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We address the joint hypothesis problem in cross-sectional asset pricing by using measured 
analyst expectations of earnings growth. We construct a firm-level measure of Expectations 
Based Returns (EBRs) that uses analyst forecast errors and revisions and shuts down any 
cross-sectional differences in required returns. We obtain three results. First, variation in 
EBRs accounts for a large chunk of cross-sectional return spreads in value, investment, size, 
and momentum factors. Second, time variation in these spreads is predictable from that in 
EBRs, holding constant scaled price variables (as proxies for time varying required returns). 
Third, firm characteristics often seen as capturing risk premia predict disappointment of 
expectations and low EBRs. Overall, return spreads typically attributed to exotic risk factors 
are explained by predictable movements in non-rational expectations of firms’ earnings 
growth.   
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1. Introduction. 

The textbook version of the efficient market hypothesis (EMH) holds that the realized 

return on a generic security such as a stock 𝑖 can be written as: 

𝑟!" = 𝑟! + ∆𝐸!" , 

where 𝑟! is the required return, which increases in the stock’s riskiness, and ∆𝐸!" embeds 

news and revisions of rational expectations of dividends. Because under the EMH news and 

revisions are on average zero and unpredictable, return predictability is tied to	𝑟!. One stock 

earns a higher average return than another if it is riskier. But what determines risk?  

In the capital asset pricing model (CAPM, Sharpe 1964), risk increases with a stock’s 

exposure to market movements.  Starting in the 1970s, evidence on return predictability not 

tied to such exposure challenged the CAPM, casting doubt on the underlying EMH (Basu 

1977, 1983; Rosenberg et al. 1985; Banz 1981).  However, as pointed out by Fama (1970) 

and Fama and French (1993), this evidence does not necessarily reject the EMH, but possibly 

the CAPM model of risk. This came to be known as the joint hypothesis problem: without 

observing expectations or risk, any test of market efficiency is also a test of a model of risk. 

To solve this problem, most research on cross-sectional asset pricing maintains 

rational expectations and views 𝑟! as capturing exposure to additional “risk factors” (Fama 

and French 1993, 2015).  It has proved challenging, however, to link these factors to tangible 

risks such as distress (La Porta et al 1997).  A second solution, pursued in behavioural 

finance, is to relax rational expectations and to generate systematic return differentials with 

belief extrapolation, over- and underreaction, or other biases in the expectations term ∆𝐸!" 

(e.g., Lakonishok et al 1994, Barberis et al. 1998, Hong and Stein 1999, Jegadeesh and 

Titman 2011, Daniel and Hirshleifer 2015, Barberis et al 2015, Kozak et al. 2018, Xiaohong 

et al 2020, van Binsbergen et al 2023, Cho and Polk 2024). Even in this approach, however, 

returns are not matched to measured expectations. The joint hypothesis problem remains.  
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To make progress, we address the joint hypothesis problem by using analyst forecasts 

of future firm-level earnings growth as an empirical proxy for ∆𝐸!", while also allowing for 

rich models of required returns.2 In one class of such models required returns vary only in the 

cross section, which allows for many characteristics to matter (Fama and French 1993, 2015, 

Jegadeesh and Titman 1993, Harvey, Liu, and Zhu 2015). In another class, cross-sectional 

required returns also vary over time (Merton 1973, Lettau and Ludvigson 2001), consistent 

with the evidence on predictable time variation in both the aggregate market and the cross 

section (Cochrane 2011, Campbell et al. 2023).  We show that, for each class of models, 

market efficiency imposes joint restrictions on the explanatory power of required returns and 

of expectations.  The main goal of this paper is to test these restrictions. 

A key question for this approach is whether analyst forecasts are valid proxies for 

market expectations. In particular, if analysts mechanically extract forecasts from prices, 

price differences driven by required returns might be erroneously interpreted as informative 

about future earnings growth. We show that our tests of market efficiency are valid even if 

analysts engage in such inference to some extent, provided they do not rely on it exclusively.   

Our tests rely on firm level expectations-based returns (EBRs), our proxy for ∆𝐸!". 

EBRs attribute all cross-sectional return variation to observed belief errors and revisions, 

while shutting down any variation in required returns. We first ask: can EBRs account for the 

long-short book-to-market portfolio return spread (HML, Fama and French 1993)? In an 

efficient market, EBRs can covary with contemporaneous portfolio returns, but they should 

not explain average portfolio spreads. We show instead that variation in EBRs quantitatively 

accounts both for much of contemporaneous return variation, but also for the average HML 

spread: EBRs are on average higher for value than for growth stocks, and fully explain the 

average spread between those portfolios at horizons ranging from 1 month to 5 years. 
 

2 The use of survey-based measures of analyst and investor expectations has become common (La Porta 1996, 
Greenwood and Shleifer 2014, Giglio and Kelly 2018, Bordalo, Gennaioli, La Porta, and Shleifer BGLS 2019, 
2024, de la O and Myers 2021, 2024, Nagel and Xu 2022, Jiang et al 2022, Bianchi et al.  2024). 
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Expectations data leaves little room for risk to explain observed average return differentials. 

This suggests market inefficiency is at play in driving HML returns: average spreads 

materialize because the realized earnings growth of stocks in the portfolio’s short arm 

systematically disappoints compared to that of stocks in its long arm.  This is in line with 

prior evidence of overreaction of long-term earnings growth forecasts or LTGs (Bordalo, 

Gennaioli, La Porta, and Shleifer, BGLS 2024).   

We next turn to models of required returns that vary both in the cross section and over 

time. In these models, market efficiency imposes that future returns should be negatively 

predictable from current prices and positively predictable from current cash flow 

expectations. Crucially, this remains the case even if analyst expectations are to some extent 

inferred from prices and thus capture shocks to required returns – in fact, in this case 

predictability from prices should be even stronger.  Running this test with the HML spread 

rejects market efficiency: scaled price variables have no predictive power while expectations 

strongly predict returns, and in particular expectations of long-term growth predict returns 

negatively. The evidence clearly rejects the sign restrictions entailed by the EMH. While fully 

characterizing the mispricing mechanism is beyond the scope of this paper, the evidence is 

consistent with overreaction in expectations of the long term (as in BGLS 2024) and under-

reaction in expectations of the short term (as in Bouchaud et al 2019).3  

In sum, HML is a puzzle of expectations: these explain predictable time variation in 

spreads, with little room left for risk. In Section 5, we show these results extend to other 

major factors, including size, investment, momentum, and to some extent profitability. This 

suggests that these characteristics capture not risk but expectations. Consistent with this view, 

in Section 6 we show that firm characteristics strongly predict future firm-level EBRs, 

capturing systematic disappointment and revisions in expectations about individual firms. W 
 

3 In Appendix A.2, we extend our analysis of the joint distribution of realized returns and growth expectations to 
account for over and underreaction in the latter.  We show that, under plausible assumptions, these mechanisms 
can produce our empirical findings. 
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While it has been challenging to tie characteristics to tangible risk, they are clearly associated 

with errors in beliefs. In line with this non-rational belief mechanism, we further show that 

firm level tangible news negatively predicts future returns, as in (BGLS 2019, 2024).  

The fact that systematic return differences based on characteristics reflect 

expectations and not risk implies that “correcting” for such factors in the computation of 

abnormal returns is misleading. This does not mean that asset prices only move due to 

expectations. They can also move due to liquidity, market frictions (e.g., Gabaix and Koijen 

2023), or risk perceptions about firms or sectors. But elusive systematic risks do not appear to 

be needed to explain the expected return variation associated with standard characteristics.  

We contribute to rapidly-growing research showing that measured expectations allow 

an empirically disciplined and theoretically structured approach to asset pricing. Following 

La Porta (1996), research showed that high LTG predicts low cross-sectional returns due to 

overreaction to good news (BGLS 2019).  BGLS (2024) show that forecast errors of 

aggregate LTG are predictable and account for most of the predictability of market level 

returns; see also Nagel and Xu (2022) and Adam and Nagel (2023). Aggregate LTG is also 

excessively volatile, leading to volatile valuations that explain Shiller’s (1981) excess 

volatility puzzle (Bordalo et al. 2024).  In turn, short-term earnings expectations help explain 

the volatility of valuation ratios (De la O and Myers 2021) and the profitability anomaly 

(Bouchaud et al 2019).  

Relative to this work, we show that non-rational measured beliefs provide a unified 

account of cross sectional and aggregate return puzzles without the need for unobserved time 

and cross-sectional variation in required returns.  The primacy of expectations in these 

puzzles is consistent with the evidence that investors fail to attend to the co-movement of 

stock returns that is due to consumption shocks (Chinco, Hartzmark, and Sussman 2022). 



 6 

A large body of evidence links return spreads between long and short portfolios, some 

of which are related to standard characteristics to systematic forecast errors or other 

deviations from rational forecasts (Engelberg, McClean and Pontiff 2018, Dechow and Sloan 

1997, Da and Warachka 2011, Sloan and Wang 2022, De la O, Han, and Myers 2023, van 

Binsbergen, Han, and Lopez-Lira 2023, Frey 2023).  These papers use different methods and 

samples to support and corroborate a common idea: return predictability reflects market 

inefficiency.  Our paper complements this work. We develop a formal framework to address 

the joint hypothesis problem using expectations data, and implement it for leading cross-

sectional spreads. Compared to BGLS (2024), who use fluctuations in the aggregate LTG to 

test for cross-sectional predictability, we show that portfolio-level expectations and forecast 

errors exhibit strong cross-sectional co-movement beyond market-level waves of optimism.4 

Our findings also connect to recent attempts to add new risk factors such as duration 

(Lettau and Wachter 2007, van Binsbergen and Koijen 2017, Gormsen and Lazarus 2023), or 

intertemporal versions of CAPM (Campbell and Vuolteenaho 2004, Campbell et al. 2023). 

Because these papers do not offer direct measures of risk or use data on expectations, they 

cannot reject these patterns being generated by incorrect beliefs that yield pricing biases that 

are horizon-dependent and time varying (Giglio and Kelly 2018, BGLS 2019, 2024). 

Section 2 describes our framework and data.  Section 3 shows that, within the class of 

models with constant required returns over time, the value premium can be fully explained by 

expectations, with no need for cross sectional risk premia.  Section 4 shows that the value 

premium is predictable but also that market efficiency with time-varying required returns is 

rejected. Instead, predictable returns reflect systematic forecast errors in growth expectations.  

Section 5 extends the analysis to additional factors.  Section 6 ties the evidence on factor 

returns to predictable corrections of expectations errors at the firm level. Section 7 concludes.    
 

