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Abstract

Using the consensus forecasts of major banks during 1989-2022, we link inflation ex-

pectations to interest rates in 18 advanced economies. We detect horizon-increasing over-

reaction: high expected inflation today predicts future inflation overestimation, especially

at long horizons, and higher real returns on nominal bonds, especially at long maturi-

ties. As a result, high expected inflation today predicts a future redistribution of wealth

from borrowers to lenders. To understand the drivers of such redistribution, we offer a

learning model where investors overweight states that are salient in memory due to their

past frequency or similarity to current inflation. The model endogenizes belief under- and

overreaction based on features of the inflation DGP, helping account for observed cross-

country variation in belief biases and return predictability.
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1 Introduction

Inflation expectations are central to macro-financial dynamics. By the Fisher equation, the

nominal interest rate i is equal to the ex-ante real rate r plus expected inflation πe:

i = r + πe. (1)

Classic studies of interest rates and inflation, theoretical (Woodford, 2003b; Gaĺı, 2015) and

empirical (Fama, 1975; Mishkin, 1992; Gürkaynak et al., 2010), assume rational expectations.

In this approach, expected inflation πe affects resource allocation via the ex-ante real rate r.

With flexible prices, higher πe leaves r unchanged: it only affects the nominal rate i. With

nominal rigidities, by contrast, higher πe affects the real rate r – in part through monetary

policy – shaping consumption, investment and output.

Contrary to this approach, growing work detects biases in professional inflation forecasts,

taking the form of predictable forecast errors (Coibion and Gorodnichenko, 2015; Bordalo et al.,

2020). Accounting for these biases is important. First, they could distort the ex-ante real rate r

and output. Second, by causing systematic forecast errors, they could drive a wedge between r

and the average ex post real rate i−π. By redistributing wealth between borrowers and lenders

with different propensities to spend, this wedge could affect output even under flexible prices.

Fisher (1933) stressed the cost of debt deflation; Doepke and Schneider (2006) document the

redistributive effects of inflation. Critically, while in a rational world such redistributions are

random, they systematically occur and affect output when beliefs are biased. What are, then,

the drivers of biases in inflation expectations? What are their consequences for interest rates?

We address these questions by linking the inflation forecasts of major banks from Consen-

sus Economics to interest rates in 18 advanced economies over 1989-2022. We then present a

psychologically founded learning model that sheds light on biases and their economic effects.

Sections 2 and 3 document our key motivating facts. First, consensus inflation forecasts sharply

overreact at medium and long horizons, while exhibiting a small or even reverse bias (underreac-

tion) at short horizons. Horizon-increasing overreaction is a broad feature of beliefs: D’Arienzo

(2020) detects it in individual interest rate forecasts; Afrouzi et al. (2023) in an abstract lab

experiment and Halperin and Mazlish (2025) in consensus forecasts for various macro variables.

Second, and crucially, overreaction ties to interest rates: high expected inflation today predicts

high future real yields to maturity and excess returns on nominal bonds, especially at long

maturities (which are also less influenced by monetary policy). Consistent with a direct role

of beliefs, return predictability is robust to controlling for proxies of time-varying ex-ante real

rates and to correcting our estimates for Stambaugh bias, following Boudoukh et al. (2022).

These facts point to a link between belief overreaction and excess nominal rate volatility:

high current inflation prompts overestimation of future inflation, especially at long horizons,
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causing investors to demand too high a nominal rate, especially for long-term bonds. Because

future inflation is on average less than anticipated, high returns follow. The entailed wealth

redistribution from borrowers to lenders is sizable: a 2% higher expected inflation today predicts

a higher real repayment cost of about 2% of the value of a 2-year loan, and 12% of that of a

10-year one. In heterogeneous agent models, this redistribution can cause output to drop. If

expected inflation is high in booms, the effect is countercyclical, amplifying boom-bust cycles.

To study the direction and strength of this mechanism we must understand the source of

biases, which arguably vary across environments as in the Lucas critique (Lucas, 1972). The

data is at odds with leading models of expectations. Rational inattention predicts consensus

underreaction, inconsistent with our evidence of long term overreaction. Diagnostic expecta-

tions (DE) (Bordalo et al., 2018; Bianchi et al., 2024b)) capture overreaction, but do not explain

why its presence and strength depend on the forecast horizon. Adaptive expectations (Cagan,

1956) are backward-looking, so they make no predictions across horizons.

Section 4 offers a model of learning under selective recall. Memory limits have been used to

justify investor overweighting of recent states in constant-gain learning (Evans and Honkapohja,

2009; Marcet and Nicolini, 2003) or of representative states in DE (Bordalo et al., 2020).1 Even

if investors use statistical models, they can overweight salient states when making qualitative

adjustments to model outputs, consistent with the role of past experiences for professionals

(Malmendier et al., 2021). Our key innovation is to model memory limits explicitly, based on

robust regularities in cued recall (Kahana, 2012): frequency and similarity. When forecasting

inflation, the agent overweights frequent past episodes, say inflation at 2%. At the same time,

current inflation at 3% cues the agent to overweight past states similar to 3%, or that followed

3% episodes. We build on the model in Bordalo et al. (2023) but allow for mnemonic learning:

the database evolves with realized inflation and interacts with time-varying retrieval cues. Un-

like in models exhibiting recency effects, belief updating is state-dependent. Compared to DE,

belief distortions are founded in frequency and similarity.

We find that long-run beliefs converge to a stable distortion of the true DGP, with memory

forces pulling in different directions. Frequency anchors beliefs to the long-run mean, promot-

ing underreaction. Similarity anchors them to current inflation, promoting forward-looking

overreaction. Combined together, these forces produce horizon-increasing overreaction, whose

strength depends on the features of the DGP. If, for instance, inflation follows an AR(1) pro-

cess, higher persistence promotes underreaction, while higher volatility promotes overreaction.

More broadly, biases evolve with changing histories and cues, leading to new predictions.

To assess these predictions, Section 5 uses the inflation database and the current inflation

cue – the model’s observables – to estimate two similarity parameters – its only degrees of

1Bianchi et al. (2022) also assumes limited memory of inflation regimes and Farmer et al. (2024) assume slow
learning under an incorrect prior, which may stem from memory of past history.
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freedom. We do so by fitting model-implied beliefs to CE forecasts in the pooled sample. The

model produces realistic horizon-increasing overreaction and return predictability, even under

constant ex-ante real rates. Crucially, it captures observed cross-country and cross-horizon

variation in the strength of belief extrapolation and in the predictability of forecast errors and

returns. We show that recency-based adaptive learning cannot explain this variation.

Growing work studies non-rational investor beliefs. Sims (2003), Woodford (2003a), Mankiw

and Reis (2002) and Gabaix (2014) stress rigidity due to costly attention, detected in US short-

term inflation forecasts (Coibion and Gorodnichenko, 2015). Constant-gain learning (Evans

and Honkapohja, 2009; Marcet and Nicolini, 2003) and DE models (Bordalo et al., 2018, 2020;

Bianchi et al., 2024b,a) produce belief volatility tied to memory limits. We rely on mem-

ory forces, frequency and similarity, that account for beliefs about novel risks (Bordalo et al.,

2024a), stock returns forecasts (Jiang et al., 2024), and household inflation expectations (Gen-

naioli et al., 2024). The latter paper develops survey tests of memory effects given the ob-

servable households’ database. Our learning setting unveils the role of the DGP, endogenizing

rigidity and overreaction in forecasts, interest rates, and their variation across countries. The

conclusions argue that memory opens new avenues in macrofinance, also for monetary policy.2

A second strand of work studies excess volatility of interest rates Shiller (1979); Mankiw

and Summers (1984) and predictability of bond returns based on yield curve “factors” (Fama

and Bliss, 1987; Cochrane and Piazzesi, 2005). These patterns violate the expectations hypoth-

esis and are explained by adding time-varying risk premia to rational models (Wachter, 2006;

Bansal and Shaliastovich, 2013; Vayanos and Vila, 2021). Giglio and Kelly (2018) show that

excess volatility of long rates relative to short ones is at odds with these models. We directly

link excess interest rate volatility to overreacting measured inflation forecasts. Cieslak (2018)

offers complementary evidence of bond return predictability based on short-term interest rates

forecasts. Bianchi et al. (2022) and Nagel (2024) study how rigid household inflation expec-

tations drive low-frequency changes in nominal and real interest rates by shaping monetary

policy, with a focus on the inflation of the 1970s and disinflation of the 1980s. We instead show

high frequency overreaction starting from the 1990s, a period of more stable inflation, and

account for cross-country variation in biases and return predictability. We contribute to work

showing that investor beliefs are key to macro-financial volatility. (Bordalo et al., 2024b,c) link

stock price volatility to overreaction in analysts’ long-term earnings forecasts. Bouchaud et al.

(2019) link stock price rigidity to underreacting short-term earnings forecasts. By producing

horizon-increasing overreaction, selective memory can help reconcile these patterns.

2Alternative approaches to modeling beliefs in macroeconomics include natural expectations (Fuster et al.
(2012)), incorrect models (Gabaix (2019), Angeletos et al. (2021), Molavi et al. (2024)), and level-k thinking
(Garćıa-Schmidt and Woodford (2019), Farhi and Werning (2019), Iovino and Sergeyev (2023)).
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2 Overreaction in Inflation Expectations

2.1 Data Sources and Sample

Expectations are drawn from Consensus Economics (CE), which surveys macroeconomic fore-

casts from major financial institutions worldwide. Our main variable is the consensus forecast

for year-on-year CPI inflation h calendar years ahead, with h = 0, 1, 2, 3, 4, 5, 6-10. The h = 0

forecast pertains to current year inflation; the h = 6-10 forecast pertains to average inflation

between 6 to 10 years ahead. We also use CE consensus forecasts of next year’s 3-month and

10-year interest rates to control for monetary policy and other factors. Forecasts are reported

quarterly after 2014, semiannually before.

Realized year-on-year CPI inflation is obtained from the IMF Data Mapper and the World

Development Indicators (WB); when both sources are available, we take the average.3 To

compute interest rates and returns, we use bond prices for maturities from 1 to 10 years from

Refinitiv. The 4-year maturity is excluded due to missing data. We focus on IMF-defined

“advanced economies” with consistent data coverage. For each horizon h, countries are included

if they have data on bond yields and forecasts since at least 1999Q4. The sample comprises 18

countries and ranges from 1989Q4 to 2022Q1. Table 7 describes the data; Table 8 reports the

countries at each maturity.4

In our sample, which starts after the deflation of the 1980s, average yearly inflation (across

countries and over time) is 4.21% with a standard deviation of 4.29%. CE forecasts do not

exhibit systematic upward or downward bias: average forecast error at the 1-year horizon is

−0.0046 with p = 0.9507. Arguably, this is a feature of relatively stable inflation in our sample

period. A systematic bias could arise during or shortly after unstable inflation, also due to a

“Peso problem”. Figure 5 in Appendix A.1 plots in-sample realized inflation for the 18 countries.

2.2 Rationality Tests

To understand whether interest rates properly compensate for inflation risk, a first-order ques-

tion is whether investors systematically over- or underestimate future inflation during high

inflation states. To assess this issue, we predict the consensus forecast error for country c at

horizons t+ h using two proxies for the inflation state at t. The first one is the time t inflation

forecast for h calendar years ahead, Ft(πc,t+hY ). A high forecast signals that the country is in

a high inflation state at t. We thus pool countries and time periods, and estimate:

πc,t+hY − Ft (πc,t+hY ) = αh + δh · Ft (πc,t+hY ) + εc,t+hY . (2)

3IMF and World Bank data cover up to 2023; the sources for 2024Q1 data are reported in Table 7.
4The UK is excluded from our main sample because its CE coverage starts only in 2004. Results are robust

to having all countries, including the UK, at all maturities, see Tables 24 to 28.
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A negative coefficient δh < 0 implies that forecasters overestimate future inflation in a high

inflation state, and vice-versa in a low state. The opposite occurs if δh > 0. Our second proxy

is based on recent inflation, which we observe at yearly frequency. The state in year t is average

inflation in the two prior years πc,t = (πc,(t−1)Y + πc,(t−2)Y )/2. The forecast in year t is then

computed by averaging forecasts within the year. Again, a negative (positive) coefficient detects

over- (under-) estimation of future inflation in a high inflation state.

Table 1 reports the estimates, with Panel A using the first proxy and Panel B the second.

We denote the forecast error at horizon h by FEc,h ≡ πc,t+hY − Ft (πc,t+hY ). All regressions

in the paper include country dummies and use Driscoll-Kraay standard errors to control for

heteroskedasticity and spatio-temporal correlation.

Table 1: Predicting the consensus forecast error using the current inflation state

Panel A

(1) (2) (3) (4) (5) (6)

FEc,0 FEc,1 FEc,2 FEc,3 FEc,5 FEc,6-10

Ft (πc,t+hY) 0.037 -0.356** -1.004*** -1.114*** -1.655*** -1.207***
(0.045) (0.140) (0.300) (0.274) (0.273) (0.108)

Country fixed effects ✓ ✓ ✓ ✓ ✓ ✓
N 1029 1029 1171 1033 1093 656
Adj. R2 0.020 0.062 0.157 0.176 0.252 0.553

Panel B

(1) (2) (3) (4) (5) (6)

FEc,0 FEc,1 FEc,2 FEc,3 FEc,5 FEc,6-10

πc,t -0.041 -0.218* -0.295** -0.339** -0.626*** -0.490***
(0.039) (0.119) (0.141) (0.127) (0.189) (0.074)

Country fixed effects ✓ ✓ ✓ ✓ ✓ ✓
N 420 420 462 416 462 331
Adj. R2 -0.002 0.048 0.057 0.088 0.229 0.426

Note. Each column reports the country pooled regression at horizon h = 0, ..., 6-10: the dependent variable is the consensus
forecast error πc,t+hY − Ft

(
πc,t+hY

)
at horizon h and country c. The independent variables are: (i) the consensus forecast

for country c at horizon h, Ft
(
πc,t+hY

)
(Panel A), and (ii) the average realized inflation of country c over the past two years,

πc,t = (πc,(t−1)Y + πc,(t−2)Y )/2 (Panel B). We control for country fixed effects. The sample ranges from 1989Q4 to 2022Q1,
Table 8 reports the countries available at each maturity. Standard errors in parenthesis are Driscoll-Kraay. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1, 5, and 10 percent levels.

In Panel A, δh is positive but not significant at the shortest horizon. For h ≥ 1, the

coefficient turns negative: high current expected inflation predicts overestimation of future

inflation. Critically, the effect is stronger at longer horizons h. These results are robust when

estimating equation (2) at the annual frequency (see Appendix Table 18). Panel B confirms the

result using our second proxy: high recent inflation predicts overestimation of future inflation,
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more strongly so at longer horizons. Magnitudes are meaningful. In Panel A, a one standard

deviation increase in the current forecast reduces the future forecast error by 0.217 standard

deviations at the 1-year horizon, and by 0.826 standard deviations at the 6-10-year horizon.

In Panel B, a one standard deviation increase in recent inflation reduces the error by 0.205

standard deviations at the 1-year and by 0.667 at the 6-10-year horizons.

De Silva and Thesmar (2024) show that noise or measurement error in expectations could

create a spurious negative coefficient when predicting the forecast error with the current forecast

(or its revision). This mechanism cannot explain our results for two reasons. First, noise or

measurement error in individual analyst forecasts is averaged out in the consensus. Second, we

see negative predictability also in Panel B, using past inflation as a predictor.

A high inflation state can prompt future inflation overestimation for two reasons. First,

forecasters may overreact to recent “high inflation” news, proxied by an upward consensus

revision. Second, holding news constant, forecasters may be too pessimistic following periods

during which their forecasts were high, indicating a persistent overreaction to past inflation.

Assessing these mechanisms is key for evaluating theories of belief formation. Coibion and

Gorodnichenko (2015) stress underreaction of professional consensus forecasts to recent news,

detected through a positive correlation between the one-quarter revision and future forecast er-

rors for US short-term (three quarters ahead) inflation. They view the evidence as supporting

rational inattention (Sims, 2003; Woodford, 2003a; Mankiw and Reis, 2002). By contrast, Bor-

dalo et al. (2020) detect overreaction of individual forecasts, pointing to non-rational updating.

To test for these mechanisms, we follow Bordalo et al. (2024b) and predict consensus forecast

errors using the four-quarter revision – Ft (πc,t+hY ) − Ft−4 (πc,t+hY ) – our proxy for news, and

the consensus forecast from four quarters earlier – Ft−4 (πc,t+hY ) – our proxy for past pessimism.

Besides being informative about mechanisms, this test is methodologically more appropriate for

assessing under- or overreaction to news than the correlation between forecast errors and revi-

sions. The latter test is well specified if forecasters are rational, the case considered by Coibion

and Gorodnichenko (2015), not otherwise. The reason is that with non-rational updating the

forecast revision is correlated with the lagged forecast – a pattern that we observe in the data

(see Appendix Table 9) – which creates an omitted variable problem if the lagged forecast is

not itself used as a predictor. Using analyst forecasts of US firms’ long-term earnings growth,

Bordalo et al. (2024b) find that the consensus overreacts both to recent news and to its lagged

value. In the context of inflation, we analogously estimate:

πc,t+hY −Ft (πc,t+hY ) = αh+δ1,h ·[Ft (πc,t+hY )− Ft−4 (πc,t+hY )]+δ2,h ·Ft−4 (πc,t+hY )+εc,t+hY . (3)

A negative δ1,h indicates overreaction to recent news; a negative δ2,h indicates persistent over-

reaction to past high inflation. Positive coefficients instead indicate underreaction.

