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Abstract 

 We study the rationality of individual and consensus forecasts of macroeconomic and financial 

variables using the methodology of Coibion and Gorodnichenko (2015), who examine predictability of 

forecast errors from forecast revisions. We find that individual forecasters typically overreact to news, 

while consensus forecasts underreact relative to full information rational expectations.  We reconcile these 

findings within a diagnostic expectations version of a dispersed information learning model. Structural 

estimation indicates that departures from Bayesian updating in the form of diagnostic overreaction capture 

important variation in forecast biases across different series, yielding a belief distortion parameter similar 

to estimates obtained in other settings.   
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I. Introduction 

According to the Rational Expectations hypothesis, individuals form beliefs about the future, and 

make decisions, using statistically optimal forecasts based on their information. A growing body of work 

tests this hypothesis using survey data on the expectations of households, firm managers, financial analysts, 

and professional forecasters. The evidence points to systematic predictability of forecast errors. Such 

predictability has been documented for inflation and other macro forecasts (Coibion and Gorodnichenko 

2012, 2015, henceforth CG, Fuhrer 2019), the aggregate stock market (Bacchetta, Mertens, and Wincoop 

2009, Amromin and Sharpe 2013, Greenwood and Shleifer 2014, Adam, Marcet, and Buetel 2017), the 

cross section of stock returns (La Porta 1996, Bordalo, Gennaioli, La Porta, and Shleifer 2019, henceforth 

BGLS), credit spreads (Greenwood and Hanson 2013, Bordalo, Gennaioli, and Shleifer 2018, henceforth 

BGS), short-term interest rates (Cieslak 2018), and corporate earnings (DeBondt and Thaler 1990, Ben-

David, Graham, and Harvey 2013, Gennaioli, Ma, and Shleifer 2016, Bouchaud, Kruger, Landier, and 

Thesmar 2019).  Predictable forecast errors also obtain in controlled experiments (Hommes, Sonnemans, 

Tuinstra, Van de Velden 2004, Beshears, Choi, Fuster, Laibson, Madrian 2013, Frydman and Nave 2016, 

Landier, Ma, and Thesmar 2019).    

What does predictability of forecast errors teach us about how market participants form 

expectations?  A valuable strategy introduced by CG (2015) is to compute the correlation between the 

current forecast revision and the future forecast error, defined as the realization minus the current forecast. 

Under Full Information Rational Expectations (FIRE) the forecast error is unpredictable and this 

correlation should be zero. When this correlation is positive, upward revisions predict higher realizations 

relative to the forecasts, meaning that the forecast underreacts to information relative to FIRE. When this 

correlation is negative, upward forecast revisions predict lower realizations relative to the forecasts, 

meaning that the forecast overreacts relative to FIRE.  

This test of departures from FIRE can be applied to consensus forecasts.  CG (2015) consider 

consensus forecasts of inflation and other macro variables and find evidence of underreaction relative to 

FIRE. They interpret this finding as a departure from full information, stemming from information frictions 

such as rational inattention (Sims 2003, Woodford 2003, Carroll 2003, Mankiw and Reis 2002, Gabaix 
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2014), while maintaining individual rationality in the form of Bayesian updating. Other empirical findings 

using consensus forecasts, however, cannot be explained using this account. For instance, upward 

consensus forecast revisions of firms’ long-term earnings growth predict future disappointment and lower 

stock returns (BGLS 2019). This evidence points to overreaction of consensus forecasts, in line with the 

well-known excess volatility of asset prices in finance (Shiller 1981, De Bondt and Thaler 1985, Giglio 

and Kelly 2017, Augenblick and Lazarus 2018).   

CG’s (2015) test of departures from FIRE can also be applied to individual forecasts. D’Arienzo 

(2019) finds that individual analysts’ forecasts of long-term interest rates overreact. BGLS (2019) also find 

overreaction for individual analyst expectations of long-term corporate earnings growth. On the other hand, 

Bouchaud et al. (2019) document underreaction of individual analyst forecasts of firms’ short term (one 

year ahead) earning’s growth. 

This evidence is somewhat unsettling. To some it may suggest that there is no way of thinking 

systematically about the predictability of forecast errors, confirming the dictum that when one abandons 

rationality “anything goes”. This paper shows that this is not the case.  First, we show that different tests 

are informative about different departures from FIRE. Tests of individual beliefs are informative about 

departures from rationality. Tests of consensus forecasts yield additional information about the role of 

information frictions. Second, the seemingly contradictory findings can be in good part, though not fully, 

reconciled, by combining standard information frictions with a deeper departure from Bayesian updating 

in the direction of overreaction to news. We document this finding by studying expectations for a large set 

of macro and financial variables at the individual level.  

We then offer a theory of individual overreaction based on diagnostic expectations (BGS 2018), a 

psychologically founded non-Bayesian model of belief formation. In this model, individual expectations 

overreact to news. At the same time, we follow Woodford (2003) and Coibion-Gorodnichenko (2015) in 

assuming that information is dispersed across individuals. We show that this model can qualitatively and 

quantitatively unify many patterns in the data, including individual overreaction and consensus 

underreaction to news in most cases. 
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We use both the Survey of Professional Forecasters (SPF) and the Blue Chip Survey, which gives 

us 22 expectations series in total (four variables appear in both surveys), including forecasts of real 

economic activity, consumption, investment, unemployment, housing starts, government expenditures, as 

well as multiple interest rates. SPF data are publicly available; Blue Chip data were purchased and hand-

coded for the earlier part of the sample.  This data expands the sources and variables analyzed by CG 

(2015).  We report five principal findings. 

First, the Rational Expectations hypothesis is consistently rejected in individual forecast data.  

Individual forecast errors are systematically predictable from forecast revisions.   

Second, overreaction to information is the norm in individual forecast data, meaning that upward 

revisions are associated with realizations below forecasts. In only a few series we find individual forecaster-

level underreaction. 

Third, for consensus forecasts, we generally find the opposite pattern of underreaction, which 

confirms, using our expanded data set, the CG finding of informational rigidity.   

Fourth, a model of belief formation that we call diagnostic expectations (BGS 2018) can be used 

to organize the evidence. The model incorporates Kahneman and Tversky’s (1972) representativeness 

heuristic – formalized as in Gennaioli and Shleifer (2010) and Bordalo, Coffman, Gennaioli, and Shleifer 

(2016), henceforth BCGS – into a framework of learning from noisy private signals.2  In this model, belief 

distortions follow the “kernel of truth”: each forecaster overweighs the probability of states that have 

become truly more likely in light of his noisy signal. The degree of overweighting is controlled by the 

diagnosticity parameter 𝜃. When 𝜃 = 0, our model reduces to the CG model of information frictions, in 

which consensus forecasts underreact but individual level forecasts are rational (i.e., their errors are 

unpredictable). When 𝜃 > 0, the model departs from Bayesian updating in the direction of overreaction. 

This departure allows us to reconcile positive consensus level and negative individual level CG 

coefficients. Intuitively, when 𝜃 > 0  each individual forecaster overreacts to his noisy signal, so the 

                                                           
2 Gennaioli and Shleifer (2010) proposed this model to account for lab experiments on probabilistic judgments, BCGS 

(2016) applied it to social stereotypes. The model has then been used to account for credit cycles (BGS 2018), and 

the cross section of stock returns (BGLS 2019). 
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individual CG coefficient is negative, but still does not react at all to the signals of other forecasters, 

potentially creating a positive consensus CG coefficient.  

Fifth, our model has additional predictions that we check with a structural estimation exercise. In 

particular, our model implies that whether the consensus forecast over- or underreacts, and the strength of 

individual level overreaction, should depend on the characteristics of the data generating process, such as 

its persistence and volatility.  We estimate the parameters of each series’ data generating process and 

recover latent parameters such as the degree of diagnosticity 𝜃 and the noise in forecasters’ information 

using the simulated method of moments. To probe the robustness of our findings, we try three different 

estimation methods, which yield the following robust results. First, the diagnostic parameter 𝜃  is on 

average around 0.5, which lies in the ballpark of estimates obtained in other contexts using different data 

and methods (BGS 2018, BGLS 2019). The resulting distortions in beliefs are considerable: 𝜃 = 0.5 means 

that forecasts react to news 50% more than do rational expectations. Second, in line with our model, more 

persistent series exhibit weaker overreaction than less persistent ones.  Finally, due to differences in 

persistence and volatility between series, our model captures about half of the variation in the consensus 

forecast rigidity among them.  Allowing the diagnostic parameter to vary between series allows the model 

to explain most of the cross-series variation. 

The paper proceeds as follows. After describing the data in Section 2, we document in Section 3 

the prevalence of both forecaster level overreaction to information and consensus level rigidity.  We then 

perform robustness checks with respect to a number of potential concerns, including forecaster 

heterogeneity, small sample bias, measurement error, nonstandard loss functions, and the non-normality of 

shocks.  In Section 4 we introduce the model and show that it helps reconcile consensus and individual 

level predictability of forecast errors. In Section 5 we estimate the model. In Section 6 we take stock and 

lay out some key next steps for the fast-growing work on departures from rational expectations.   

Our main empirical contribution is to carry out a systematic analysis of macroeconomic and 

financial forecasts and offer a reconciliation for the seemingly contradictory patterns discussed at the 

outset.  As we shall see, unification is not complete: we cannot account for individual level underreaction 

to news, which we document for short-term interest rates, and which has also been documented by 
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Bouchaud et al. (2019) for short term earnings forecasts.  We suggest in Section 6 that the kernel of truth 

logic offers a promising approach to reconciling these findings as well.  

Our analysis also relates to other modeling approaches to expectation errors. For example, with 

natural expectations (Fuster, Laibson, and Mendel 2010), forecasters neglect longer lags, causing 

overreaction to short term changes. While our model shares some predictions with natural expectations, it 

make distinctive predictions, such as overreaction to longer lags, which we show more closely describe the 

data.3  Overconfidence, in the sense of overestimating the precision of private news, also implies an 

exaggerated reaction to private signals (Daniel, Hirshleifer, and Subrahmanyam 1998, Moore and Healy 

2008). In independent and insightful work, Broer and Kohlhas (2019) document individual overreaction in 

forecasts for GDP and inflation, and consider overconfidence as the reason. In a similar vein, earlier work 

by Benigno and Karantounias (2019) uses overconfidence to rationalize the volatility of individual prices 

and the rigidity of aggregate prices. We find that diagnostic expectations can better explain several features 

of the data documented here and elsewhere, such as instances of consensus overreaction, individual level 

overreaction to the signals the forecaster attends to (which includes salient public signals), and systematic 

differences across series. 

In our view, diagnostic expectations offer a theoretically tractable, empirically plausible, and 

parsimonious departure from rational expectations. They explain puzzling features of the data, and can be 

incorporated into quantitative models in macroeconomics and finance. More work is needed to find the 

best formulation, but existing estimates of the critical diagnosticity parameter can be used as a starting 

point in such an analysis (Bordalo, Gennaioli, Shleifer, and Terry 2019). 

 

2. The Data 

                                                           
3 Incentives may distort professional forecasters’ stated expectations. Ottaviani and Sorensen (2006) point out that if 

forecasters compete in an accuracy contest with winner-take-all rules, they overweigh private information. In contrast, 

Fuhrer (2019) argues that in the SPF data, individual forecast revisions can be negatively predicted from past 

deviations relative to consensus. Kohlhas and Walther (2018) also offer a model of asymmetric loss functions. We 

discuss these possibilities later in the paper. 
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Data on Forecasts. We collect forecast data from two sources: Survey of Professional Forecasters (SPF) 

and Blue Chip Financial Forecasts (Blue Chip).4  SPF is a survey of professional forecasters currently run 

by the Federal Reserve Bank of Philadelphia. At a given point in time, around 40 forecasters contribute to 

the SPF anonymously. SPF is conducted on a quarterly basis, around the end of the second month in the 

quarter. It provides both consensus forecast data and forecaster-level data. In SPF, individual forecasters 

are anonymous, and are identified by forecaster IDs. Forecasters report forecasts for outcomes in the 

current and next four quarters, typically about the level of the variable in each quarter.  

Blue Chip is a survey of panelists from around 40 major financial institutions. The names of 

institutions and forecasters are disclosed. The survey is conducted around the beginning of each month. To 

match with the SPF timing, we use Blue Chip forecasts from the end-of-quarter month survey (i.e., March, 

June, September, and December). Blue Chip has consensus forecasts available electronically, and we 

digitize individual level forecasts from PDF publications. Panelists forecast outcomes in the current and 

next four to five quarters. For variables such as GDP, they report (annualized) quarterly growth rates. For 

variables such as interest rates, they report the quarterly average level. Blue Chip discloses the identity of 

the forecasters and each unit of observation is an institution (e.g., Goldman Sachs).  

For both SPF and Blue Chip, the median (mean) duration of a panelist contributing forecasts is 

about 16 (23) quarters. Thus for each variable, we have an unbalanced panel. Given the timing of the SPF 

and Blue Chip forecasts we use, by the time the forecasts are made in quarter 𝑡 (i.e. around the end of the 

second month in quarter 𝑡), forecasters know the actual values of variables with quarterly releases (e.g., 

GDP) up to quarter 𝑡 − 1, and the actual values of variables with monthly releases (e.g., unemployment 

rate) up to the previous month.  

Table 1 presents the list of variables we study, as well as the time range for which forecast data are 

available from SPF and/or Blue Chip. These variables cover both macroeconomic outcomes, such as GDP, 

price indices, consumption, investment, unemployment, government consumption, and financial variables, 

primarily yields on government bonds and corporate bonds. SPF covers most of the macro variables and 

                                                           
4 Blue Chip provides two sets of forecast data: Blue Chip Economic Indicators (BCEI) and Blue Chip Financial 

Forecasts (BCFF). We do not use BCEI since historical forecaster-level data are only available for BCFF. 