4 Other work shows price distortions, or alphas, relative to simple risk models (e.g., van Binsbergen and Opp 
2019, van Binsbergen et al 2023). Our results suggest that these findings may reflect systematic expectation 
errors. 
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2. Concepts and Methods 

Following Campbell and Shiller (1987, 1988), the log return 𝑟!,"$% obtained from 

holding the stock of firm 𝑖 between 𝑡 and 𝑡 + 1 can be approximated as:  

𝑟!,"$% = 𝜌/𝑝!,"$% − 𝑑!,"$%3 + 𝑔!,"$% − /𝑝!," − 𝑑!,"3 + 𝑘,																												(1) 

where 𝑝!," is the log price at 𝑡, 𝑑!,"  its log dividend, 𝑔!,"$% = 𝑑!,"$% − 𝑑!," its dividend growth 

between 𝑡 and 𝑡 + 1. Constants 𝑘 and 𝜌 depend on the mean log price dividend ratio.5 By 

iterating (1) forward under no bubbles and by taking expectations we obtain: 

𝑝!,"& − 𝑑!," =
𝑘

1 − 𝜌 +8𝜌'𝔼:"(𝑔!,"$%$'
'()

) 	−8𝜌'𝔼:"/𝑟!,"$%$'3
'()

,																							(2) 

which describes the equilibrium price-dividend ratio 𝑝!,"& − 𝑑!" in terms of current 

expectations about future dividend growth and returns. Market beliefs 𝔼:"(. ) are allowed to 

depart from rational beliefs 𝔼"(. ). Plugging (2) into (1) we obtain the realized return at time 

𝑡 + 1:   

𝑟!,"$% = 𝔼:"/𝑟!,"$%3 −8𝜌'/𝔼:"$% − 𝔼:"3/𝑟!,"$%$'3
'(%

+																																										 

+=𝑔!,"$% − 𝔼:"/𝑔!,"$%3> +8𝜌'/𝔼:"$% − 𝔼:"3/𝑔!,"$%$'3
'(%

.																			(3) 

On the top line, the realized return is higher when the time 𝑡 required and expected return 

𝔼:"/𝑟!,"$%3 is higher, or when news at 𝑡 + 1 signal higher future returns. On the bottom line, 

the realized return is also higher with better cash flow news at 𝑡 + 1, such as a better 

dividend surprise (in square brackets), or a better revision of growth expectations (the sum).  

With efficient markets, expectations are rational, so news are on average zero and 

unpredictable based on past information, i.e. they are a martingale difference sequence. Cross 

section or time series predictability comes entirely from the structure of required returns 

 
5  As in Campbell and Mei (1993), we equalize 𝑘 and 𝛼 across firms.  Specifically, we set 𝜌 = !!"

"#!!"
= 	0.9981 

where 𝑝𝑑 = 6.2634 is the average price dividend ratio in the sample at the yearly frequency. 
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which must match expected returns 𝔼"/𝑟!,"$%3. The precise predictability pattern hinges on 

the model of expected returns. Assume the following AR(1) structure (the results are more 

general): 

𝔼"/𝑟!,"$%3 = (1 − 𝜂)𝑟! + 𝜂 ∙ 𝔼"*%/𝑟!,"3 + 𝜔!," ,																																		(4) 

which allows for cross sectional and time series variation with persistence 𝜂 ∈ [0,1]. To 

capture characteristics-based spreads, researchers have developed models of required returns 

in which 𝑟! varies between portfolios sorted on firms’ book to market, size, investment, 

profitability, and so on (so 𝑖 is a portfolio of stocks with a particular characteristic). We test 

two main classes of these models in our analysis.  

In the first class, required returns vary across characteristics but are constant over 

time, so 𝔼"/𝑟!,"$%3 = 𝑟! with = 𝜔!," = 0 . The original risk factor models (Fama and French 

1993, 2015) belong to this class and allow for many characteristics to matter, including 

momentum (Jegadeesh and Titman 1993) and others (Cochrane 2011, Harvey, Liu, and Zhu 

2015).  A slight variation with 𝜂 = 0 and 𝜔!," iid white noise allows for non-persistent shocks 

such as portfolio-level liquidity or demand, while still allowing for stable differences in 𝑟!.  

A second class of models allows required returns to also vary over time in a persistent 

way, depending on market conditions or investor preferences (Merton 1973, Lettau and 

Ludvigson 2001, Lewellen and Nagel 2006). These models are motivated in part by the 

failure of the unconditional CAPM to capture average cross-sectional spreads. They also 

speak to the fact that average returns appear to exhibit predictable time variation in both the 

aggregate stock market and the cross section (Cochrane 2011, Campbell et al. 2023). Here 

required return shocks 𝜔!," to characteristics-based portfolios are persistent, 𝜂 > 0, creating 

predictable time variation. Average characteristics-based differences in 𝑟! are still possible. 

As this discussion illustrates, model (4) is very flexible.  This flexibility allows to fit 

the data but is problematic when the connection between realized spreads and tangible risks 
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is elusive, as is the case for characteristics-based portfolios. In line with the joint hypothesis 

problem, to assess market efficiency as an explanation for characteristics-based return 

spreads it seems necessary to measure expectations and test: i) their rationality, and ii) their 

ability to account for predictable returns.  

As we already suggested, required returns and the prices of particular stocks, or even 

groups of stocks sorted on characteristics, may vary for many reasons other than expectations 

or characteristics-based risk factors. This is especially true in the short run, when trading can 

lead to return movements from market frictions (e.g., Gabaix and Koijen 2023).6 Our analysis 

does not require that all price variation comes from expectations. Frictions, liquidity, or risk 

perceptions surely impact realized returns of sectors or stocks, including factor portfolios. 

Our focus here is very specific: to test for market efficiency, and in particular the connection 

between characteristics-based predictable return spreads and growth expectations.  

To test the joint hypothesis in this context, we use measured expectations about firm 

cash flows. Section 2.1 outlines the logic of our tests under perfect measurement of 

expectations.  Section 2.2 accounts for potential concerns regarding our empirical proxies.  

 

2.1 Market efficiency tests using measured expectations 

Consider first models of time-invariant required returns. With rational expectations, 

news in Equation (3) cannot be systematically positive or negative, so the time average of the 

cash flow news term satisfies  ∆𝐸!"$% = 0.  As a result, the average (over time) of one period 

return 𝑟!,% is simply the constant required return, 𝑟!,% = 𝑟! . To test the joint hypothesis in this 

class, we define “Expectations Based Returns” or EBR, the part of a firm’s realized stock 

 
6 It is straightforward to generalize (4) to model required returns featuring both a persistent component (which 
accommodates characteristics-based factors) and a transient component, i.e. 𝔼$2𝑟%,$#"4 = �̃�%,$ + 𝑒%,$, where �̃�%,$ =
𝜂 ∙ �̃�%,$ +𝜔%,$, where 𝜔%,$ capture persistent macro risk shocks while 𝑒%,$ capture transient liquidity shocks.  
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return that is due to the forecast error and expectation revisions in Equation (4), while 

deliberately shutting down any cross-firm variation in risk: 

EBR!,"$% = 𝑟 + =𝑔!,"$% − 𝔼:"/𝑔!,"$%3> +8𝜌'/𝔼:"$% − 𝔼:"3/𝑔!,"$%$'3
'(%

,														(5) 

Substituting (5) into (3) we decompose the realized return into the true excess returns (𝑟! − 𝑟) 

and the expectations-based return, 𝑟!,"$% = (𝑟! − 𝑟) + EBR!,"$%. Note that under the realistic 

assumption that even non-rational investors hold a correct expectation about the constant 

return 𝑟!, this equation is also valid with inefficient markets.  By differencing this equation 

for any long minus short Fama and French portfolio, we obtain our first test. 

Time-invariant Required Returns Test. In the regression, 

𝑟+,-,"$% = 𝛼+,- + 𝛾 ⋅ EBR+,-,"$% + 𝜈+,-,"$%																																				(6) 

the constant captures the constant required return spread 𝛼+,- = 𝑟+ − 𝑟- and 𝛾 = 1. 

The time-invariant required return is estimated by the regression constant. Any return 

predictability due to non-rational expectations is captured by the average EBR spread. In time 

invariant models of required returns, this test is appropriate for two reasons. First, under the 

null of efficient markets, EBR+,-,"$% is on average zero,7 and hence cannot account for 

average return spreads. Second, EBRs are orthogonal to the contemporaneous shock 𝜈+,-,"$% 

because, in this class of models, the latter is a zero-mean iid shock to portfolio returns. The 

estimated 𝛼+,- thus quantifies the risk premium needed to account for observed return 

differentials. We expect 𝛼+,- > 0 if standard factor portfolios indeed capture risk. If instead 

𝛼+,- ≤ 0, the standard factor return is entirely due to non-rationality. In particular, if the 

inequality is strict the long arm is safer than the short arm, which is a theoretical possibility.   

In the second class of models, required returns vary across firms and over time.  In 

this case, the joint distribution of returns and expectations depends on the exact way in which 

 
7 Recall that under the null of rational expectations EBR'(),$#" is the difference between two martingales (i.e. it 
is a martingale difference sequence), each with mean 𝑟 and unpredictable based on past information. 
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belief updating departs from rationality.  Our focus here is to test for market efficiency, so we 

derive our test for the null in which the required return is allowed to vary but return and cash 

flow expectations are rational. Introducing expected returns (4) into the equilibrium price-

dividend ratio (2), we obtain: 

𝑝!,"& − 𝑑!," =
𝑘!.

1 − 𝜌 +8𝜌'𝔼"/𝑔!,"$%$'3
'()

−
𝔼"/𝑟!,"$%3
1 − 𝜌𝜂 ,																																		(7) 

where 𝑘!. = 𝑘 + (%*0)2
%*20

𝑟!.   We can use (7) to write 𝔼"/𝑟!,"$%3 as a function of 𝑝!,"& − 𝑑!," and 

of current expectations of future dividend growth, which gives our second test. 

Time Varying Required Return Test. Under the null of efficient markets, the regression: 

𝑟+,-,"$% = 𝛼 + 𝛽 ⋅ /𝑝+,-," − 𝑑+,-,"3 + 𝛾 ⋅8𝜌'𝔼:"/𝑔+,-,"$%$'3
'()

+ 𝜈+-,,"$%,										(8) 

entails a joint coefficient restriction 𝛽 = −(1 − 𝜌𝜂) < 0 and 𝛾 = (1 − 𝜌𝜂) > 0.  

In efficient markets, future portfolio returns 𝑟+,-,"$% should be negatively predictable 

from the portfolio price divided ratio 𝑝+,-," − 𝑑+,-,", and positively predictable from cash 

flow growth expectations. A well-specified predictive model should control for both prices 

and expectations because the price dividend ratio can be high when cash flow expectations 

are optimistic or when required returns are low. By controlling for expectations, one can 

isolate required return movements, which are the only source of predictability under efficient 

markets. Equation (8) can only be estimated if the price dividend ratio 𝑝+,-," − 𝑑+,-," and 

market expectations are not collinear.  Given Equations (4) and (7), this is indeed the case if 

portfolio required returns are subject to shocks, either transient or persistent. If markets are 

not efficient, non-rational cash flow forecasts at 𝑡 may predict future errors and revisions 

∆𝐸!,"$%, possibly violating the joint restriction on estimated coefficients. 