Table 2 shows that, at horizons up to one year, δ1,h is positive, although not statistically
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significant, suggesting mild underreaction to news. At longer horizons, δ1,h is significantly

negative, indicating sharp overreaction to news. The lagged forecast coefficient δ2,h is negative

and significant at all horizons, showing persistent overreaction to past inflation. The rigidity

of consensus inflation expectations documented by Coibion and Gorodnichenko (2015) is thus

a feature of short-term (within-year) forecasts. At long horizons, consensus beliefs overreact,

consistent with sharply non-rational updating.5 Interestingly, for h ≥ 2, overreaction to recent

news and to past states are comparable: the magnitude of the two coefficients converges (δ1,h =

δ2,h cannot be rejected at conventional levels). This means that the simpler predictability

regression in equation (2), which imposes δ1,h = δ2,h, captures the key pattern in the data: a

horizon-increasing overreaction of consensus inflation forecasts. As we will see, this is also the

specification emerging from our memory model.

Table 2: Predicting consensus error from recent news and past inflation states

(1) (2) (3) (4) (5) (6)

FEc,0 FEc,1 FEc,2 FEc,3 FEc,5 FEc,6-10

Ft(πc,t+hY )− Ft−4(πc,t+hY ) 0.160 0.215 -0.847* -1.092*** -1.297*** -1.123***
(0.098) (0.240) (0.448) (0.411) (0.257) (0.110)

Ft−4(πc,t+hY ) -0.105** -0.625** -1.232*** -1.318*** -1.765*** -0.988***
(0.045) (0.246) (0.433) (0.399) (0.380) (0.107)

Country fixed effects ✓ ✓ ✓ ✓ ✓ ✓
N 973 970 1104 969 1008 618
Adj. R2 0.088 0.103 0.137 0.151 0.183 0.398

Note. Each column reports the country pooled regression at horizon h = 0, ..., 6-10: the dependent variable is the inflation
consensus forecast error πc,t+hY − Ft

(
πc,t+hY

)
over horizon h and country c. The dependent variables are the consensus revision

Ft
(
πc,t+hY

)
− Ft−4

(
πc,t+hY

)
and the lagged inflation forecast Ft−4

(
πc,t+hY

)
. We control for country fixed effects. The sample

ranges from 1989Q4 to 2022Q1, Table 8 reports the countries available at each maturity. Standard errors in parenthesis are Driscoll-
Kraay. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels.

Overall, consensus inflation forecasts exhibit horizon-increasing overreaction. As we discuss

in Section 5, this pattern cannot be accommodated by leading models of belief formation, mo-

tivating our mnemonic approach. Before presenting the model, the logic of the Fisher equation

raises a key question: does overreaction link to excess interest rate volatility?

5If we replicate the Coibion and Gorodnichenko (2015) test, regressing the forecast error on the four quarters
forecast revision, we see positive predictability at short horizons and negative but not statistically significant
predictability at longer horizons, see Appendix Table 10. If we estimate equation (3) using US short-term CPI
forecasts in the SPF as in Coibion and Gorodnichenko (2015) and US quarterly realized inflation from the
Bureau of Labor Statistics, we obtain no predictability from the revision and negative predictability from the
lagged forecast – consistent with our findings in columns (1) and (2) of Table 2; see Appendix Table 11.
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3 Belief Overreaction and Interest Rate Volatility

Under the expectations hypothesis (Campbell and Shiller, 1991), ex-ante real rates are constant

and nominal rates are shaped by inflation expectations. Let r
(h)
c be the ex-ante real rate on a

zero-coupon bond of maturity h in country c. The nominal rate i
(h)
c,t satisfies:

i
(h)
c,t = r(h)c + Et (πc,t+1,h) , (4)

where πc,t+1,h = (πt+1Y + ... + πt+hY )/h is average inflation between t and t + hY , and Et(·)
denotes market expectations. Under the expectations hypothesis, a unit slope in a regression

of interest rates on CE forecasts would point to excess volatility: nominal rates overreact in

tandem with beliefs. This conclusion, however, neglects that the real rate r
(h)
c may itself vary

over time, due to monetary policy or risk premia. For instance, the central bank may raise

short-term nominal and real rates in reaction to expected inflation, as in Bianchi et al. (2022)

and Nagel (2024). In addition, real rates can respond to shocks that simultaneously affect

expectations. To isolate the role of beliefs, we need a proxy for the real rate.6

The most widely used proxies rely on “factors” built from time variation in nominal rates.

These factors cannot be used as controls in equation (4) because they mirror the dependent

variable. We thus develop excess volatility tests based on bond return predictability. Under

the expectations hypothesis, which assumes both constant r
(h)
c and market efficiency, returns

should be unpredictable. If the required return varies over time, predictability from beliefs

conditional on a proxy for r
(h)
c would point to a violation of market efficiency.

Real yield to maturity. The real yield to maturity of a bond is defined as the difference

between the bond’s nominal yield at issuance i
(h)
c,t and the average realized inflation over its life.

From equation (4), the ex-post real yield on a bond issued at t with maturity h is then

r̃
(h)
c,t,t+h = r(h)c − [πc,t+1,h − Et (πc,t+1,h)] . (5)

If inflation is lower than expected, [πc,t+1,h−E(πc,t+1,h)] < 0, the real yield exceeds the ex-ante

real rate r̃
(h)
c,t,t+h > r

(h)
c ; the opposite holds when inflation is higher than expected. Under rational

expectations, inflation surprises – and thus returns – are unpredictable. This is no longer true

if investors overreact, which motivates our first test (all proofs are in the Appendix).

Prediction 1. If investors overreact, more strongly so at longer maturities, the regression:

r̃
(h)
c,t,t+h = θr0,h + θrh · Ft(πc,t+1,h) + ε

(h)
c,t,t+h (6)

6In the typical NK model, the coefficient on expected inflation would capture both the reactivity of the
Taylor rule to expectations and the co-movement of beliefs with supply and demand shocks.
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should yield a positive coefficient θrh, with its magnitude increasing in h.

In high inflation states, expected inflation and hence nominal rates are excessively high, predict-

ing higher realized real rates, especially at long maturities. The reverse occurs in low inflation

states. In equation (6), the ex-ante real rate r
(h)
c is embedded in the intercept θr0,h. To account

for its potential time variation, we control for a direct measure of r
(h)
c at t: the nominal rate

minus the inflation forecast at t (details are provided below). Under the rational null, forecasts

should not have predictive power conditional on such proxy. Finding θrh > 0, by contrast, ties

predictability to belief overreaction.

Excess holding period return. The excess holding period return is defined as the one-

period return on a bond with maturity h > 1 in excess of the short rate. Formally, an investor

buying a bond (with unit face value) at price lnP
(h)
t = −h · i(h)t and selling it at t+1 obtains a

return y
(h)
t,t+1 = P

(h)
t /P

(h−1)
t+1 −1, which can be approximated as y

(h)
t,t+1 ≈ i

(h)
t +(h−1)(i(h)t −i

(h−1)
t+1 ).

Relative to the short rate i
(1)
t the excess return is then:

rx
(h)
t,t+1 = rx(h) − (h− 1) [Et+1 (πt+2,h)− Et (πt+2,h)] , (7)

where rx(h) ≡ −(h − 1)r(h−1) + hr(h) − r(1) is constant. If investors revise beliefs upward at

t+1, Et+1(πt+2,h)−Et(πt+2,h) > 0, the nominal rate increases, depressing the bond’s resale price

and lowering the realized return. Conversely, a downward revision raises the realized return.

Under rationality, future revisions are unpredictable and so are returns. If, instead, investors

overreact, revisions tend to be low following periods of high expected inflation and high after

periods of low expected inflation – a pattern observed in the data (see Appendix Table 9) –

which motivates our second test.

Prediction 2. If investors overreact, more strongly so at longer maturities, the regression:

rx
(h)
c,t,t+1 = θex0,h + θexh · Ft(πc,t+1,h) + ε

(h)
c,t,t+1 (8)

should yield a positive coefficients θexh , with its magnitude increasing in h.

Due to horizon-increasing overreaction, nominal rates are excessively high in high-inflation

states, depressing bond prices. As a result, bonds appreciate over time, especially at longer

maturities. Predictability here originates from belief revisions, not errors. To control for pos-

sible time variation in required returns (embedded in the intercept θex0,h), we also control for

their leading proxies in the excess return predictability literature Duffee (2013): the level and

slope of the yield curve at t.7 Conditional on these proxies, evidence of predictability from

7Fama and Bliss (1987) offer early evidence of predictability based on the spread between the h-year forward
and spot rates. Cochrane and Piazzesi (2005) build a related predictor based on forward rates.
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expectations, θexh > 0, would again point to market inefficiency driven by belief overreaction.

Our tests, which estimate equations (6) and (8) controlling for yield-curve proxies of real

rates, are demanding: changes in the yield curve today reflect not only shifts in ex-ante real

rates, but also in investor beliefs, for which CE forecasts are a noisy proxy. Conditional pre-

dictability from measured beliefs would then indicate that CE consensus contains information

for market beliefs, linking predictability to market inefficiency. By comparison, current tests

of rational models are weak: they do not directly measure time-varying risk aversion or other

determinants of ex ante real rates, and thus cannot rule out that the yield curve may predict

returns through the biased beliefs it embeds.

One concern in our tests is that maturity increasing return predictability may be contam-

inated by a bias due to a persistent predictor Stambaugh (1999). For this reason, we perform

robustness tests using the adjustment for such bias developed by Boudoukh et al. (2022).

3.1 Expectations and Interest Rates

We begin by testing whether nominal rates correlate with expectations – a necessary condition

for beliefs to cause excess interest rate volatility. Using CE data, we construct expected average

inflation over the next h calendar years, Ft(πc,t+1,h), and estimate:

i
(h)
c,t = αh + λh · Ft (πc,t+1,h) + ε

(h)
c,t . (9)

We obtain i
(h)
c,t from the zero-coupon price P

(h)
c,t using the identity lnP

(h)
c,t = −h·i(h)c,t . We compute

quarterly rates by averaging monthly ones. We do not expect λh = 1: real rates may vary over

time and CE forecasts may imperfectly proxy for market beliefs, the drivers of nominal rates.

Table 3, Panel A, reports our estimates, with maturity ranging from 1 year (Column 1) to

6-10 years (Column 5). Panel B controls for CE forecasts of nominal rates. the latter forecasts

reflect – conditional on inflation forecasts – beliefs about real rates, including expectations

about central bank policy (Bauer et al., 2024). To match maturities, we use the expected

3-month rate for h = 1, 2, 3 and the 10-year rate for h = 5, 6-10. We cannot include both

measures due to collinearity.8

In Panel A, higher expected inflation over the next h years is associated with higher nominal

rates at the same maturity. The R2 is sizable, ranging from 31% to 54%, with the lowest fit

observed at the 6-10-year maturity, likely reflecting missing data. The estimated coefficient

is statistically indistinguishable from 1 at h = 1, and approaches 2 at longer maturities. A

coefficient above one means that higher expected inflation is associated with higher ex-ante

real rates. Interestingly, this occurs for long-term bonds, where monetary policy likely plays

8Variance Inflation Factors (VIFs) for one or both measures exceed the standard threshold of 10 for horizons
1 to 5. VIFs for inflation forecasts remain well below 10.

10



Table 3: Nominal yields and consensus inflation forecast

Panel A

(1) (2) (3) (4) (5)

i
(1)
c,t i

(2)
c,t i

(3)
c,t i

(5)
c,t i

(6-10)
c,t

Ft (πc,t+1,h) 1.090*** 2.144*** 2.324*** 2.658*** 2.545***
(0.173) (0.303) (0.269) (0.282) (0.543)

Country fixed effects ✓ ✓ ✓ ✓ ✓
N 972 1163 1079 1296 550
Adj. R2 0.339 0.488 0.540 0.527 0.314

Panel B

(1) (2) (3) (4) (5)

i
(1)
c,t i

(2)
c,t i

(3)
c,t i

(5)
c,t i

(6-10)
c,t

Ft (πc,t+1,h) 0.039 0.067** 0.243*** 0.369*** 0.213**
(0.026) (0.034) (0.074) (0.089) (0.103)

Ft(i
(k)
c,t+1) 0.982*** 1.029*** 0.949*** 1.011*** 0.938***

(0.018) (0.016) (0.023) (0.033) (0.029)

Country fixed effects ✓ ✓ ✓ ✓ ✓
N 972 1146 1060 1124 550
Adj. R2 0.962 0.973 0.938 0.965 0.948

Note. Each column of Panel A reports a pooled regression at horizon h = 1, ..., 6-10 whose dependent
variable is the nominal yield at t to maturity h in country c and the independent variable is the consen-
sus forecast for average inflation over h years in the same country and time, computed as Ft

(
πc,t+1,h

)
=

1
h

∑h
h′=1 Ft

(
πc,t+h′Y

)
. Panel B controls for the expected 3 months rate for h = 1, 2, 3, Columns (1)-(3), and

for the expected 10 year rate for h = 5, 6-10, Columns (4) and (5). We control for country fixed effects. The
sample ranges from 1989Q4 to 2022Q1, Table 8 reports the countries available at each maturity. Standard
errors in parenthesis are Driscoll-Kraay. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels.

a smaller direct role. Arguably, then, either higher expected inflation correlates with higher

longer term real rates, or CE forecasts are more sluggish than market beliefs at long horizons.

In Panel B, we control for expected rates, which are tightly aligned with current rates,

with estimated coefficients close to one.9 The correlation between current rates and expected

inflation remains positive and significant. Overall, the sharp comovement of nominal rates

and overreacting inflation expectations suggests that the latter may create excess volatility in

interest rates. We now assess this hypothesis using our return predictability tests.

9Controlling for expected rates sharply increases the R2, reflecting their strong correlation with current rates.
Expected inflation has a much lower correlation (between 0.606 and 0.730) with expected rates.
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3.2 Predictable Real Yields to Maturity

Following equation (6), we regress the future real yield to maturity r̃
(h)
c,t,t+h on the current

forecast Ft(πc,t+1,h). We proxy for time varying ex-ante rates using the expected real rate, i.e.,

the nominal rate at t minus expected inflation, i
(h)
c,t − Ft(πc,t+1,h). For validation, we compare

this proxy to real rates inferred from inflation-adjusted bonds (King and Low, 2014), which

are actively traded and liquid in the US and UK. The correlation between the two measures in

these countries ranges from 70% to 90%, supporting our proxy (see Appendix Table 12).

Table 4 reports the baseline estimates in Columns (1)-(5); columns (6)-(10) control for real

rates. Consistent with Prediction 1, higher expected inflation predicts higher ex-post yields.

The result is robust to controlling for ex-ante rates and becomes stronger as h increases –

consistent with horizon-increasing overreaction.10 Predictability of real yields does not simply

reflect changing expected real rates: it also reflects a distorted inflation compensation.

Belief-driven excess volatility is sizable. In the baseline specification, a one standard de-

viation increase in the inflation forecast lowers the real yield by 0.163 standard deviations at

h = 1 and by 0.688 at h = 5. When we control for ex-ante real rates, the effect remains siz-

able, amounting to a 0.127 standard deviation increase in the ex-post real return at the 1-year

horizon and to a 0.238 standard deviation increase at the 5-year horizon.

3.3 Predictable Excess Returns

To test Prediction 2, we compute for each quarter the 1-year excess bond return rx
(h)
c,t,t+1 =

i
(h)
c,t + (h − 1)

(
i
(h)
c,t − i

(h−1)
c,t+1

)
− i

(1)
c,t , where quarterly yields average monthly yields. Results are

robust to using annual data. To reduce the influence of short-term price volatility, which is

notoriously large, we average excess returns over two years:

rx
(h)
c,t,t+1 =

rx
(h)
c,t,t+1 + rx

(h)
c,t+1,t+2

2
. (10)

Table 5, columns (1)-(4), reports estimates of equation (8). Columns (5)-(8) control for “level”

and “slope” at t: “level” is the 1-year nominal rate, “slope” is the difference between the 10-

and 1-year rates – these are standard proxies for time-varying premia (Duffee, 2013).

In line with Prediction 2, higher inflation forecasts predict higher excess returns, more

strongly so at longer maturities – consistent with horizon-increasing overreaction. Predictabil-

ity survives when we control for the level and slope of the yield curve, pointing to market

inefficiency. The effect is robust to controlling for expected future interest rates and to smooth-

ing returns over three years (see Appendix Tables 22 and 23). The magnitude is meaningful.

10Results are robust at the annual frequency (see Table 20). We have only few data points at the 6-10 maturity
because we need ten years of realized inflation to construct the real yield.
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In columns (5)-(8), a one standard deviation increase in expected inflation predicts a 0.134

standard deviation rise in excess returns at h = 3, and a 0.405 rise at h = 6–10.

One concern is that our results may be biased due the use of persistent predictors, along the

lines of Stambaugh (1999). Indeed, Boudoukh et al. (2022) show that such bias becomes stronger

with the forecast horizon, potentially contaminating our results. In Appendix A.6, we apply the

bias adjustment method developed by Boudoukh et al. (2022) to our univariate and multivariate

predictive regressions, for both the real yield to maturity and the excess return. Due to our

panel structure (Boudoukh et al. (2022) develop their tests for time series regressions), we

perform the analysis country by country and report the median OLS and adjusted coefficients.

Figures (7) and (8) in the Appendix show that maturity increasing predictability is robust to

the adjustment, confirming the role of horizon increasing overreaction in affecting interest rates.

3.4 Economic Implications

Our empirical findings suggest that non-rational inflation expectations can have significant eco-

nomic effects. Return predictability in fact implies that high expected inflation today predicts

a future redistribution of wealth from borrowers to lenders, and vice-versa for low expected

inflation. In heterogeneous-agent models such effects can affect output, because borrowers typ-

ically have a higher propensity to consume and invest than lenders (Auclert, 2019; Sterk and

Tenreyro, 2018). Fisher (1933) famously stressed the costs of debt deflation and Doepke and

Schneider (2006) offer more recent evidence on inflation-induced redistribution.

To understand the drivers of this effect, we must understand belief formation, which mo-

tivates our mnemonic learning approach. Before doing so, however, we show with a simple

example that inflation expectations can lead to sizable wealth redistribution.