8 
 

selected interest rates (three month Treasuries, ten year Treasuries, and AAA corporate bonds). Blue Chip 

includes real GDP and a larger set of interest rates (Fed Funds, three month, five year, and ten year 

Treasuries, AAA as well as BAA corporate bonds). Relative to CG (2015), we add two SPF variables 

(nominal GDP and the ten-year Treasury rate) as well as the Blue Chip forecasts. 

Table 1. List of Variables 

 
This table lists our outcome variables, the forecast source, and the period for which forecasts are available.  

 

Variable SPF Blue Chip Abbreviation 

Nominal GDP 1968Q4--2016Q4 N/A NGDP 

Real GDP 1968Q4--2016Q4 1999Q1--2016Q4 RGDP 

Industrial Production Index 1968Q4--2016Q4 N/A INPROD 

GDP Price Deflator 1968Q4--2016Q4 N/A PGDP 

Consumer Price Index 1981Q3--2016Q4 N/A CPI 

Real Consumption 1981Q3--2016Q4 N/A RCONSUM 

Real Non-Residential Investment 1981Q3--2016Q4 N/A RNRESIN 

Real Residential Investment 1981Q3--2016Q4 N/A RRESIN 

Federal Government Consumption 1981Q3--2016Q4 N/A RGF 

State & Local Government Consumption 1981Q3--2016Q4 N/A RGSL 

Housing Starts 1968Q4--2016Q4 N/A HOUSING 

Unemployment Rate 1968Q4--2016Q4 N/A UNEMP 

Fed Funds Rate N/A 1983Q1--2016Q4 FF 

3M Treasury Rate 1981Q3--2016Q4 1983Q1--2016Q4 TB3M 

5Y Treasury Rate N/A 1988Q1--2016Q4 TN5Y 

10Y Treasury Rate 1992Q1--2016Q4 1993Q1--2016Q4 TN10Y 

AAA Bond Rate 1981Q3--2016Q4 1984Q1--2016Q4 AAA 

BAA Bond Rate N/A 2000Q1--2016Q4 BAA 
 

We use an annual forecast horizon. For GDP and inflation we look at the annual growth rate from 

quarter 𝑡 − 1 to quarter 𝑡 + 3. In SPF, the forecasts for these variables are in levels (e.g. level of GDP), so 

we transform them into implied growth rates. Actual GDP of quarter 𝑡 − 1 is known at the time of the 

forecast, consistent with the forecasters’ information sets.  Blue Chip reports forecasts of quarterly growth 

rates, so we add up these forecasts in quarters 𝑡 to 𝑡 + 3. For variables such as the unemployment rate and 

interest rates, we look at the level in quarter 𝑡 + 3. Both SPF and Blue Chip have direct forecasts of the 

quarterly average level in quarter 𝑡 + 3. We winsorize outliers by removing, for each forecast horizon in a 

given quarter, forecasts that are more than 5 interquartile ranges away from the median. Winsorizing 

forecasts before constructing forecast revisions and errors ensures consistency. We keep forecasters with 

at least 10 observations in all analyses. Appendix B provides a description of variable construction.  
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Consensus forecasts are computed as means from individual level forecasts available at a point in 

time. We calculate forecasts, forecast errors, and forecast revisions at the individual level, and then average 

them across forecasters to compute the consensus.5  

Data on Actual Outcomes. The values of macroeconomic variables are released quarterly but are often 

subsequently revised. To match as closely as possible the forecasters’ information set, we focus on initial 

releases from Philadelphia Fed’s Real-Time Data Set for Macroeconomists.6  For example, for actual GDP 

growth from quarter 𝑡 − 1 to quarter 𝑡 + 3, we use the initial release of 𝐺𝐷𝑃𝑡+3 in quarter 𝑡 + 4 divided 

by the contemporaneous release of 𝐺𝐷𝑃𝑡−1.  We perform robustness checks using other vintages of actual 

outcomes including the latest release. For financial variables, the actual outcomes are available daily and 

are permanent (not revised). We use historical data from the Federal Reserve Bank of St. Louis. In addition, 

we always study the properties of the actuals (mean, standard deviation, persistence, etc) using the same 

time periods as the corresponding forecasts. The same variable from SPF and Blue Chip may have slightly 

different actuals when the two datasets cover different time periods.  

Summary Statistics. We present summary statistics of average forecasts and corresponding actuals in 

Appendix C Table C1.  Here we present summary statistics of forecast errors and revisions. Table 2 shows 

the consensus forecasts errors and revisions at a horizon of quarter t+3, as well as the dispersion of 

individual forecasts. The table also shows statistics for the quarterly share of forecasters with no meaningful 

revisions,7 and a measure of the dispersion in revisions, namely the probability that less than 80% of 

forecasters revise in the same direction.  

Table 2. Summary Statistics 

 
Columns (1) to (5) show statistics for errors and revisions of consensus (average) forecasts.  Errors are actuals 

minus forecasts, and actuals are realized outcomes corresponding to the forecasts. Standard errors of forecast 

errors are calculated with Newey and West (1994) standard errors. Revisions are forecasts of the outcome made 

in quarter t minus forecasts of the same outcome made in quarter t-1. Columns (6) to (8) show statistics of 

                                                           
5 There could be small differences in the set of forecasters who issue a forecast in quarter t, and those who revise their 

forecast at 𝑡 (these need to be present at 𝑡 − 1 as well). This issue does not affect our results, which are robust to 

considering only forecasters who have both forecasts and forecast revisions.    
6 When forecasters make forecasts in quarter t, only initial releases of macro variables in quarter t-1 are available.  
7 We categorize a forecaster as making no revision if he provides non-missing forecasts in both quarters t-1 and t, 

and the forecasts change by less than 0.01 percentage points. For variables in rates, the data is often rounded to the 

first decimal point, and this rounding may lead to a higher incidence of no-revision.  
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individual level forecasts. The forecast dispersion column shows the mean of quarterly standard deviations of 

individual level forecasts. Non-revisions are instances where forecasts are available in both quarter t and quarter 

t-1 and the change in the value is less than 0.01 percentage points. The non-revision column shows the mean of 

quarterly non-revision shares. The final column shows the fraction of quarters where less than 80% of the 

forecasters revise in the same direction. All values are in percentages. The format for nominal GDP to housing 

start is the growth rate from the end of quarter t-1 to the end of quarter t+3. The format for unemployment rate to 

BAA corporate bond rate is the average level in quarter t+3.  
 

 Consensus Individual 

 Errors Revisions Forecast Non-rev Pr(<80% 

Variable Mean SD SE Mean SD Dispersion Share 
revise same 

direction) 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Nominal GDP (SPF) -0.30 1.73 0.20 -0.16 0.71 1.00 0.02 0.77 

Real GDP (SPF) -0.23 1.71 0.20 -0.18 0.62 0.79 0.02 0.74 

Real GDP (BC) -0.07 1.28 0.19 -0.12 0.47 0.38 0.05 0.64 

GDP Price Index (SPF) -0.06 1.14 0.15 0.01 0.44 0.62 0.05 0.78 

CPI (SPF) -0.26 1.07 0.14 -0.12 0.47 0.53 0.07 0.70 

Real Consumption (SPF) 0.35 1.13 0.16 -0.07 0.44 0.60 0.03 0.77 

Industrial Production (SPF) -1.06 3.85 0.43 -0.34 1.09 1.57 0.07 0.76 

Real Non-Residential Investment (SPF) 0.22 5.79 0.82  -0.29 1.80 2.21 0.02 0.72 

Real Residential Investment (SPF) -0.06 8.35 1.21 -0.66 2.42 4.02 0.03 0.84 

Real Federal Government Consumption 

(SPF) 
0.02 3.19 0.41 0.10 1.19 1.93 0.07 0.88 

Real State&Local Govt Consumption (SPF) 0.04 1.14 0.16 -0.05 0.35 0.92 0.11 0.90 

Housing Start (SPF) -3.43 18.38 2.35 -2.24 6.04 8.35 0.00 0.66 

Unemployment (SPF) 0.00 0.76 0.09 0.05 0.32 0.29 0.18 0.78 

Fed Funds Rate (BC) -0.41 1.01 0.15 -0.18 0.53 0.45 0.23 0.70 

3M Treasury Rate (SPF) -0.54 1.17 0.16 -0.20 0.52 0.45 0.15 0.69 

3M Treasury Rate (BC) -0.52 1.01 0.15 -0.19 0.50 0.45 0.17 0.68 

5Y Treasury Rate (BC) -0.42 0.87 0.13 -0.16 0.45 0.40 0.12 0.62 

10Y Treasury Rate (SPF) -0.49 0.74 0.11 -0.13 0.37 0.37 0.10 0.61 

10Y Treasury Rate (BC) -0.44 0.74 0.11 -0.14 0.39 0.34 0.13 0.54 

AAA Corporate Bond Rate (SPF) -0.47 0.85 0.11 -0.12 0.39 0.50 0.08 0.72 

AAA Corporate Bond Rate (BC) -0.43 0.69 0.10 -0.13 0.36 0.45 0.12 0.70 

BAA Corporate Bond Rate (BC) -0.46 0.66 0.12 -0.15 0.31 0.40 0.12 0.77 
 

Several patterns emerge from Table 2. First, the consensus forecast error is statistically indistinguishable 

from zero for most variables. The main exceptions are interest rates, for which consensus forecasts are 

systematically above realizations. This is likely due to the fact that interest rates declined secularly during 

our sample period, while forecasters adjusted only partially to the trend. Second, there is significant 

dispersion of forecasts and revisions at each point in time. Third, the share of non-revising forecasters is 

small, and revisions go in different directions. As the final column shows, it is uncommon to have quarters 

where more than 80% forecasters revise in the same direction. This suggests that different forecasters 
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observe or attend to different news, either because they are exposed to different information or because 

they use different models, or both. 

 

3. Properties of Individual and Consensus Forecasts 

Many tests of the rational expectations hypothesis assess whether forecast errors can be predicted 

using information available at the time the forecast is made. Understanding whether departures from 

rational expectations are due to over- or underreaction to information is more challenging, since the 

forecaster’s full information set is not directly observed by the econometrician. To do so, we build on the 

method developed by CG (2015), which tests whether errors of consensus forecasts are predictable from 

revisions of consensus forecasts, assuming that revisions measure the reaction to available news.  

While the CG test was originally developed to assess whether consensus forecasts underreact, or 

are rigid, relative to the full information rational expectations (FIRE) benchmark, it can be used as an 

empirical test on any expectations panel data for which forecast revisions can be computed.  We first 

describe the general structure of the test, and then discuss its implementation and interpretation using data 

on individual level as well as consensus forecasts. 

Starting with the original setting in CG (2015), denote by 𝑥𝑡+ℎ|𝑡 the consensus forecast made at 

time 𝑡 about the future value 𝑥𝑡+ℎ of a variable. That is, 𝑥𝑡+ℎ|𝑡 =
1

𝐼
∑ 𝑥𝑡+ℎ|𝑡

𝑖
𝑖 , where 𝑥𝑡+ℎ|𝑡

𝑖  is the forecast 

of individual 𝑖 and 𝐼 > 1 is the number of forecasters. Denote by 𝑥𝑡+ℎ|𝑡−1 the forecast of the same variable 

in the previous period. The ℎ-periods ahead forecast revision at 𝑡 is given by 𝐹𝑅𝑡,ℎ = (𝑥𝑡+ℎ|𝑡 − 𝑥𝑡+ℎ|𝑡−1), 

or the one period change in the forecast about 𝑥𝑡+ℎ. The predictability of forecast errors is then assessed 

by estimating the regression: 

𝑥𝑡+ℎ − 𝑥𝑡+ℎ|𝑡 = 𝛽0 + 𝛽1𝐹𝑅𝑡,ℎ + 𝜖𝑡,𝑡+ℎ .                                                  (1) 

If forecast errors are not predictable from forecast revisions, then 𝛽1 = 0. This should hold under 

Full Information Rational Expectations (FIRE), where each forecaster is rational and all forecasters share 

the same, full information set.  In this case, all forecasters provide the same rational forecast and forecast 
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errors should have no predictability. On the other hand, a positive coefficient  𝛽1 implies that when the 

average forecast revision is positive, 𝐹𝑅𝑡,ℎ > 0, the consensus forecast is not optimistic enough; similarly, 

when the average forecast revision is negative, 𝐹𝑅𝑡,ℎ < 0, the consensus forecast is not pessimistic enough. 

Thus 𝛽1 > 0 indicates underreaction of consensus forecasts relative to FIRE. By the same logic, 𝛽1 < 0 

indicates overreaction of consensus forecasts relative to FIRE.  

CG (2015) find 𝛽1 > 0 for inflation expectations.8 This finding rejects FIRE, but not rational 

expectations as such. Indeed, CG show that 𝛽1 > 0 can be obtained in models that only relax the full 

information assumption, while individual forecasters rationally update their forecasts based on noisy 

private signals. Maintaining rationality of updating, however, is not without consequences.  It implies, in 

particular, that at the individual level forecast errors should remain unpredictable. To assess rationality, 

and to learn how forecasters update, we must perform the error predictability test at the individual level.    