Our chief goal is to use expectations data to address the joint hypothesis problem 

when testing for market efficiency. If the estimated coefficients reject market efficiency, two 
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further questions arise. First, to what extent do expectations explain characteristics-based 

average return spreads, and their time variation? Second, what is the mispricing mechanism? 

While it is beyond the scope of this paper to fully characterize the latter, in Appendix A.2 we 

consider the impact of belief overreaction or under-reaction. Under plausible conditions, 

belief overreaction reduces 𝛾 in our return predictability tests of Equation (8), and may even 

yield 𝛾 < 0 if strong enough. Belief under-reaction instead reinforces 𝛾 > 0. The intuition is 

that, when beliefs overreact, high cash flow expectations are associated with excess optimism 

and future disappointment, predicting low returns (underreaction produces the reverse 

pattern). Overreaction of measured expectations of long-term cash flows and their negative 

predictive power for returns has been documented at both firm and aggregate levels (La Porta 

1996, BGLS 2019, 2024), as has under-reaction of expectations of short-term cash flows and 

their positive predictive power for returns (Bouchaud et al. 2019).   

 

2.2 Using measured expectations to test for market efficiency 

We discuss how to implement these tests using measured expectations, while 

allowing such proxies to depart from market expectations. Data on expectations of firms’ 

earnings growth comes from reports by equity analysts (IBES), as described in detail in the 

next Section. One problem with this data is that analyst forecasts may be noisier or exhibit 

excess sluggishness or sensitivity compared to market beliefs. This would attenuate or 

magnify estimated coefficients, without changing them directionally. In Appendix A.3 we 

desscribe a method for correcting our estimates for some forms of mis-measurement. 

A more important concern is that analysts may at least in part infer earnings forecasts 

from stock prices, so that forecasts may surreptitiously incorporate information on required 

returns. The analyst may start from a model of required returns, and then retrieve a firm’s 

cash flow forecast from the current price dividend ratio by inverting a valuation formula such 
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as Equation (2). Based on what we know about analysts, it is implausible that they behave in 

this way. Producing cash flow forecasts is their main task, for which they rely heavily on 

accounting and management information including earnings calls (Ben-David and Chinco 

2024) and aggregate economic forecasts (Decaire and Graham 2024). A large accounting 

literature takes analysts forecasts as genuine estimates of expected fundamentals and uses 

them to back out firms’ cost of capital from stock prices (Lee et al 2020).8 

That said, we show that analyst price inference can be incorporated within the 

framework of the previous section and, even if present, does not invalidate our tests of market 

efficiency. To see this, consider first the extreme view in which analysts exclusively rely on 

price inference. If they use the true model of returns, they retrieve market expectations, so 

our tests would still be valid. Problems arise if analysts use a wrong model for returns, in 

particular if they assume a constant required return 𝑟 when true required returns vary across 

firms or over time.  Analyst expectations, denoted 𝔼:"3(. ), would then be inferred as: 

8𝜌'𝔼:"3/𝑔!,"$%$'3
'()

= 𝑝!,"& − 𝑑!," −
𝑘 − 𝑟
1 − 𝜌 

=
𝑟

1 − 𝜌 +8𝜌'𝔼:"(𝑔!,"$%$'
'()

) 	−8𝜌'𝔼:"/𝑟!,"$%$'3
'()

.																				(9) 

According to (9), lower required returns would cause higher analyst expectations, so that part 

or even all of the latter’s explanatory power could be due to required returns. Analyst 

forecasts would also exhibit predictable forecast errors that, as shown in previous work 

(BGLS 2024), take the form of systematic disappointment after high optimism.9 

 
8 Other evidence also contradicts the price-based inference hypothesis. Analysts make “buy” recommendations 
for stocks for which they have high LTG expectations, consistent with them viewing these firms as undervalued 
by the market (Bradshaw 2004).8 Moreover, analysts do not expect these same firms to exhibit lower stock 
return in the future, which would be the case if analysts attributed at least some of the price increase to lower 
required returns by investors (BGLS 2019, De la O and Myers 2021, Decaire and Graham 2024).   
9 Chaudhry (2024) construct proxies for non-cash flow driven price changes using indexation events (Pavlova 
and Sikorskaya 2023). He finds that analyst forecasts respond to such price changes (more for the short term, 
less so for LTG) and interprets the result as consistent with price inference. This conclusion is based on the null 
that “analyst revisions only react to current cash flow news”. This null however rules out non-rational analyst 
updating, which is the heart of the matter. Even absent current good cash flow news analysts may revise 
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The case in which analysts exclusively rely on price inference is however extreme, 

and inconsistent with the data.  In this case: i) analyst forecasts are collinear with prices, 

which is strongly rejected (see Table 2 in Section 2); and ii) price changes entirely explain 

forecast revisions. In contrast to ii), observed earnings news greatly improve explanatory 

power for forecast changes (see Appendix B, Table B7). This finding is consistent with the 

evidence in Ben-David and Chinco (2024), Decaire and Graham (2024) and many others that 

analysts pay great attention to firms’ earnings news when making their forecasts. 

In a more realistic case, analysts partially rely on price inference, which we can 

formalize as follows: 

8𝜌'𝔼:"3/𝑔!,"$%$'3
'()

= (1 − 𝜑)𝜆8𝜌'𝔼:"/𝑔!,"$%$'3
'()

+ 𝜑 Z𝑝𝑑" −
𝑘 − 𝑟
1 − 𝛼[.															(10) 

Based on earnings data the analyst makes an estimate 𝜆𝔼:"/𝑔!,"$%$'3 similar to market beliefs 

but possibly more sluggish (0 < 𝜆 < 1) or more sensitive (𝜆 > 1).  She then mixes this 

estimate with price inference, with weight 0 ≤ 𝜑 < 1 on the latter. 

Equation (10) yields testable implications for the observed relationship between 

analyst forecasts and stock returns. Equations (6) and (8) become (all derivations are in 

Appendix A.1): 

𝑟+,-,"$% = (1 − 𝜑) ⋅ 𝑟+,- + EBR!,"$%3 ,																																											(11) 

𝔼"/𝑟+,-,"$%3 = 𝛼. + 𝛽. ⋅ /𝑝+,-," − 𝑑+,-,"3 + 𝛾. ⋅8𝜌'𝔼:"3/𝑔+,-,"$%$'3
'()

,										(12) 

with 𝛽. = −(1 − 𝜌𝜂) \1 + 4
(%*4)5

] and 𝛾. = %*20
(%*4)5

.  

Equation (11) shows that, in the class of time-invariant expected return models, price 

inference 𝜑 > 0 reduces the regression constant below the full required return but maintains 

 
expectations up because they overreacted to past bad cash flow news, as in models of diagnostic expectations.  
Chaudhry also uses a mutual fund flow instrument (Lou 2012), which is subject to similar endogeneity 
concerns. 
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the directional implication of a positive and significant regression constant.  Only the very 

extreme case of full price inference 𝜑 = 1 is consistent with a constant of zero. 

Equation (12) shows that, under market efficiency, the sign of coefficients in 

Equation (8) are robust to price inference, since 𝛽. = 𝛽 \1 + 4
(%*4)5

] and 𝛾. = 𝛾/(1 − 𝜑)𝜆. 

In particular, the future return continues to be predicted negatively by the current price 

dividend ratio and positively by earnings expectations, with a strength that increases in the 

extent of price inference (higher 𝜑).  Again, estimating Equation (12) requires the price 

dividend ratio and analyst expectations to not be collinear. Equation (10) implies that this is 

the case for any persistent or transient return shocks uncorrelated with analyst expectations. 

In arbitrating between rational models, time series predictability in portfolio spreads 

favours the class of models with time varying returns.  But then, a violation of the sign 

restrictions in (12) would constitute evidence against the hypothesis that such spreads are 

exclusively driven by required returns.  The extent and sign of expectations’ predictive power 

is informative about the actual drivers of returns, as discussed in Sections 5 and 6.  

 

2.3 Data and Construction of EBRs 

Expectations data.  We obtain firm level data on median analyst forecasts of future 

earnings per share and their long-term growth from the IBES Unadjusted US Summary 

Statistics file and use CRSP’s daily share adjustment factor to adjust forecasts of earnings per 

share for stock splits. We use forecasts of a firm’s earnings per share (𝐸𝑃𝑆!") and its long-

term earnings growth (𝐿𝑇𝐺!"), defined as the “...expected annual increase in operating 

earnings over the company’s next full business cycle. These forecasts refer to a period of 

between three to five years.”  This data is available starting on 3/1976 for 𝐸𝑃𝑆!"  and 12/1981 

for 𝐿𝑇𝐺!". 𝐸𝑃𝑆!" forecasts are for fixed horizons. To work with monthly data, and to fill in 

missing forecasts, we interpolate 𝐸𝑃𝑆!" at horizons of 1 to 5 years (in one-month increments). 
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We collect median forecast data on dividends for the upcoming fiscal year from 

IBES, and use them to compute the stock’s expected payout ratio. Although IBES began 

tracking dividend forecasts in 1994, the data did not become broadly available until 2002.  

Our dataset includes expected payout data for approximately 56% of the observations from 

2002 to 2023, and for 25% of observations across the entire sample. 

Other data. We obtain monthly data on shares outstanding and returns from CRSP, 

from 1981 to 12/2022. We obtain quarterly and annual accounting data from COMPUSTAT 

(also through 12/2022) and data on the risk-free rate (the return of the 90-day t-bill) from 

CRSP.  We define book to market (BM) and investment following Fama and French (2015) 

and use NYSE breakpoints to assign stocks to quintile portfolios of BM and investment.   

We follow two approaches to measuring expectations-based returns (EBRs) and 

testing market efficiency (particularly for the time-constant required return class). The first is 

to construct analyst prices that incorporate measured expectations into a dividend discount 

model with a constant discount rate, and to derive EBRs from them. This method disciplines 

the use of the term structure of expectations, and matches the method used for computing 

returns. The second approach is to follow Equation (4) and directly use the components of 

EBRs, the forecast errors and forecast revisions, as regressors. We pursue the first approach 

in this section and the second in Section 3.2. The two approaches yield very similar results. 

