3 o= Ji¥l(wo £ ()70 —03°) Po(da)
0

<HIE]e Lif )dvo

The proof is, thus, completed by using Theorem 4, which identifies

E{lj]j’” ]

ase | 0. ]

A.12. Proof of Theorem 12. As in the proof of Theorem 10, we aim
at determining

E[e_ iy falf) ‘ X, T = E[E[e_ Sy alf)

X7T7/10] ‘XaT}

for any collection of non—negative and measurable functions fi,..., fg de-
fined on X. See (A.6). This is achieved through the following

d k
E[e_ S | x T, ﬂo] H IE)[ (S Hﬁ?i,j(Aj,e)

=1

T7ﬁ0:|'
For any i = 1,...,d, one has

k
_Sd n(f N
]E[e Zz:l“l(fl) | |1pz ](Aj,s)
J:

! 1
ERCES I F(g +1)

k
o
x/ 00+Ni—1E[e—ﬂ§(v+fi) H(ﬂ;(Aj,a))ni‘j
0 .
J=1

1 1 b 0,

= p
0+ 1)N,—1 r(g + 1) =1 0

T7 [ZO]

T, ,10] dv

7(Aje) € (nij, lig; o)
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k

" / % BN o= [ o fi(@)]7 o (de) H dv
0 i o+ Ryt

1 1 K

BECES o r(2+1)

" / T i1 07 o [0 fi(@))7 07 po(da)
0

A i
Po” (Aje) €(nij, liji o)

k

1
<11 N

* Ni,j Zz,]o'
)

lia—1 k L
— Hr:l (9 + T‘O') ~£i,j (Ajs) %(nl,]7€%]70—)

((9 + 1)Nz-—1 jzlpo ’ olii

00 k .
[ ) (TR 0

where h; is the density function of a random variable V; such that V7 ~
Ga(lie+0/0; 1) and fif is, conditionally on V; and on fig, a generalized gamma
CRM with parameters (V;,0) and base measure py = fig//10(X). Moreover,
the H; ;’s are independent gamma random variables whose parameters are
n; ; — ¢; jo and V;. If one, now, notes that

} -

k
H ie 1(0 +ro) Ji,j(Ajg) C (nij,lij;0)

p(] y li s
(9+ 1) N;—1 j=1 g i

]E[ﬁﬁ i

which, combined with the result proved in Theorem 11, yields the result.
O

A.13. Proof of Theorem 13. Let [i, denote a o—stable CRM and,
as in (9), flsp indicates a random measure whose normalization yields a
Pitman—Yor process with parameters (o, §). From Theorem 11, one has that

ok _ g
E[e no(f)} _ P(fjgojuk)
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y / 7 lotkoo—1 g=u0 (= [l ()0 -u0] Po(dz) g,
0
_ oo /oo pPotkoo—1 (E o Viog (X)—fic, (f)) dv
r (% + k) 0
_ 00 F(eo + k‘O'(])
0
r(;g + k)

— ]E e_ﬂ00,90+k00 (f)

(e 0 ig, (X)} 050

d -
Hence, one can conclude that 7§ = fis,,60+ke, and

k
N d N
ol (X, T, Vo) = > Wivy 6x: + Wit Boo o thoo
j=1
where Py 0p+koo ~ PY(00,60 + koo; Py). Moreover Wy, = I;/(n5(X) +
Zf:l IZ)7 for any j = 1,...,k, and Wk+1,V0 = US(X)/(WS(X) + Zf:l Il)
If f, is the density of the vector (Wi yy,..., Wg,) on the k-dimensional
simplex Ag, we would like to determine

00
g0 _ .

f<w1,...,wk>=/ Folwr, ... wp) — e ko= =070 gy

0

[
(% +k)
To this end, we denote by h, the density function of 7;(X) and, using
independence, the vector (I, ..., I, n5(X)) has density given by

|€|—koo ;o
folxy, ... xp, t) = hy(t) - v e Vi :c?'] so-1
Hj:l I'(lej — 00) j=1
It Wy, = Zle I; + n5(X), a simple vector transformation yields a density
function for the vector (Wi vy, ..., Wiy, Wiy)
|| —koo TTE , Lei—00—1
v Ty
folwr, ... wy,w) = - iz wll=koo emelel , (w(1 - fw)))
Hj:l I'(lej — 00)
where |w| = Ele w;. From this, an expression for the density of (W1 v, ..., Wiv;)

easily follows and it turns out to be equal to

¢ —koo TTE ., fei—00—1
vlt=heo Hj:l w; 1

H?:l ['(lej — 00) (1 — |w|)ltl—koo+1

fv(wl, e ,wk) =
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o0 l—k _ wslw]|
X slfl=ho0 o= Tfu] hy(s) ds
0

B pltl=kao H?:l wf.j—ao—l )
15 T(la; — 00) (1~ Jw|)lél=hoos1

v|w| *
X (]E(ng (X))W*koo o TTwl T (x)>.