  To analyze forecast error predictability at the individual level, we adapt test (1) using two different 

methods.  Using individual forecast revisions 𝐹𝑅𝑡,ℎ
𝑖 = (𝑥𝑡+ℎ|𝑡

𝑖 − 𝑥𝑡+ℎ|𝑡−1
𝑖 ) and forecast errors 𝑥𝑡+ℎ −

𝑥𝑡+ℎ|𝑡
𝑖 , we first pool forecasters and estimate a common coefficient 𝛽1

𝑝
 from the regression: 

𝑥𝑡+ℎ − 𝑥𝑡+ℎ|𝑡
𝑖 = 𝛽0

𝑝
+ 𝛽1

𝑝
𝐹𝑅𝑡,ℎ

𝑖 + 𝜖𝑡,𝑡+ℎ
𝑖 .                                                   (2) 

Superscript 𝑝 on the coefficients refers to the pooling of individual level data.  𝛽1
𝑝

> 0 indicates that the 

average forecaster underreacts to his own information, while 𝛽1
𝑝

< 0 indicates that the average forecaster 

overreacts. Rational expectations imply that, even with information frictions, 𝛽1
𝑝

= 0. 

The second method is to run forecaster-by-forecaster regressions: 

𝑥𝑡+ℎ − 𝑥𝑡+ℎ|𝑡
𝑖 = 𝛽0

𝑖 + 𝛽1
𝑖𝐹𝑅𝑡,ℎ

𝑖 + 𝑣𝑡,𝑡+ℎ
𝑖 ,      𝑖 = 1, … , 𝐼                                (3) 

                                                           
8 Specifically, CG (2015) estimate Equation (1) for the consensus forecast of the GDP price deflator (PGDP_SPF) at 

a horizon ℎ = 3 and find 𝛽1 = 1.2, which is robust to a number of controls. They also run Equation (1) for 13 SPF 

variables by pooling forecast horizons from ℎ = 0 to ℎ = 3, and find qualitatively similar results, with 8 out of 13 

variables exhibiting significantly positive 𝛽1’s and the average coefficient being close to 0.7 (see Figure 1 Panel B of 

CG 2015). The general message is that consensus forecasts of macroeconomic variables exhibit rigidity.   
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which yields a distribution of individual coefficients 𝛽1
𝑖 , 𝑖 = 1, … , 𝐼  . We can then take the median 

coefficient as indicative of whether the majority of forecasters over- or underreacts.  Again, rational 

expectations imply 𝛽1
𝑖 = 0 for all 𝑖. 

The forecaster-by-forecaster specification in (3) has two main advantages. First, it does not impose 

the restriction of a common coefficient 𝛽1
𝑝
. Second, it controls for persistent individual level differences in 

forecaster optimism (e.g., due to different priors). Heterogeneity of this type may create a bias towards 

underreaction in the pooled data.  Specifically, optimistic forecasters tend to make negative errors and to 

receive bad news, and thus make negative revisions, leading to a spurious positive correlation between 

forecast revisions and forecast errors.  On the other hand, the forecaster-by-forecaster specification has the 

shortcoming that there are a limited number of observations for each forecaster for each series, which 

decreases statistical power and makes it difficult to reliably estimate 𝛽1
𝑖 .  

What does CG’s (2015) general message that consensus forecasts of macroeconomic variables 

exhibit rigidity imply for the updating of individual forecasters? As mentioned above, rigidity of the 

consensus (𝛽1 > 0) rejects FIRE, and is consistent with information frictions. However, it does not exclude 

the co-existence of these frictions with violations of rationality (𝛽1
𝑝

≠ 0, 𝛽1
𝑖 ≠ 0) in the form of over- or 

underreaction. In particular, 𝛽1 > 0 is also consistent with no information rigidity at all, and predictability 

being entirely driven by individual level underreaction (𝛽1 = 𝛽1
𝑝

> 0).  Without looking at individual 

forecasts, there is no way to tell how forecasters update and which mechanism fits the data best.  

 Figure 1 plots the estimates of Equations (1) and (2), and Table 3 shows the point estimates, 

standard errors, and p-values. For consensus forecasts, the diamonds in Figure 1 and columns (1) to (3) in 

Table 3 show results for the coefficient 𝛽1 in Equation (1), for our 22 series and the same baseline horizon 

ℎ = 3. The standard errors are Newey-West with the automatic bandwidth selection following Newey and 

West (1994).  The estimated 𝛽1 is positive for 17 out of 22 series, statistically significant for 9 of them at 

the 5% confidence level, and for a further 3 series at the 10% level. Our point estimate for inflation forecasts 

coincides with CG’s. While results for the other SPF series are not directly comparable (since CG pool 

across forecast horizons), the estimates lie in a similar range. The one exception is the consensus forecast 
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of RGF_SPF (federal government spending), which displays strong overreaction. Results from the Blue 

Chip survey align well with SPF where they overlap, but do not exhibit significant consensus predictability 

for the remaining financial series.  

Figure 1. Forecast Error on Forecast Revision (CG) Regression Results 

This figure plots the forecast error on forecast revision regression coefficients. The diamonds represent the coefficient 

𝛽1  in Equation (1) using consensus forecasts, and the circles represent the coefficient 𝛽1
𝑝

 in Equation (2) using 

individual forecasts. Standard errors are Newey-West for consensus time series regressions, and clustered by 

forecaster and time for pooled individual level panel regressions.  

 

For the individual level forecasts, the circles in Figure 1 and columns (4) to (7) in Table 3 show 

results for the coefficient 𝛽1
𝑝

 in Equation (2), using pooled individual level regressions), for our 22 series 

and the same baseline horizon ℎ = 3. The results are essentially reversed from those using consensus 

forecasts: at the individual level, the average forecaster appears to mostly overreact to information, as 

reflected by a negative 𝛽1
𝑝

 coefficient. The estimated 𝛽1
𝑝
 is negative for 14 out of the 22 series (12 out of 

18 variables), and significantly negative for 8 series at the 5% confidence level, and for 4 other series at 

the 10% level. Except for short-term interest rates (Fed Funds and 3-months T-bill rate), all financial 

variables display overreaction. But many macro variables also display individual level overreaction, 

including nominal GDP, real GDP (in SPF, not in Blue Chip), industrial production, CPI, real consumption, 
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real federal government expenditures, real state and local government expenditures.  Estimates for the Fed 

Funds rate, the 3-months T-bill rate and unemployment rate display individual level underreaction with 

positive and statistically significant 𝛽1
𝑝
. GDP price deflator inflation, real GDP in Blue Chip, and non-

residential investment display neither over- nor underreaction (𝛽1
𝑝
 close to zero).  

Table 3. Error-on-Revision Regression Results 

This table shows coefficients from the CG (forecast error on forecast revision) regression. Columns (1) to (6) show 

the coefficients of consensus time-series regressions, and individual level pooled panel regressions, together with 

standard errors and p-values. Column (7) shows the median coefficients in forecaster-by-forecaster regressions. For 

consensus time-series regressions, standard errors are Newey-West with the automatic bandwidth selection procedure 

of Newey and West (1994). For individual level panel regressions, standard errors are clustered by both forecaster 

and time.  

 

 Consensus Individual 

 𝛽1 s.e. p-val 𝛽1
𝑝
 s.e. p-val Median 

Variable (1) (2) (3) (4) (5) (6) (7) 

Nominal GDP (SPF) 0.56 0.21 0.01 -0.22 0.07 0.00 -0.20 

Real GDP (SPF) 0.44 0.23 0.06 -0.15 0.09 0.09 -0.08 

Real GDP (BC) 0.57 0.33 0.08 0.11 0.19 0.58 -0.03 

GDP Price Index Inflation (SPF) 1.41 0.21 0.00 0.18 0.13 0.18 -0.11 

CPI (SPF) 0.29 0.22 0.17 -0.19 0.12 0.10 -0.25 

Real Consumption (SPF) 0.24 0.25 0.33 -0.24 0.11 0.02 -0.26 

Industrial Production (SPF) 0.71 0.30 0.02 -0.16 0.09 0.09 -0.19 

Real Non-Residential Investment (SPF) 1.06 0.36 0.00 0.08 0.15 0.60 0.09 

Real Residential Investment (SPF) 1.22 0.33 0.00 0.01 0.10 0.92 -0.09 

Real Federal Government Consumption (SPF) -0.43 0.23 0.06 -0.59 0.07 0.00 -0.52 

Real State & Local Govt Consumption (SPF) 0.63 0.34 0.06 -0.43 0.04 0.00 -0.44 

Housing Start (SPF) 0.40 0.29 0.18 -0.23 0.09 0.01 -0.27 

Unemployment (SPF) 0.82 0.2 0.00 0.34 0.12 0.00 0.23 

Fed Funds Rate (BC) 0.61 0.23 0.01 0.20 0.09 0.03 0.22 

3M Treasury Rate (SPF) 0.60 0.25 0.01 0.27 0.10 0.01 0.28 

3M Treasury Rate (BC) 0.64 0.25 0.01 0.21 0.09 0.02 0.17 

5Y Treasury Rate (BC) 0.03 0.22 0.88 -0.11 0.10 0.29 -0.17 

10Y Treasury Rate (SPF) -0.02 0.27 0.95 -0.19 0.10 0.06 -0.24 

10Y Treasury Rate (BC) -0.08 0.24 0.73 -0.18 0.11 0.11 -0.29 

AAA Corporate Bond Rate (SPF) -0.01 0.23 0.95 -0.22 0.07 0.00 -0.32 

AAA Corporate Bond Rate (BC) 0.21 0.20 0.29 -0.14 0.06 0.02 -0.27 

BAA Corporate Bond Rate (BC) -0.18 0.27 0.50 -0.29 0.09 0.00 -0.32 

 

To account for persistent differences among forecasters such as those stemming from priors, Table 

C2 in Appendix C also reports regressions with forecaster fixed effects. Now the estimated 𝛽1
𝑝
 is negative 

for 16 series, and significantly negative for 12 series at the 5% confidence level and for 2 other series at 
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the 10% level. Finally, Table 3 column (7) shows the median coefficient from the forecaster-by-forecaster 

regression of Equation (3). In Appendix C Table C3, we report confidence intervals of the median 

coefficient using block bootstrap.9  We resample time periods from the panel using blocks of 20 quarters 

each (we keep all forecasts made during each block of time period), and compute the median coefficient 

in 500 bootstrap samples. The results confirm our previous findings from the pooled specification. The 

median coefficient is negative at the 5% confidence level for 13 out of 22 series, and is very close to the 

results of the baseline regression in Equation (2) above.  The median forecast for short-term interest rates 

(the Fed funds rate and the 3 months T-bill rate) again display underreaction, while that for Real GDP, 

GDP price deflator, and investment displays neither over nor underreaction.  Overall, as Figure 1 and Table 

3 show, the prevalent finding is overreaction. 

The forecast series are not all independent. The CPI index and the GDP deflator are highly 

correlated, as are the different short-term interest rate series. Nonetheless, a general message emerges from 

the data. At the consensus level we mostly see informational rigidity, particularly for the macro variables 

and short term interest rates. At the individual level, in contrast, we mostly see overreaction, particularly 

for longer term interest rates but also for several macro variables. This evidence suggests that a story based 

entirely on information rigidities cannot fit the data.  Departures from rationality are needed.   

3.1 Robustness Checks  

 There are possible concerns that predictability of forecast errors might arise from features of the 

data unrelated to individuals’ under- or overreaction to news.  We next show that our results are robust to 

several such confounds. 

Limited Duration. We first discuss problems related to limited duration (small 𝑇).  Finite-sample biases 

exist in time series regressions (Kendall 1954, Stambaugh 1999) and panel regressions with fixed effects 

(Nickell 1981).  These finite sample biases are large when the predictor variables are persistent. Because 

the predictor variable in the CG regressions, the forecast revision, has low persistence in the data (about 

                                                           
9 We have less power to assess the significance of individual coefficients. For most variables, 20-30% of forecasters 

have negative and significant coefficients, while about 5% of them have positive and significant coefficients.  
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zero for most variables at the individual level), this issue should be small.  Table 3 shows the pooled 

individual level panel tests with no individual fixed effects, which are not subject to the Nickell bias 

(Hjalmarsson 2008). In addition, the results with individual fixed effects (Appendix C Table C2) and 

without fixed effects (Table 3) are similar, which also alleviates the finite-sample concern. For the 

forecaster-by-forecaster time series regressions, we also perform finite-sample Stambaugh bias-adjusted 

regressions and report the bias-adjusted median coefficients in Appendix C Table C3. The results are very 

similar to those from the OLS regressions reported in Table 3 column (7).  

 

Measurement Error. We also perform robustness checks for measurement error in both forecasts and actual 

outcomes. Forecasts measured with noise can mechanically lead to negative predictability of forecast errors 

in individual level tests: a positive shock increases the measured forecast revision and decreases the 

forecast error. To address this concern, we regress forecast errors at a certain horizon on forecast revisions 

for a different horizon. To the extent that overreactions are positively correlated for forecasts at different 

horizons, this specification would still yield a negative coefficient, while avoiding the mechanical 

measurement error problem of overlap in the left- and right-hand side variables.  

We implement this general strategy in two ways.  First, in Appendix C, Table C4 we regress the 

forecast error at horizon 𝑡 + 2, that is (𝑥𝑡+2 − 𝑥𝑡+2|𝑡
𝑖 ), on the forecast revision at horizon 𝑡 + 3, that is 

(𝑥𝑡+3|𝑡
𝑖 − 𝑥𝑡+3|𝑡−1

𝑖 ). We find strong negative predictability at the individual level in this specification as 

well. Second, in Section 4.2 and Appendix E we consider which series are better described by a hump-

shaped, AR(2) process than by an AR(1) process. In this context, we regress the forecast error at horizon 

𝑡 + 3,  (𝑥𝑡+3 − 𝑥𝑡+3|𝑡
𝑖 ),  on the forecast revisions for periods 𝑡 + 2  and 𝑡 + 1,  (𝑥𝑡+2|𝑡

𝑖 − 𝑥𝑡+2|𝑡−1
𝑖 )  and 

(𝑥𝑡+1|𝑡
𝑖 − 𝑥𝑡+1|𝑡−1

𝑖 ) repsectively, with similar results (Appendix E, Tables E2). These findings alleviate 

concerns about measurement error in forecasts. 