The raw monthly expectations-based return EBR!,","$%6  of firm 𝑖 between months 𝑡 and 

𝑡 + 1 is defined as: 

EBR!,","$%6 =
𝐷!,"$% + 𝑃e!,"$%3

𝑃e!,"3
,																																																										(13) 

where 𝑃e!,"3  is the “analyst price”, constructed by discounting analyst earnings growth 

expectations using a firm and time-invariant return. We set this return 𝑟 at the average in-

sample realized annual market return, 𝑟 = 10.72%. We then compute (monthly) 𝑃e!,"3  as: 
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𝑃e!,"3 = 8
𝔼:"3𝐷𝑃𝑆!,"$%7'
(1 + 𝑟)'

'8%,…,:

+
1 + 𝑔
(1 + 𝑟):

𝔼:"3𝐷𝑃𝑆!,"$;)
𝑟 − 𝑔 .																																	(14) 

We derive expected dividends per share by multiplying expected earnings per share 

by the average expected payout ratio 𝔼
=*
+>?-,,*-./
𝔼=*+@?-,,*-./

  among firms in our sample that paid 

dividends that year, 𝐷𝑃𝑆!,"$%7 > 0, which equals 0.41.10 We proxy expected earnings per 

share with analyst short-term earnings expectations 𝔼:"3𝐸𝑃𝑆!,"$%7' up to the second fiscal 

year; starting with the last non-missing positive 𝐸𝑃𝑆 forecast and up to five years out, 

analysts expect 𝐸𝑃𝑆!"	to grow at the rate 𝐿𝑇𝐺!". 

We do not observe analyst forecasts at very long horizons.  For the terminal value 

which captures cash flows beyond year five, we again assume a terminal payout ratio of 0.41, 

and we set the continuation value of expected cash flow growth 𝑔 to match the average stock 

price across all firms and months in 1981-2022.  This assumption captures the intuitive idea 

that at long enough horizons the analysts (and the market) expect mean reversion of a firm’s 

earnings growth rate to a constant 𝑔 calibrated to match a realistic price level. Of course, 

firms exhibit differences in the long run level of earnings. Since the required return 𝑟 and 

growth in the very long term 𝑔 are constant and common to all firms, differences in the price 

index 𝑃e!,"3  across firms arise exclusively from differences in expectations.11 

The firm level raw EBR is extended to the monthly raw return of a portfolio 𝜋 using 

an equal weighted average, EBRA,","$%6 = %
|A|
∑ EBR!,","$%6
!∈A .12 Our results also hold when 

 
10 Our results are robust to different specifications of the payout ratio. An alternative specification sets the 
expected payout ratio to zero if the firm did not pay a dividend the previous year.  This has a correlation with 
our main specification of over 97%.  Appendix B, Table B2 shows our results are unchanged with this measure.  
11 Given that mean reversion of growth rates occurs five years out, which is discounted by about (1.1)01 =
0.62, our results are not very sensitive to deviations of expected medium term earnings from 𝑔, provided of 
course that expectations eventually revert to a value close to it.  Our results are also robust to different 
specifications of the terminal period, for instance extrapolating LTG forecasts to an 8 or 10 year horizon, or 
allowing for a decay of forecasted growth rates between years 5 and 10 from 𝐿𝑇𝐺 to 𝑔 (Appendix B, Table B3). 
12 IBES surveys analysts in the middle of each month (i.e. the Thursday before the third Friday of every month, 
see IBES Unadjusted US Summary Statistics file). We use CRSP daily file to compute actual returns over the 
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using value weighted portfolios (see Appendix B, Table B4).  To compute (log) returns over 

longer horizons 𝑡 to 𝑡 + ℎ, we compute firm level monthly raw returns EBR!,"$D*%,"$D6  for 

each of the next ℎ months and aggregate up to portfolio monthly raw returns. We then 

rebalance portfolios at the end of each month j and compound monthly EBRs to obtain the 

log return (with some abuse of notation we use the same notation as for market EBRs, 

Equation (5)):13 

EBRA,","$E =8𝜌D*%ln	(EBRA,"$D*%,"$D6 )
E

D8%

																																		(15) 

For example, the one-month log EBR is ln	(EBRA,","$%6 ). We use log, as opposed to 

raw, returns for several reasons.  First, when compounding over multiple periods, the use of 

log returns is more appropriate empirically and in line with standard practice.  Second, as we 

show in Appendix B.4, the log transformation does not alter the martingale-difference 

property of EBRs under the null of rational expectations, and thus allows for a valid test of 

market efficiency.  This holds to first approximation in the variance of the distribution of 

EBRs, so we also confirm empirically that our results are robust to using raw returns, 

particularly when computed over longer horizons (Tables B11 to B13). 

We obtain EBRs for factor portfolios as the difference between the returns of the 

portfolio’s long and short arms: 

1. High-Minus-Low book-to-market (HML): EBR of a portfolio that is long value stocks 

(𝜋 = 𝑉, top quintile book-to-market firms) and short growth stocks (𝜋 = 𝐺, bottom 

quintile). Thus, EBRF,+,","$E = EBRG,","$E − EBRH,","$E. 

 
same periods as EBRs. Results are similar if we compute actual returns using calendar months, but the 
correlation between one- and three-months EBRs and returns is slightly stronger when using IBES. 
13 The primary role of monthly rebalancing of portfolio EBRs is to address changes in analyst coverage over 
time.  To make an apples-to-apples comparison we set to missing stock returns (𝑟%,$#") if EBRs (EBR%,$,$#"2 ) are 
missing.  As a robustness check, we calculated returns and EBRs for firms with uninterrupted sequences of one-, 
three-, and five-year returns, and the results are robust. 
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2. Small Minus Big Size (SMB): EBR of a portfolio that is long small stocks (𝜋 = 𝑆, 

bottom quintile market equity) and short big stocks (𝜋 = 𝐵, top quintile). Thus, 

EBR-,I,","$E = EBR-,","$E − EBRI,","$E. 

3. Conservative Minus Aggressive Investment (CMA): EBR of a portfolio that is long 

conservative stocks (𝜋 = 𝐶, bottom quintile investment-to-asset ratio) and short 

aggressive ones (𝜋 = 𝐴, top quintile). Thus, EBRJ,K,","$E = EBRJ,","$E − EBRK,","$E.   

4. Robust Minus Weak Profitability (RMW): EBR of a portfolio that is long robust 

profitability (𝜋 = 𝑅, top quintile operating profitability) and short weak profitability 

stocks (𝜋 = 𝑊,, bottom quintile).Thus, EBRL,M,","$E = EBRL,","$E − EBRM,","$E.   

5. Winners Minus Losers momentum (WML): EBRs of a portfolio that is long winning 

stocks (𝜋 = 𝑊, top quintile returns between periods 𝑡 − 11 and 𝑡 − 1) and short 

losing stocks (𝜋 = 𝐿, bottom quintile). Thus, EBRM,+,","$E = EBRM,","$E −

EBR+,","$E.   

We refer to the generic long-short portfolio as 𝐿𝑀𝑆. Our sample consists of monthly 

firm level data from 1981 to 2023 for which 𝐿𝑇𝐺" and 𝐿𝑇𝐺"$E exist.14 This requirement 

restricts the sample from the 2 million observations in the CRSP/Compustat database to about 

1.3 million observations for ℎ = 1 and 1.1 million for ℎ = 12.  The sample drops firms that 

tend to be smaller in market cap, but the samples are comparable in characteristics such as 

book to market (0.63 in the full sample, 0.61 in our sample), size ($7.2bn vs $7.8bn), 

investment (0.19 for both), and others, see Appendix B Table B1. As a robustness check, we 

dropped the requirement that firms have data on 𝐿𝑇𝐺"$E and computed actual returns for the 

sample of firms for which 𝐿𝑇𝐺" exists. This sample is similar to ours in all characteristics. 

 
14 We also restrict the sample to firms with data on size and positive book-to-market in June of year t plus 
standard CRSP requirements (i.e. common stock listed on a major US exchange). 
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If the approximation in Equation (14) to analyst expectations of earnings beyond 5 

years out is valid, then under efficient markets (i.e., rationality of expectations) the average 

EBR of any portfolio is equal to (1 + 𝑟). As a result, the long minus short difference in EBR 

has mean zero, and is again a martingale difference sequence.15 Our second method for 

computing EBRs by directly regressing returns on measures of forecast errors and revisions 

does not rely on any assumption about long run growth expectations and hence provides an 

important robustness check, which confirms our key results.   

 

2.4 Raw Portfolio EBRs and Correlations with Actual Returns 

Table 1 reports the average return of factor portfolios in our sample, the target of our 

exercise, and the average EBRs of the same portfolios.  

Table 1.  Average portfolio returns and EBRs of portfolios 
Note: Panel A presents sample means of log portfolio returns over holding horizons ℎ ranging from one month 
to five years. Portfolios are formed independently based on quintiles. Results are displayed for the following 
five quintile portfolios: (1) book-to-market, Growth stocks in the bottom quintile and Value stocks in the top 
quintile, (2) investment, Aggressive stocks in the top quintile and Conservative ones in the bottom quintile, (3) 
size, Big stocks in the top quintile and Small ones in the bottom quintile, (4) profitability, Weak profitability in 
the bottom quintile and Robust profitability in the top quintile), and (5) momentum, Losers stocks in the bottom 
quintile and Winners stocks in the top quintile.  Panel B presents sample means of log expectations-based 
returns (EBRs) computed following Equation (13) in the text for the same groupings of stocks. Portfolio returns 
and EBRs are equally weighted with monthly rebalancing.  The sample period extends from December 1981 to 
December 2023. 
    

Panel A. Average portfolio returns 
Holding 
Horizon Growth Value Aggr. Cons. Big Small Weak Robust Losers Winners 

1 Month 10.3% 15.7% 9.0% 14.9% 11.8% 14.4% 11.3% 13.5% 9.4% 15.4% 
3 Months 10.1% 15.0% 8.7% 14.5% 11.4% 14.3% 11.0% 13.1% 9.2% 14.3% 
1 Year 11.2% 15.3% 9.7% 14.9% 11.9% 15.3% 11.7% 13.4% 12.6% 12.9% 
3 Years 11.7% 15.0% 10.8% 14.1% 12.1% 14.5% 12.5% 13.1% 13.2% 12.4% 
5 Years 11.6% 14.1% 11.0% 13.4% 11.6% 13.8% 12.6% 12.4% 12.8% 12.0% 

 
Panel B. Average portfolio expectations-based returns 

 
15 Formally, 𝑃F%,$#"345 = ∑ 𝔼7#$%&'

( 89)),#$%&'$%&+
("#;)+=>",…,1 + "#@

("#;),
𝔼7#$%&'
( 89)),#$%&'$-.

;0@
, and so if expectations are rational 

the law of iterated expectations ensures that 𝔼H$52𝑃F%,$#"345 4 = ∑ 𝔼7#
(89)),#$%&'$%&+

("#;)+=>",…,1 + "#@
("#;),

𝔼7#
(89)),#$%&'$-.

;0@
. 