Since nj is a generalized gamma CRM with parameters (o9, V) and base
measure Py, its probability distributions P* is absolutely continuous with
respect to the probability distribution PP, of a og—stable CRM and

dp*
dp,,

(m) = exp{—vm(X) + v7°},
then
v|w| * - o N
(g (X)) 640 ¢ 50 _ 070 (7 (5 el -Hon o e oo (0

In view of this, one can now marginalize f, with respect to v and and obtain
a density of (Wi,..., Wy). Indeed, one has

o0
g0 Got+koo—1 . —v°
f(wl,...,wk)ze/ pfotkoo evofv(wl,...,wk)dv

Yo
F(Uo+k) 0
k lyj—00—1
0_0 szle.J oo 1

P(% + k) [Tjoi Dl — o0) (1= fw)beot?

X B (fig, (X)) El=Feo /OO LPotIEl—1 o= =y Ao (X) g,
0

_ 90l(60 + |£]) (E (Fiay (X))—"O—k’ao)
! F<% ™ k) H§=1 I'(lej — 00)

ko _
« (1 - ’,w|)90+k00—1 waoj_o'o—l

J=1

k _
_ F(QO + |£D (1 . |,w|)00+k:00—1 H wli.j—ao—l
J

N I'(6 + koo) H§:1 I (e — 00) j=1

and this completes the proof of the posterior characterization of py.
Finally, one can proceed in a similar fashion in order to prove (25) O
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APPENDIX B: BLACKWELL-MACQUEEN URN SCHEME FOR
HIERARCHICAL PITMAN-YOR PROCESSES

Here we specialize the algorithm described in Section 6.1 to hierarchies
of Pitman—Yor processes. Hence we are assuming that X are partially ex-
changeable as in (1), where the prior Q4 is characterized as follows

_ o iid 3 . N
pi|po ~ PY(0,0;p0) (i=1,...,d), Po ~ PY (0o, 00; Po)

The same notations as in Section 6.1 are used. The determination of the full
conditionals follows immediately from the augmented pEPPF

Hg}:‘;m) (n17 T 7nd;e7 q)
_ [1,24 " (00 + 7o) H

(o + g1 - s

0
(B.1) ) Hzl. L0+ ro) k+j 11_,[<1 :

— gy 01
(0 + 1)N1+m1_1 v=1t=1 Lot
k+j£2,v

[127(0 + ro) B
(8 + 1)N2+m2 1 H(l O-)qz’v,til

T u=1t=1

with the convention (1 — o)_; = 1. Based on (B.1) one can devise a Gibbs
sampler that generates (T51,...,T;n,), for ¢ = 1,2, and (X; N, 4+, Ti, N, +r),
forr =1,...,m; and i = 1,2, from their respective full conditionals. Details
are provided for ¢ = 1, the case ¢ = 2 being identical with the appropriate
adaptations.

(0)

(1) At t =0, start from an initial configuration X; Nog1se - ’Xi(?\)’ri-mi and
0 0 .
Ti(,1)a e ,ESJ\),ieri, fori=1,2.

(2) At iterationt >1
(2.a) With X, = X generate latent variables T} ® for r = 1,...,N;, from

1,r
(94_?1:0’)
P(Ti, = “new”| ) xw
o N T
]P(Tl,r:Ti},:;"“)OC(Q;:M—U) for k =1,...,¢07}

)

5-T e 7T :
where wy,, = E.h —og if £, > 0 and wy,, = 1 otherwise. Moreover,

T1* . I ,. . T1 h o are the tables at the first restaurant where the A-th

dish is served, after the removal of 17 ,..
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(2.b) Forr=1,...,mq, generate (X1(\2+r’ T](\Z_)M) from the following predic-
tive distributions

(6o + (k+ 5 ")oo) (0 + 114 0)
(9 + N1 +mq — 1) (90 + |£7TD

P(X1, = “new”, T}, = “new”|---) =

-

while, for any h =1,--- Jk+j "and Kk =1,--- {1},

(bn —00)  (B+01,0)
O+ N +mi—1) (60 + €7

P(X, = X;?_T,TLT = “new”|---) =

B
0+ Ny+mp—1 {n;;>0}

P(X1r =X, T =Tl )

recalling that X;~", for h =1,...,k + j~" denote the distinct dishes
in the whole franchise after the removal of the r—th observation, while
the condition n,,; > 0 entails that the h-th dish is served in the i-th
restaurant. ’
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