In addition, we assess the robustness of the results with respect to the measurement of the outcome 

variable. For example, in Appendix C Table C5, we measure the outcome variable using its most recent 

release. The results are similar to those in Table 3.  
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Finally, in Section 5 we estimate our model without using information from the CG coefficients; 

we obtain estimates that also indicate significant individual level overreaction and generate CG regression 

coefficients very similar to the data. These findings assuage measurement error concerns.   

Forecaster Incentives and Loss Functions. Another concern is that forecast errors reflect not cognitive 

limitations but forecasters’ biased incentives.  Although a forecaster’s objective is difficult to observe, we 

can discuss the implications of several forecaster loss functions proposed in the literature. 

 With an asymmetric loss function (Capistran and Timmerman 2009), the overreaction pattern in 

Table 3 may be generated by a combination of i) an asymmetric cost of over- or under-predictions, and ii) 

time varying volatility (Pesaran and Weale 2006).  One key prediction here is that asymmetric loss 

functions would generate non-zero average forecast errors.  In the data, however, forecasts for most 

variables are not systematically biased. The average consensus forecast errors are typically small and 

insignificant (Table 2).10  This is also true for individual forecast errors: we fail to reject that the average 

error is different from zero for about 60% of forecasters for the macroeconomic variables.11 

Other types of incentives stem from forecaster reputations. One of them is forecast smoothing. In 

response to news at 𝑡, forecasters may wish to minimize forecast revisions by taking into account the 

previous forecast 𝑥𝑡+ℎ|𝑡−1
𝑖  as well as the future path 𝑥𝑡+ℎ|𝑡+𝑗

𝑖 . To assess the relevance of this mechanism, 

note that forecast smoothing should reduce the current revision for the current quarter (ℎ = 0), creating 

underreaction. This prediction is contradicted by the data: negative predictability prevails even at this 

horizon (Appendix C, Table C6).  

Reputational mechanisms may also create strategic interactions among forecasters, again leading 

to predictable individual level forecast errors. On the one hand, individuals may wish to stay close to 

consensus forecasts (Morris and Shin 2002, Fuhrer 2019).  Let 𝑥̃𝑡+ℎ|𝑡
𝑖 = 𝛼𝑥𝑡+ℎ|𝑡

𝑖 + (1 − 𝛼)𝑥̃𝑡+ℎ|𝑡, where 

𝑥𝑡+ℎ|𝑡
𝑖  is the individual rational forecast and 𝑥̃𝑡+ℎ|𝑡 is the average contemporaneous forecast with this bias 

                                                           
10 As we already discussed, the only exception is interest rate variables, but here the systematic average error is most 

likely due to the downward trend in interest rates, not to asymmetric loss functions. There is no reason to expect 

forecasters’ loss functions to be asymmetric for interest rates but not for macro variables. 
11 Some individual forecasters have average errors that are significantly different from zero for some series, but these 

average out in the population for nearly all series.  
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(which coincides with the consensus without this bias). Our benchmark model has 𝛼 = 1 but for 𝛼 < 1 

forecasters put weight on others’ signals at the expense of their own. This force causes individual forecasts 

to be strategic complements. As a result, it causes individual level underreaction, or a positive individual 

level CG coefficients, contrary to our findings.12 

In Appendix C Table C7 we address this mechanism by controlling in the pooled specification of 

Equation (2) for the deviation of the forecast in quarter 𝑡 − 1 from the consensus (𝑥𝑡+ℎ|𝑡−1
𝑖 − 𝑥𝑡+ℎ|𝑡). The 

consensus is released between quarter 𝑡 − 1 and quarter 𝑡 , so controlling for the deviation takes into 

account potential news and adjustments related to the release of the consensus. The results in Table C7 

show that the coefficient on each individual’s own forecast revision remains negative and significant in 

this case. In other words, forecasters overreact significantly to their own information not related to the 

consensus forecasts. If anything, the coefficient on own forecast revision is often more negative once we 

control for the deviation from past consensus. To the extent that there are incentives to be close to the 

consensus, such incentives may bias towards underreaction, in line with the discussion above.  

A different type of reputational incentive is that individual forecasters may wish to distinguish 

themselves from others in order to prevail in a winner-take-all context, as in Ottaviani and Sorensen (2006). 

In this case, individual forecasts are strategic substitutes, which would create a form of overreaction.  

However, the similarity of our results across datasets suggests that this reputational incentive and more 

generally distorted incentives cannot be the whole story. The SPF panelists are anonymous, the Blue Chip 

ones are not. We find significant evidence of overreaction even in the anonymous SPF data.  

Fat tailed shocks. In our data both fundamentals and forecast revisions have high kurtosis, which manifests 

in a sizable number of large shocks and forecast revisions. To see whether fat tailed shocks may, by 

themselves, create a false impression of overreaction, in Appendix D we consider a learning setting with 

fat tailed fundamental shocks.  Without normality, we can no longer use the Kalman filter, but instead need 

to use the particle filter (Liu and Chen, 1998; Doucet, de Freitas, and Gordon, 2001). We find that when 

                                                           
12 Formally, denote 𝐹𝐸̃𝑡+ℎ,𝑡

𝑖 = 𝑥𝑡+ℎ − 𝑥̃𝑡+ℎ|𝑡
𝑖  the forecast error and 𝐹𝑅̃𝑡+ℎ,𝑡

𝑖 = 𝑥̃𝑡+ℎ|𝑡
𝑖 − 𝑥̃𝑡+ℎ|𝑡−1

𝑖  the forecast revision. 

It follows that 𝐹𝐸̃𝑡+ℎ,𝑡
𝑖 = 𝛼𝐹𝐸𝑡+ℎ,𝑡

𝑖 + (1 − 𝛼)𝐹𝐸𝑡+ℎ|𝑡  and similarly 𝐹𝑅̃𝑡+ℎ,𝑡
𝑖 = 𝛼𝐹𝑅𝑡+ℎ,𝑡

𝑖 + (1 − 𝛼)𝐹𝑅𝑡+ℎ|𝑡 . Then 

𝑐𝑜𝑣(𝐹𝐸̃𝑡+ℎ,𝑡
𝑖 , 𝐹𝑅̃𝑡+ℎ,𝑡

𝑖 ) > 0  follows from 𝑐𝑜𝑣(𝐹𝐸𝑡+ℎ,𝑡
𝑖 , 𝐹𝑅𝑡+ℎ,𝑡

𝑖 ) = 0  and 𝑐𝑜𝑣(𝐹𝐸𝑡+ℎ|𝑡 , 𝐹𝑅𝑡+ℎ|𝑡) > 0  under noisy 

rational expectations, together with 𝑐𝑜𝑣(𝐹𝐸𝑡+ℎ,𝑡
𝑖 , 𝐹𝑅𝑡+ℎ|𝑡), 𝑐𝑜𝑣(𝐹𝐸𝑡+ℎ|𝑡 , 𝐹𝑅𝑡+ℎ,𝑡

𝑖 ) > 0. 
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forecasts are produced using the particle filter under rational expectations, individual forecast errors are 

not predictable from forecast revisions, and thus cannot explain the evidence. In Appendix F we estimate 

a modified particle filter that allows for overreaction to news, and find that fat tailed shocks do not 

significantly affect our quantitative estimates. Because fat tails do not appear to affect our results, we 

maintain the more tractable assumption of normality in the theoretical analysis.13  

 

4. Diagnostic Expectations 

The evidence raises two questions.  First, how can informational rigidity in consensus beliefs be 

reconciled with overreaction at the individual level?  Second, why do the magnitudes of individual 

overreaction and consensus rigidity vary across variables?  This section introduces a model of diagnostic 

expectations and shows that it can answer the first question.  We then develop additional predictions of the 

model and in Section 5 show that they can answer the second question.  

4.1 The Diagnostic Kalman Filter and CG coefficients 

At each time 𝑡, the target of forecasts is a hidden state 𝑥𝑡+ℎ whose current value 𝑥𝑡 is not directly 

observed.  What is observed instead is a noisy signal 𝑠𝑡
𝑖: 

𝑠𝑡
𝑖 = 𝑥𝑡 + 𝜖𝑡

𝑖,                                                                          (4) 

where 𝜖𝑡
𝑖 is noise, i.i.d. normally distributed across forecasters and over time, with mean zero and variance 

𝜎𝜖
2. Heterogeneity in information is necessary to capture the cross-sectional heterogeneity in forecasts 

documented in Table 2. The signal observed by the forecaster is informative about a hidden and persistent 

state 𝑥𝑡 that evolves according to an AR(1) process: 

𝑥𝑡 = 𝜌𝑥𝑡−1 + 𝑢𝑡 ,                                                                          (5) 

where 𝑢𝑡 is a normal shock with mean zero and variance 𝜎𝑢
2. This AR(1) setting, also considered by CG 

(2015), yields convenient closed form predictions.  Naturally, some variables may be better described by 

                                                           
13 Apart from fat tails, skewness of shocks may also lead to systematically biased forecasts under Bayesian updating 

(Orlik and Veldkamp 2015).  As we saw in Table 2, in our data forecasts are not biased on average.  
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richer processes, such as VAR (CG 2015) or hump-shaped dynamics (Fuster, Laibson, Mendel 2010). In 

Section 4.2, we perform several exercises allowing for AR(2) processes and show that the main findings 

go through. As in CG (2015), restricting our attention to AR(1) does not significantly change the analysis. 

One can think of the signal in (4) as noisy information conveyed both by public indicators such as 

GDP or interest rates, and by private news capturing the forecaster’s expertise or contacts in the industry.14 

The forecaster then uses these combined signals to forecast the future value of the relevant series. The 

series itself (say GDP) consists of the persistent component 𝑥𝑡 plus a random shock, so that the forecasting 

problem is equivalent to anticipating future values of 𝑥𝑡.  We also explore a more detailed information 

structure in which the forecaster separately observes a private and a public signal. Specifically, we consider 

the cases where the public signal is a noisy version of the current state 𝑥𝑡 (Corollary 1) or where it is the 

past realized 𝑥𝑡−1. This is equivalent to allowing forecasters to observe past consensus forecasts (Appendix 

A, Lemma A.1). Both cases yield results very similar to the current setup. 

Another interpretation, adopted in CG (2015), is that 𝑠𝑡
𝑖 reflects the rational inattention to the series 

𝑥𝑡 that the forecaster is trying to predict (Sims 2003, Woodford 2003).  Forecasters could in principle 

observe 𝑥𝑡 but doing so is too costly, so they observe a noisy proxy and optimally use it in their forecasts.15 

In this interpretation, differences across forecasters may be due to the fact that they differ in the extent to 

which they pay attention to different pieces of information (which is in principle publicly available but 

costly to process).  Under both interpretations, a Bayesian forecaster optimally filters noise in his own 

signal. We thus refer to this model, under both interpretations, as “Noisy Rational Expectations.” 

A Bayesian, or rational, forecaster enters period 𝑡 carrying from the previous period beliefs about 

𝑥𝑡 summarized by a probability density 𝑓(𝑥𝑡|𝑆𝑡−1
𝑖 ), where 𝑆𝑡−1

𝑖  denotes the full history of signals observed 

by this forecaster. In period 𝑡, the forecaster observes a new signal 𝑠𝑡
𝑖 in light of which he updates his 

estimate of the current state using Bayes’ rule: 

                                                           
14 Consistent with the presence of forecaster-specific information, Berger, Erhmann, and Fratzscher (2011) show 

that the geographical location of forecasters influences their predictions of monetary policy decisions. 
15 As CG show, the same predictions are obtained if rational inattention is modelled as in Mankiw and Reis (2002), 

where agents observe the same information but only sporadically revise their predictions. 
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𝑓(𝑥𝑡|𝑆𝑡
𝑖) =

𝑓(𝑠𝑡
𝑖|𝑥𝑡)𝑓(𝑥𝑡|𝑆𝑡−1

𝑖 )

∫ 𝑓(𝑠𝑡
𝑖|𝑥)𝑓(𝑥|𝑆𝑡−1

𝑖 )𝑑𝑥
.                                                         (6) 

 Equation (6) iteratively defines the forecaster’s beliefs. With normal shocks, 𝑓(𝑥𝑡|𝑆𝑡
𝑖) is described 

by the Kalman filter. A rational forecaster estimates the current state at 𝑥𝑡|𝑡
𝑖 = ∫ 𝑥𝑓(𝑥|𝑆𝑡

𝑖)𝑑𝑥 and forecasts 

future values using the AR(1) structure, so 𝑥𝑡+ℎ|𝑡
𝑖 = 𝜌ℎ𝑥𝑡|𝑡

𝑖 .   

 We allow beliefs to be distorted by Kahneman and Tversky’s representativeness heuristic, as in 

our model of diagnostic expectations. In line with BGLS (2019) proposal for a diagnostic Kalman filter, 

we define the representativeness of a state 𝑥 at 𝑡 as the likelihood ratio: 

𝑅𝑡(𝑥) =
𝑓(𝑥|𝑆𝑡

𝑖)

𝑓(𝑥|𝑆𝑡−1
𝑖 ∪ {𝑥𝑡|𝑡−1

𝑖 })
.                                                                  (7) 

State 𝑥 is more representative at 𝑡 if the signal 𝑠𝑡
𝑖 received in this period raises the probability of that state 

relative to the case where the news equal the ex-ante forecast, 𝑠𝑡
𝑖 = 𝑥𝑡|𝑡−1

𝑖 , as described in the denominator 

of (7).  For simplicity, with some abuse of terminology, we refer to this case as receiving no news.   