Then, if the approximation 𝔼H$5𝐷𝑃𝑆%,$#A3 = (1 + 𝑔)𝔼H$5𝐷𝑃𝑆%,$#BC is valid, we obtain 𝔼H$52𝐷𝑃𝑆%,$#"3 + 𝑃F%,$#"35 4 =
𝑃F%,$5 (1 + 𝑟). Using Equation (13), this implies that any portfolio has an average EBR equal to (1 + 𝑟). 
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Holding 
Horizon Growth Value Aggr. Cons. Big Small Weak Robust Losers Winners 

1 Month 10.8% 13.7% 7.3% 15.5% 11.4% 10.4% 16.0% 9.4% -16.0% 33.1% 
3 Months 9.9% 13.2% 6.5% 15.0% 11.0% 10.0% 15.0% 9.1% -13.4% 30.0% 
1 Year 9.2% 13.7% 6.7% 14.5% 10.2% 11.6% 14.2% 9.3% -0.6% 20.0% 
3 Years 9.4% 13.0% 8.1% 13.1% 10.2% 11.2% 13.2% 9.8% 8.1% 12.7% 
5 Years 9.6% 12.3% 8.8% 12.6% 10.1% 10.8% 13.1% 9.7% 9.2% 11.6% 

 
 

In line with existing work, Panel A shows that portfolios in the long arm exhibit 

higher average returns than those in the short arm, at both long and short horizons. Tables 4 

and 8 below reveal that the value and investment spreads are large and significant at all 

horizons in our sample, with annualized spreads between 3 and 5%.  Momentum spreads are 

large and significant at horizons of under a year, with annualized spreads of around 5%. 

These are key targets of our analysis. The size spreads are instead not significant in our 

sample, which is also in line with the literature.  Fama and French (2015) and others note that 

the size anomaly has weakened in recent decades relative to the earlier sample in Fama 

French (1993). In our sample period, average profitability spreads are not significant either.16 

Panel B shows that EBR spreads are directionally similar to those in Panel A for 

HML, SMB, CMA, and WML. For profitability the average EBR spread is the opposite of 

that in Panel A, a level mismatch which is however compatible with a strong correlation over 

time as we show below. The magnitudes of EBR spreads are also aligned with actual return 

spreads, with the exception of WML where spreads in EBRs are higher than in returns. While 

analyst expectations are an imperfect proxy for market expectations, as we discuss below, the 

broad agreement between Panels A and B suggests that EBRs i) capture non-rational beliefs 

in that differences in forecast errors and revisions are predictable across portfolios, and ii) 

therefore may help account for cross sectional and time series variation in spreads.  

 
16 There is also no systematic profitability spread when forming quintile portfolios on the full CRSP / 
COMPUSTAT sample in our sample period of 1981 – 2023. Using double sorts on size and profitability (as in 
Fama French 2015), a profitability spread emerges within big firms. 



 22 

While average return spreads have been the focus of the literature, for EBRs to be a 

good proxy they should also be positively correlated with returns over time. This is important 

in light of approaches exploring time variation in spreads (Lettau and Ludvigson 2001, 

Lewellen and Nagel 2006, Gormsen 2021, Campbell, Giglio, and Polk 2023). The “perfect 

proxy” benchmark of Equation (8) implies that, if the required return is truly constant, the 

correlation coefficient should be one. We compute the correlation between 𝐸𝐵𝑅A,"$E and 

𝑟A,"$E	for the long and short portfolios of HML, SMB, CMA, RMW and WML. We consider 

horizons ℎ of {1, 3,12,36,60} months, covering the short horizons typical of the cross-

sectional analysis (Fama and French 1993, 2015) as well as longer horizons typical of 

reversal anomalies (De Bondt and Thaler 1985) and aggregate stock market variation.  Table 

2 reports the results. 

   

Table 2.  Portfolio level correlations for actual and expectations-based returns. 
Note: The table presents pairwise correlations between log returns and expectations-based returns (EBRs) for 
quintile portfolios of stocks formed based on book-to-market, investment, size, profitability, and momentum 
sorts over holding horizons ranging from one month to five years.  The sample period is from December 1981 to 
December 2023. See Table 1 for a description of the portfolios.  

Holding 
Horizon Growth Value Aggr. Cons. Big Small Weak Robust Losers Winners 

1 Month 8% 19% 10% 16% 7% 16% 12% 12% 11% 6% 
3 Months 22% 35% 24% 31% 23% 30% 29% 22% 28% 25% 
1 Year 36% 52% 41% 37% 35% 46% 43% 34% 48% 42% 
3 Years 43% 52% 52% 36% 34% 61% 46% 37% 54% 51% 
5 Years 36% 41% 43% 28% 24% 48% 39% 28% 36% 37% 

 

The correlations between contemporaneous returns and EBRs are positive and large at 

long horizons, consistent with research showing their explanatory power for prices and 

returns (BGLS 2019, 2024, De la O and Myers 2021, 2024, Nagel and Xu 2022). This is also 

the case for profitability portfolios, whose time variation in returns is well captured by EBRs. 

Correlations are however always less than one, the theoretical “perfect proxy” benchmark of 

Equation (3).  One possible reason is that there may be significant required return variation, 
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perhaps also capturing transient drivers of stock returns unrelated to the Fama and French 

factors, such as market liquidity of investor demand, especially at high frequencies. 

As argued in Section 2.2, the imperfect correlation between EBRs and returns 

suggests that analysis do not mechanically infer expectations from prices, at least not 

exclusively so. Price inference also implies that measures of fundamental news, such as 

contemporaneous cash flow growth and/or forecast errors, should not add explanatory power 

for EBRs controlling for returns. As we show in the Appendix (Table B7), this is also 

rejected: fundamental news substantially increases explanatory power for EBRs compared to 

contemporaneous returns. Another possible reason for the imperfect correlation between 

EBRs and returns is that analyst forecasts may be a noisy proxy for market beliefs (e.g. they 

only cover horizons up to 5 years out, causing EBRs to miss longer term variation in market 

expectations).17 In Appendix A.3 we present one method to adjust the estimated constant 

under specific assumptions about noise and other possible measurement distortions in EBRs. 

These adjustments do not affect our key findings. More broadly, measurement noise would 

work against finding any explanatory power of EBRs for return spreads, making our 

estimates conservative. 

We conclude this section by plotting, in Figure 1, the time series correlation between 

EBRs and returns for the five Fama-French long minus short portfolios.   

                            Panel A: HML                                                       Panel B: SMB                    

 
                      Panel C: CMA                                                 Panel D: RMW 

 
17 Measured analyst beliefs may also depart from market beliefs due to (unobserved) disagreement between the 
marginal investor and the analyst consensus. 
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                     Panel E: WML 

 
 

Figure 1. Actual and expectations-based return spreads 
Note: Panel A plots one-year log returns (black line) and expectations-based returns (EBRs, red line) for the 
long-short value minus growth (HML) portfolio, where EBRs are computed following Equation (13) in the text.  
Panel B plots one-year log returns (black line) and EBRs (red line) for the long-short small minus big (SMB) 
portfolio.  Panel C plots one-year log returns (black line) and EBRs for the long-short conservative minus 
aggressive investment (CMA) portfolio.  Panel D plots one-year log returns (black line) and EBRs (red line) for 
the long-short robust minus weak profitability (RMW) portfolio.  Panel E plots one-year log returns (black line) 
and EBRs (red line) for the long-short winners minus losers (WML) portfolio. The sample period is December 
1981 to December 2023. See Table 1 for a description of the portfolios. 
 

Return spreads are more volatile than EBR spreads, which may again be due either to 

our expectations proxy being imperfect or to the presence of other factors driving short-term 

returns. Importantly, in line with Table 2, EBR and return spreads are strongly positively 

correlated. EBR spreads appear to track return spreads both at times when return spreads are 

positive – consistent with the average return differences in Table 1 Panel A – and when 

returns spreads are negative, contrary to the conventional risk explanation.  

We next assess the extent to which the variation in EBRs can account both for 

average return spreads, Section 3, and their predictable time variation, Section 4. To do so, 

we use EBRs to conduct the market efficiency tests developed in Section 2. Studying these 
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phenomena through the prism of expectations data offers a unique opportunity to disentangle 

risk-based accounts, focused on 𝑟!, from expectations-based accounts, focused on ∆𝐸!". 

 

3. The Value Premium and Market Efficiency with time-constant required returns 

In Section 3.1, we estimate Equation (11) by using EBRs constructed for the value 

minus growth long-short portfolios starting from analyst prices, as in Section 2.3.18  In 

Section 3.2 we estimate the same Equation by using analyst forecast errors and revisions (the 

components of EBRs) as separate regressors, following Equation (3).  Both methods show 

that, after accounting for EBRs, there is little systematic variation in the value spread left for 

risk premia to explain.  Forecast errors play a key role in this result.  We extend the analysis 

to the other Frama and French long-short portfolios in Section 5. 

 

3.1 EBRs Explain the Value Premium 

Table 3, Panel A reports regressions of the actual value long-short portfolio spreads 

𝑟+,-,"$E on EBR+,-,"$E, as specified in Equation (11), for various horizons ℎ. In this 

regression, the constant term captures the required return spread (given that analysts do not 

fully infer forecasts from prices). If the value premium is due to required returns, the 

regression constant should be positive and significant.19 To deal with overlapping 

observations for horizons ℎ > 1 month, we correct standard errors using the Newey-West 

(1987) procedure. 

Table 3 
EBRs and returns and for the HML portfolio 

Note: Panel A presents univariate regression results of log returns for the long-short value minus growth (HML) 
portfolio on expectations-based returns for that portfolio, EBRD(',$,$#E. Separate regressions are estimated for 

 
18 In Appendix A, we further correct the estimated for the possibility that analyst expectations may be a noisy 
proxy of market beliefs about earnings growth. Our empirical analysis shows that such discrepancies indeed 
exist but that accounting for them usually makes little difference for the entailed required return differential 𝑟' −
𝑟). 
19 The right-hand side is reported in log returns over the appropriate horizon, so in the first column the constant 
should be read as a return of 0.32% over 1 month.  
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horizons ℎ of one-month, three-month, one-year, three-year, and five-year. Panel B extends the analysis by 
adding EBRs for the market portfolio, EBR(F$,$#E, which includes all the stocks in the sample. Standard errors 
are corrected for overlapping observations using the Newey-West (1987) procedure.  The sample period is from 
December 1981 to December 2023.  See Table 1 for a description of the portfolios Superscripts: a significant at 
the 1% level, b significant at the 5% level, c significant at the 10% level.  