Consider a borrower who takes a simple loan with maturity h∗ years. The payment is

constant in real terms (i.e., in t = 0 dollars) and equal to P (h∗). Expected inflation is πe for

all future periods. Thus, the contractually stipulated nominal payment is P (h∗) · pes, where pes is
the expected price level at time s. We denote the ex-ante real rate at time s by rs(π

e), which

we allow to increase with expected inflation, consistent with our data. The ex-ante real rate

is indeed another channel through which biased inflation expectations can affect output, which

has been studied theoretically by Bianchi et al. (2024b) and L’Huillier et al. (2024) and also

empirically by Bianchi et al. (2022) and Nagel (2024). Given these parameters, the real value

of the borrower’s future payments is on average equal to

L̂(h∗) ≡
h∗∑
h=1

h∏
s=1

P (h∗)

1 + rs(πe)
· p

e
s

ps
≈

h∗∑
h=1

h∏
s=1

P (h∗)

(1 + rs(πe))(1 + πs − πe)
, (11)

where ps is the price level realized on average at s, and πs is average inflation in the same period
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Table 6: A simple quantification of the redistribution from borrowers to savers

Loan Maturity

1 2 3 5 10

−∆ logL(h∗) 0.09 1.19 2.10 4.18 8.21

∆ log L̂(h∗) 0.36 0.86 1.39 2.77 6.04

L(h∗) $100, 000 $100, 000 $100, 000 $100, 000 $100, 000

P (h∗) $100, 090 $50, 069 $33, 540 $20, 365 $10, 263

−∆L(h∗) $90 $1, 187 $2, 100 $4, 181 $8, 206

∆L̂(h∗) $356 $857 $1, 387 $2, 772 $6, 038
Note.The top rows report the semi-elasticity of the ex-ante loan value and the ex-post additional cost to a
parallel shift in inflation expectations. The lower rows quantify the effects based on an loan of $100,000 across
various maturities, reporting also the repayment amount as well as the absolute ex-ante and ex-post changes
resulting from a 1 p.p. parallel increase in inflation expectations. Computations are based on the estimates
from Tables 1 and 3.

(we work under a certainty equivalent approximation). An increase in expected inflation πe

matters in two ways. First, it leads to a higher ex-ante rate rs(π
e), as shown by the above-one

slope coefficients in Panel A of Table 3, reducing the amount the agent can borrow. This effect

is not necessarily causal: it may reflect fundamental shocks to which πe responds. Second,

higher expected inflation causes higher ex-post real payments because average future inflation

is below expectations, πs − πe < 0, as shown in Panel A of Table 1. This effect, due to belief

overreaction, reduces the borrower’s future resources and hence spending.

We use equation (11) and our estimated coefficients to evaluate the effect of an increase

in πe, starting from a scenario in which expected and realized inflation are equal to zero. We

distinguish between a pure ex-ante effect – in which we allow the ex-ante real rate to change but

set future forecast errors to zero – and a pure ex-post effect – where we allow for predictable

forecast errors but keep the ex-ante loan amount constant. The ex-post effect is novel and

directly ties to beliefs, the ex-ante effect is a useful benchmark. The top of Table (6) reports a

measure of the two costs: the ex-ante percent loan reduction after a 1 percentage point increase

in expected inflation (first row), and the ex-post increase in real payments caused by the same

event, again as a percentage of the initial loan amount (second row).

The two costs are sizable and comparable. For a 2-year loan, higher expected inflation is

associated with lower current and future resources of about 1% of the loan amount each. Con-

sistent with horizon-increasing overreaction, for a 10-year loan the costs increase, respectively,

to 8% and 6%, adding to a hefty 14%. If the increase in expected inflation is 2%, the effects
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reach 16% and 12% at the 10-year maturity.11

To see the ex-post redistribution in dollars, consider a $100.000 loan. An extra 1% expected

inflation raises the future real repayment by approximately $6, 038, while an extra 2% expected

inflation entails a $12, 076 cost in real (i.e., t = 0 dollars) terms, which is significant. Ex-ante,

the same events are associated with reductions in the value of the loan of $8, 206 and $16, 412,

respectively. These costs, which obviously scale with the loan amount, show the sizable real

costs associated with higher expected inflation.

Following this example, overreaction can hinder aggregate demand in several ways. In one

channel, households taking a long-term fixed rate mortgage during times of high expected

inflation will have to cut consumption as inflation drops in the future.12 Another channel

entails indebted firms, especially if facing tight borrowing constraints. As shown by Gomes

et al. (2016), a systematic higher repayment due to lower than expected inflation can sharply

reduce investment. Real appreciation of borrowers’ assets may soften these costs, but this force

is limited because households and firms hold many illiquid assets, consistent with the costs of

debt deflation. In a similar vein, the drop in inflation can raise the debt burden for banks

that finance illiquid real investments using nominal liabilities (Brunnermeier and Sannikov,

2016), and hurt governments issuing long-term nominal debt during high inflation states. If

expected inflation is demand-driven, so that investors expect higher inflation during economic

expansions, these adverse forces materialize after booms, amplifying the business cycle.

To understand the nature and severity of these effects we must understand where belief

overreaction comes from and how it varies across environments. We address this next.

4 Selective Memory and Inflation Expectations

Horizon-increasing overreaction challenges leading theories of beliefs. Models of information

frictions or inattention (Sims, 2003; Woodford, 2003a), motivated by underreaction of US short-

term forecasts (Coibion and Gorodnichenko, 2015), predict consensus underreaction only to

recent news. In equation (3) this means δ1,h > 0 and δ2,h = 0, which is counterfactual: we

observe consensus overreaction to news and to the lagged forecast, δ1,h < 0 and δ2,h < 0.

Diagnostic expectations (DE), (Bordalo et al., 2018, 2020; Bianchi et al., 2024a), motivated

11This variation in inflation expectations is realistic. A one-percent increase in expected inflation corresponds,
in our zero-inflation benchmark, to a forecast error of 1%. By our estimates, this error is fairly common: at the
10-year horizon, it is attained from an increase in expected inflation equal to 1%. This follows from dividing a
forecast error of 1% by taking an average coefficient of −1 across maturities from Panel A of Table 1.

12In the Survey of Consumer Finances (SCF, 2022 wave) a 40-year-old household has a nominal net position
of roughly −$100, 000. Nominal assets comprise transaction accounts, certificates of deposit, investment funds
(except stock mutual funds), savings bonds, directly held bonds, and cash value of whole life insurance; nominal
liabilities comprise debt secured by primary residence, debt secured by other residential property, other lines of
credit, credit card balances, installment loans (e.g., education and vehicle loans), other types of debt.
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by individual-forecaster overreaction (Bordalo et al., 2020), predict δ1,h < 0. In formulations

with a long look-back period (Bianchi et al., 2024b; Bordalo et al., 2024b), they also predict

δ2,h < 0. However, DE cannot account for no overreaction (or even underreaction) in the short

term, failing to produce the observed horizon-increasing pattern. Merged with information

frictions, DE can produce consensus underreaction to news δ1,h > 0, as in Bordalo et al. (2020),

and possibly even overreaction to the lagged forecast δ2,h < 0. However, they do not yield

individual underreaction, which is documented for several analysts (Bordalo et al., 2020).

Adaptive expectations, also originally motivated by rigid inflation expectations (Nerlove,

1958; Cagan, 1956), are a distributed lag of past inflation. This model may produce overreaction

to news, δ1,h < 0, if the weight on recent inflation is high. In this case, though, the weight on

the past forecast is low. Thus, it is difficult for this model to produce sizable overreaction to the

lagged forecast, δ2,h < 0, which we observe.13 Furthermore, this model is not forward-looking

(Lucas, 1972), so it makes no predictions on the term structure of forecasts.

To account for the data, we offer a model in which, due to selective memory, beliefs about

the future overweight events that are similar to the current inflation state. Memory limitations

are often invoked to justify sophisticated departures from rationality. In constant-gain learning

models (Evans and Lewis, 1995; Marcet and Nicolini, 2003), which offer a forward-looking

version of adaptive expectations, forecasters overweight recent conditions compared to more

remote ones. Experience based learning models take a similar route (Malmendier and Nagel,

2016). Also diagnostic overreaction relies on mnemonic overweighting, of representative states

in this case. Compared to these approaches, we explicitly formalize memory limitations based

on well established regularities in cued recall, following Bordalo et al. (2023). Combined with a

learning setting this foundation proves crucial: rather than the time-decaying adaptive weights

produced by recency or the invariant overreaction bias of DE, our model produces state- and

horizon-dependent distortions. The latter allow to reconcile diagnostic overreaction with short-

term rigidity, yielding new implications for the variation of belief biases across environments.

4.1 The Model

We consider an agent who has lived through or studied a country’s inflation path, which forms

her database. When forecasting at horizon h, current inflation cues her to retrieve similar past

states and overweight them in the future. Overweighting may act on a model output. Due to

concerns about misspecification, upon observing an inflation surprise the agent may adjust an

initial model forecast using qualitative judgments, causing recall to bias her final belief. We

13The adaptive one-step ahead inflation forecast is πe
t+1 = p[πt−πe

t−1]+(1−p)πe
t−1. If inflation is AR(1) with

persistence ρ, the coefficient on the inflation news is (ρ− α), and the one on the lagged forecast is (ρ+ α− 1).
Higher α reduces the former coefficient and increases the second; the two coefficients are equal when α = 0.5,
which entails underreaction for realistic values of ρ.
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do not explicitly formalize this process, but this is without much loss of generality. As we will

show, model-free mnemonic learning implies that beliefs take the form of a distorted version of

the true DGP, “as if” the agent distorts an underlying statistical model.

Longstanding research on human recall documents three regularities (Kahana, 2012): fre-

quency, similarity to cues, and interference.14 Frequency implies that frequent past states, say

inflation at 2%, are more likely to be recalled. Similarity implies that the current inflation state

cues recall of past states having similar numerical features. One such feature is contextual :

if current inflation is 3%, numerically similar states are more likely to be recalled and over-

weighted for the future. A second numerical feature is semantic, based on “cause-effect” logic:

the agent recalls what historically followed similar conditions. If current inflation is 3% and

3% typically led to 2%, the latter outcome is more accessible and hence overweighted. Finally,

interference implies that retrieving certain episodes blocks recall of others. Thus, changing cues

re-weight recall, causing state-dependence.

Frequency and similarity are not just central in memory research. They have been shown

to shape beliefs across domains. In Bordalo et al. (2024a) they affect household beliefs about

novel risks, in Jiang et al. (2024) they affect investors’ stock return expectations, in Cenzon

(2025) and Taubinsky et al. (2024) they account for the influence of idiosyncratic experiences on

household macroeconomic expectations, in Gennaioli et al. (2024) they offer novel survey tests

that account for US households’ inflation expectations beyond conventional learning mecha-

nisms. Here we embed these forces in a learning setup and theoretically show that they help

account for biases in investors’ inflation expectations and interest rate volatility. Relative to

the model in Gennaioli et al. (2024), we do not include temporal context but characterize long

run learning and convergence. Like them, on the other hand, we centrally rely on numerical

similarity and its interaction with the database.15

Recall is stochastic, so agents with the same database may form different beliefs based on

the same cue. Their average forecast will however reflect a systematic bias – our main object

of interest. We characterize it building on Bonaglia and Gennaioli (2025), who generalize the

model of Bordalo et al. (2023) and study its dynamic implications.

The Database. At each t = 0, 1, ... the memory database Πt ≡ {πk}0≤k≤t−1 contains dated

realizations of past inflation. In principle, memory traces could encode macroeconomic condi-

14In classic experiments, subjects recall words from a studied list. Frequency means that a word, say “apple”,
is more likely recalled if it is repeated in the list. Similarity has two dimensions: semantic (e.g., the word “wheel”
cues “car”), and contextual (e.g., “wheel” may cue “eel” due to similar spelling and phonetics). Interference
reflects the competition among memories: frequent or similar items crowd out others.

15Regarding temporal context, our current model cannot include primacy effects, which are shown to be
relevant also for professionals (Malmendier et al., 2021), because we do not know the identity of forecasters
(while recency effects are subsumed under similarity). Regarding numerical similarity, here we allow for a
semantic component (i.e., “cause-effect” logic), which is arguably important for professional forecasters and
investors
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tions (e.g., the monetary policy regime, unemployment). In this case, recall may also depend

on these features. For parsimony we focus on numerical similarity and assess its explanatory

power. Bonaglia and Gennaioli (2025) formalize high dimensional structures.

Recall and Beliefs. When forecasting at time t, inflation at t+h, the agent draws a number

of episodes πk from her database with i.i.d. probability rt,h (πk). The agent’s expectation is

then equal to the average retrieved episode. Aggregating across many agents who share the

same database and cue, the consensus forecast is equal to:

Em
t (πt+h) =

∑
πk∈Πt

πkrt,h (πk) . (12)

The database Πt encodes the frequency of past episodes. The current state πt and horizon h

affect the recall probability function rt,h (πk) through similarity.

Cues, Similarity, Retrieval. A cue is a salient signal qt triggering associative recall, which

is current inflation in our setting, qt = πt. Following multidimensional scaling (Nosofsky, 1992;

Torgerson, 1958), numerical similarity between πt and the past state πk decays exponentially

with distance along two features. The first is contextual, captured by the numerical discrepancy

between the cue and the past state, namely |πt−πk|. Upon seeing 2% inflation, past 2% episodes

are easier to retrieve. The second feature is semantic, captured by the numerical discrepancy

between the cue and the h-step predecessor of πk, namely |πt − πk−h|. When thinking about

two-year-ahead inflation, current inflation at 3% fosters recall of what happened two years

after 3% inflation in the past. These distances enter a discrepancy function dh(πk, πt). The

probability of recalling πk is then equal to

rt,h (πk) =
exp [−dh (πk, πt)]∑

πs∈Πt
exp [−dh (πs, πt)]

. (13)

By the numerator, it is easier to retrieve numerical values that are similar to the current state

and that are more frequent. The denominator captures interference: a highly frequent or similar

episode πs hinders recall of πk.

Expectations. Equations (12) and (13) characterize beliefs at every horizon h as a function

of: i) the database Πt, and ii) numerical and semantic distances with the cue πt, namely |πt − πk|
and |πt − πk−h|. These objects are observable from a country’s inflation history. Beliefs are then

pinned down by the similarity “weights” of the two features, which we later estimate. Before

doing so, we study the long-run properties of beliefs.

20



4.2 Long Run Beliefs

We characterize long-run beliefs following Bonaglia and Gennaioli (2025). To get tractability,

we take a second-order approximation of the discrepancy function, so that:

dh (πk, πt) = α (πk−h − πt)
2 + β (πk − πt)

2 , (14)

where α ≥ 0 and β ≥ 0 capture the weights of semantic and contextual features, respectively.

Given the DGP (πt)t∈N, the expectation Em
t (πt+h) in equation (12) is a stochastic process

that depends on the cue πt and the database Πt. We say that this process has a long-run

approximation E∞
t (πt+h) if, fixing ϵ > 0 arbitrarily, the probability of the event {|Em

t (πt+h) −
E∞

t (πt+h)| > ϵ} tends to zero under the DGP as t → ∞. Under general assumptions de-

scribed in the appendix, Bonaglia and Gennaioli (2025) show that Em
t (πt+h) admits a long-run

approximation, which here we characterize for a broad class of DGPs.

Proposition 1 Let (πt)t∈N be zero-mean, stationary, ergodic and Gaussian. Then, under the

discrepancy in equation (14), there is a coefficient ϕ(α, β, h) ∈ R such that the expectation

Em
t (πt+h) admits the long-run approximation:

E∞
t (πt+h) := ϕ(α, β, h)πt.

We call “mnemonic expectation” the long-run approximation above. Mnemonic learning

causes beliefs to take the form of a possibly distorted model that relies on the attended to

similarity features (with weights α and β) and the true parameters of the data generating

process (through the database). With the discrepancy in equation (14) such model is akin to

an AR(1): it loads on current inflation with a proportionality coefficient ϕ(.) that depends on

the horizon h, similarity weights α and β, and DGP features (which are kept implicit for now).

We now characterize the role of similarity weights, of the database, and their interaction.

Proposition 2 The mnemonic expectation obeys the following limit cases with respect to sim-

ilarity weights α and β:

lim
α→∞, β→0

ϕ(α, β, h) =
cov(πt+h, πt)

var(πt)
, (Least Squares)

lim
α→0, β→∞

ϕ(α, β, h) = 1, (Adaptive)

lim
α→0, β→0

ϕ(α, β, h) = 0. (Frequentist)

If cov(πt+h, πt) > 0 converges to zero as h→∞ and β > 0, there is a horizon h̃ such that, for
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all horizons h ≥ h̃, the mnemonic expectation overreacts:

ϕ(α, β, h) >
cov(πt+h, πt)

var(πt)
.

Semantic similarity fosters forward-looking beliefs. If this force dominates (α→∞ and β →
0), the forecast is a least square projection of future inflation on πt. Expectations are rational if

the DGP is AR(1). They select the best AR(1) fit otherwise, as in natural expectations (Fuster

et al., 2012). Semantic similarity can thus capture the use of a statistical model.

Numerical similarity causes instead anchoring to the present. If this force dominates (α→ 0

and β → ∞), the agent expects πt to persist at any future horizon, promoting overreaction.

Critically, this is not just a recency effect. First, it depends on the state πt and forecast horizon

h. Second, it depends on the database: if β < ∞ the cue πt is more potent if the frequency

of similar episodes in Πt is larger. An inflation surge will not change beliefs much if similar

episodes were rare in the past. We later show this property formally.

Finally, frequency causes overweighting of the (zero) long-run mean around which inflation

fluctuates. If this force dominates (α, β → 0), the agent expects immediate reversal to such

mean. If the DGP exhibits any serial correlation, this force promotes underreaction to πt.

Consider next the interaction between the database and retrieval cues. It is shaped by the

parameters of the DGP, which determine the database. If the stationary DGP exhibits positive

short-run auto-correlation, the mnemonic expectation moves in the right direction but – due

to numerical similarity β – it exhibits long-run overreaction: by overweighting future scenarios

that resemble the present, it causes neglect of mean reversion. To characterize more sharply

this interaction, and in particular whether forecasts under- or overreact, we must pin down the

long-run database, namely limt→∞ Πt. To do so, we assume that inflation is AR(1):

πk = ρ · πk−1 + σ · ϵk, (15)

with persistence ρ ∈ (0, 1) and volatility σ > 0. We obtain the following result.