Intuitively, the most representative states are those whose likelihood has increased the most in light 

of recent data. Specification (7) assumes that recent data equals the latest signal.  However, as we discuss 

in BGLS (2019), the reference likelihood in the denominator of (7) could capture more remote information.  

In BGLS (2019) we estimate a flexible specification and find that, in the context of listed U.S. firms, 

representativeness is best defined with respect to news received over the previous three years.  Different 

lags in Equation (7) preserve the model’s main predictions but introduce further structure that may be 

useful to account for the data.16 

The forecaster then overweighs representative states by using the distorted posterior: 

𝑓𝜃(𝑥𝑡|𝑆𝑡
𝑖) = 𝑓(𝑥𝑡|𝑆𝑡

𝑖)𝑅𝑡(𝑥𝑡)𝜃
1

𝑍𝑡
,                                                             (8) 

                                                           
16  When the reference distribution in Equation (7) is defined over longer term lags, diagnostic expectations 

accommodate both overreaction and some positive serial correlation of forecast errors.  Also, the reference 

distribution in Equation (7) can be defined to be the past distribution 𝑓(𝑥|𝑆𝑡−1
𝑖 ), as opposed to 𝑓(𝑥|𝑆𝑡−1

𝑖 ∪ {𝑥𝑡|𝑡−1
𝑖 }) 

(D’Arienzo 2019).  This specification has very similar properties for our purposes but introduces a systematic 

variation in errors over the term structure. We discuss this work in Section 6.   
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where 𝑍𝑡 is a normalization factor ensuring that 𝑓𝜃(𝑥𝑡|𝑆𝑡
𝑖) integrates to one.  Parameter 𝜃 ≥ 0 denotes the 

extent to which beliefs depart from rational updating due to representativeness. For 𝜃 = 0 beliefs are 

rational, described by the Bayesian conditional distribution 𝑓(𝑥𝑡|𝑆𝑡
𝑖). For 𝜃 > 0 the diagnostic density 

𝑓𝜃(𝑥𝑡|𝑆𝑡
𝑖) inflates the probability of representative states and deflates the probability of unrepresentative 

ones.  Mistakes occur because states that have become relatively more likely may still be unlikely in 

absolute terms. For simplicity, we assume here that all forecasters have the same distortion 𝜃, but later 

discuss what happens when this assumption is relaxed. 

We think of Equation (8) as describing distorted retrieval from memory.  The conditional 

distributions 𝑓(𝑥|𝑆𝑡
𝑖) are stored in the forecaster’s memory database. However, not all information in the 

database is equally accessible.  Future events that are relatively more associated with news -- in the sense 

of becoming more likely in light of this news (i.e. more likely in 𝑓(𝑥|𝑆𝑡
𝑖) than in 𝑓(𝑥|𝑆𝑡−1

𝑖 ∪ {𝑥𝑡|𝑡−1
𝑖 })) 

become more accessible and are overweighed in judgments.  As we will show, this implies that diagnostic 

expectations entail overreaction to news relative to the Bayesian benchmark.17   

The key feature of Equation (8) is the kernel of truth property – the idea that belief distortions are 

due to mis-reaction to rational news. This idea has been shown to unify well-known laboratory biases in 

probability assessments such as base rate neglect, the conjunction fallacy, and the disjunction fallacy 

(Gennaioli and Shleifer 2010). It has also been used to explain real world phenomena such as stereotyping 

(BCGS 2016), self-confidence (BCGS 2019), and expectation formation in financial markets (BGS 2018, 

BGLS 2019).  The kernel of truth disciplines the model because it implies that belief updating should 

depend on objective features of the data. Here we assess whether this same structure can shed light on 

errors in forecasting macroeconomic variables.  In fact, linking belief distortions to properties of the series 

such as persistence and volatility yields a rich set of testable predictions, which we explore in Section 5. 

 Equation (8) entails an intuitive characterization of beliefs (all proofs are in Appendix A).        

                                                           
17 Diagnostic expectations are a theory of overreaction and thus require 𝜃 > 0.  Equation (8) can be also used as a 

parsimonious general formalization of distorted beliefs, including underreaction to news for 𝜃 ∈ [−1,0). 
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Proposition 1 The distorted density 𝑓𝜃(𝑥𝑡|𝑆𝑡
𝑖)  is normal.  For 𝜌 > 0  and in the steady state, it is 

characterized by a constant variance 
𝛴𝜎𝜖

2

𝛴+𝜎𝜖
2 and by a time varying mean 𝑥𝑡|𝑡

𝑖,𝜃
 , where: 

𝑥𝑡|𝑡
𝑖,𝜃 = 𝑥𝑡|𝑡−1

𝑖 + (1 + 𝜃)
𝛴

𝛴 + 𝜎𝜖
2 (𝑠𝑡

𝑖 − 𝑥𝑡|𝑡−1
𝑖 ),                                                     (9) 

𝛴 =
−(1 − 𝜌2)𝜎𝜖

2 + 𝜎𝑢
2 + √[(1 − 𝜌2)𝜎𝜖

2 − 𝜎𝑢
2]2 + 4𝜎𝜖

2𝜎𝑢
2

2
.                              (10) 

 

In equations (9) and (10), 𝑥𝑡|𝑡−1
𝑖  refers to the rational forecast of the hidden state implied by the 

Kalman filter. Diagnostic beliefs resemble rational beliefs. They have the same conditional variance 𝛴, and 

their mean 𝑥𝑡|𝑡
𝑖,𝜃

 updates past rational beliefs 𝑥𝑡|𝑡−1
𝑖  with “rational news” 𝑠𝑡

𝑖 − 𝑥𝑡|𝑡−1
𝑖 , to an extent that 

increases in the signal to noise ratio 𝛴/𝜎𝜖
2 . However, relative to the Bayesian benchmark, diagnostic 

expectations overreact to news, i.e. 𝜃 > 0 in Equation (9), because future states that are more likely given 

news 𝑠𝑡
𝑖 − 𝑥𝑡|𝑡−1

𝑖  become more accessible and are overweighed.  The presence of the rational expectation 

in (9) captures the fact that beliefs are formed using the entire memory database upon which statistically 

optimal beliefs are also based, as indicated in Equations (7) and (8). 

The kernel of truth logic here works as follows. Positive news are objectively associated with 

improvement, but representativeness leads to excessive focus on the right tail, generating excessive 

optimism, and vice versa for negative news. Because rational news (𝑠𝑡
𝑖 − 𝑥𝑡|𝑡−1

𝑖 ) are zero on average, 

expectations display: i) excess volatility but no average bias, and ii) systematic reversals to rationality. 

The consensus diagnostic forecast of 𝑥𝑡+ℎ at time 𝑡 is given by:  

𝑥𝑡+ℎ|𝑡
𝜃 = ∫ 𝑥𝑡+ℎ|𝑡

𝑖,𝜃 𝑑𝑖 = 𝜌ℎ ∫ 𝑥𝑡|𝑡
𝑖,𝜃𝑑𝑖, 

so that the diagnostic forecast error and revision are respectively given by 𝑥𝑡+ℎ − 𝑥𝑡+ℎ|𝑡
𝜃  and 𝑥𝑡+ℎ|𝑡

𝜃 −

𝑥𝑡+ℎ|𝑡−1
𝜃 . We can now examine the model’s predictions for the Coibion-Gorodnichenko type regressions. 

Throughout, we assume beliefs are in steady state and the number of forecasters 𝐼 is large.   
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Proposition 2 For 𝜌 > 0, under the steady state diagnostic Kalman filter, the estimated coefficients of 

regression (2) at the consensus and individual level, 𝛽𝐶 and 𝛽𝐼, are given by: 

𝛽𝐶 =
𝑐𝑜𝑣(𝑥𝑡+ℎ − 𝑥𝑡+ℎ|𝑡

𝜃 , 𝑥𝑡+ℎ|𝑡
𝜃 − 𝑥𝑡+ℎ|𝑡−1

𝜃 )

𝑣𝑎𝑟(𝑥𝑡+ℎ|𝑡
𝜃 − 𝑥𝑡+ℎ|𝑡−1

𝜃 )
= (𝜎𝜖

2 − 𝜃𝛴)𝑔(𝜎𝜖
2, 𝛴, 𝜌, 𝜃)                            (11) 

𝛽𝐼 =
𝑐𝑜𝑣(𝑥𝑡+ℎ − 𝑥𝑡+ℎ|𝑡

𝑖,𝜃 , 𝑥𝑡+ℎ|𝑡
𝑖,𝜃 − 𝑥𝑡+ℎ|𝑡−1

𝑖,𝜃 )

𝑣𝑎𝑟 (𝑥𝑡+ℎ|𝑡
𝑖,𝜃 − 𝑥𝑡+ℎ|𝑡−1

𝑖,𝜃 )
= −

𝜃(1 + 𝜃)

(1 + 𝜃)2 + 𝜃2𝜌2
                                    (12) 

where 𝑔(𝜎𝜖
2, 𝛴, 𝜌, 𝜃) > 0 is a function of parameters. Thus, for 𝜃 ∈ (0, 𝜎𝜖

2/𝛴) the diagnostic Kalman filter 

entails a positive consensus coefficient 𝛽𝐶 > 0, and a negative individual coefficient 𝛽𝐼 < 0.   

For 𝜃 > 0, overreaction of individual forecasters to their own information relative to the Bayesian 

benchmark implies negative predictability of forecast errors and thus a negative coefficient 𝛽𝐼 < 0.18 At 

the same time, forecasters do not react at all to the information received by others (which they do not 

observe).  This effect can create rigidity in the consensus forecast, provided representative types are not 

too overweighed relative to the dispersion of signals, 𝜃 < 𝜎𝜖
2/𝛴. In this case, the diagnostic filter entails 

rigidity in consensus beliefs and a positive consensus coefficient. For such intermediate 𝜃, the model thus 

reconciles the empirical patterns in Section 3.  Intuitively, even if each forecaster revises his own beliefs 

too much relative to what is prescribed by Bayes law, 𝜃 > 0, if information is sufficiently noisy that each 

diagnostic agent discounts his own signal, then consensus forecasts exhibit rigidity. 

Noisy Rational Expectations (𝜃 = 0) can generate the rigidity of consensus forecasts, 𝛽𝐶 > 0, but 

not overreaction of individual forecasters, 𝛽𝐼 < 0. Because forecasters optimally use their information, 

their forecast error is uncorrelated with their own forecast revision.  As is evident from Equation (11), 

when 𝜃 = 0 there is no individual level predictability, contrary to the evidence of Section 3.     

Finally, Proposition 2 also illustrates the cross-sectional implications of the kernel of truth: the 

predictability of forecast errors depends on the true parameters characterizing the data generating process 

(𝜎𝜖
2, 𝛴, 𝜌, 𝜃). In particular, stronger persistence 𝜌  reduces individual overreaction, in the sense that it 

                                                           
18 Overreaction here is driven by overweighting of representative types, and is distinct from a mechanical departure 

of the Bayesian balance between type I and type II errors (i.e. underreaction to fundamentals versus overreaction to 

noise), which would be akin to overconfidence. 
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pushes the individual level coefficient 𝛽𝐼  in Equation (12) toward zero.  Intuitively, rational forecast 

revisions for a very persistent series are large, which reduces the extent of revision variance that is due to 

overreaction and thus the predictability of errors. In Section 5 we check this prediction in the data.  

The qualitative properties of Proposition 2 continue to hold if forecasters have heterogeneous 

diagnostic distortions 𝜃.  Equation (12) characterizes the forecast error-on-revision regression coefficient 

for individual forecasters, as in Figure 1.  With heterogeneity in 𝜃, the estimated coefficients vary across 

forecasters (as observed in the data), so the pooled regression coefficient in Equation (2) captures a 

weighted average of the forecaster-by-forecaster regression coefficients. As discussed in Section 3, this 

coefficient can be biased upwards, and is negative only if sufficiently many forecasters overreact. Finally, 

with heterogeneous 𝜃′𝑠, the consensus coefficients in Equation (11) can be interpreted as depending on a 

suitably weighted average of individual 𝜃s. In this respect, the consensus coefficient is informative about 

an average bias in the population (see the proof of Proposition 2 for details). 

We conclude this theoretical analysis by considering the possibility, relevant in many real world 

settings, that forecasters also observe public signals. We focus on contemporaneous information (in Lemma 

A.1 we allow forecasters to observe lagged hidden states).  In financial markets, for instance, asset prices 

themselves supply high frequency, costless public signals that aggregate individual beliefs about future 

outcomes (though they also contain other shocks such as demand for liquidity).  For macro variables as 

well, noisy public information can come from news releases.  To see how public signals affect our analysis, 

suppose that each forecaster observes, in addition to the private signal 𝑠𝑡
𝑖, a public signal 𝑠𝑡 = 𝑥𝑡 + 𝑣𝑡, 

where 𝑣𝑡 is i.i.d. normal with variance 𝜎𝑣
2. The diagnostic estimate now uses both the private and the public 

signal according to their informativeness. We obtain the following result: 

Corollary 1 Suppose that 𝜃 ∈ (0, 𝜎𝜖
2/𝛴). Then, increasing the precision 1/𝜎𝑣

2 of the public signal while 

holding constant the total precision (1/𝜎𝜖
2 + 1/𝜎𝑣

2) of the private and the public signals: i) leaves the 

individual coefficient 𝛽𝐼 unchanged, and ii) lowers the consensus coefficient 𝛽𝐶. 