Panel A 
Regression of HML returns on HML EBRs 

 Dep. variable:	𝑟D(',$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 

EBRD(',$,$#E 0.5067a 0.8313a 1.0274a 1.1719a 1.1723a 
  (0.1527) (0.1638) (0.1156) (0.2274) (0.1842) 

Constant 0.0032c 0.0052 -0.0055 -0.0269 -0.0308 

  (0.0018) (0.0046) (0.0140) (0.0462) (0.0424) 

Obs 504 502 493 469 445 

Adj R2 4% 16% 46% 45% 50% 
 

Panel B 
Regression of HML returns on HML EBRs and market EBRs 

 Dep. variable:	𝑟D(',$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 

EBRD(',$#E 0.3965b 0.7954a 1.0884a 1.2214a 1.1425a 
  (0.1561) (0.1732) (0.1452) (0.2369) (0.2260) 
EBR(F$,$#E 0.3438c 0.0824 -0.1408 -0.2122 -0.3558b 
 (0.1813) (0.1511) (0.1374) (0.1629) (0.1676) 

Constant 0.0002 0.0032 0.0065 0.0344 0.1591c 
  (0.0026) (0.0059) (0.0167) (0.0661) (0.0893) 
Obs 504 502 493 469 445 
Adj R2 6% 16% 47% 47% 57% 

 

EBRs and actual returns are significantly positively correlated for the HML portfolio, 

especially at longer horizons.  The 𝑅7 also sharply rises with the horizon: it is 4% at one 

month and 40% or more at horizons of one to five years.  Expectations thus contain 

substantial information about the news perceived by the market. Consistent with Equation 

(11), the estimated coefficient on EBRs is close to one, and statistically indistinguishable 

from it, at most horizons.  It is smaller than one at the monthly horizon, arguably because 

analyst forecasts are a noisier proxy for market beliefs at higher frequencies. 
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Crucially, the regression constant capturing the HML premium is small in magnitude 

and statistically indistinguishable from zero at all horizons over one month. After accounting 

for the average difference in “perceived cash flow news” with EBRs, there is no systematic 

value spread left for risk to explain. Our first test rejects the joint hypothesis of market 

efficiency and constant required returns. This conclusion holds even if we allow for analysts 

to form expectations in part by inferring their forecasts from prices. 

BGLS (2024) show that the HML spread is also predicted by lagged aggregate 

optimism, as measured by high expectations of long-term aggregate earnings growth, high 

𝐿𝑇𝐺", suggesting that at least part of the value spread is driven by a predictable, aggregate 

expectations ‘factor’.  In Table 3 Panel B we run a horse race between the market-level 

contemporaneous expectations-based return EBR,N",","$E  and the portfolio one EBRF,+,","$E, 

in accounting for the contemporaneous return spread. 20  The results indicate that the value 

premium is largely due to cross sectional cycles in expectations, as proxied by EBRF,+,","$E. 

Expectational boom and bust patterns obtain in the cross section, just as they do in the 

aggregate stock market (BGLS 2024). 

 

3.2 Decomposing EBRs into Forecast Errors and Revisions 

Instead of computing EBRs, we can use Equation (3) to regress realized returns on 

contemporaneous forecast errors and revisions at different horizons. This strategy is 

informative for two reasons. First, it allows us to separately assess the explanatory power of 

different belief components (which are linked to distinct belief biases). Second, it relaxes the 

parametric restrictions embedded in our computation of EBRs and the assumptions about 

long-term expectations. This constitutes a robustness check and allows forecasts (available up 

to 5 years ahead) to capture correlated variation in unmeasured longer-term beliefs. 

 
20 The market EBR is EBR(F$,$,$#E = ln W∑ 𝛼G0" "

|(|
∑ EBR%,$#G0",$#G%∈(F$

E
G>" X, see Section 2.2. 
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We perform the decomposition at the yearly horizon or above (earnings are published 

quarterly so we refrain from computing forecast errors at a 1- or 3-month frequency). For one 

and three years horizons, ℎ = 12, 36, we compute the firm level forecast error as the 

difference between realized one or three year earnings growth and the growth expected one 

or three years prior 𝐹𝐸!,"$E = ln	 Z@?-,,*-J
@?-,,*

[ − ln v𝔼:"3 Z
@?-,,*-J
@?-,,*

[w.  At five-year horizons, we 

compute the forecast error using LTG as 𝐹𝐸!,"$;) = ln Z@?-,,*-KL
@?-,,*

[ /5 − 𝐿𝑇𝐺!,".  We compute 

revisions of short-term growth forecasts, ℎ = 12,24, as ΔE𝑆𝑇𝐺!,"$E = /𝔼:"$E3 −

𝔼:"33𝑙𝑛 Z
@?-,,*-J-./
@?-,,*-J

[ and revisions of long-term forecasts as ΔE𝐿𝑇𝑅!,"$E = 𝐿𝑇𝐺!,"$E − 𝐿𝑇𝐺!,".    

Under rational expectations, forecast errors 𝐹𝐸!,"$E and revisions ΔE𝑆𝑇𝐺!,"$E are 

mean zero (formally, a martingale difference), so they meet the assumptions for testing 

market efficiency with Equation (11). The case of LTG revisions is slightly more 

complicated because LTG captures forecasts with over horizons of 3 to 5 years. Thus, 

ΔE𝐿𝑇𝐺!,"$E includes a component of revisions for fixed horizons (up to year 𝑡 + 4 when 

considering yearly LTG changes), but also a shift in the forecast horizon (year 𝑡 + 5). The 

shift in the forecast horizon implies that even under rational expectations ΔE𝐿𝑇𝐺!,"$E is not 

strictly a martingale difference sequence, at least when considering revisions over one year or 

more (the problem is arguably limited at the monthly horizon).  Therefore, as a robustness 

check we estimate Equation (11) omitting LTG revisions.  Our results are robust because 

much explanatory power comes from pure forecast errors and revisions (see Appendix B2).21 

We aggregate each measure of forecast error and revision at the portfolio level, e.g. 

for the forecast error we compute 𝐹𝐸A,"$E =
%
|A|
∑ 𝐹𝐸!,"$E!∈A  and analogously for forecast 

revisions.  We use the differences in these aggregated forecast errors and revisions between 

 
21 This concern does not apply to the analysis on return predictability in Section 4. 
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the long and short portfolios as explanatory variables for contemporaneous long minus short 

return spreads.22  Table 4 shows the results. 

Table 4 
Portfolio level forecast errors and revisions predict spreads 

Note: This table presents multivariate regressions of log returns for the long-short value minus growth (HML) 
portfolio for horizons (h) of one-year, three-years, and five-years,  𝑟D(',$,$#E. The independent variables 
include: (a) spreads in forecast errors between 𝑡 and 𝑡 + ℎ, 𝐹𝐸D(',$#E (defined in the text),	 (b) spreads in 
forecast revisions for short-term earnings growth between 𝑡 and 𝑡 + ℎ, ΔE𝑆𝑇𝐺D(',$#E	(defined in the text), and 
(c) spreads in changes in long-term growth forecasts between 𝑡 and 𝑡 + ℎ, ∆E𝐿𝑇𝐺D(',$#E. All independent 
variables have unit standard deviation. Standard errors are corrected for overlapping observations using the 
Newey-West (1987) procedure. The sample period spans from December 1981 to December 2023. 
Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 10% level. 

  Dep. variable: 𝑟D(',$,$#E 
 ℎ = 12 ℎ = 36 ℎ = 60 
 (1) (2) (3) 
𝐹𝐸D(',$#E 0.1318a 0.1743a 0.1413a 
 (0.0134) (0.0261) (0.0376) 
ΔE𝑆𝑇𝐺D(',$#E 0.0808a 0.0575b -0.0240 
 (0.0127) (0.0248) (0.0289) 
∆E𝐿𝑇𝐺D(',$#E 0.0276a 0.0182 0.0665c 
 (0.0094) (0.0207) (0.0346) 
Constant -0.1111a -0.2847a -0.3308a 
 (0.0213) (0.0634) (0.0872) 
Obs 493 469 445 
Adj R2 53% 48% 45% 

 

The expectation components are strongly predictive of HML spreads, with forecast 

errors playing a dominant role in the multivariate regression (note that the regressors have 

unit standard deviation).  The pre-eminence of forecast errors for explaining HML suggests 

that returns reflect a disappointment in the short arm compared to the long arm, i.e. of growth 

stocks compared to value stocks.  Portfolio expectations revisions also play a role, so part of 

the HML spread is accounted for by systematically lower upward revisions or larger 

downward revisions of future prospects for growth firms relative to value firms, particularly 

over the first two years.  

Consistent with our previous findings, the constant terms in Table 4 suggest that the 

average returns spreads are entirely explained by expectations.  The regression constants in 

 
22 Following the logic of the Campbell-Shiller firm-level decomposition, we are averaging logs, which 
implicitly drops firms with negative 𝐸𝑃𝑆%,$ and/or 𝐸𝑃𝑆%,$#E. 
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Table 4 are all negative, and often statistically significant, contrary to the hypothesis of a 

positive time-constant required return spread between value and growth stocks. 

In sum, the systematic return spreads on the Fama French HML factor are explained 

by EBRs, and in particular by systematic differences in forecast errors and revisions (Tables 

3 and 4).  Taking these into account, there is little evidence of systematic differences in 

required returns.  Growth stocks do worse when optimism for them falls relative to that for 

value stocks, and they do worse on average because such optimism happens more than its 

reverse, in line with La Porta et al (1997). In principle, the expectations mechanism implies 

that the value spread may be predictably negative when the prospects of high growth firms 

are underestimated relative to those of value firms.  We later assess this possibility. 

 

4.  The Value Premium and Market Efficiency under time varying required returns 

We next allow required returns to vary over time. This case is important because 

spreads exhibit dramatic variation over time, as shown in Figure 1.  This variation has led 

many researchers to compare time variation in required returns with systematic mispricing 

(Merton 1973, Lettau Ludvigson 2001, Lewellen Nagel 2006, Lochstoer and Tetlock 2020, 

Campbell, Giglio, and Polk 2023). Second, and crucially, previous work has shown that 

analysts’ forecasts of earnings growth are not rational: lagged forecasts predict future errors 

and revisions (BGLS 2019, 2024). We can then assess whether nonrationality of analyst 

forecasts can account for predictable time variation in return spreads using the tests 

developed in Section 2.2.  

We test the efficient markets null by estimating Equation (12), which amounts to 

running a horse race between current measured expectations ∑ 𝜌'𝔼:"3/𝑔F,+,"$%$'3'()  and 

price dividend ratio 𝑝𝑑+,-," = 𝑝𝑑F," − 𝑝𝑑+," in predicting future return spreads 𝑟F,+,"$%.  If 

the market is efficient and analysts partially infer expectations from prices under a wrong 
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required return model, the price dividend ratio should strongly negatively predict future 

return spreads, while analyst expectations should positively predict future returns.  The test 

rejects market efficiency if either of these restrictions fails. 