Proposition 3 Let σ2
π ≡ σ2/ (1− ρ2). Expected inflation at t for t+ h is equal to

E∞
t (πt+h) =

αρh + β + 2αβσ2
π

(
1− ρ2h

)
α + β + 2αβσ2

π (1− ρ2h) + 1
2σ2

π

πt. (16)

The mnemonic expectation extrapolates from current inflation by distorting the AR(1) persis-

tence parameter. Critically, due to the interaction between retrieval cues and the database,

the degree of extrapolation increases in true volatility σ and persistence ρ. When σ is large,

the agent has experienced many high and low inflation states. By similarity, these states are

selectively retrieved when πt is high or low, so extrapolation is strong. If σ →∞ the mnemonic
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expectation fully projects the present into any future horizon, E∞
t (πt+h)→ πt. Stable inflation

(low σ) instead promotes belief rigidity through overweighting of the long-run mean. When

σ → 0 we have E∞
t (πt+h)→ 0.

Higher persistence ρ increases extrapolation in two ways: it increases volatility, but it also

increases semantically-retrieved persistence from the past. If persistence is maximal ρ→ 1 the

mnemonic expectation is rational for any similarity parameters, E∞
t (πt+h)→ πt. If persistence

is zero, the mnemonic expectation overreacts at any β > 0.

Whether belief under- or overreact depends on the balancing of these forces. By equation

(16), the short-run forecast (i.e., h = 1) overreacts, ϕ(·) > ρ, if and only if

ρ (1 + ρ) < 2βσ2
(
1 + 2ασ2

)
. (17)

Overreaction occurs when cues are strong enough, α and β are large, volatility σ is high, and

persistence ρ is low. At low persistence, even a small amount of numerical anchoring causes

overreaction. At high persistence a sufficient weight on frequency (i.e., low enough similarity

weights) causes excess anchoring to the long-run mean and thus underreaction.

Memory-driven overweighting reconciles models featuring exaggerated AR(1) persistence

such as Gabaix (2019), Angeletos et al. (2021)) or DE with long look-back period (J → ∞ in

Bianchi et al. (2024b)), with models featuring inattention-driven rigidity (Sims, 2003; Woodford,

2003a). Critically, the nature and strength of biases depends on the inflation DGP and the

forecast horizon h, rationalizing our findings and yielding new predictions which we later test.

4.3 Implications of Selective Memory

Consider the predictability of forecast errors from the forecast revision and lagged forecast –

the counterpart of regression (3). the mnemonic expectation obeys the property below.

Proposition 4 Under equation (16) the mnemonic revision at t and the mnemonic expectation

at t− 1 predict the forecast error at t+ h with coefficients:

δ1,h = δ2,h = δh ≡ ρh
α + β + 2αβσ2

π(1− ρ2h) + 1/2σ2
π

αρh + β + 2αβσ2
π(1− ρ2h)

− 1. (18)

If β > 0 the predictability coefficient δh monotonically decreases in the forecast horizon h and

exhibits long-term overreaction: limh→∞ δh = −1.

Consistent with Table 2, there is horizon-increasing overreaction to news and to the lagged

forecast: δ1,h and δ2,h decrease as the horizon h increases. At short horizons, underreaction

may prevail, depending on parameter values, as shown in equation (17). At longer horizons,

overreaction eventually prevails if β > 0. Consistent with Table 2, under an AR(1) DGP,
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δ1,h = δ2,h. In terms of DGP parameters, our discussion of extrapolation suggests that we

should expect overreaction to be stronger (and short-term underreaction less likely to arise)

when inflation is more volatile and less persistent, i.e., σ is higher or ρ is lower. The comparative

static with respect to σ is easily proved analytically, the one on ρ is more complicated. Our

simulations show that if beliefs overreact at a certain ρ, then overreaction generally weakens as

ρ increases. For certain parameter values, δh may even shift from over to underreaction when ρ

becomes large enough. If however β is large or the forecast horizon is long, the model produces

overreaction, which decreases monotonically in ρ.16

Consider return predictability. It can be analytically studied under the expectations hy-

pothesis if the DGP is AR(1), giving the mnemonic counterparts of equations (5) and (7).

Proposition 5 If β > 0, the mnemonic expectation E∞
t (πt+1,h) predicts the ex-post real yield

to maturity h with coefficient

θrh = −
h∑

j=1

δjwj, (19)

where weights (wj)1≤j≤h are positive and sum to one. If α = 0, this simplifies to θrh = 1 −
ρ(1+2β−ρ2)(1−ρh)

2hβ(1−ρ)
, which is increasing in h and positive for sufficiently large h.

The same expectation also predicts the excess return on a maturity h bond with coefficient:

θrxh = h[θrh(1− ρ) + δ1w1 − ρδhwh]. (20)

When α = 0, this simplifies to θrxh = (h− 1)(1− ρ), implying positive and maturity-increasing

predictability of excess returns.

Numerical similarity (β > 0) causes nominal rates to increase excessively with higher πt. As

a result, future inflation is systematically below expectations and real yields to maturity are

abnormally high. This effect drives the positive and maturity-increasing values of θrh. In

equation (19) predictability at maturity h is inversely related to the forecast error coefficient

δh, averaged across the relevant horizons.

For excess returns, the link with error predictability is more complex: overreaction of long-

term beliefs, captured in equation (20) by θrh > 0, can be offset by biased shifts in short-term

beliefs, captured by δ1. The balance between these forces depends on α: when the agent is very

forward-looking (i.e., α is high), long-term rates respond less than short-term ones in absolute

terms, potentially causing negative predictability; the opposite occurs when α is low. If α = 0,

we obtain positive maturity-increasing predictability of excess returns as in the data.

16The mapping between ρ and δh is non-monotonic if beliefs exhibit substantial underreaction at intermediate
values of ρ, which can happen at short horizons. In this case, as ρ approaches one the predictability coefficient
δh decreases toward zero.
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Crucially, the direction and strength of forecast errors and returns predictability should

depend on similarity weights and the DGP. We test these predictions by estimating the model.

5 Explanatory Power of Mnemonic Expectations

Section 5.1 estimates the model. Sections 5.2, 5.3 and 5.4 assess its ability to produce realistic

variation in the degrees of extrapolation, as well as in forecast error and return predictability.

5.1 The Database and Similarity Weights

We implement mnemonic beliefs by applying equation (12) to the database of past annual

inflation. For the generic time t and country c, the database is Πc,t = {πc,t}k=tc,0,...t−1, where

tc,0 is the first available inflation episode for c (ranging from 1960 to 1996, see Table 7). The

probability rt,h(πc,k) is computed using the discrepancy function:

dh(πc,k, πc,t) = α(πc,k−h − πc,t)
2 + β(πc,k − πc,t)

2 for πc,k ∈ Πc,t. (21)

To apply this procedure, we do not need to rely on a specific DGP. For given weights (α, β),

retrieval from the evolving database pins down the model implied forecast Em
t (πc,t+h|α, β). We

estimate (α, β) by matching this forecast with CE forecasts for all t, c, h. (α, β) is constant

across time, space and horizon. As a result, the model’s explanatory power for horizon and

country variation stems entirely from temporal and cross-sectional differences in databases.

We build a grid of more than 10,000 points (α, β) ∈ [0, 1]2 with a step size of 0.01, each

yielding a panel of model-implied forecasts. We then select (α, β) to minimize the total absolute

deviation between CE and model-implied forecasts:

min
α,β

∑
c,t,h

|Ft(πc,t+h)− Em
t (πc,t+h|α, β)|,

where Ft(πc,t+h) is the CE forecast (see Appendix B.3 for details). The point estimates and

99% confidence intervals are:17

α̂ = 0.07± 0.006 and β̂ = 0.18± 0.015.

17We perform a case-resampling bootstrap on the panel of model-generated inflation expectations for each
country over the in-sample period 1989–2022, drawing N = 1000 bootstrap samples by sampling with replace-
ment a multiset of length 34 (the number of in-sample years). For each sample, we reconstruct the bootstrapped
series for each (α, β) pair, adjust for country-specific start dates, and estimate (α, β) by minimizing the sum of
absolute deviations between simulated and observed CPI from CE. See Appendix B.4 for details. Confidence
intervals are 99% symmetric percentile bootstrap confidence intervals, which have the advantage of being robust
under model misspecification (Kolesár, 2025).
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These estimates reveal that contextual similarity matters, β̂ = 0.18, producing overreaction.

Semantic similarity receives a smaller weight, α̂ = 0.07, generating a forward-looking com-

ponent. Finally, the fairly low magnitude of the weights implies that anchoring to frequent

outcomes is also sizable. All mnemonic forces are thus active in the data. Hereafter, we refer to

the predicted belief at the above point estimates as the “mnemonic forecast”. Model fit is good:

with only two parameters, mnemonic forecasts exhibit a correlation of 0.61 with CE forecasts,

capturing a sizable share of variation across countries, time periods, and horizons.

With model estimates in hand, we now evaluate the model’s explanatory power for three

key patterns in the data: cross-country variation in i) strength of extrapolation, ii) forecast

error predictability, and iii) return predictability.

5.2 Strength of Extrapolation

The strength of extrapolation refers to the sensitivity of forecasts to the inflation level recently

observed by forecasters. We measure this strength, both in the data and in the model, by

estimating the following regression separately for CE and mnemonic forecasts:

Fi
t(πc,t+h) = αi

c,h + χi
c,h · πc,t + εic,t,t+h,

where i = CE and i = m denote CE and mnemonic forecasts, respectively. The coefficient χi
c,h

captures the sensitivity of forecasts to the inflation state in country c at horizon h. Following

Section (2), the inflation state is defined as πc,t = (πc,t−1 + πc,t−2)/2.

CE-based estimates reveal significant heterogeneity in the strength of extrapolation χCE
c,h

across countries and horizons (see the boxplot in Appendix Figure 6, Panel A, for details).

At the shortest horizon, the median coefficient χCE
c,1 is about 0.48 with an inter-quartile range

of [0.32, 0.54]. At the longest horizon, the median χCE
c,6-10 is about 0.22 with an inter-quartile

range of [0.08, 0.27]. Short-run forecasts extrapolate more than long-run ones, indicating that

forecasters internalize mean reversion. Crucially, at each horizon we observe systematic cross-

country variation in extrapolation: the equality of χCE
c,h across countries is rejected at standard

confidence levels.18 To assess whether our model can reproduce this variation, Figure 1 plots the

coefficients χCE
c,h estimated using CE forecasts (y-axis) against those estimated using mnemonic

forecasts χm
c,h (x-axis).

Our model captures a significant share of variation: the correlation between the two coeffi-

cients is 0.42. To isolate cross-country variation, let χCE
c be the average strength of extrapolation

in country c across horizons h. Figure 2 reports this coefficient estimated from CE data (y-axis)

against its mnemonic counterpart (x-axis). The association is strong: the regression beta is

18Formally, we estimate a pooled regression in which the inflation state is interacted with country dummies.
The p-values of the F-test are 0.0000 for all horizons h = 1, 2, 3, 5, 6-10.
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Figure 1: Performance for Forecast Predictability

Note. The figure displays extrapolation coefficients estimated using CE forecasts (y-axis)
against the those estimated using mnemonic ones (x-axis). The line shows the fit between
the two, and their correlation is reported in the lower-right corner. Each data point is
identified by the ISO 3166-2 country abbreviation.

0.552 (p = 0.069), the adjusted R2 is 0.25 and the correlation is 0.57. Mnemonic forecasts

successfully capture cross-country variation in extrapolation, confirming the model’s ability to

generate different belief functions – and, as we will see, distortions – in different environments.

To compare the explanatory power of mnemonic forecasts with standard approaches, we

estimate a constant-gain learning model (Evans and Honkapohja, 2009), in which the agent

infers the long-run mean and persistence of an AR(1) inflation process with gain parameter

γ > 0. This model can be viewed as a forward-looking version of adaptive expectations.

When matching CE forecasts, we find γ ≈ 0.2, which is in line with conventional estimates

(Nagel, 2024) (Appendix B.3 reports the details). When evaluating its explanatory power for

extrapolation, we see that this model fails to account for cross-country variation: the coefficient

χc estimated under constant-gain learning does not meaningfully vary. The regression slope

is insignificant (p = 0.2) and the explained variation is tiny (R2 = 0.07). The constant-

gain parameter introduces a form of “recency bias” in standard learning models. This force

helps the model account for excess belief volatility, but it makes it more difficult for it to

produce systematic country differences in extrapolation, because it weakens “memory” of the

DGP. Numerical similarity is instead capable of producing significant cross-country variation

in extrapolation because its mechanism for belief volatility relies on an interaction of current

cues with the memory database: the volatility generated by recent high inflation depends on

how frequent and persistent high inflation was in the past.

A final question is whether our model’s explanatory power is linked to intuitive features
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Figure 2: Performance for Forecast Predictability, Horizon Averages

Note. The figure displays the country specific, averaged across horizons, coefficients
from the simulated (y-axis) against the CE (x-axis) datasets. The line indicates the
fit between the two. Pooled (across countries and horizons) correlation is reported in
the lower-right corner of the graph. The identifier for each data point corresponds to
the ISO 3166-2 country abbreviation.

of inflation databases and DGPs. The AR(1) model suggests that such power may be tied to

volatility and persistence. In volatile environments, seeing high inflation today recalls many

high inflation episodes from the past, fostering extrapolation. Persistence matters because,

upon observing a high πt, the agent recalls a similar event πk−h and overweights its successor

πk, so that the persistence of high values from πk−h to πk causes stronger extrapolation.

To capture these forces, we regress πc,t on πc,t−h for country c and horizon h. We take the

slope ρc,h as a measure of persistence and the variance of the error term σc,h as a proxy for

volatility. Mnemonic learning also relies on frequency, which prompts the agent at each time t

to overweight the average episode experienced up to that point. This force plays a significant

role in our model because the estimated weights α and β are fairly low. It follows that another

relevant statistic is the extent to which higher average inflation lived up to t predicts higher

realized inflation at t + h. The stronger the association, the more reactive beliefs will be. To

quantify this force, which is a longer term measure of persistence, we regress, for each horizon

h, inflation πc,t on the average inflation πc,t−h experienced up to t− h. We denote the resulting

regression coefficient with ρc,h. We estimate ρc,h, σc,h and ρc,h using data from the period in

which CE forecasts are available.19 We then regress the CE extrapolation coefficient χCE
c,h on

19Computing these statistics in the full sample would contaminate them with the high inflation period of
the 1970s-80s. This would act as a confound because these dissimilar episodes have limited impact on belief
updating during our period of stable and low inflation.
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our three statistics:

χCE
c,h = 0.229

(0.035)

∗∗∗ + 0.051
(0.021)

∗∗ · σc,h + 0.352
(0.058)

∗∗∗ · ρc,h + 0.099
(0.013)

∗∗∗ · ρc,h + εc,h. (22)

Countries with higher inflation volatility and persistence indeed exhibit stronger extrapolation.

The regression’s adjusted R2 is 0.567, which is sizable. The explanatory power of mnemonic

forecasts is more directly illustrated in Figures 1 and 2, but this approximation based on

intuitive statistics shows that the observed variation in the strength of extrapolation aligns with

intuitive features of a country’s inflation history that influence memory, such as changing cues

and databases. We now investigate whether our model, by producing variation in extrapolation

strength, can also account for variation in the predictability of forecast errors and returns.

5.3 Strength of Overreaction

We predict the forecast error using the current forecast as in equation (2), separately for each

country and horizon. Using CE data, we detect sizable variation in error predictability coef-

ficients δCE
c,h (see Figure 6, Panel B). At the shortest horizon, the median δCE

c,1 is about 0.06

with an inter-quartile range of [0.01, 0.06], indicating a tendency toward underreaction. At

the longest horizon, the median δCE
c,6-10 is about −1 with an inter-quartile range of [−1.3,−0.7],

pointing to sharp overreaction. Cross-country differences in overreaction are significant.20

Figure 3, plots the estimated δc,h from CE data (y-axis) against their mnemonic counter-

parts (x-axis).21 Our model captures significant country and horizon variation in belief biases,

achieving a 64% correlation with CE-based coefficient estimates. To assess the extent of cross-

country variation, we regress the estimates of δCE
c,h on forecast-horizon dummies. The R2 of this

regression is 0.21. Adding the mnemonic coefficient δmc,h to the regression yields an R2 of 0.48

(see Table 13, columns (1) and (2)). The explanatory power more than doubles: our model

reproduces significant cross-country variation in overreaction.22

We can assess whether predictable overreaction is tied to inflation persistence and volatility.

In the AR(1) model, higher persistence ρc,h and ρc,h is associated with higher δc,h (less over-

reaction), while higher volatility σc,h is associated with lower δc,h (more overreaction). This is

20Estimating a pooled error predictability regression in which expected inflation is interacted with country
dummies, the F-test rejects coefficient equality at all horizons at standard confidence levels (with p-values of
0.0181 for h = 1, 0.0000 for h = 2, 0.0000 for h = 3, 0.0000 for h = 5, and 0.0000 for h = 6-10).

21Since memory cues and databases vary annually, we benchmark the predictability coefficient δc,h under
mnemonic forecasts to the annual CE-based estimates in Table 18. Looking at pooled estimates, the model
successfully captures horizon-increasing overreaction. The coefficients δh estimated from mnemonic forecasts
are statistically indistinguishable from their CE-based counterparts (see Table 15).