When a higher share of information comes from a public signal, the information of different 

forecasters is more correlated, so individual forecasts incorporate more of the available information.  The 
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consensus forecast then exhibits less rigidity, or possibly even overreaction. This may explain why in 

financial variables such as interest rates we detect less consensus rigidity than in most other series: market 

prices act as public signals that correlate to a significant extent the information sets of different forecasters.   

In this setting we can compare diagnostic expectations to overconfidence, typically modeled as 

overweighting of private signals relative to public ones (Daniel, Hirshleifer, and Subrahmanyam 1998). 19 

By inflating the signal to noise ratio of private information, overconfidence creates overreaction to private 

signals and underreaction to public ones. As such, it cannot deliver the results of Corollary 1.  More 

generally, under diagnostic expectations, the Kalman gain of both private and public information is 

multiplied by (1 + 𝜃) and so the reaction to information is not bounded by 1 (see Equation 8). A Kalman 

gain larger than one, which is equivalent to consensus level overreaction, is needed to account for the 

evidence on consensus forecasts of Federal Government Spending that we document here, and for the 

evidence on consensus forecasts of the long term earnings growth of individual firms that we document in 

BGLS (2019). Our structural estimation exercise in Appendix F finds additional evidence that Kalman 

gains above 1 help account for several series.   

 

4.2 Back to the Data: Alternative Hypotheses and the Kernel of Truth 

We can now go back to the estimates in Table 3. In our model, a positive 𝜃 is needed to explain 

the estimates for the 14 out of 22 series that display negative individual level CG coefficients. This means 

that 12 out of the 18 economic variables we consider point to 𝜃 > 0. These include key macro variables 

such as Nominal GDP, CPI, Private Consumption, Industrial Production, long term interest rates, but also 

a predictor of systematic macro reversals, namely the BAA spread (Lopez-Salido, Stein and Zakrajsek 

2017). Looking only at consensus forecasts for these variables would not uncover this finding. The 

evidence for 3 out of 18 variables, including the GDP deflator and the investment series, is consistent with 

noisy information, namely 𝜃 = 0  in our setup.   Finally, the data for the remaining 3 variables, 

                                                           
19 Diagnostic expectations also describe beliefs where overconfidence can be ruled out (e.g., when all information is 

public, in experiments on base rate neglect or social stereotypes). 
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unemployment and the short term interest rates, exhibit underreaction at the individual level (we include 

unemployment here even though the median forecaster appears to overreact). 

What can we make of these results? First, rational expectations are rejected by the data. Second, 

the majority of series point to overreaction 𝜃 > 0, and consensus forecasts are always more rigid than 

individual ones, in line with the model. At the same time, there is a lot of variation in the extent of rigidity 

and overreaction in the data, and some patterns cannot be accounted for by diagnostic expectations, such 

as individual level underreaction to news in short term interest rates, which requires 𝜃 < 0.   

     Before moving to the structural analysis, we assess whether broad patterns in the data are 

consistent with the kernel of truth property embedded in diagnostic expectations, particular in comparison 

to the standard backward-looking model of adaptive expectations. Several tests along these lines are 

reported in Appendix E; here we offer a verbal synthesis. 

Under diagnostic expectations, more persistent series should exhibit more correlated revisions at 

different horizons. That is, for series that are more persistent, revisions for 𝑡 + 2 should be more positively 

correlated with revisions for 𝑡 + 3. This prediction is strongly supported by the data (Appendix E Figure 

E1).  Forecasters update in a forward looking way in the sense that forecasts take the variable’s true 

persistence into account, even if they overreact to news. This finding is at odds with adaptive expectations, 

which specify that agents form expectations using a distributed lag of past realizations with fixed weights, 

so that updating at any horizon is unrelated to the true features of the process. More generally, this finding 

is inconsistent with the idea that forecasters hold misspecified models that are not responsive to objective 

news, in line with the Lucas (1976) critique.    

Another testable implication of the kernel of truth is that belief updating should also respond to 

other information that helps predict future outcomes. To examine this prediction, we depart from the 

assumption of AR(1) processes of Equation (5).  Specifically, suppose that a series follows an AR(2) 

process characterized by short term momentum and long term reversals:   

𝑥𝑡+3 = 𝜌2𝑥𝑡+2 + 𝜌1𝑥𝑡+1 + 𝑢𝑡+3,                                                       (13) 
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where 𝜌2 > 0 and 𝜌1 < 0. In this case, which we examine in Appendix E.2, diagnostic expectations entail 

an exaggeration of both short-term momentum and of long-term reversals.   

Formally, diagnostic expectations about the AR(2) process (13) yield two predictions.  First, as in 

the rational benchmark, an upward revision about 𝑡 + 2 entails an upward revision about 𝑡 + 3, while an 

upward revision about 𝑡 + 1 entails a downward revision about 𝑡 + 3.  Second, and contrary to the rational 

benchmark, these revisions predict future errors due to overreaction.  Thus, upward revisions about 𝑡 + 2  

lead to excess optimism about 𝑡 + 3 (an exaggeration of short-term momentum), but upward revisions 

about 𝑡 + 1 lead to excess pessimism about 𝑡 + 3 (an exaggeration of reversal).  

To test these predictions, we first assess which series are better described by AR(2) rather than by 

AR(1), so that 𝜌1 is significantly negative and entails a better fit under the Bayesian Information Criterion 

(Appendix E Table E1).  Consistent with Fuster, Laibson and Mendel (2010), we find that several 

macroeconomic variables exhibit hump-shaped dynamics with short-term momentum and longer-term 

reversals. 20 We then show that the two predictions of diagnostic expectations hold in the data.  First, for 

the vast majority of these series, the forecast error about 𝑡 + 3 is negatively predicted by revisions about 

𝑡 + 2 but positively predicted by revisions about 𝑡 + 1. This behavior is consistent with the kernel of truth, 

but not with more mechanical models, such as adaptive and natural expectations (Fuster, Laibson and 

Mendel (2010)) in which forecasters neglect long-term reversals. Second, and importantly, separating short 

term persistence from long term reversals clarifies the patterns of reaction to information. We now find 

evidence of overreaction even for unemployment and short term rates, which displayed underreaction 

under the AR(1) specification.  

In sum, the kernel of truth property holds predictive power. Diagnostic expectations capture 

forward looking departures from rationality in a way that helps account for the data.    

 

5. Reaction to Information across Series 

                                                           
20 We do not aim to find the unconstrained optimal ARMA(k,q) specification, which is notoriously difficult. We only 

wish to capture the simplest longer lags and see whether expectations react to them as predicted by the model. 
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In this Section, we assess the ability of our model to account for the different degrees of 

overreaction observed in individual forecasts of different economic series, and for the relative rigidity of 

consensus forecasts. To see how the kernel of truth can shed light on these patterns, consider Proposition 

2. Equation (12) predicts that the individual level CG coefficients should depend on the persistence 𝜌 of 

the economic variable and on the diagnosticity parameter 𝜃. Similarly, Equation (11) predicts that the 

consensus coefficients for a variable should depend on the same persistence parameter 𝜌, on diagnosticity 

𝜃, but also on the noise to signal ratio 𝜎𝜖/𝜎𝑢. 

Because these predictions invoke non-directly observable parameters such as diagnosticity 𝜃 and 

noise 𝜎𝜖/𝜎𝑢, in this Section we recover the parameters from data using structural estimation techniques.  

First, however, we look at the raw data, which can be done for individual level CG coefficients.  Equation 

(12) offers in fact a straightforward prediction: for a given 𝜃, these coefficients should be less negative for 

more persistent series.  To test this prediction, we run an AR(1) specification of actuals for each series and 

estimate a series specific persistence parameter 𝜌. In Figure 2, Panel A plots the correlation between the 

baseline pooled individual level CG coefficients from Table 3 and 𝜌. Panel B displays the same plot but 

for median forecaster-by-forecaster CG coefficients from Table 3. Consistent with our model, the CG 

coefficient rises with persistence. For the pooled coefficient, the correlation is about 0.49, and statistically 

different from 0 with a p-value of 0.02. For the median individual level coefficient, the correlation is 0.37, 

with p-value of 0.08. 

Figure 2. Individual CG Coefficients and Persistence of Actual Series 

 
Plots of individual level CG regression (forecast error on forecast revision) coefficients in the y-axis, against the 

persistence of the actual process in the x-axis.  

 

Panel A. Pooled Estimates 
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Panel B. Forecaster-by-Forecaster Estimates 

 

 

 
 

 

With these encouraging results, we proceed to systematically investigate the predictive power of 

the model with structural estimation, using the simulated method of moments. We prefer this method to 

maximum likelihood for two reasons. First, one advantage of our model is that it is simple and transparent. 

However, this simplicity comes at the cost of likely misspecification and it is well known that with 
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misspecification concerns moment estimators are often more reliable.21 Second, fundamental shocks can 

be fat tailed, and estimating a non-normal model by maximum likelihood is problematic because the 

likelihood function cannot be written in closed form. Numerical approximations methods must be used, 

and these may introduce additional noise in parameter estimates.22 Our estimation exercise can be viewed 

as useful first step in assessing the ability of our model to account for the variation in expectations errors. 

We develop three estimation methods. In Method 1, we match series-specific parameters 

(𝜃, 𝜎𝜀/𝜎𝑢) by fitting, for each series, the variance of forecast errors and forecast revisions. These are 

natural moments to target. First, they can be measured directly from the data. Second, they are linked to 

the parameters of interest. By the law of total variance, the variance of forecast errors 𝜎𝐹𝐸,𝑘
2  is the sum of 

i) the average cross-sectional variance of errors, and ii) the variance over time of consensus errors. The 

first term is informative about the measurement noise 𝜎𝜀,𝑘 , while the latter is informative about the 

overreaction parameter 𝜃𝑘. A similar logic holds for the total variance of forecast revisions. In a rational 

model with 𝜃 = 0, large cross-sectional dispersion of forecasts is symptomatic of large noise 𝜎𝜀,𝑘, which 

would imply more cautious consensus revisions. A positive 𝜃 would instead help reconcile large cross-

sectional dispersion in forecasts with large consensus revisions. 23 

Because this method does not use CG coefficients in the estimation, it allows us to assess how the 

model replicates both the consensus and individual regression results in Table 3. Positive estimates of 𝜃 

help reconcile negative individual with positive consensus CG coefficients.  Moreover, variation in 𝜃 

across series tells us how much extra overreaction we need to fit the data, given our assumptions about the 

data generating process and the signal structure.   

In Methods 2 and 3 (Sections 5.2 and 5.3), we estimate 𝜃  by directly fitting individual level 

coefficients to the model prediction (Equation 12).  This pins our estimates of 𝜃 more tightly to the model. 

                                                           
21 See for instance Jesus Fernandez-Villaverde’s Lecture notes on macroeconomic dynamics, in particular Lecture 4 

on Bayesian Inference.  
22 With the particle filter, numerically computing the marginal likelihood is challenging because the implied latent 

signals must be backed out from the observed forecast data. To do so, the particle filter must be applied for a grid of 

possible latent signals to match the observed forecast. This has to be applied at every observation for every individual 

and every series. Errors introduced in this procedure propagate to the estimate of implied signals over (panel) time.  
23 In contrast, matching average forecast errors and revisions would not be informative about 𝜃𝑘 and 𝜎𝜀,𝑘, as these 

sample moments are close to zero in our data (consistently with diagnostic but also rational expectations). 
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We can then estimate the noise to signal ratio 𝜎𝜖/𝜎𝑢 by fitting the variance of forecast revisions, which 

allows us to focus on variations for each forecaster over time (in comparison, the variance of forecast errors 

is more affected by fixed cross-sectional differences across individuals and as such is less reliable).  Method 

2 again allows 𝜃  to vary across series. Here, model performance is assessed by the ability to fit the 

consensus CG coefficient alone. Method 3 instead restricts 𝜃 to be the same for all series. This exercise 

allows to assess the model’s explanatory power for the variation of both individual and consensus CG 

coefficients in terms of fundamental parameters (𝜌1,𝑘, 𝜎𝑢,𝑘, 𝜎𝜖,𝑘). 

All three estimation methods build on the following procedure.  Each series 𝑘 is described as an 

AR(1), using the fitted fundamental parameters (𝜌1,𝑘, 𝜎𝑢,𝑘) (Appendix F Table F1). Next, for each series 

𝑥𝑡
𝑘 of actuals and parameter values (𝜃𝑘 , 𝜎𝜖,𝑘), we simulate time series of signals 𝑠𝑡

𝑖,𝑘 = 𝑥𝑡
𝑘 + 𝜖𝑡

𝑖,𝑘
 where 

𝜖𝑡
𝑖,𝑘

 is drawn from 𝑁(0, 𝜎𝜖,𝑘
2 ) i.i.d. across time and forecasters. We then use (𝜃𝑘 , 𝜎𝜖,𝑘) and 𝑠𝑡

𝑖,𝑘
 to generate 

diagnostic expectations, using Equation (9).  We generate diagnostic expectations for each forecaster in 

the sample, by using the realizations 𝑥𝑡
𝑘 over the exact period in which the forecaster makes predictions 

for series 𝑘 (we drop forecasters with fewer than ten observations as before). We use these expectations to 

compute the relevant moments in each method, and search through a parameter grid to minimize the 

relevant loss function as described below. 

To assess how the model matches the empirical CG regression coefficients, model-predicted 

coefficients are computed as follows.  For each series, the estimated (𝜃 , 𝜎𝜖 ) and the actual process 

parameters are used to generate model-based forecasts for each forecaster during the time period where the 

forecaster participates in the panel.  We then run CG regressions using these model-based forecasts, and 

compare the results with the empirical CG coefficients in Table 3. 