As described in Section 2, we capture measured expectations with short-term growth 

forecasts  𝑆𝑇𝐺F,+," and long-term growth forecasts, 𝐿𝑇𝐺F,+," (expectations for longer 

horizons are not available). Following BGLS (2024), we decompose these expectations in 

terms of lagged levels, 𝐿𝑇𝐺F,+,"*E, and current revisions ΔE𝐿𝑇𝐺F,+," = 𝐿𝑇𝐺F,+," −

𝐿𝑇𝐺F,+,"*E, which provide two measures of optimism, and similarly for short-term forecasts, 

𝑆𝑇𝐺F,+,"*E and ΔE𝑆𝑇𝐺!," = /𝔼:"3 − 𝔼:"*E3 3𝑙𝑛 Z@?-,,*-J-.
@?-,,*-J

[.  We also include lagged forecast 

errors, 𝐹𝐸F,+,"*E,", which are serially correlated under either over- or under-reaction.23 

Finally, we also include other measures of current optimism, namely levels and revisions of 

forecasts of aggregate growth, which BGLS (2024) show predict future HML spreads. 

Independent variables have unit standard deviations to allow for a quantitative comparison of 

explanatory power. 

Table 5 presents the results for HML long minus short portfolio.  The last row of 

Table 5 presents the 𝑅7 of a univariate regression of 𝑟F,+,","$E on 𝑝𝑑!"#,%. 

Table 5 
Predicting future return spreads from expectations data 

Note: This table presents regressions of log returns for the long-short value minus growth (HML) portfolio 
𝑟D(',$,$#E. Separate regressions are estimated for horizons (h) one-month, one quarter, and one, three and five 
years. The set of independent variables includes: (a) the portfolio log price-dividend ratio at time t, 𝑝𝑑D(',$, 
(b) the change in the portfolio forecast for long-term earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝐿𝑇𝐺D(',$, (c) 
the lagged portfolio forecast for long-term earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺D(',$0E, (d) the change in the 
portfolio forecast for short-term earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝑆𝑇𝐺D(',$ (defined in the text), (e) 
the lagged portfolio forecast for short-term earnings growth at 𝑡 − ℎ, 𝑆𝑇𝐺D(',$0E,  (f) the portfolio forecast 
error in earnings between 𝑡 − ℎ and 𝑡, 𝐹𝐸D(',$0E,$ (defined in the text), (g) the change in the aggregate 
forecast for long-term aggregate earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝐿𝑇𝐺(F$,$, and (h) the forecast for 
long-term aggregate earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺(F$,$0E. All independent variables have unit standard 
deviation. The last row reports the R2 from a univariate regression of  𝑟'(),$#E on 𝑝𝑑'(),$.  Standard errors are 
corrected for overlapping observations using the Newey-West (1987) procedure. The sample period is from 
December 1981 to December 2023. Superscripts: a significant at the 1% level, b significant at the 5% level, 
c significant at the 10% level.  

 
23 Lagged forecast errors 𝐹𝐸D(',$0E,$ are defined analogously to the contemporaneous forecast errors 𝐹𝐸D(',$#E 
defined above Table 4 (the notation makes the forecasted period explicit). 
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 Dep	variable:	𝑟D(',$,$#E 

 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

 (1) (2) (3) (4) (5) 

𝑝𝑑D(',$ 0.0057 -0.0301 -0.0256 -0.0273 -0.3057
b
 

 (0.0187) (0.0454) (0.1778) (0.2592) (0.1451) 
ΔE𝐿𝑇𝐺D(',$ 0.0045

c
 0.0093 -0.0864

b
 -0.0556

c
 0.0438 

 (0.0026) (0.0074) (0.0350) (0.0332) (0.0320) 
𝐿𝑇𝐺D(',$0E -0.0190 -0.0395 -0.2779

c
 -0.4239 -0.2472 

 (0.0143) (0.0364) (0.1669) (0.2733) (0.1980) 
ΔE𝑆𝑇𝐺D(',$ -0.0022 0.0017 0.0459

a
 0.0808

a
 0.1061

a
 

 (0.0023) (0.0075) (0.0171) (0.0256) (0.0339) 
𝑆𝑇𝐺D(',$0E 0.0158 0.0676

b
 0.2209

a
 0.4318

a
 0.2701

c
 

 (0.0105) (0.0341) (0.0645) (0.0994) (0.1382) 
𝐹𝐸D(',$0E,$      0.0424

c
 0.0329 -0.1039

a
 

     (0.0236) (0.0422) (0.0304) 
ΔE𝐿𝑇𝐺(F$,$ -1.3527

c
 0.6327 1.1462 2.4281 8.1230

a
 

 (0.7412) (0.9656) (1.3897) (1.6632) (1.6512) 
𝐿𝑇𝐺(F$,$0E 0.1895

c
 0.5294 1.4495 6.5183

a
 6.2778

a
 

 (0.1003) (0.3283) (1.3405) (1.8266) (2.1769) 
Constant -0.0401

b
 -0.1147

b
 -0.4006

b
 -1.0748

a
 -1.2718

a
 

  (0.0164) (0.0533) (0.1875) (0.3408) (0.3522) 
Obs 444 442 433 409 385 
Adjusted R2 5% 7% 18% 26% 69% 

Univariate R2  0% 1% 3% 1% 5% 
 

Contrary to the efficient markets hypothesis, and accounting for “price-based 

inference”, the price dividend ratio is mostly insignificant when controlling for expectations. 

The sign is often negative, consistent with Equation (12), but is only marginally significant at 

the 5 years horizon.  This implies that some required return variation may exist, but it is too 

small to meaningfully contribute to the predictability of the portfolio return spreads.  

Expectations have instead a strong predictive power for the future HML return spread, even 

at the short 1-month horizon, a challenging test, and increasing for longer horizons.  

The dividend price ratio’s explanatory power in univariate regressions is negligible, 

as seen by the univariate 𝑅7 shown in the last row. Adding expectations leads to a much 

higher adjusted 𝑅7 in all specifications, for example increasing from 3% to 18% at 1-year 
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horizon, and from 5% to 69% at a 5-year horizon. These results are robust to using other 

valuation ratios, such as book to market (Appendix C).24, 25  

Importantly, and again inconsistent with market efficiency, long-term growth 

forecasts negatively predict future returns. This is consistent with overreaction, in line with 

previously documented analyst long-term overreaction to news (BGLS 2019, 2024): given 

good news on the long arm of the portfolio compared to the short one, analysts become too 

optimistic about the long-term growth of the HML portfolio, which inflates the current 

portfolio price and generates predictably low returns as expectations are corrected.26  

Short-term expectations instead predict returns positively. A positive coefficient is not 

a symptom of belief distortions per se (see the positive coefficient on expectations in 

Equation (12)) but, given the lack of predictive power of the dividend price ratio, it is 

suggestive of a belief distortion: specifically, under-reaction of short-term growth forecasts. 

After receiving positive cash flow news for the HML portfolio, analysts revise their near-

term expectations too little, which predicts upward expectations revisions and hence positive 

HML returns going forward.  Short-term under-reaction is also consistent with prior 

independent evidence from Bouchaud et al. (2019), who document underreaction of short-

term analyst expectations and use it to account for the profitability anomaly.   

 
24 These results are consistent with market growth expectations driving cross-sectional spreads, because prices 
incorporate those expectations. Note that aggregate returns are strongly predicted by aggregate 𝑝𝑑, yet also in 
that case current measured expectations explain future aggregate returns controlling for prices (BGLS 2024).  
To further control for inference from prices, we repeat the analysis replacing the valuation ratio by the return 
spread, which is in closer correspondence with the forecast revisions and errors over the corresponding horizon, 
as well as with the book-to-market ratio.  The results are very similar, see Table C3 in Appendix C. 
25 Nagel (2024) raises the possibility that expectations may exhibit independent predictive power because prices 
may be influenced by short term factors, such as short-term cash flow variation. It seems implausible that cash 
flow expectations inferred under a wrong required return model would be a better proxy for market required 
returns than the prices from which the same expectations are inferred, and therefore also implausible for EBRs. 
26 Note that the specification in Table 5 is very demanding: whether or not market efficiency holds, and for any 
level of price inference, the pd variable also reflects measured expectations.  It is therefore not surprising that 
coefficients on expectation variables are not statistically significant in all specifications.  In Table C1 in the 
Appendix, we run the same specification of Table 5 but omit the 𝑝𝑑 ratio.  The evidence on overreaction of 
LTG is considerably strengthened, and in particular the lagged level of LTG significantly, and negatively, 
predicts returns at all horizons. 
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Taken together, our results show that returns are predictable from measured 

expectations of earnings growth at the portfolio level (as well as at the aggregate and firm 

level, BGLS 2024). There is no evidence that these expectations erroneously capture discount 

rates inferred from prices, which would entail negative return predictability from the price 

dividend ratio. 

If market efficiency is rejected, how do current expectations predict future returns?  

The previous discussion suggests that return spreads may be explained, at least in part, by the 

unfolding of predictable market expectations errors as proxied by predictable forecast errors 

and revisions, for both short- and long-term forecasts, incorporated into EBRs.  To directly 

assess this mechanism, we perform a two-step exercise. In the first stage, we use the variables 

in Table 5 to predict future EBR spreads of long-short portfolios at time 𝑡 + 1. This assesses 

the non-rationality of expectations, because EBRs, as a combination of forecast errors and 

revisions, should not be predictable if expectations are rational.  We also control for the price 

dividend ratio, which would absorb predictability of future EBRs under the price-based 

inference hypothesis. In the second stage, we test the ability of the EBRs predicted from 

expectations, which we denote by EBR{F,+,"→"$%, to explain contemporaneous returns, again 

controlling for the price dividend ratio: 

𝑟F,"$% − 𝑟+,"$% = 𝛼 + 𝛽 ∙ EBR{F,+,"→"$% + 𝛾 ⋅ 𝑝𝑑F,+," + 𝑣"$%																											 

Compared to Equation (12), this test ties return differentials to error predictability, the 

hallmark of non-rationality, and allows a quantitative assessment of predicted EBRs.  

The first stage 𝑅7 is presented in the last row of Table 6 (see Appendix C, Table C4 

for the full first stage results). EBRs are strongly predicted by lagged expectations, reflecting 

systematic predictability of forecast revisions and errors. As in Table 5, these capture 

overreaction of beliefs of long-term growth and under-reaction of beliefs of short-term 

growth, especially for horizons of a year and longer.  Second stage results appear in Table 6.   
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Table 6 
Non-rational expectations and predictable returns 

Note: This table presents second-stage regressions for the long-short value minus growth (HML) portfolio, 
𝑟D(',$,$#E.  The first-stage regressions –reported in Table C4-- predict long-short EBRs using the independent 
variables in Table 5. In the second stage we regress log returns on predicted EBRs and the log price-dividend 
ratio (𝑝𝑑D(',$). The price dividend ratio 𝑝𝑑D(',$ has unit standard deviation. Separate regressions are 
estimated for each horizon: one-month, one quarter, one-, three- and five years.  The last row of the table 
presents the 𝑅3s from the first stage regressions. Superscripts: a significant at the 1% level, b significant at the 
5% level, c significant at the 10% level. 