22We repeat this exercise for the error predictability specification in equation (3). Our model also matches the
coefficients capturing overreaction to news δ1,h and the lagged forecast δ2,h (see Table 14). Notably, mnemonic
forecasts can also reconcile the absence of significant overreaction to news at h = 1, δ1,h = 0, with significant
overreaction to the lagged forecast at the same horizon, δ2,h < 0.
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Figure 3: Performance for Forecast Errors Predictability

Note. The figure displays the country specific, averaged across horizons, coefficients
from the simulated (y-axis) against the CE (x-axis) datasets. The line indicates the
fit between the two. Pooled (across countries and horizons) correlation is reported in
the lower-right corner of the graph. The identifier for each data point corresponds to
the ISO 3166-2 country abbreviation.

indeed what we find in the data:

δCE
c,h = −0.803

(0.241)

∗∗∗ − 0.237
(0.142)

∗ · σc,h + 1.770
(0.402)

∗∗∗ · ρc,h + 0.463
(0.092)

∗∗∗ · ρc,h + εc,h. (23)

Countries with lower persistence and higher inflation volatility indeed exhibit more overreaction.

The regression’s adjusted R2 is 0.41, which remains unchanged when including forecast-horizon

dummies. Consistent with mnemonic learning, belief biases are tied to intuitive features of

inflation histories.

5.4 Explanatory Power for Bond Returns

To study variation in market efficiency, following Section 3, we compute expected average

inflation from t to t+h using CE and mnemonic beliefs. We then use these measures to predict

the real yield to maturity and excess bond returns observed in the data. We then obtain

estimates for the return predictability coefficients θrc,h and θexc,h, for CE and mnemonic forecasts.

The CE data show substantial heterogeneity in return predictability. For the real yield

(see Figure 6, Panel C), the median coefficient at one year is 0.6 with an inter-quartile range

of [0.007, 0.8]. At 6-10 years, it rises to 0.9 with an inter-quartile range of [0.3, 3.2]. The

same emerges for excess bond returns (see Figure 6, Panel D). At the h = 2 horizon, the

median coefficient is 0.3 with interquartile range of [−0.1, 0.6]; at 6-10 years, it rises to 3.5 with
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interquartile range [2.4, 10]. The strength of positive, maturity-increasing return predictability

varies systematically across countries, pointing to differences in market efficiency.2324

To assess whether mnemonic forecasts capture variation in return predictability, Figure 4

reports, in Panel A, the real yield coefficients θrc,h estimated from CE (y-axis) and mnemonic

forecasts (x-axis). Panel B reports the excess return coefficients θexc,h estimated from CE (y-axis)

and mnemonic forecasts (x-axis).

Figure 4: Performance for Real Yield to Maturity and Excess Returns

Panel A Panel B

Note. Panel A plots the return predictability coefficients θrc,h from the CE dataset at annual frequency (y-axis) against

the simulated dataset (x-axis). Panel B plots the excess return predictability coefficients θexc,h from the CE dataset

at annual frequency (y-axis) against the simulated dataset (x-axis). Coefficients in both figures are country- and
maturity-specific. The red lines indicate the fit between the two datasets’ coefficients. Correlation is reported in the
lower-right corner of the graphs. The identifier for each data point corresponds to the ISO 3166-2 country abbreviation.

The model captures sizable variation in market inefficiency. The correlation between CE

and mnemonic coefficients is 53% for real yields and 66% for excess returns. A significant share

of this explanatory power is tied to cross-country variation: for real yields, the R2 for CE-based

coefficients rises from 23% to 41% when adding the mnemonic estimates of θrc,h to horizon

dummies; for excess returns, it rises from 29% to 46% when adding the mnemonic estimates of

θexc,h (see Table 13, columns (3), (4), (5) and (6)). In sum, selective recall applied to different

databases accounts for significant variation in interest rate volatility and market inefficiency.

Selective memory can have significant economic implications, as we discuss next.25

23Our F-test strongly rejects coefficient equality at all horizons. For real yields, the p-values are 0.0000 for
all horizons h = 1, 2, 3, 5, 6-10. For excess returns, they are 0.0000 for all horizons h = 2, 3, 5, 6-10.

24The model reproduces pooled predictability estimates in CE. For the real yield, CE-based estimates are
from Columns (1)-(5) of Table 20, mnemonic estimates are from Table 16. Both use annual data and give similar
coefficients. For excess returns, mnemonic and CE estimates are in Table 17, which are again similar.

25We also evaluated the ability of mnemonic beliefs to produce a joint distribution of expectations and future
returns that is similar to the one observed in the data. To do so, we imputed a constant ex-ante required
return for each country c and maturity h, and then obtain “artificial” nominal rates by adding model-implied
expectations to it, following the Fisher equation. Model-implied return predictability captures substantial
variation in the data, with correlations of 42% and 43% with real yield and excess return predictability from
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6 Conclusion

The consensus inflation forecasts of major banks in 18 advanced economies exhibit horizon-

increasing overreaction. This is associated with maturity-increasing excess volatility of nominal

rates, creating a systematic and sizable redistribution of wealth from borrowers to lenders after

high expected inflation states. These patterns are at odds with leading models. We explain

them using a model of mnemonic learning in which which forecasters overweight events that

are salient due to their past frequency or similarity to current inflation. The model endogenizes

belief biases based on features of the inflation DGP, making new predictions – supported in the

data – on how these biases and return predictability should vary across countries.

We offer some concluding thoughts on the macro-financial implications of selective memory.

Overreaction of long-run inflation expectations can affect macroeconomic volatility at business

cycle frequencies. By creating a predictable redistribution from borrowing households, firms

or governments to lenders, high expected inflation can cause a future reduction in aggregate

demand. In general equilibrium, such systematic deflation “surprise” can generate a persis-

tent recession, putting downward pressure on prices and feeding into further deflation. Work

on news and sentiment (Lorenzoni, 2009; Angeletos and La’O, 2010, 2013; Angeletos et al.,

2018) emphasizes how shifts in expectations about future real variables can generate demand-

driven fluctuations without changes in current fundamentals. Mnemonic learning produces

these shocks as a by-product of belief errors. First, a pure nominal shock such as an increase

in inflation can cause, through excessively high expected inflation, a predictable future redis-

tribution that has real effects. Second, real shocks can induce shifts in non-rational beliefs

via general equilibrium channels, which will create seeming future belief “shocks” through the

reversal of expectations, even absent contemporaneous disturbances.

Mnemonic beliefs may also throw new light on historical variation in the cost of disinflation.

In the late 1970s and early 1980s, US inflation was high and volatile, and the Fed Chairman

Volcker reduced it at a considerable employment cost (Ball, 1994). In contrast, the post pan-

demic inflation spike has been curbed relatively quickly and painlessly. In an NK model, such

variation in the cost of disinflation can be due to shocks having different volatility or persis-

tence or to changes in monetary policy conduct – such as a Taylor rule that responds more

aggressively to inflation surges. Mnemonic beliefs can account for these episodes through the

historical salience of different inflation scenarios. In the early 1980s, agents drew on a database

dominated by high and volatile inflation, causing overweighting of high inflation states. This

required a persistent and aggressive policy response. In the recent period, instead, the database

was shaped by decades of low and stable inflation, which created, by similarity, a strong force

toward rapid re-anchoring after the inflation spike subsided (Gennaioli et al. (2024) document

CE forecasts, respectively. Results are available upon request.
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re-anchoring by US households). Similarity is key to allow for such state- and history-dependent

speed of belief updating.

This logic can also shed light on the limited effectiveness of forward guidance. Following the

financial crisis of 2008, nominal interest rates were constrained by the zero lower bound, prompt-

ing central banks to stimulate output by promising to generate higher inflation in the future

(Eggertsson et al., 2003; Campbell et al., 2012; Del Negro et al., 2023). These announcements

failed to raise expected inflation as intended, undermining their effectiveness, and challenging

the predictions of standard NK models (Coibion et al., 2020; Del Negro et al., 2023). Several

papers try to explain this phenomenon by departing from full-information rational-expectations

(Angeletos and Lian, 2018; Farhi and Werning, 2019). Our model offers a different explanation:

beliefs are shaped by similar inflation states. In the aftermath of the crisis, both the inflation

database and the inflation cue rendered low inflation salient, making it difficult for agents to

envision high-inflation scenarios – even if such scenarios were promised by central banks.

Finally, these memory forces offer a new perspective on optimal monetary policy. On the

one hand, belief overreaction justifies gradualism, because an extreme cue may cause agents to

overweight similarly extreme future events. On the other hand, memory implies that the level

of beliefs is also shaped by historical experience. Ceteris paribus, this latter mechanism calls

for aggressive policy: by responding swiftly to an inflation surge, the central bank prevents

high-inflation states from accumulating in the database, thereby anchoring expected inflation

at low levels, in the present and the future. The tradeoff between influencing memory cues and

the database may offer new insights into the design of optimal policy.
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A Additional Material

A.1 The Data

Table 7: Description of Data Sources

Variable Data Source Series Identifier Sample Period Coverage Notes

Bond
Yields

LSEG
RF COUNTRY GVT
BMK BID YLD
hY - RED. YIELD

1962m2–2022m10
h = 1, 2, ..., 10. Further
information available
upon request.

Realized
CPI inflation

IMF Data
Mapper

PCPIPCH 1980–2023

CZ from 1996. AU
and NZ up to 2022.
NL missing in 1980
and 1986.

Realized
CPI inflation

World
Bank’s
WDI

FP.CPI.TOTL.ZG 1960–2023
CZ from 1992, HK
from 1982, SG from
1961. TW not covered.

Realized
CPI inflation

Statistics
Bureau

2020-Base Consumer
Price Index

2024M1–2024M3 JP only.

Realized
CPI inflation

OECD

Consumer price
indices (CPIs,
HICPs),
COICOP 1999

2024Q1
HK, JP, SG, and
TW not covered.

Realized
CPI inflation

Census and
Statistics Dept.

Table 510-60001 2024M1–2024M3 HK only.

Realized
CPI inflation

Dept. of Stat.,
Directorate
General of
Budget,
Accounting
& Statistics

Price Indices 2024M1–2024M3 TW only.

Realized
CPI inflation

Department
of Statistics

Consumer Price
Index

2024Q1 SG only.

Realized
CPI inflation

Bureau of
Labor
Statistics

CUSR0000SA0 1947M1–2024M7 US only.

Note. the two-letter identifier in the coverage notes corresponds to the ISO 3166-2 country abbreviation.
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Table 7: Description of Data Sources

Variable Data Source Series Identifier Sample Period Coverage Notes

Forecasted
Bond
Yields

Consensus
Economics

3-month
interest rate
(12-month
period)

1989m10–2022m1

NL, ES, SE, and CH
from 1989m11. AU and
NZ from 1990m1. SG
from 1990m11. HK
from 1990m12. KR and
TW from 1994m12. CZ
from 1998m5. NO from
1998m6. NZ missing from
1991m4 to 1991m12 and
from 1993m1 to 1994m11.

Forecasted
Bond
Yields

Consensus
Economics

Prime
Lending Rate
(12-month
period)

1989m10–2022m1

AU from 1990m11.
NZ, SG, and KR
from 1994m12. NL,
ES, and SE from
1995m1. NO and CH
from 1998m6. CZ and
TW from 2006m3.
HK not covered.

Forecasted
CPI
Inflation

Consensus
Economics

Consumer
Prices

1989Q4–2022Q1

AU from 1991q2. HK,
NL, NZ, SG, KR, ES,
SE, and TW from 1995q2.
NO and CH from 1998q4.
Semiannual data,
quarterly after 2014q2

Forecasted
CPI
Inflation

Survey of
Professional
Forecasters

CPIh,
h = 1, . . . 6

1981Q3–2024Q2

US only. h = 1 denotes the
“forecast” for the previous
quarter, h = 2 denotes the
forecast for the current
quarter, h = 3, ..6 denote
forecasts for the four
quarters succeeding the
current. Missing in
1969Q1-1969Q3 and
1970Q1 for h = 6.

Note. the two-letter identifier in the coverage notes corresponds to the ISO 3166-2 country abbreviation.
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Table 8: Composition of samples across different maturities

Country
Samples

Cumulative By Maturity

H:0Y and H:1Y H:2Y H:3Y H:5Y H:(6-10)Y

Australia ✓ ✓ ✓ ✓ ✓
Canada ✓ ✓ ✓ ✓ ✓ ✓
Czech Republic ✓ ✓ ✓ ✓
France ✓ ✓ ✓ ✓ ✓ ✓
Germany ✓ ✓ ✓ ✓ ✓ ✓
Hong Kong ✓ ✓ ✓ ✓ ✓ ✓
Italy ✓ ✓ ✓ ✓ ✓
Japan ✓ ✓ ✓ ✓ ✓ ✓
Netherlands ✓ ✓ ✓ ✓ ✓ ✓
New Zealand ✓ ✓ ✓ ✓ ✓ ✓
Norway ✓ ✓ ✓ ✓ ✓ ✓
Singapore ✓ ✓ ✓ ✓ ✓
South Korea ✓ ✓ ✓ ✓
Spain ✓ ✓ ✓ ✓ ✓
Sweden ✓ ✓ ✓ ✓ ✓ ✓
Switzerland ✓ ✓ ✓ ✓ ✓ ✓
Taiwan ✓ ✓ ✓
United States ✓ ✓ ✓ ✓ ✓ ✓
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A.2 Additional Figures

Figure 5: Realized Inflation over the sample

Note. Annual realized inflation for the 18 countries in our sample, from 1989 to 2023. Sample
varies according to Table 7. The identifier for each series corresponds to the ISO 3166-2 country
abbreviation.
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Figure 6: Boxplots of country-specific coefficients.

Panel A: Boxplot of Figure 1’s results. Panel B: Boxplot of Table 1 Panel A’s results.

Panel C: Boxplots of Table 4 Panel B’s results. Panel D: Boxplots of Table 5 Panel B’s results.

Note. The figure displays the boxplots and the pooled estimates from Figure 1 (Panel A), Table 1’s Panel A (Panel B), Table 4’s
Panel B (Panel C), and Table 5’s Panel B (Panel D). The y-axis measures the magnitude of the estimated coefficients, while the
x-axis identifies the horizons h = 0, 1, 2, 3, 5, 6-10 for which estimates were computed. For each horizon, the sample varies according
to Table 8. The boxplot illustrates the distribution of the country-specific coefficients. The box represents the interquartile (IQR)
range, with the median indicated by the line inside the box. The whiskers extend to 1.5 times the IQR above the upper quartile
and below the lower quartile. Points beyond the whiskers are considered outliers and are removed from the boxplots. The plot also
displays the respective country-pooled estimates (dots) for each horizon and every specification.
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A.3 Additional Tables and Figures

Table 9: Forecast revision predictability regressions by horizon

(1) (2) (3) (4)

FRc,2 FRc,3 FRc,5 FRc,6−10

Ft (πc,t+hY) -0.236** -0.355*** -0.819*** -0.974***
(0.090) (0.097) (0.131) (0.150)

Country fixed effects ✓ ✓ ✓ ✓
N 1107 973 1021 847
Adj. R2 0.145 0.213 0.462 0.536

Note. We predict inflation consensus forecast revision from the current inflation state. Each
column reports the country pooled regression at horizon h = 2, 3, 5, 6-10: the dependent variable
is the inflation consensus forecast revision Ft+h−1

(
πc,t+hY

)
− Ft

(
πc,t+hY

)
over horizon h and

country c. The current inflation state is the consensus forecast for country c and horizon h
Ft

(
πc,t+hY

)
. We control for country fixed effects. The sample ranges from 1989 to 2021, Table

8 reports the countries available at each maturity. Standard errors in parenthesis are Driscoll-
Kraay. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels.

Table 10: Forecast errors on inflation forecast revision

(1) (2) (3) (4) (5) (6)

FEc,0 FEc,1 FEc,2 FEc,3 FEc,5 FEc,6−10

Ft(πc,t+hY)− Ft−4(πc,t+hY) 0.173* 0.470* -0.175 -0.256 0.242 -0.240
(0.102) (0.262) (0.295) (0.338) (0.414) (0.149)

Country fixed effects ✓ ✓ ✓ ✓ ✓ ✓
N 973 970 1104 969 1008 618
Adj. R2 0.072 0.046 0.033 0.049 0.057 0.149

Note. We predict the inflation consensus forecast error from consensus revision (recent news). Each column reports
the country pooled regression at horizon h = 0, ..., 6-10: the dependent variable is the inflation consensus forecast error
πc,t+hY − Ft

(
πc,t+hY

)
over horizon h and country c. The consensus revision is Ft

(
πc,t+hY

)
− Ft−4

(
πc,t+hY

)
. We

control for country fixed effects. The sample ranges from 1989 to 2022, Table 8 reports the countries available at each
maturity. Standard errors in parenthesis are Driscoll-Kraay. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10
percent levels.
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Table 11: Inflation forecast error on inflation forecast revision from inflation forecast revision
and lagged inflation forecast at the quarter horizon.

(1)

πt+4 − FSPF
t (πt,t+4)

FSPF
t (πt+4)− FSPF

t−1 (πt+3) 0.017
(0.407)

FSPF
t−1 (πt+3) -0.463***

(0.103)
α 1.304***

(0.322)

N 168
Adj. R2 0.111

Notes. We predict the inflation consensus forecast error from con-
sensus revision (recent news) and past inflation state. Column
(1) reports the regression for the US at horizon h = 4, where
h here denote quarters: the dependent variable is the CPI infla-
tion SPF forecast error πt+4 − FSPF

t (πt+4). The consensus re-
vision is FSPF

t (πt+4) − FSPF
t−1 (πt+3), while past inflation state is

FSPF
t−1 (πt+3). The sample ranges from 1981Q4 to 2023Q3, coverage

varies according to Tables 7. Standard errors in parenthesis. ∗∗∗, ∗∗,
and ∗ indicate significance at the 1, 5, and 10 percent levels.

Table 12: Correlation between CE ex-ante real yields and actual (FED or BoE) real yields.