In this estimation exercise, we abstract away from forecaster heterogeneity in 𝜃. Although for 

many forecasters we may not have enough data to obtain precise estimates of their individual 𝜃, Appendix 

F performs a tentative analysis of the heterogeneous forecaster case following Method 2. We return to this 

in Section 6. 
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5.1 Parameter Estimates  

In Method 1, for each series 𝑘 we search for the parameter values (𝜃𝑘 , 𝜎𝜀,𝑘) that best match the 

variance of the forecast errors, 𝜎𝐹𝐸,𝑘
2 = 𝑣𝑎𝑟𝑖,𝑡(𝐹𝐸𝑘,𝑡

𝑖 ), and the variance of forecast revisions, 𝜎𝐹𝑅,𝑘
2 =

𝑣𝑎𝑟𝑖,𝑡(𝐹𝑅𝑘,𝑡
𝑖 ) , computed across time and forecasters.  For values (𝜃, 𝜎𝜖) , denote the model-implied 

moments by  𝜎𝐹𝐸,𝑘
2̂ (𝜃, 𝜎𝜖) and 𝜎𝐹𝑅,𝑘

2̂ (𝜃, 𝜎𝜖).  We search through a grid of parameters for values that 

minimize the distance (𝜎𝐹𝐸,𝑘
2 − 𝜎𝐹𝐸,𝑘

2̂ (𝜃, 𝜎𝜖))
2

+ (𝜎𝐹𝑅,𝑘
2 − 𝜎𝐹𝑅,𝑘

2̂ (𝜃, 𝜎𝜖))
2
.  The grid imposes the model-

based constraint 𝜃 ≥ 0. Next, we evaluate the empirical covariance of the two moments at the first stage 

parameters (𝜃𝑘,𝐹𝑆
∗ , 𝜎𝜀,𝑘,𝐹𝑆

∗ ) and invert it to obtain the optimal weight matrix 𝑊. Finally, we compute the 

second stage estimate that minimizes the quadratic form 

(𝜎𝐹𝐸,𝑘
2 −  𝜎𝐹𝐸,𝑘

2̂ (𝜃, 𝜎𝜖) , 𝜎𝐹𝑅,𝑘
2 − 𝜎𝐹𝑅,𝑘

2̂ (𝜃, 𝜎𝜖) )
𝑇

𝑊 (𝜎𝐹𝐸,𝑘
2 − 𝜎𝐹𝐸,𝑘

2̂ (𝜃, 𝜎𝜖) , 𝜎𝐹𝑅,𝑘
2 − 𝜎𝐹𝑅,𝑘

2̂ (𝜃, 𝜎𝜖) ) 

To obtain confidence intervals for our estimates, we bootstrap from the panel of forecasters with 

replacement.  

In Method 2, we fit 𝜃𝑘 by inverting the individual CG coefficient in Equation (12) for each series 

𝑘.  We allow for negative values because we are interested in assessing the extent to which Methods 1 and 

2 offer comparable results for the variation in 𝜃 across series. Using this fitted value of 𝜃𝑘, we then estimate 

𝜎𝜖,𝑘  by fitting the variance of forecast revisions, that is by minimizing the distance (𝜎𝐹𝑅,𝑘
2 −

 𝜎𝐹𝑅,𝑘
2̂ (𝜃, 𝜎𝜖))

2
. In Method 3 we estimate the model by restricting 𝜃  to be the same for all series. For each 

value 𝜃 , we estimate each series’ noise 𝜎𝜖,𝑘  by matching the variance of forecast revisions, and then 

calculate the individual CG coefficient for each variable. We find pick 𝜃 that minimizes the sum of mean 

squared deviations between individual CG in the data and in the model (equal weighted across variables).    

The estimation results for methods 1 and 2 are summarized in Table 4.  Here we describe the main 

results. In Method 1, we estimate significantly positive 𝜃s for all series, ranging from 0.3 to 1.5 with an 
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average of 0.59, and with tight confidence intervals. 24  It might seem surprising that we find 𝜃 > 0 also 

for series such as unemployment and short-term interest rates for which the individual CG coefficients are 

positive, indicating underreaction.  Recall, however, that in Method 1 we do not use these individual CG 

coefficients as inputs in the estimation. Positive 𝜃 in this estimation is consistent with cross sectional 

heterogeneity in revisions coexisting with aggressive revisions in the consensus. In Method 2, by 

construction, the value of 𝜃  is positive for the 15 series that have negative individual CG regression 

coefficients, and is negative for the remaining ones. The average 𝜃 is 0.42, which is close to the previous 

average estimate.  The correlation between the values of 𝜃 in Method 1 and 2 is 0.42 with 𝑝-value 0.00 

(which increases to 0.88 if we exclude the RGF series, which is an outlier in Method 2), and the rank 

correlation is 0.87. Thus, the two methods yield comparable answers regarding the levels and variation in 

𝜃 needed to make sense of the data. 

Finally, under Method 3, the loss function reaches a tight minimum at 𝜃 = 0.5, in line with the 

average values obtained with the other Methods.  In sum, model estimation strengthens the finding of 

overreaction. We report multiple sensitivity checks for this analysis in Appendix F to confirm our main 

findings.25   

The estimates for 𝜃 are on average somewhat smaller, but in line with BGS (2018), who obtain 

𝜃 = 0.9 for expectations data on credit spreads, and with BGLS (2019) who also obtain 𝜃 = 0.9 for 

expectations data on firm level earnings’ growth.  To give a sense of the magnitude, a 𝜃 ≈ 0.5 means that 

forecasters’ reaction to news is roughly 50% larger than the rational expectations benchmark.  This fact 

alone suggests that the resulting distortions in beliefs can have sizeable economic consequences.  In fact, 

BGLS (2019) find that 𝜃 = 0.9 can account for the observed 12% annual return spread between stocks 

whose long-term earnings growth analysts are pessimistic about and stocks they are optimistic about. 

Bordalo, Gennaioli, Shleifer, and Terry (2019) find that an RBC model with a 𝜃 in the range of 0.5 – 1 

                                                           
24 For Method 1, both moments depend on both parameters, 𝜃 and 𝜎𝜖, under the AR(1) assumption. Numerically, one 

can vary the parameters to test the sensitivity of the two moments. It turns out that the relative sensitivity of the two 

moments to the two parameters varies across the different series, so it is hard to draw a general lesson.  
25 We highlight here three robustness tests. First, we allow series to be described as AR(2) processes and obtain 

similar results as here.  This is reassuring given the well-known difficulty of finding the proper AR(k) specification. 

Second, we allow for fundamental shocks to be drawn from fat tailed distributions, which requires implementing the 

numerical particle filter method.  Again, our results remain stable. Finally, we perform the analysis at the level of 

individual forecasters, and again obtain similar results for the median forecaster.  
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generates large boom-bust cycles in credit spreads, leverage and aggregate investment.  We return to the 

implications of belief distortions of this magnitude in Section 6. 

Table 4. SMM Estimates of 𝜃 (Methods 1 and 2) 

 

This table shows the estimates of 𝜃 and the 95% confidence interval using 300 bootstrap samples (bootstrapping 

forecasters with replacement). Results for each series are estimated using the AR(1) version of the diagnostic 

expectations model based on the properties of the actuals according to Appendix F Table F1.  In Method 2, we first 

estimate 𝜃 using the individual CG regression coefficient in the data (pooled estimates as in Table 3) and the formula 

in Equation (12). 

 

 Method 1 Method 2 

 𝜃 95% CI 𝜃 95% CI 

Nominal GDP (SPF) 0.53 (0.42, 0.60) 0.29 (0.18, 0.43) 

Real GDP (SPF) 0.60 (0.56, 0.60) 0.18 (0.08, 0.31) 

Real GDP (BC) 0.34 (0.25, 0.42) -0.10 (-0.16, -0.03) 

GDP Price Index Inflation (SPF) 0.55 (0.42, 0.60) -0.15 (-0.22, -0.08) 

CPI (SPF) 0.49 (0.35, 0.71) 0.25 (0.11, 0.40) 

Real Consumption (SPF) 0.98 (0.80, 1.36) 0.34 (0.19, 0.53) 

Industrial Production (SPF) 0.57 (0.44, 0.71) 0.20 (0.09, 0.35) 

Real Non-Residential Investment (SPF) 0.36 (0.25, 0.49) -0.07 (-0.14, 0.02) 

Real Residential Investment (SPF) 0.37 (0.25, 0.53) -0.01 (-0.11, 0.10) 

Real Federal Government Consumption (SPF) 0.90 (0.62, 1.32) 5.46 (-3.38, 27.85) 

Real State & Local Government Consumption (SPF) 1.37 (0.80, 2.31) 1.11 (0.74, 1.63) 

Housing Start (SPF) 0.69 (0.53, 0.84) 0.32 (0.17, 0.53) 

Unemployment (SPF) 0.30 (0.30, 0.30) -0.28 (-0.35, -0.21) 

Fed Funds Rate (BC) 0.30 (0.30, 0.30) -0.17 (-0.21, -0.13) 

3M Treasury Rate (SPF) 0.40 (0.35, 0.46) -0.23 (-0.27, -0.18) 

3M Treasury Rate (BC) 0.30 (0.28, 0.30) -0.18 (-0.22, -0.14) 

5Y Treasury Rate (BC) 0.45 (0.39, 0.49) 0.13 (0.08, 0.18) 

10Y Treasury Rate (SPF) 0.49 (0.41, 0.59) 0.25 (0.16, 0.34) 

10Y Treasury Rate (BC) 0.49 (0.41, 0.53) 0.23 (0.15, 0.30) 

AAA Corporate Bond Rate (SPF) 0.70 (0.56, 0.82) 0.32 (0.21, 0.45) 

AAA Corporate Bond Rate (BC) 0.93 (0.79, 1.06) 0.17 (0.11, 0.24) 

BAA Corporate Bond Rate (BC) 0.70 (0.53, 0.79) 0.47 (0.33, 0.63) 

 

Finally, we turn to the estimates of noise 𝜎𝜖, which we normalize by the standard deviation of 

shocks 𝜎𝑢 . Tables F2 and F8 in Appendix F report the results. Consistent with rigidity of consensus 

forecasts, individual noise is larger than fundamental innovations, with the average estimated 𝜎𝜖/𝜎𝑢 

ranging from 1.30 to 1.74 across methods.   In the next section we assess the model’s performance by 

examining whether our estimates of parameters 𝜃 and 𝜎𝜖  can account for differences in individual and 

consensus CG coefficients across series. 
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5.2 Model Performance 

To assess the performance of the model, we examine how the model matches the empirical CG 

regression coefficients.26 As discussed above, for each series use the estimated (𝜃, 𝜎𝜖) to generate model 

based CG regressions at the individual and consensus levels, and compare the results with the empirical 

CG coefficients in Table 3. Figure 3 plots the individual CG coefficients (left column) and the consensus 

coefficients (right column) from each of the estimated models against those from the survey data.  

 

Figure 3. Individual and Consensus CG Coefficients using Estimated 𝜃 and 𝜎𝜖 
 

The figure plots individual CG coefficients (left column) and consensus CG coefficients (right column) in the y-axis, 

and CG coefficients in the data in the x-axis. Results for each series are estimated using Method 1 (row 1), Method 2 

(row 2) and Method 3 (row 3) of the diagnostic expectations model based on the properties of the actuals according 

to Appendix F Table F1. 

 

 

In Method 1, for individual CG coefficients, the correlation between the empirical estimates and 

the model predictions is high, about 0.76 (p-value of 0.00).   In levels, the individual CG coefficients 

                                                           
26 In Appendix F, we show that the model offers a satisfactory fit of the target moments across series under each 

method. In Method 1, the average absolute log difference between the variance of forecast errors in the data (𝜎𝐹𝐸,𝑘
2 ) 

and in the simulated model (𝜎𝐹𝐸,𝑘
2̂ (𝜃, 𝜎𝜖)) is 0.05, and that for the variance of forecast revision is 0.06 (Table F3).  For 

Method 2 and Method 3, the variance of forecast revision is the only target moment, and the average absolute log 

difference between the data and model moments is 0.56 and 0.09 respectively (Tables F9 and F12). 
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implied by the model tend to be more positive than those in the data.  Even so, given its parsimony, the 

model does an impressive job capturing cross-sectional differences. For consensus CG coefficients, we 

also find a positive correlation of 0.18 (p-value of 0.44) between the model and the data.  This lower 

correlation likely reflects, at least in part, the fact that consensus coefficients are highly dependent on the 

magnitude of measurement noise 𝜎𝜖,𝑘, which is in turn estimated with some imprecision. 

We next examine Method 2. By construction, the method accounts well for individual level CG 

coefficients, with a correlation between coefficients in the model and in the data of 0.92 (p-value 0.00).27   

It is more interesting to assess performance relative to consensus CG coefficients.  Consistent with the fact 

that estimates of 𝜎𝜖,𝑘 are tighter with Method 2, we get a better fit of consensus CG than with Method 1, 

with correlation 0.65 (p-value .001).  Still, Figure 3 shows that Methods 1 and 2 deliver similar messages 

in terms of matching the cross section of consensus CG coefficients.  

Finally, we examine Method 3, which restricts 𝜃  to be the same for all series. As discussed above, 

this exercise helps us assess how much variation in the data can be captured by the variation in the 

“physical” parameters alone. The model accounts for 33% of the variation in individual CG coefficients 

(the correlation is 0.58, p-value 0.01).  Differences in persistence thus help explain the magnitudes of 

individual overreaction, but the lion’s share is accounted for by other factors, such as the variation in 𝜃.  

The model also accounts for 32% of the variation in consensus CG coefficients (correlation 0.56, p-value 

0.01). The variation in noise and persistence account for a good portion of variation in consensus rigidity, 

in line with the predictions of the model. 