United Kingdom

h = 2 h = 3 h = 4 h = 5 h = 6− 10

ρ NA .9183*** .9317*** .9365*** .9522***
N NA 48 51 51 51

United States

h = 2 h = 3 h = 4 h = 5 h = 6− 10

ρ .8723*** .9078*** .7080*** .9331*** .8899***
N 62 62 59 62 42

Note. For UK data, we use the “real spot rate” published by the Bank of
England, i.e., the rate for a “index-linked zero coupon bond” having “ its value
linked to movements in a suitable price index to prevent inflation eroding its pur-
chasing power” (see https://www.bankofengland.co.uk/statistics/yield-curves/

terminology-and-concepts). We use the series at daily frequency, from 1999M1 to
2024M6, and aggregate it at quarterly frequency taking the simple average in order
to make it comparable with the data we use in the rest of the analysis. To be con-
sistent with CE data, we take the average of the rates for the horizons 6- to 10-year
ahead. For US data, we use “TIPS yields” by the Federal Reserve Board following
the methodology of Gürkaynak et al. (2010) (see https://www.federalreserve.gov/

data/tips-yield-curve-and-inflation-compensation.htm). We used the series of
zero-coupon inflation protected treasuries. We use the series at daily frequency, from
1999M1 to 2024M7, and then aggregate it at quarterly frequency taking the simple
average in order to make it comparable with the data we use in the rest of the analysis.
To be consistent with CE data, we take the average of the rates for the horizons 6- to
10-year ahead. Sample sizes and correlation coefficients vary with the horizons. ∗∗∗,
∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels respectively.
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Table 13: Inflation forecast error predictability coefficients from Specifications (2), (6), and (8)
on horizon dummies and simulated coefficients

(1) (2) (3) (4) (5) (6)

δc,h δc,h θrc,h θrc,h θexc,h θexc,h

∆m
c,h 1.549*** 1.023*** 1.733***

(0.253) (0.226) (0.440)
α -0.532** -0.011 1.310** 1.393** 1.040 -0.254

(0.251) (0.222) (0.596) (0.526) (1.188) (1.099)

Horizon fixed effects ✓ ✓ ✓ ✓ ✓ ✓
N 79 79 73 73 55 55
R2 0.211 0.478 0.229 0.410 0.291 0.459

Notes. We study the relation between the actual and model-implied coefficients estimated for Specifications (2), (6), and
(8). Columns (1), (3), and (5) report the regression of country- and horizon-specific coefficients on horizon dummies,
while in Columns (2), (4), and (6) we control also for the model-implied coefficient, ∆m

c,h. ∆m
c,h = δmc,h in column (2),

∆m
c,h = θr,mc,h in column (4), and ∆m

c,h = θex,mc,h in column (6). Table 8 reports the countries available at each horizon

h = 1, . . . , 6-10. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels.

Table 14: Inflation forecast error predictability coefficients from Specification (3) on horizon
dummies and simulated coefficients

(1) (2) (3) (4)

δ1,c,h δ1,c,h δ2,c,h δ2,c,h

δmi,c,h 1.044*** 1.134***
(0.328) (0.190)

α 0.117 0.330 -1.280*** -0.528
(0.369) (0.354) (0.384) (0.341)

Horizon fixed effects ✓ ✓ ✓ ✓
N 79 79 79 79
R2 0.208 0.304 0.082 0.383

Notes. We study the relation between the actual and model-implied coefficients estimated
for Specification (3). Columns (1) and (3) report the regression of country- and horizon-
specific coefficients on horizon dummies, while in Columns (2) and (4) we control also for
the model-implied coefficient, δmi,c,h. δmi,c,h = δm1,c,h in column (2) and δmi,c,h = δm2,c,h in

column (4). Table 8 reports the countries available at each horizon h = 1, . . . , 6-10. ∗∗∗,
∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels.
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Table 15: Predicting the mnemonic inflation forecast error using mnemonic inflation forecasts

(1) (2) (3) (4) (5)

FEm
c,1 FEm

c,2 FEm
c,3 FEm

c,5 FEm
c,6−10

Fm
t (πc,t+hY) -0.410*** -0.823*** -0.965*** -1.237*** -1.184***

(0.082) (0.183) (0.165) (0.174) (0.059)

Country fixed effects ✓ ✓ ✓ ✓ ✓
N 420 462 416 462 331
Adj. R2 0.095 0.203 0.292 0.365 0.779

Note.We predict mnemonic inflation forecast error from the mnemonic inflation forecast. Each column reports
the country pooled regression at horizon h = 1, ..., 6-10: the dependent variable is the mnemonic inflation forecast
error πc,t+hY − Fm

t

(
πc,t+hY

)
over horizon h and country c. The consensus forecast for country c and horizon h

is Ft
(
πc,t+hY

)
. We control for country fixed effects. The sample ranges from 1989 to 2022, Table 8 reports the

countries available at each maturity. Standard errors in parenthesis are Driscoll-Kraay. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1, 5, and 10 percent levels. Sample varies with the horizons according to Table 8.

Table 16: Ex-post real returns on mnemonic average forecast for inflation over the period
t+ 1, t+ h

r̃
(1)
c,t,t+1 r̃

(2)
c,t,t+2 r̃

(3)
c,t,t+3 r̃

(5)
c,t,t+5 r̃

(6-10)
c,t,t+6-t+10

Fm
t (πc,t+1,h) -0.259 0.806* 1.015** 1.018** 0.988**

(0.289) (0.399) (0.407) (0.374) (0.341)

Country fixed effects ✓ ✓ ✓ ✓ ✓
N 390 458 409 456 119
Adj. R2 0.049 0.132 0.226 0.251 0.315

Notes. We study the association between ex-post real rates to maturity h and the mnemonic forecast for the average inflation
over h years. Each column reports the country pooled regression at horizon h = 1, ..., 6-10. The mnemonic forecast for the average
inflation over h years for country c, Ft

(
πc,t+1,h

)
, is computed as: 1

h

∑h
h′=1 Ft

(
πc,t+h′Y

)
. We control for country fixed effects.

The sample ranges from 1989 to 2022, Table 8 reports the countries available at each maturity. Standard errors in parenthesis are
Driscoll-Kraay. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels.
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A.4 Robustness: Annual Frequency

Table 18: Predicting the consensus forecast error using consensus inflation forecast - Annual
Frequency

(1) (2) (3) (4) (5)

FEc,1 FEc,2 FEc,3 FEc,5 FEc,6-10

Ft (πc,t+hY ) -0.271* -0.763** -0.937*** -1.549*** -1.211***
(0.151) (0.286) (0.275) (0.297) (0.123)

Country fixed effects ✓ ✓ ✓ ✓ ✓
N 420 462 416 462 331
Adj. R2 0.036 0.117 0.154 0.268 0.545

Note. We predict inflation consensus forecast error from the consensus inflation forecast. Each column reports
the country pooled regression at horizon h = 1, ..., 6-10: the dependent variable is the inflation consensus
forecast error πc,t+hY −Ft

(
πc,t+hY

)
over horizon h and country c. The consensus forecast for country c and

horizon h is Ft
(
πc,t+hY

)
. We control for country fixed effects. The sample ranges from 1989 to 2022, Table

8 reports the countries available at each maturity. Standard errors in parenthesis are Driscoll-Kraay. ∗∗∗, ∗∗,
and ∗ indicate significance at the 1, 5, and 10 percent levels. Sample varies with the horizons according to
Table 8.

Table 19: Forecast errors on inflation forecast revision and lagged inflation forecast - Annual
Frequency

(1) (2) (3) (4) (5) (6)

FEc,0 FEc,1 FEc,2 FEc,3 FEc,5 FEc,6-10

Ft(πc,t+hY )− Ft−4(πc,t+hY ) 0.324 0.481** -0.434 -0.635 -1.265*** -1.115***
(0.199) (0.232) (0.356) (0.378) (0.313) (0.137)

Ft−4(πc,t+hY ) -0.091 -0.426* -0.923** -1.051** -1.588*** -1.015***
(0.055) (0.235) (0.421) (0.405) (0.359) (0.120)

Country fixed effects ✓ ✓ ✓ ✓ ✓ ✓
N 406 405 445 400 437 314
Adj. R2 0.137 0.092 0.091 0.114 0.165 0.389
Note. We predict the inflation consensus forecast error from consensus revision (recent news) and past inflation state. Each
column reports the country pooled regression at horizon h = 0, ..., 6-10: the dependent variable is the inflation consensus
forecast error πc,t+hY − Ft

(
πc,t+hY

)
over horizon h and country c. The consensus revision is Ft

(
πc,t+hY

)
− Ft−4

(
πc,t+hY

)
,

while past inflation state is Ft−4

(
πc,t+hY

)
. We control for country fixed effects. The sample ranges from 1989 to 2022, Table

8 reports the countries available at each maturity. Standard errors in parenthesis are Driscoll-Kraay. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1, 5, and 10 percent levels.
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A.5 Robustness: Smoothing excess returns over three years and

controlling for interest rate forecasts
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Table 23: Predicting realized excess returns (smoothed over two years) using consensus inflation
forecasts, controlling for interest rate forecasts

(1) (2) (3) (4)

rx
(2)
c,t,t+1 rx

(3)
c,t,t+1 rx

(5)
c,t,t+1 rx

(6−10)
c,t,t+1

Ft (πc,t+1,h) 0.225*** 0.999*** 1.923*** 3.271***
(0.082) (0.229) (0.561) (1.166)

i
(1)
c,t 0.655*** 0.541 0.975 0.598

(0.163) (0.403) (0.692) (1.203)

i
(10)
c,t − i

(1)
c,t 0.856*** 0.849* 1.590** 2.266

(0.163) (0.468) (0.746) (1.440)

Ft(i
(10)
c,t+1) -0.436** -0.536 -0.132 0.163

(0.177) (0.427) (0.799) (1.330)

Country fixed effects ✓ ✓ ✓ ✓
N 845 789 651 466
Adj. R2 0.426 0.322 0.535 0.408

Note. We predict one-year holding period realized bond excess returns with maturity h from
consensus forecast of the average inflation over h years. Additionally, we control for the level
and slope of the yield curve and for nominal 10-year interest rate forecasts. We do not control
for short-term interest rate forecasts because of multicollinearity. Each column reports the
country pooled regression at horizon h = 2, 3, 5, 6-10: the dependent variable is the smoothed

one-year holding period excess returns over horizon h and country c, defined as rx
(h)
c,t,t+1 =

rx
(h)
c,t,t+1 + rx

(h)
c,t+1,t+2

2
. The raw one-year holding period excess returns rx

(h)
c,t,t+1 is defined as

i
(h)
c,t +(h− 1)

(
i
(h)
c,t − i

(h−1)
c,t+1

)
− i

(1)
c,t . The level and slope for country c and maturity h are defined

respectively as i
(1)
c,t and i

(10)
c,t − i

(1)
c,t . The nominal 10-year interest rate forecast is Ft(i

(10)
c,t+1). We

control for country fixed effects. The sample ranges from 1989Q4 to 2020Q4, Table 8 reports
the countries available at each maturity. Standard errors in parenthesis are Driscoll-Kraay. ∗∗∗,
∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels.
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A.6 Robustness: Stambaugh bias

We address the potential (Stambaugh (1999)) bias when predicting returns with persistent fac-

tors. In our analysis, this concern applies to the role of inflation expectations in Tables (4) and

(5). Boudoukh et al. (2022) show that such bias becomes more severe at longer horizons, which

is relevant for our analysis of maturity increasing overreaction, and develop a bias correction

formula. We assess whether our predictability results are robust to such correction.

To see the idea, consider the univariate predictive regression of the 1-period ahead excess

bond return onto a regressor Xt, namely:

rxt,t+1 = α + βXt + ut+1. (24)

Stambaugh (1999) showed that with a persistent predictor

Xt+1 = ω + ρXt + vt+1, (25)

the OLS estimate βOLS exhibits a small–sample distortion, because the innovation vt may be

contemporaneously correlated with the return error ut. Stambaugh (1999) further shows that,

to a first order approximation in 1/T :

E[β̂OLS] = β − 1

T
(1 + ρ)

σuv

σ2
v

, (26)

where T is the sample length and σuv is the covariance between the error terms. Boudoukh

et al. (2022) show that that in the case of multi-horizon predictions, for overlapping returns

(and hence relevant to our long horizon regressions), the OLS estimate is biased as:

E[β̂OLS] = β − 1

T
K

σuv

σ2
v

, (27)

where

K = h
(
1 + ρ

)
+ 2ρ

1− ρh

1− ρ
. (28)

We adapt this correction for our univariate tests, and also use the multivariate correction

in Boudoukh et al. (2022) for the specification where we also control for time varying return

proxies. In general, we assume that predictors Xt = (X1t, . . . , Xkt)
⊤ follow AR(1) processes

with possibly correlated innovations vt ∼ (0,Σvv). The vector of OLS slope coefficients then
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satisfies:

E[β̂OLS] = β − 1

T
ΣuvΣ

−1
vv K, (29)

with K = diag(K1, . . . , Kk) and Kj defined as

Kj = h
(
1 + ρj

)
+ 2ρj

1− ρh
j

1− ρj
. (30)

Hence, our bias-adjusted estimator is

β̂BIR = β̂OLS +
1

T
Σ̂uv Σ̂

−1
vv K̂,

which removes the leading 1/T bias simultaneously for all (correlated) regressors. We apply

this method to the specifications in Tables (4) and (5). Given our panel structure, we run the

predictive regressions by country and analyze the median coefficients, comparing the medians

with and without adjustment.

Results for Table 4 are reported in Figure 7; results for Table 5 are reported in Figure 8.

The reported coefficients are the median predictability coefficient for inflation expectations in

the univariate and multivariate specifications, respectively.

Figure 7: Median country-level predictability coefficients from Table 4 - OLS vs bias-adjusted
OLS.

Panel A: Columns (1)-(5)’s coefficients. Panel B: Columns (6)-(10)’s coefficients.

Note. Both panels plot the median return predictability coefficients θrc,h from the CE dataset at quarterly frequency

(y-axis) across horizons (x-axis) estimated using country-specific regressions. Panel A of this figure refers to Table
4’s Columns (1)-(5); Panel B of this figure refers to Columns (6)-(10) of the same Table. The y-axis measures
the magnitude of the estimated coefficients of Ft

(
πc,t+1,h

)
using OLS (OLS, blue points) and bias-adjusted OLS

(ADJ OLS, red points), while the x-axis identifies the horizons h = 1, 2, 3, 5, 6-10 for which estimates were computed.
For each horizon, the sample varies according to Table 8.

As evident from the two figures, our finding of maturity-increasing predictability is robust

to the Boudoukh et al. (2022) adjustment. The OLS and the bias-adjusted coefficients are
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Figure 8: Median country-level predictability coefficients from Table 5 - OLS vs bias-adjusted
OLS.

Panel A: Columns (1)-(4)’s coefficients. Panel B: Columns (5)-(8)’s coefficients.

Note. Both panels plot the median return predictability coefficients θexc,h from the CE dataset at quarterly frequency

(y-axis) across horizons (x-axis) estimated using country-specific regressions. Panel A of this figure refers to Table 5’s
Columns (1)-(4); Panel B of this figure refers to Columns (5)-(8) of the same Table. The y-axis measures the magnitude
of the estimated coefficients of Ft

(
πc,t+1,h

)
using OLS (OLS, blue points( and bias-adjusted OLS (ADJ OLS, red

points), while the x-axis identifies the horizons h = 2, 3, 5, 6-10 for which estimates were computed. For each horizon,
the sample varies according to Table 8.

generally also close to each other, suggesting that the bias is small. In the figures the median

country may differ across OLS and adjusted estimates, but the results are robust if we keep the

country fixed (either by fixing the OLS median or the adjusted median).
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A.7 Robustness: Including all countries and UK

Table 24: Inflation forecast errors on current inflation forecasts and past realized inflation. Full
cumulative, including UK

Panel A

(1) (2) (3) (4) (5) (6)

FEc,0 FEc,1 FEc,2 FEc,3 FEc,5 FEc,6-10

Ft (πc,t+hY) 0.039 -0.406** -0.984*** -1.201*** -1.671*** -1.146***
(0.054) (0.155) (0.286) (0.279) (0.277) (0.110)

Country fixed effects ✓ ✓ ✓ ✓ ✓ ✓
N 1366 1366 1361 1285 1131 745
Adj. R2 0.018 0.066 0.160 0.187 0.249 0.483

Panel B

(1) (2) (3) (4) (5) (6)

FEc,0 FEc,1 FEc,2 FEc,3 FEc,5 FEc,6-10

πc,t -0.065 -0.265* -0.298** -0.340** -0.638*** -0.428***
(0.043) (0.130) (0.141) (0.125) (0.193) (0.069)

Country fixed effects ✓ ✓ ✓ ✓ ✓ ✓
N 554 554 534 515 477 376
Adj. R2 0.002 0.057 0.065 0.086 0.232 0.348

Note. We predict inflation consensus forecast error from two proxies for the current inflation state. Each column reports
the country pooled regression at horizon h = 0, ..., 6-10: the dependent variable is the inflation consensus forecast error
πc,t+hY − Ft

(
πc,t+hY

)
over horizon h and country c. The two proxies for the current inflation state are: (i) the consensus

forecast for country c and horizon h Ft
(
πc,t+hY

)
(Panel A), and (ii) the average realized inflation of country c over the past

two years, πc,t = (πc,(t−1)Y + πc,(t−2)Y )/2 (Panel B). We control for country fixed effects. The sample ranges from 1989Q4
to 2022Q1. For every horizon, we include all of the countries listed in Table 8, as well as United Kingdom. Standard errors
in parenthesis are Driscoll-Kraay. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels.
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Table 25: Inflation forecast error predictability from inflation forecast revision and lagged
inflation forecast. Full cumulative, including UK

(1) (2) (3) (4) (5) (6)

FEc,0 FEc,1 FEc,2 FEc,3 FEc,5 FEc,6-10

Ft(πc,t+hY)− Ft−4(πc,t+hY) 0.193 0.299 -0.840* -1.235*** -1.299*** -1.155***
(0.122) (0.317) (0.425) (0.438) (0.272) (0.125)

Ft−4(πc,t+hY) -0.108*** -0.612** -1.181*** -1.427*** -1.805*** -0.952***
(0.040) (0.246) (0.393) (0.408) (0.392) (0.131)

Country fixed effects ✓ ✓ ✓ ✓ ✓ ✓
N 1290 1286 1282 1205 1042 701
Adj. R2 0.108 0.108 0.141 0.163 0.185 0.339

Note. We predict the inflation consensus forecast error from consensus revision (recent news) and past inflation state. Each column
reports the country pooled regression at horizon h = 0, ..., 6-10: the dependent variable is the inflation consensus forecast error
πc,t+hY −Ft

(
πc,t+hY

)
over horizon h and country c. The consensus revision is Ft

(
πc,t+hY

)
−Ft−4

(
πc,t+hY

)
, while past inflation

state is Ft−4

(
πc,t+hY

)
. We control for country fixed effects. The sample ranges from 1989Q4 to 2022Q1. For every horizon, we

include all of the countries listed in Table 8, as well as United Kingdom. Standard errors in parenthesis are Driscoll-Kraay. ∗∗∗,
∗∗, and ∗ indicate significance at the 1, 5, and 10 percent levels.
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Table 26: Nominal yields on current average forecast for average inflation over the period
t+ 1, t+ h and forecast of nominal yields for t+ 1. Full cumulative, including UK

Panel A

(1) (2) (3) (4) (5)

i
(1)
c,t i

(2)
c,t i

(3)
c,t i

(5)
c,t i

(6-10)
c,t

Ft (πc,t+1,h) 1.074*** 2.109*** 2.318*** 2.637*** 2.512***
(0.161) (0.295) (0.268) (0.284) (0.518)

Country fixed effects ✓ ✓ ✓ ✓ ✓
N 1146 1326 1180 1347 652
Adj. R2 0.357 0.488 0.526 0.519 0.291

Panel B

(6) (7) (8) (9) (10)

i
(1)
c,t i

(2)
c,t i

(3)
c,t i

(5)
c,t i

(6-10)
c,t

Ft (πc,t+1,h) 0.049* 0.058* 0.234*** 0.338*** 0.134
(0.026) (0.031) (0.071) (0.094) (0.104)

Ft(i
(k)
c,t+1) 0.986*** 1.028*** 0.949*** 1.017*** 0.953***

(0.017) (0.015) (0.021) (0.034) (0.031)

Country fixed effects ✓ ✓ ✓ ✓ ✓
N 1146 1309 1161 1175 646
Adj. R2 0.957 0.973 0.939 0.963 0.947

Note. We study the association between nominal yields to maturity h and the consensus forecast for the
average inflation over h years (Panel A). Additionally, we control for the consensus forecast of interest rates
(Panel B). Each column reports the country pooled regression at horizon h = 1, ..., 6-10. The dependent
variable is the nominal yield to maturity h. The consensus forecast for the average inflation over h years for
country c, Ft

(
πc,t+1,h

)
, is computed as: 1

h

∑h
h′=1 Ft

(
πc,t+h′Y

)
. To roughly match short and long maturities,

Panel B controls for the expected 3 months rate for h = 1, 2, 3, Columns (1)-(3), and for the expected 10
year rate for h = 5, 6-10, Columns (4) and (5). We control for country fixed effects. The sample ranges from
1989Q4 to 2022Q1. For every horizon, we include all of the countries listed in Table 8, as well as United
Kingdom. Standard errors in parenthesis are Driscoll-Kraay. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5,
and 10 percent levels.
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B Formal Analysis and Simulations

B.1 Derivation of Economic Implications

We are interested in how the ex-ante loan value, L(h∗), and ex-post loan value, L̂(h∗), respond

to changes in expected inflation πe
j through changes in the ex-ante real rate and predictable

forecast errors. Formally, L(h∗) is defined as

L(h∗) :=
h∗∑
h=1

h∏
s=1

P (h∗)pes
1 + rs(πe)

, (31)

while the definition of L̂(h∗) is given by equation (11).

Note that L̂(h∗) is affected by both changes in the ex-ante real rate and by the predictable

forecast errors, whereas L(h∗) responds only to variations in the ex-ante real rate. In addition,

since we focus on an approximation around the point where πs = πe
s, the impact of a change in

πe
s on L(h∗) is a special case of its effect on L̂(h∗). Therefore, in the derivations that follow, we

focus on L̂(h∗).

Formally, if we let Q(h∗) := L̂(h∗)/P (h∗), then

∂L̂(h∗)

∂πe
j

= P (h∗)∂Q
(h∗)

∂πe
j

or, using the definition of Q(h∗),

1

L̂(h∗)
· ∂L̂

(h∗)

∂πe
j

=
1

Q(h∗)
· ∂Q

(h∗)

∂πe
j

.

Note that the left-hand side captures the semi-elasticity of L̂(h∗) to a change in expectations:

∂ log L̂(h∗)/∂πe
j .

More specifically, we will consider a parallel change of inflation expectations at all horizons,

that is we assume πe
s = π̃e

s + πe and compute the derivative with respect to πe. We have

1

Q(h∗)
· ∂Q

(h∗)

∂πe
=

1

Q(h∗)
· ∂

∂πe

h∗∑
h=1

h∏
s=1

1

(1 + rs)(1 + πs − πe
s)

=− 1

Q(h∗)

[
1

(1 + r1)(1 + π1 − πe
1)

(
1

1 + r1
· ∂r1
∂πe

+
1

1 + π1 − πe
1

· ∂(π1 − πe
1)

∂πe

)
+ ....

+
h∗∏
s=1

1

(1 + rs)(1 + πs − πe
s)

h∗∑
j=1

1

1 + rj
· ∂rj
∂πe

+
1

1 + πj − πe
j

·
∂(πj − πe

j )

∂πe

]
.
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We can further simplify the expression by approximating one-period inflation with average

inflation over the loan duration. Similarly, the real rate at time s can be approximated with

the average real rate over the loan duration:

rs ≈ r(h) :=
1

h

h∑
j=1

rs, ∀s.

Finally, we consider a change in expectations around the point where inflation and inflation

expectations are both equal to zero: πs − πe
s ≈ 0, ∀s. As a result,

1

Q(h∗)
· ∂Q

(h∗)

∂πe
= − 1

Q(h∗)

h∗∑
h=1

1

(1 + r(h))h

(
h

1 + r(h)
· ∂r

(h)

∂πe
+

h∑
j=1

∂(πj − πe
j )

∂πe

)
.

Therefore,

∂ log L̂(h∗)

∂πe
= − 1

Q(h∗)

h∗∑
h=1

h

(1 + r(h))h+1
· ∂r

(h)

∂πe︸ ︷︷ ︸
∂ logL(h∗)

πe

− 1

Q(h∗)

h∗∑
h=1

1

(1 + r(h))h

h∑
j=1

∂(πj − πe
j )

∂πe︸ ︷︷ ︸
∂ log L̂(h∗)

πe − ∂ logL(h∗)
πe

.

The first term in the round bracket is the change in ex-ante real rate over horizon h. Equation

(9) estimates the sensitivity of the h-period nominal rate to a change in the average inflation

expectation. Using the notation of this section, we can rewrite equation (9) as

i(h) = αh + λh

(
1

h

h∑
j=1

πe
j

)
+ ε(h).

Then, using our assumption that πe
j = π̃e

j +πe for all j = 1, ..., h, it follows that ∂
∂πe

∑h
j=1(ij−1−

πe
j ) = λh − 1 and, as a result,

∂ logL(h∗)

πe
= − 1

Q(h∗)

h∗∑
h=1

h(λh − 1)

(1 + r(h))h+1
.

Finally, the sum
∑h

j=1(πj − πe
j ) is the cumulative forecast error over horizon h, thus,

∂
∂πe

∑h
j=1(πj − πe

j ) captures the change in the cumulative forecast error following from a par-

allel change in expectations over the loan duration. Equation (2) estimates the sensitivity of

the h-period-ahead forecast error to a change in the average inflation expectation. Using the

notation of this section, we can rewrite equation (2) as

πh − πe
h = αh + δhπ

e
h + ε(h).
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Then, using our assumption that πe
j = π̃e

j + πe for all h, it follows that

∂ log L̂(h∗)

πe
− ∂ logL(h∗)

πe
= − 1

Q(h∗)

h∗∑
h=1

∑h
j=1 δj

(1 + r(h))h
.

B.2 Proofs

Proof of Proposition 1 We apply the same line of reasoning used in Bonaglia and Gennaioli

(2025) to prove more general convergence results. First we state some preliminary notation.

We consider a generic horizon h. Under the assumptions of stationary, gaussian and zero mean

DGP and with similarity specification described in (14), we sum up the model in three essential

ingredients:

• A probability space (R∞,B(R∞),P) where P is the Kolmogorov extension law induced

by the ergodic, stationary, gaussian, zero-mean, stochastic process (Xt)t whose time t

realization is denoted by πt ∈ R and B(R∞) is the cylinder sigma algebra. We indicate

by ω := (π1, π2, ...) ∈ R∞ any sequence of real numbers.

• A sequence of (random) mnemnonic expectations over the horizon h, (Em
t )t∈N, such that

Em
t : ω 7→

∑t−1
k=h πke

−α(πt−πk−h)
2−β(πt−πk)

2∑t−1
k=h e

−α(πt−πk−h)2−β(πt−πk)2

which is Borel measurable by standard arguments.

Proof. Fix x ∈ R. For all t ∈ N, consider the x-parameterized (random) mnemnonic expecta-

tion

Em,x
t : ω 7→

∑t−1
k=h πke

−α(x−πk−h)
2−β(x−πk)

2∑t−1
k=h e

−α(x−πk−h)2−β(x−πk)2

We first show that for each Em,x
t converges almost surely to some Λ(x) and we algebraically

characterize the limit Λ(x). Then we we will prove that Λ(Xt) is the p-lim of (Em
t )t∈N, namely

lim
t→∞
P({|Em

t − Λ(Xt)| < ϵ}) = 1

for all ϵ > 0.

P-lim characterization: Consider the numerator of Em,x
t (ω). We know that the map

Sx ◦ T ◦ ... ◦ T : ω 7→ πte
−α(x−πt−h)

2−β(x−πt)2

when the shift operator T is applied t times is bounded and R2-Borel measurable for each

t (hence integrable with respect to any probability measure). Hence the Pointwise Bierkoff
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Ergodic Theorem applies with respect to the shift operator which a well-known measure pre-

serving and ergodic transformation of the probability measure P ∈ ∆(R∞) whose marginals for

all t ∈ N coincides with the stationary distribution of (Xt)t. We conclude that,

lim
t→∞

∑t−1
k=h πke

−α(x−πk−h)
2−β(x−πk)

2

t
=

∫
π̃e−α(x−π̃−h)

2−β(x−π̃)2dτ(π̃, π̃−h) (32)

P-almost surely, where τ is the unique stationary probability measure for the process (Xt−h, Xt)

with realizations (πt−h, πt). An analogous reasoning applies to the denominator. Hence we

conclude that

lim
t→∞

∑t−1
k=h e

−α(x−πk−h)
2−β(x−πk)

2

t
=

∫
e−α(x−π̃−h)

2−β(x−π̃)2dτ(π̃, π̃−h) (33)

almost surely. By properties of the exponential function, we know that the denominator is

strictly positive almost surely. Consequently we infer that

lim
t→∞

Em,x
t = Λ(x) :=

∫
π̃e−α(x−π̃−h)

2−β(x−π̃)2dτ(π̃, π̃−h)∫
e−α(x−π̃−h)2−β(x−π̃)2dτ(π̃, π̃−h)

= ϕ(α, β, h)x P − a.e (34)

where ϕ(α, β, h) is the functional representation obtained by performing the algebra inside the

integrals.26 We said that τ is the stationary probability measure for the stochastic process

(Xt−h, Xt). Denote by Y the bivariate normal having marginals X−h, X distributed identically

to the limit distribution of the one dimensional original stochastic process. Next, we prove that

Λ(Xt) = E∞
t (πt+h), i.e that it characterizes the mnemonic long-run approximation of Em

t (πt+h)

of (12).

Convergence in Probability: We want to show that

lim
t→∞
P({ |Em

t − Λ(Xt)| ≥ ϵ}) = 0

for all ϵ > 0. Note that, for all t ∈ N and for all B > 0,

P({ |Em
t − Λ(Xt)| ≥ ϵ}) ≤ P

(
{Xt ∈ [−B,B]c}) + P({ |Em

t − Λ(Xt)| · 1[Xt∈[−B,B]] ≥ ϵ}
)
. (35)

Fix δ > 0 and pick B > 0 large enough so that, ifX is distributed according to the stationary

distribution, P ({X ∈ [−B,B]c}) < δ. Let us now focus on P({ |Em
t −Λ(Xt)| ·1[Xt∈[−B,B]] ≥ ϵ});

26See the proof of Proposition 2 for an explicit characterization.
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in particular, let us prove that

lim
t→∞
|Em

t − Λ(Xt)| · 1[Xt∈[−B,B]] = 0 P − a.s.

Clearly, for all ω ∈ {Xt ∈ [−B,B]c, ultimately}, the convergence holds. Hence let us focus on

the event {Xt ∈ [−B,B], infinitely often}. Pick ω ∈ {Xt ∈ [−B,B], infinitely often}. Clearly,

lim sup
t→∞

|Em
t (ω)− Λ(Xt(ω))| · 1[Xt∈[−B,B]] ≥ lim

t→∞
|Em

t (ω)− Λ(Xt(ω))| · 1[Xt∈[−B,B]],

hence let us prove that the LHS converges to zero. Let (tk)k the subsequence where the lim-

sup value is attained in the limit. Now, being [−B,B] compact, (Xtk(ω)) has a convergent

subsequence, say convergent to some x ∈ [−B,B]. Now, we claim that Stk : (y1, y2) 7→
exp[−α(Xtk(ω) − y1)

2 − β(Xtk(ω) − y1)
2] converges uniformly to Sx : (y1, y2) 7→ exp[−α(x −

y1)
2 − β(x− y1)

2]. This follows from the fact that the derivative of the negative exponential is

always bounded by some arbitrarily large K, hence

|| exp[−α(Xtk(ω)− y1)
2]− exp[−α(x− y1)

2]||∞ ≤ K|Xtk(ω)− x| → 0,

|| exp[−β(Xtk(ω)− y2)
2]− exp[−β(x− y2)

2]||∞ ≤ K|Xtk(ω)− x| → 0,

whence

|| exp[−α(Xtk(ω)− y1)
2 − β(Xtk(ω)− y2)

2]− exp[−α(x− y1)
2 − β(x− y2)

2]||∞ → 0,

as claimed. Now, by construction,

Em
t (ω) =

∫
y2Stk((y1, y2)) dme(y1, y2|ω)∫
Stk((y1, y2)) dme(y1, y2|ω)

,

where me(·|ω) ∈ ∆(R2) is the empirical measure generated by ω at time tk. Since the process

is ergodic and stationary, a standard implication of Bierkoff-Ergodic theorem in polish spaces

(over which we are operating) is that me weakly converges to τ , P-ae. WLOG we can assume

that ω ∈ {me → τ}, being {me → τ} a full measure event. By combining the facts that

||Stk(·)− Sx(·)||∞ → 0 and me(·|ω)→ τ weakly, we infer that

lim
k→∞

Em
tk
(ω) = lim

k→∞

∫
y2Stk((y1, y2)) dme(·|ω)∫
Stk((y1, y2)) dme(·|ω)

=

∫
y2Sx((y1, y2))dτ∫
Sx((y1, y2))dτ

= lim
k→∞

Λ(Xtk(ω)). (36)
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Because of (36) and (34), and by the definition of tk, we deduce that

lim sup
t→∞

|Em
t (ω)− Λ(Xt(ω)| · 1[Xt(ω)∈[−B,B]] = 0,

but since ω is a generic element belonging to of a full measure event, our almost sure convergence

claim holds. Plugging this result in (35) and recalling that almost sure convergence implies

convergence in probability, we deduce also that

lim
t→∞
P({ |Em

t − Λ(Xt)| ≥ ϵ}) ≤ lim
t→∞
P ({Xt ∈ [−B,B]c}) + 0. (37)

Being (Xt)t stationary, the distribution of Xt weakly converges to the distribution of X. Since

the boundary set of [−B,B] has zero measure, Portmanteau Theorem yields that

lim
t→∞
P({ |Em

t − Λ(Xt)| ≥ ϵ}) ≤ lim
t→∞
P ({Xt ∈ [−B,B]c}) = P ({X ∈ [−B,B]c}) < δ.

Since δ > 0 is arbitrary, the claim follows.

Proof of proposition 2 Proof. Reasoning as in the first step of proposition 1, we infer that

E∞
t (πt+h) =

∫
π̃e−α(πt−π̃−h)

2−β(πt−π̃)2dτ(π̃, π̃−h)∫
e−α(πt−π̃−h)2−β(πt−π̃)2dτ(π̃, π̃−h)

, By applying the Radon-Nikodym Theorem and

reformulating the RHS of (32) using quadratic forms we get

E∞
t (πt+h) =

∫
R2 π exp

(
−0.5(π−h, π)

⊤Σ−1
1 (π−h, π)− 0.5(π−h − x, π − πt)

⊤Σ−1
2 (π−h − πt, π − πt)

)
d(π−h, π)∫

R2 exp
(
−0.5(π−h, π)⊤Σ

−1
1 (π−h, π)− 0.5(π−h − πt, π − πt)⊤Σ

−1
2 (π−h − πt, π − πt)

)
d(π−h, π)

Where one can note that the denominator is just the normalizing constant. By the characteri-

zation of the product of two bivariate Gaussian densities, we know it is normal N ∗(m,Σ3) such

that:

Σ3 =

[ Var(Xt) Cov(Xt+h, Xt)

Cov(Xt+h, Xt) Var(Xt)

]−1

+

[
2α 0

0 2β

]−1

m = Σ3

[
2α 0

0 2β

](
πt

πt

)
.