Overall, the three estimation methods provide a robust and coherent picture that i) individual 

overreaction is prevalent, ii) the model captures variation in both individual and consensus CG coefficients 

as a function of fundamental parameters, and iii) allowing 𝜃  to vary across series improves model 

performance.  In Appendix F, we examine several variations on these specifications, including allowing 

the series to be described as AR(2) processes, considering median individual level forecasts, and allowing 

for non-normal shocks.  The results are very similar. 

 

                                                           
27 This match is not entirely mechanical, because model-predicted coefficients are obtained by running a simulation 

under the estimated model. 
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6. Taking Stock 

We summarize and interpret our main findings, discuss some open issues, and conclude.   

6.1 Determinants of CG Coefficients 

We consider the extent to which differences across economic variables in persistence 𝜌, noise to 

signal ratio 𝜎𝜖/𝜎𝑢 , diagnosticity parameter 𝜃 , and the availability of public signals (Corollary 1) can 

explain the variation in CG coefficients. 

Persistence 𝜌. Figure 2 shows that, as predicted by the model, individual CG coefficients are more 

negative for less persistent series. Less persistent series such as government consumption, private 

consumption, or housing starts display clear overreaction, while very persistent series such as 

unemployment or short-term interest rates display less overreaction or even underreaction at the individual 

level.  Model estimates with Method 3, in which 𝜃 is kept constant, indicate that persistence alone accounts 

for 33% of the cross-sectional variation in individual CG coefficients. Since allowing 𝜃 to vary accounts 

for roughly 57% of such variation with Methods 1, and 85% in Method 2, differences in persistence account 

for between 39% and 58% of the model’s explanatory power in this dimension.28 

Noise 𝜎𝜖/𝜎𝑢. Noise in individual signals reconciles individual level overreaction with consensus 

rigidity. Noisier information means that individual forecasts neglect a larger share of the average signal, 

making the consensus more rigid. Dispersed information and individual noise appear to play a significant 

role in the data, both because the dispersion of forecasts is large and because at the consensus level the 

prevalent pattern is informational rigidity.29  

Using Method 3, allowing variation only in persistence and in noise to signal ratio, our model 

accounts for 32% of variation in consensus CG coefficients. As one allows 𝜃 to vary in Method 2, the 

explained variation rises to 42%. In particular, variation in the “physical” parameters 𝜌 and 𝜎𝜖/𝜎𝑢 accounts 

for two-thirds of the model’s explanatory power with respect to consensus CG coefficients.  

Diagnosticity 𝜃.  The average level of 𝜃 in any estimation method is close to 0.5, the tightly 

identified point estimate when 𝜃 is constrained to be the same across series (Method 3).  With Methods 1 

                                                           
28 It is harder to quantify the role of persistence for the consensus forecasts because in Equation (11) the consensus 

CG coefficient is a highly nonlinear, non-monotonic, function of 𝜌. 
29 The exception is federal government consumption, which displays statistically significant overreaction at the 

consensus level. This series is characterized by low persistence and low noise, as predicted by the model. 
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and 2, 𝜃 displays some variation which helps account for the data. Variation in 𝜃 is more important to 

capture individual than consensus CG coefficients, consistent with the model. What may this variation in 

𝜃 capture? On the one hand, 𝜃 may capture specific factors that are outside the simple specification used 

in the estimation.  On the other hand, variation in 𝜃 may correspond to actual variation in the tendency to 

overreact to news.  We briefly comment on both mechanisms.   

Variation in 𝜃 may in principle capture misspecification of the data generating process for actuals.  

We explore this possibility using the AR(2) specification of Appendix E.  The formula for individual CG 

coefficients would differ from Equation (12) no longer applies, and we estimate the model under Method 

1.  Allowing for AR(2) dynamics does not sensibly alter our structural estimates, indicating that our ability 

to account for the cross section is robust to misspecification.  Recall that empirically, as described in 

Section 4.2, this specification generates diagnostic overreaction in both unemployment and short term 

interest rates, but it does not reduce variation in estimated 𝜃.  

Variation in 𝜃 may also proxy for features of the information structure that may shape overreaction, 

particularly at the consensus level, such as public signals. In particular, the fact that 𝜃 is higher for financial 

series than for macroeconomic ones is consistent with the observation that the latter display more consensus 

rigidity.  Also consistent with this view, in financial markets asset prices act as public signals to which all 

agents can simultaneously overreact, as in Corollary 1.  In goods markets, information is likely more 

dispersed, increasing consensus rigidity.  In this respect, incorporating noisy public signals may help 

improve the explanatory power of the model.  

On the other hand, the results may capture real variation in the tendency to overreact to information, 

driven perhaps by the extent to which judgments rely on intuition versus models and deliberation. 

Consistent with this hypothesis, individual forecasters’ estimated 𝜃s are correlated across series. Within 

forecaster variation in 𝜃 , in the cross-section of series, may in turn depend on the decision maker’s 

incentives and effort.  Forecasts of key indicators such as GDP, unemployment, or inflation may have 

lower estimated 𝜃𝑠 because forecasters spend more effort on them, producing forecasts that make better 

use of the available information.  We leave a systematic assessment of this hypothesis to future work.  

 

6.2 Open Issues 
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Our results contribute to the growing literature on non-rational expectations, and help account for 

some potentially conflicting evidence, especially on consensus versus individual expectations. Yet many 

issues remain open. Here we discuss three: evidence for overreaction in consensus forecasts, evidence for 

underreaction in individual forecasts, and the mapping between expectations and market outcomes. 

Our model reconciles the evidence of rigidity of consensus forecasts, as documented by CG (2015) 

and Table 3, with individual forecasters’ overreaction to news.  Importantly, it can also reconcile the 

apparent rigidity of consensus forecasts for some variables with their overreaction for others, such as 

government spending. As we already discussed, consensus overreaction has also been found in other data, 

such as BGLS (2019) finding strong overreaction of consensus forecasts of long-term (3-5 years) corporate 

earnings growth of listed firms in the U.S.  In our model, if news are dispersed (𝜎𝜖  is large), then 

aggregating beliefs entails consensus rigidity.  If in contrast fundamental volatility 𝜎𝑢 is high relative to 

dispersed information, or if there are public signals that aggregate news (e.g., in financial series), then the 

consensus forecast is more likely to overreact.  The properties of consensus forecasts reflect the balance 

between these two forces and vary in predictable ways across variables.  Consensus overreaction is itself a 

distinctive sign of diagnostic expectations. 

But the central prediction of our model is overreaction at the level of individual forecasters.  This 

is largely confirmed in our data (Table 3), but also in recent experimental research (Landier, Ma, Thesmar 

2019). However, we also find individual underreaction for short-term interest rates in Table 3.  In earlier 

work, Bouchaud et al. (2019) document predominant individual level underreaction in short term (12 

months ahead) earnings forecasts for U.S. listed firms.  We do not yet have a way to unify under- and 

overreaction at the individual level, but the evidence suggests that the term structure of expectations may 

play a role.  In our Tables 3 and 4, individual underreaction prevails with respect to short term interest 

rates, while overreaction prevails with respect to long term interest rates.  The same pattern arises in the 

case of earnings forecasts: in Bouchaud et al. (2019), individual underreaction occurs for short term 

forecasts, while in BGLS (2019) overreaction occurs for long term forecasts. 

Is this term structure consistent with diagnostic expectations?  Preliminary analysis suggests that 

the answer may be yes. In the case of interest rates, we showed that the greater overreaction of forecasts 

for long term outcomes is consistent with the kernel of truth logic. Long term interest rates are less 
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persistent than short term ones, which implies that overreaction should be stronger for the former, 

consistent with the evidence.  A similar mechanism may be at play with respect to short versus long term 

corporate earnings.  Furthermore, D’Arienzo (2019) shows in the context of interest rates that another 

mechanism is at play: long-term outcomes display a higher fundamental uncertainty 𝜎𝑢 than short term 

outcomes. Beliefs may overreact more aggressively for long term outcomes because it is easier to entertain 

the possibility of more extreme outcomes (since news reduce uncertainty less for outcomes in the far 

future).  This mechanism is not in our current model but, as D’Arienzo (2019) shows, it follows naturally 

from the logic of diagnostic expectations. Using this mechanism, he is able to account for a large chunk of 

the excess volatility of long-term rates relative to short term ones documented by Giglio and Kelly (2017).  

In sum, although we do not have full unification and a force for individual underreaction may need to be 

added, the kernel of truth logic presents a promising mechanism for unifying departures from rational 

expectations.   

Finally, consider the evidence of rigidity versus overreaction of beliefs in the context of market 

outcomes.  In macroeconomics, several papers stress the importance of consensus rigidity to account for 

the apparent slow response to shocks of macro aggregates such as consumption and inflation (e.g., Sims 

2003, Mankiw and Reis 2002). Other work, predominantly in finance, invokes overreaction to information 

to account for excess volatility in stock prices (Shiller 1981, BGLS 2019) and long term interest rates 

(Giglio and Kelly 2017, D’Arienzo 2019), and for predictable reversals in stock returns (De Bondt and 

Thaler 1990, BGLS 2019).  Part of the differences in these market outcomes may be accounted for by the 

comparative statics stressed in our analysis.  For instance, financial assets may exhibit stronger overreaction 

because their valuations depend on distant future cash flows, which display low persistence, and because 

prices serve as public signals.  In contrast, key macroeconomic outcomes may display more consensus 

rigidity because they depend on more persistent factors and because public signals are weaker.  

The response of market outcomes to news also depends on the market process that translates beliefs 

into prices and quantities. Properties of consensus forecasts need not be the same as properties of aggregate 

outcomes. For instance, if individuals can leverage and returns are not strongly diminishing, then individual 

forecasts matter more for market outcomes (Buraschi, Piatti, and Whelan 2018). This may contribute to 

overreaction in financial markets.  In contrast, if market outcomes depend more symmetrically on many 
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individual choices, for example in determining aggregate inflation, then the consensus forecast and its 

rigidity may be a better guide to expectations shaping market outcomes. Yet even in this case, with 

sustained news all individuals may react in the same direction leading to aggregate overreaction.  This 

consideration opens intriguing directions to assess the relevance of overreaction or rigidity of beliefs in 

macroeconomic models starting from micro-founded belief updating.  

 

 

6.3. Conclusion 

 Using data from the Blue Chip Survey and from the Survey of Professional Forecasters, we study 

how professional forecasters react to news building on the methodology of Coibion and Gorodnichenko 

(2015).   We find that while information rigidity prevails for the consensus forecast, as previously shown 

by CG (2015), for individual forecasters the prevalent pattern is overreaction, in the sense of upward 

forecast revisions generating forecasts that are too high relative to actual realizations. These results are 

robust to many possible confounds.  We then apply a psychologically founded model of belief formation, 

diagnostic expectations, to these data, and show that it can reconcile these seemingly contradictory patterns, 

but also make several new predictions for the patterns of expectation errors across different series. The 

extent of individual overreaction, captured by the diagnostic parameter, is sizable. According to our 

estimates in this and other papers, the rational response to news is inflated by a factor between 0.5 and 1.  

We view this as a starting estimate for macroeconomic quantification exercises, such as Bordalo, 

Gennaioli, Shleifer, and Terry (2019).   

For the purpose of applied analysis, then, the question becomes: what are the macroeconomic 

consequences of diagnostic expectations? At first glance, one might think that what matters for aggregate 

outcomes is consensus expectations, so rigidity is enough. This view misses two key points. 

First, macroeconomics has advanced over the last several decades by starting with micro 

parameters estimated from micro data.  The micro parameter 𝜃 estimated here and in related work lies 

between .5 and 1, and points to substantial overreaction by individual forecasters.  As with other 

parameters, macroeconomic models grounded in micro estimates should then start with overreaction in 
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expectations. This may be especially important for heterogeneous agent models with non-linearities and 

leverage, which stress the relevance of the micro units as opposed to the representative agent.  

Second, there are reasons to doubt that consensus beliefs are always characterized by rigidity.  First, 

for some important long term outcomes the consensus may overreact. This has been documented for long 

term earnings (BGLS 2019), and may be generally true for beliefs and hence prices of distant cash flows 

(Giglio and Kelly 2017, D’Arienzo 2019). Such long term movements may be key for asset prices and 

investment. Second, if information diffuses slowly, the reaction to a shock may see a gradual buildup of 

individual overreactions, taking some time to show as overreaction in the consensus forecasts or in 

aggregate outcomes.30 Analogously to short-run momentum and long-run reversals in the stock market, 

there can be investment cycles with slow accumulation of capital but ultimate excess capacity. More work 

is needed to assess whether such “delayed overreaction” can be detected in the data. Third, and critically, 

at certain junctures news may be correlated across agents, for instance if major innovations are introduced, 

or if repeated news in the same direction provide highly informative evidence of large changes. In these 

cases, which resemble our analysis of public signals, aggregate overreaction is likely to prevail.  

Evidence symptomatic of aggregate overreaction has appeared in research on credit cycles. 

Buoyant credit markets and extreme optimism about firms’ performance predict slowdowns in investment 

and GDP growth, disappointing realized bond returns and disappointing returns in bank stocks (Greenwood 

and Hanson 2013, Lopez-Salido, Stein and Zakrajsek 2017, Gulen, Ion, and Rossi 2018, Baron and Xiong 

2016).  Whether diagnostic expectations can offer a coherent and micro-founded theory for these and other 

macroeconomic phenomena is an important question for future work. 

                                                           
30 We have formally proved this point by introducing diagnostic expectations into a Mankiw and Reis (2003) model 

of information rigidities.  The results are available upon request. 
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