Now, since the second component of m coincides with the definition of E∞
t (πt+h), by performing

the algebra,
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E∞
t (πt+h) =

2πt Cov(Xt, Xt+h)α
(
Var(Xt)2 − Cov(Xt, Xt+h)

2
)

(Var(Xt) + 2α (Var(Xt)2 − Cov(Xt, Xt+h)2)) (Var(Xt) + 2β (Var(Xt)2 − Cov(Xt, Xt+h)2))− Cov(Xt, Xt+h)2

+
2πt β

(
Var(Xt)2 − Cov(Xt, Xt+h)

2
) (

Var(Xt) + 2α
(
Var(Xt)2 − Cov(Xt, Xt+h)

2
))

(Var(Xt) + 2α (Var(Xt)2 − Cov(Xt, Xt+h)2)) (Var(Xt) + 2β (Var(Xt)2 − Cov(Xt, Xt+h)2))− Cov(Xt, Xt+h)2

Not, given this expression, standard algebraic manipulations yield that

lim
α→∞, β→0

E∞
t (πt+h) =

cov(Xt+h, Xt)

var(Xt)
πt, (Least Square)

lim
α→0, β→∞

E∞
t (πt+h) = πt, (Adaptive)

lim
α→0, β→0

E∞
t (πt+h) = 0. (Frequentist).

Finally, In order to deduce overreaction for long enough horizons, let us focus on the coefficient

that multiplies Xt. Letting h → ∞, by relying on the vanishing auto-covariance hypothesis,

we get that the first addendum divided by πt goes to zero, while coefficient of the second one

divided by πt converges to

2β[Var(Xt)]
2 [2α[Var(Xt)]

2 +Var(Xt)]

[Var(Xt) + 2αVar(Xt)2][Var(Xt) + 2βVar(Xt)2]
=

2βVar(Xt)
2

Var(Xt) + 2βVar(Xt)2
> 0 = lim

h→∞

Cov(Xt+h, Xt)

Var(Xt)
,

proving the desired claim.

Proof of Proposition 3 By relying on the general characterization for gaussian, ergodic,

stationary processes, we use the stationary distribution of AR(1) to explicitly write the sta-

tionary distribution as a function of the parameter ρ, σ ∈ R.
Proof. The claim follows by simple and immediate algebraic manipulations. Indeed by taking

the general expression

E∞
t (πt+h) =

2πt Cov(Xt, Xt+h)α
(
Var(Xt)2 − Cov(Xt, Xt+h)

2
)

(Var(Xt) + 2α (Var(Xt)2 − Cov(Xt, Xt+h)2)) (Var(Xt) + 2β (Var(Xt)2 − Cov(Xt, Xt+h)2))− Cov(Xt, Xt+h)2

+
2πt β

(
Var(Xt)2 − Cov(Xt, Xt+h)

2
) (

Var(Xt) + 2α
(
Var(Xt)2 − Cov(Xt, Xt+h)

2
))

(Var(Xt) + 2α (Var(Xt)2 − Cov(Xt, Xt+h)2)) (Var(Xt) + 2β (Var(Xt)2 − Cov(Xt, Xt+h)2))− Cov(Xt, Xt+h)2

and by plugging in the variance and covariance under the stationary distribution of the AR(1)

process, we obtain that

E∞
t (πt+h) =

αρh + β + 2αβσ2
π(1− ρ2h)

α + β + 2αβσ2
π(1− ρ2h) + 1

2σ2
π

πt.
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Proof of Proposition 4. We first derive the expressions for the coefficients in the theoretical

counterpart of the OLS regression (3), i.e.,

πt+h − Em
t (πt+h) = αh + δ1,h

(
Em

t (πt+h)− Em
t−1(πt+h)

)
+ δ2,hEm

t−1(πt+h) + εt+h. (38)

From (16), eh ≡ Em
t (πt+h)/πt is independent of πt. We can then define the forecast error

FEt,t+h ≡ πt+h − Em
t (πt+h) = πt+h − ehπt and the forecast revision FRt,t+h ≡ Em

t (πt+h) −
Em

t−1(πt+h) = ehπt − eh+1πt−1. To obtain the OLS coefficients, we use (38) and the assumption

of orthogonality of εt+h, to obtain

Cov(FEt,t+h, FRt,t+h) = δ1,hV ar(FRt,t+h) + δ2,hCov(FRt,t+h,Em
t−1(πt+h)),

Cov(FEt,t+h,Em
t−1(πt+h)) = δ1,hCov(FRt,t+h,Em

t−1(πt+h)) + δ2,hV ar(Em
t−1(πt+h)).

Solving for δ1,h and δ2,h yields

δ1,h =
Cov(FEt,t+h, FRt,t+h)V ar(Em

t−1(πt+h))− Cov(FEt,t+h,Em
t−1(πt+h))Cov(Em

t−1(πt+h), FRt,t+h)

V ar(FRt,t+h)V ar(Em
t−1(πt+h))− Cov(FRt,t+h,Em

t−1(πt+h))2
,

δ2,h =
Cov(FEt,t+h,Em

t−1(πt+h))V ar(FRt,t+h)− Cov(FEt,t+h, FRt,t+h)Cov(FRt,t+h,Em
t−1(πt+h))

V ar(FRt,t+h)V ar(Em
t−1(πt+h))− Cov(FRt,t+h,Em

t−1(πt+h))2
.

We compute each of the theoretical moments of interests:

V ar(FRt,t+h) = (e2h + e2h+1 − 2ρeheh+1)V ar(πt),

V ar(Em
t−1(πt+h)) = e2h+1V ar(πt−1),

Cov(FRt,t+h,Em
t−1(πt+h)) = (ρeheh+1 − e2h+1)V ar(πt−1),

Cov(FEt,t+h,Em
t−1(πt+h)) = (ρh+1eh+1 − ρeheh+1)V ar(πt−1),

Cov(FEt,t+h, FRt,t+h) = (ρheh − ρh+1eh+1 − e2h + ρeheh+1)V ar(πt).

Substituting the above moments into the expression for δ1,h yields

δ1,h =
(ρheh − ρh+1eh+1 − e2h + ρeheh+1)e

2
h+1 − (ρh+1eh+1 − ρeheh+1)(ρeheh+1 − e2h+1)

(e2h + e2h+1 − 2ρeheh+1)e2h+1 − (ρeheh+1 − e2h+1)
2

=
ρh(1− ρ2)ehe

2
h+1 − (1− ρ2)e2he

2
h+1

(1− ρ2)e2he
2
h+1

=
ρh

eh
− 1.

Using the definition of eh, together with (16), gives δ1,h = δh, where δh is given by (18).
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Analogous steps prove that δ2,h = δh.

Part (i). Differentiating (18) with repsect to h,

∂δh
∂h

=
ρh log ρ

2σ2
π[αρ

h + β + 2αβσ2
π(1− ρ2h)]2

×(
[2σ2

π(α + β) + 4αβ(σ2
π)

2(1− 3ρ2h) + 1][αρh + β + 2αβσ2
π(1− ρ2h)]

−[2σ2
π(α + β) + 4αβ(σ2

π)
2(1− ρ2h) + 1][αρh − 4αβσ2

πρ
2h]
)
,

which is negative if and only if(
[2σ2

π(α + β) + 4αβ(σ2
π)

2(1− 3ρ2h) + 1][αρh + β + 2αβσ2
π(1− ρ2h)]

−[2σ2
π(α + β) + 4αβ(σ2

π)
2(1− ρ2h) + 1][αρh − 4αβσ2

πρ
2h]
)
> 0

or, after straightforward algebra,

β + 2β2σ2
π + 2αβσ2

π[2 + 4βσ2
π(1− ρ2h) + ρ2h] + 4α2β(σ2

π)
2[2βσ2

π(1− ρ4h)2 + 1+ ρ2h − 2ρ3h] > 0.

The first square bracket is clearly positive. The second square bracket is also positive since

ρ2h > ρ3h for 0 < ρ < 1 and h ≥ 1. As a result, δh is decreasing in h. Finally, from equation

(18), it is immediate to verify that δh → −1.

Part (ii). From (18) with h = 1,

δ1 =
αρ+ βρ+ 2αβρσ2

π(1− ρ2) + ρ/2σ2
π

αρ+ β + 2αβσ2
π(1− ρ2)

− 1

=
−2β(1− ρ)− 4αβ(1− ρ)σ2 + (1− ρ2)ρ/σ2

2αρ+ 2β + 4αβσ2

= (1− ρ)
ρ/σ2 + ρ2/σ2 − 2β − 4αβσ2

2αρ+ 2β + 4αβσ2
.

The latter is negative if and only if

ρ+ ρ2 − 2βσ2(1 + 2ασ2) < 0,

which is condition (17).

Proof of Proposition 5. We derive an expression for the coefficient θrh of the OLS regression
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(6). From the definition of real rate (5), we have

r̃
(h)
t = r(h) − 1

h

h∑
j=1

πt+j +
1

h

h∑
j=1

Em
t (πt+j)

or, using the process for inflation (15),

r̃
(h)
t = r(h) − 1

h

h∑
j=1

(ρjπt − Em
t (πt+j)) + σ

1

h

h∑
j=1

ϵt+j.

From (16), we let eh ≡ Em
t (πt+h)/πt, which is independent of πt. As a result,

r̃
(h)
t = r(h) − πt

1

h

h∑
j=1

(ρj − ej) + σ
1

h

h∑
j=1

ϵt+j.

Similarly,

Em
t (πt+1,h) =

1

h

h∑
j=1

Em
t πt+j = πt

1

h

h∑
j=1

ej.

The OLS coefficient θrh satisfies

θrh =
Cov

(
r̃
(h)
t ,Em

t (πt+1,h)
)

V ar (Em
t (πt+1,h))

= −

(
1
h

∑h
j=1(ρ

j − ej)
)(

1
h

∑h
j=1 ej

)
(

1
h

∑h
j=1 ej

)2
= −

∑h
j=1 ejδj∑h
j=1 ej

,

where the last line uses the fact that δh = ρj/ej − 1 from Proposition 4. Equation (19) follows

from letting

wj ≡
ej∑h
j=1 ej

. (39)

Next, we derive an expression for the coefficient θrxh of the OLS regression (8). Above we

showed that Em
t (πt+1,h) =

(
πt

∑h
j=1 ej

)
/h. By the same logic,

Em
t+1 (πt+2,h) = πt+1

1

h− 1

h−1∑
j=1

ej
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and

Em
t (πt+2,h) = πt

1

h− 1

h∑
j=2

ej.

Substituting the latter into (7) gives

rx
(h)
t,t+1 = −(h− 1)r(h−1) + hr(h) − r(1) − πt+1

h−1∑
j=1

ej + πt

h∑
j=2

ej

= −(h− 1)r(h−1) + hr(h) − r(1) − πt

h−1∑
j=1

ρej + πt

h∑
j=2

ej − σϵt+1

h−1∑
j=1

ej.

Therefore,

θrxh =
Cov

(
rx

(h)
t,t+1,Em

t (πt+1,h)
)

V ar (Em
t (πt+1,h))

= −

(∑h−1
j=1 ρej −

∑h
j=2 ej

)(
1
h

∑h
j=1 ej

)
(

1
h

∑h
j=1 ej

)2
= −

∑h−1
j=1 ρej −

∑h
j=2 ej

1
h

∑h
j=1 ej

. (40)

Using the fact that δj = ρj/ej − 1 yields

h−1∑
j=1

ρej −
h∑

j=2

ej =
h−1∑
j=1

(ρj+1 − ρejδj)−
h∑

j=2

(ρj − ejδj)

=
h∑

j=2

ejδj − ρ

h∑
j=2

ej−1δj−1.

Substituting the latter into (40) and rearranging gives

θrxh = h
(
−
∑h

j=2 ejδj∑h
j=1 ej

+ ρ

∑h
j=2 ej−1δj−1∑h

j=1 ej

)
.

From (19) and (39), the first term in the bracket equals θrxh +δ1w1, while the second term equals
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−ρ(θrxh + δhwh). Therefore,

θrxh = h
(
−
∑h

j=2 ejδj∑h
j=1 ej

+ ρ

∑h
j=2 ej−1δj−1∑h

j=1 ej

)
= h

(
(1− ρ)θrxh + δ1w1 − ρδhwh)

)
,

which is (20).

Evaluating (16) at β = 0 yields

eh =
αρh

α + 1/2σ2
π

,

hence, ρeh = eh+1, which implies θrxh = 0 from (40).

Evaluating (16) at α = 0 yields

eh =
β

β + 1/2σ2
π

,

hence, eh = eh+1, which implies θrxh = (1− ρ)(h− 1) from (40).

B.3 Simulation Algorithm: CE Estimation

1. Parameters’ Initialization:

• Define forecast horizons h = 1, 2, . . . , 10 years.

• Construct a grid of parameter values for (α, β) ∈ [0, 1]2 with a step size of 0.01,

yielding over 10,000 possible parameter pairs.

2. Data Loading:

• For each country c, load annual realized inflation data, πc,t, covering the period from

t0 to T as specified in Appendix Table 7, which details the starting and ending dates

for each country based on the available data sources.

3. Forecasts’ Simulations: For each parameter combination (α, β), for each country c, for

each horizon h (from 1 to 10), and for each period t:

• Calculate the model-implied expectation Em
t (πc,t+h | α, β) as the weighted forecast:

Em
t (πc,t+h | α, β) =

∑t−1
k=t0+h πc,ke

−α(πc,k−h−πc,t)2−β(πc,k−πc,t)2∑t−1
k=t0+h e

−α(πc,k−h−πc,t)2−β(πc,k−πc,t)2
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• For the 6-10 year horizon, calculate the average model-implied expectation:

Em
t (πc,t+6,...,t+10 | α, β) =

1

5

10∑
h=6

Em
t (πc,t+h | α, β)

4. Parameters’ Estimation:

• For each (α, β), compute the average absolute distance between observed and model-

implied forecasts, where Ft(πc,t+h) represents the observed forecast from the CE

dataset averaged annually. Select the optimal parameter pair (α̂, β̂) that minimizes

this distance accordingly:

min
α,β

∑
t,c,h

|Ft(πc,t+h)− Em
t (πc,t+h | α, β)|

B.4 Bootstrapping Procedure – Simulation Algorithm: CE Estima-

tion

Let

X = { t : t = 1989, 1990, . . . , 2022}, L = |X| = 34,

and denote by {
p̂
(αi,βj)
c,t : (i, j) ∈ {1, . . . , 101}2, t ∈ X

}
the M = 10201 series of model-produced inflation expectations for country c, one per (αi, βj)

pair. Our bootstrap procedure consists of N = 1000 iterations. In each iteration n, we perform

the following steps:

1. Drawing the sample indices:

• Generate with replacement a multiset:

X(n) = { t(n)1 , . . . , t
(n)
L } ⊆ X

of size L.

• In what follows, the position k = 1, . . . , L in X(n) matters; the actual calendar year

t
(n)
k is used only to pick the model value.

2. Reconstructing bootstrapped model series:

• For each parameter pair (αi, βj), consider

p̂
(n,i,j)
c,k = p̂

(αi,βj)

c, t
(n)
k

, k = 1, . . . , L.
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3. Adjusting for country-specific start dates:

If country c′ has actual CE CPI data beginning at t0c′ > minX:

(a) Let Lc′ = 2022− t0c′ + 1.

(b) Discard the first L − Lc′ positions in X(n), reindexing k ← k − (L − Lc′) for k =

L− Lc′ + 1, . . . , L.

(c) Whenever t
(n)
k < t0c′ , replace t

(n)
k ← t0c′ .

This means that country-specific histories shorter than 1989–2022 are handled by trun-

cation and year-replacement as explained above.

4. Distance minimization problem:

• Compute distance to observed CPI from CE. Let {tobsk }
Lc′
k=1 be the chronological CPI

(from CE) positions for country c′. Then for each (αi, βj) define

D
(n)
c′ (αi, βj) =

Lc′∑
k=1

∣∣∣ pobsc′, tobsk
− p̂

(n,i,j)
c′, k

∣∣∣.
• Select optimal parameters:

(α∗, β∗)(n) = argmin
i,j

D
(n)
c′ (αi, βj).

Once all N bootstrap replications have been performed, we exploit the empirical distribu-

tion of the N draws {(α∗, β∗)(n)}Nn=1 to construct the confidence intervals through the relevant

percentiles (Kolesár, 2025). For standard-error estimation, we conservatively set the sample

size to S = 535, which equals the number of annual CPI-forecast observations available in the

Consensus Economics dataset.

B.5 Simulation Algorithm: Constant-Gain Learning

1. Parameters’ Initialization:

• Define forecast horizons h = 1, 2, . . . , 10 years.

• Construct a grid of parameter values for γ ∈ [0, 1) with a step size of 0.01.

2. Data Loading: For each country c, load annual realized inflation data, πc,t, covering

the period from t0 to T as specified in Appendix Table 7, which details the starting and

ending dates for each country based on the available data sources.
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3. Forecasts’ Simulations: Following Nagel (2024), we assume the true inflation process

for country c follows the AR(1) πc,t = ac + ρcπc,t−1 + εc,t. Agents estimate the true

parameters bc := (ac, ρc)
′ using:

bc,t = bc,t−1 + γR−1
c,t xc,t−1(πc,t − b′

c,t−1xt−1,c)

Rc,t = Rc,t−1 + γ(xc,t−1x
′
c,t−1 −Rc,t−1),

where xc,t = (1, πc,t)
′ and with initial conditions bc,0 = (0, 0) and Rc,0 = diag(1, 1).

We consider a global constant-gain learning parameter γ.

• We calculate the model-implied expectation Em
t (πc,t+h | γ) as the weighted forecast:

Em
t (πc,t+h | γ) = ac,t + ρhc,tπc,t

• For the 6-10 year horizon, calculate the average model-implied expectation:

Em
t (πc,t+6,...,t+10 | γ) =

1

5

10∑
h=6

Em
t (πc,t+h | γ)

4. Parameters’ Estimation:

• For each γ, compute the average absolute distance between observed and model-

implied forecasts, where Ft(πc,t+h) represents the observed forecast from the CE

dataset averaged annually. Select the optimal parameter (γ̂) that minimizes this

distance accordingly:

min
γ

∑
t,c,h

|Ft(πc,t+h)− Em
t (πc,t+h | γ)|

• The estimated global constant-gain learning parameter is γ̂ = 0.02.
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