 𝑟!"#,%,%&' 
  ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 
  (1) (2) (3) (4) (5) 
𝐸𝐵𝑅+!"#,%,%&' 1.3267a 0.9367a 1.0656a 1.5689a 1.6707a 
 (0.4452) (0.3548) (0.2814) (0.4504) (0.3362) 
𝑝𝑑!"#,% -0.0131 -0.0494c -0.1343b -0.1231 -0.2950b 
 (0.0097) (0.0293) (0.0651) (0.1405) (0.1195) 
Constant -0.0039 -0.0145 -0.0577b -0.1333c -0.2169a 

  (0.0040) (0.0125) (0.0254) (0.0795) (0.0720) 

Obs 444 442 433 409 385 

Adjusted 𝑅3 4% 6% 18% 24% 55% 

1st stage 𝑅3 14% 28% 32% 34% 42% 
 

Table 6 shows that actual spreads load strongly on predicted EBRs, with all 

coefficients highly significant and indistinguishable from 1 for horizons up to a year. 

Coefficients are above one for longer horizons (suggesting that for such horizons current 

expectations have stronger predictive power for future returns than that captured in predicted 

EBRs). The loadings on the price dividend ratio are instead small compared to those of EBRs 

and often insignificant or marginally significant. Intercepts for actual return spreads are 

negative and mostly insignificant, confirming that EBRs, and in particular their predictable 

component, can account for the observed spreads in actual returns.27   

These results reject a market efficiency explanation of the value premium, consistent 

with the view that return spreads capture, at least in part, the unfolding of predictable errors 

 
27 Appendix C extends the analysis in Table 6 to the firm level (Table C.4): we predict firm level EBRs using 
the expectation variables in Table 5, and then run a horse race between predicted future firm level EBRs and 
current firm level valuation ratios to explain future firm level returns.  Predicted EBRs again explain future 
returns at all horizons and firm valuation ratios have little predictive power except at long horizons. This firm-
level analysis adds to the evidence that expectations are not spuriously capturing information about required 
returns. 
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of market expectations, as proxied by predictable EBRs: excess optimism about a portfolio is 

systematically disappointed in the future, leading to low predictable returns. Consistent with 

this view, Engelberg et al (2018) show that such cross-sectional returns accrue mainly on 

cash flow news events when forecast errors materialize, in line with measured expectations 

capturing market expectations and being systematically surprised. 28  

While this mechanism generates outperformance of value portfolios after periods of 

high optimism about growth stocks, it can also produce the reverse; at times of strong relative 

optimism about value stocks, or equivalently pessimism about growth, future predicted EBRs 

can be negative. This finding is inconsistent with any model of a risk averse marginal 

investor in which characteristics capture required returns, even of time varying magnitude. 

In sum, the analysis of expectations data and their role in return predictability is hard 

to square with the hypothesis of efficient markets with time varying required returns, even 

accounting for “price-based inference.” Measured expectations contain genuine information 

about non-rational market beliefs that affect prices and help predict future returns. 

 

5. Other standard factors 

We repeat the analysis of Sections 3 and 4 for the size, investment, profitability and 

momentum anomalies. Table 7 presents our estimates of equation (8) for these factors.  

Table 7 
Actual and expectations based long short portfolio return spreads 

Note: This table presents univariate regression results for log returns, 𝑟'(),$,$#E, against expectations-based 
returns (EBRs) for four distinct long-short (𝐿𝑀𝑆) portfolios.  The portfolios examined are: (1) SMB, which is 
long stocks in the bottom decile of market capitalization and short stocks in the top decile,  (2) CMA, which is 
long stocks in lowest quintile of one-year asset growth and short stocks in highest quintile, (3) RMW, which is 
long stocks in the highest quintile of operating profitability and short stocks in the lowest quintile, and (4) 
WML, which is long stocks in the top quintile of returns during period 𝑡 − 11 through 𝑡 − 1 and short stocks in 

 
28 A growing literature seeks to explain such time variation under a decomposition of returns into shocks to 
discount rates or shocks to cash flow expectations, similar to Equation (3).  This approach typically assumes that 
changes in prices or characteristics such as book to market capture shocks to discount rates, and to assign 
residual movement in returns to expectations (Vuolteenaho 2002, Campbell and Vuolteenaho 2004). This work 
has found a small role for discount rate shocks in accounting for time variation in cross-sectional spreads 
(Lochstoer and Tetlock 2020, Campbell et al. 2023), consistent with our finding that valuation ratios fail to 
predict return spreads.  
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the bottom quintile of returns during the same period. We estimate separate regressions for one-month, three-
months, one-year, three-years, and five-years horizons. Standard errors are corrected for overlapping 
observations using the Newey-West (1987) procedure. The sample period extends from December 1981 to 
December 2023.  Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 10% 
level. 

  Dep. variable:	𝑟'(),$,$#" 
 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
Size (SMB) (1)	 (2)	 (3)	 (4)	 (5)	
𝐸𝐵𝑅'(),$,$#E 0.5698a	 0.7813a	 1.1470a	 1.1858a	 1.0915a	
  (0.1304)	 (0.1559)	 (0.1779)	 (0.1787)	 (0.2321)	
Constant 0.0027	 0.0092c	 0.0177	 0.0365	 0.0698	
  (0.0017)	 (0.0049)	 (0.0134)	 (0.0291)	 (0.0485)	
Adj 𝑅3 5%	 12%	 34%	 55%	 49%	
 	 	 	 	 	

 Investment (CMA) ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

EBR'(),$,$#E 0.2743a 0.4859a 0.8019a 0.7562a 0.8602a 

  (0.0945) (0.0931) (0.1291) (0.1857) (0.1404) 

Constant 0.0030b 0.0041 -0.0116 -0.0142 -0.0424 

  (0.0012) (0.0032) (0.0130) (0.0411) (0.0282) 

Adj 𝑅3 3% 10% 36% 27% 42% 
      
Profitability (RMW) ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

EBR'(),$,$#E 0.2975a 0.4276a 0.4877a 0.5502a 0.6400a 
  (0.1087) (0.1101) (0.1464) (0.0756) (0.0830) 

Constant 0.0035b 0.0118a 0.0406a 0.0755a 0.0965a 
  (0.0014) (0.0035) (0.0107) (0.0161) (0.0202) 

Adj 𝑅3 2% 7% 16% 33% 42% 

      

Momentum (WML) ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

EBR'(),$,$#E 0.1214 0.5786a 0.7418a 0.7299a 0.5738a 
  (0.0991) (0.1268) (0.1692) (0.1427) (0.1343) 

Constant 0.0000 -0.0499a -0.1499a -0.1251a -0.1055a 
  (0.0044) (0.0166) (0.0412) (0.0313) (0.0323) 

Adj 𝑅3 0% 10% 29% 50% 33% 

Obs 504 502 493 469 445 
 

As with HML, EBRs returns have strong explanatory power for actual spreads across 

these portfolios.  The slope coefficients are large, statistically significant, and increase with 

the holding horizon. For SMB, CMA and RMW, magnitudes are comparable to those 

obtained for HML returns: for size and investment the coefficients are close to, or statistically 
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indistinguishable from, the benchmark value of 1 at longer horizons. For momentum, and 

especially for profitability, they are lower than 1 although still substantial throughout.    

Turning to our main test, the intercepts are either small and statistically 

indistinguishable from zero, or negative, except for investment at the one-month horizon and 

for profitability. This result for profitability is in line with Table 1, where the average EBR is 

higher for low profitability firms, while actual returns go in the opposite direction.  

Momentum has a negative spread, which may be consistent with winners being deemed safer 

than losers.  

These patterns are confirmed in the EBR decomposition exercise, reported in 

Appendix B (Table B6): spreads in forecast errors and revisions positively and significantly 

predict return spreads and the intercepts are either small and insignificant (for investment and 

profitability) or negative (for size and momentum, as well as for HML as shown in Table 4). 

Finally, we perform our analysis of return predictability, i.e. testing the null of market 

efficiency with time varying required returns, on the size, investment, profitability and 

momentum following Equation (12).  The results mirror those for HML (Tables 5 and 6): 

current expectations also have overwhelming predictive power for future return spreads on 

these portfolios, while the portfolios price-dividend ratio has no predictive power, except for 

size and momentum at the 5-year horizon (see Table C.1; Table C.2 repeats the analysis using 

𝑏𝑚 and lagged returns as proxies for required returns).  Table 8 shows the horse race between 

the portfolios’ price dividend ratio and predicted EBRs, as in Table 6.  For brevity, we focus 

on the one-month and one-year horizons. 

Table 8 
Non-rational expectations and predictable returns 

Note: This table presents two-stage regressions of log returns for for four distinct long-short (𝐿𝑀𝑆) portfolios, 
𝑟'(),$,$#E.  The portfolios examined are: (1) SMB, which is long stocks in the bottom decile of market 
capitalization and short stocks in the top decile,  (2) CMA, which is long stocks in lowest quintile of one-year 
asset growth and short stocks in highest quintile, (3) RMW, which is long stocks in the highest quintile of 
operating profitability and short stocks in the lowest quintile, and (4) WML, which is long stocks in the top 
quintile of returns during period 𝑡 − 11 through 𝑡 − 1 and short stocks in the bottom quintile of returns during 
the same period. The first stage regressions – reported in Table C4 – predict long-short EBRs using the 
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independent variables in Table 5. In the second stage we regress returns on predicted EBRs and the log price-
dividend ratio, 𝑝𝑑'(),$. The price dividend ratio 𝑝𝑑'(),$ has unit standard deviation. Separate regressions are 
estimated for one-month, and one- year horizons.  The last row of the table presents the 𝑅3s from the first stage 
regressions. Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 10% level. 
 𝑟("#,%,%&' 𝑟)"*,%,%&' 𝑟+",,%,%&' 𝑟,"#,%,%&' 
  ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 
  (1) (2) (3) (4) (5) (6) (7) (8) 
𝐸𝐵𝑅+#"(,%,%&' 1.4470a 0.8375b 0.9758a 1.3952a 0.9479 -0.1958 1.1135b 0.8337a 

 (0.4084) (0.3716) (0.2722) (0.3535) (0.7012) (0.2713) (0.5053) (0.2897) 

𝑝𝑑#"(,% -0.0002 -0.0588 -0.0120 -0.1073b -0.0135 0.0127 -0.0058 -0.0746 

 (0.0088) (0.0813) (0.0079) (0.0427) (0.0119) (0.0635) (0.0077) (0.0577) 

Constant 0.0035 0.0762 -0.0065c -0.1038a 0.0015 0.0021 -0.0397c -0.1582a 

  (0.0070) (0.0681) (0.0037) (0.0333) (0.0033) (0.0286) (0.0205) (0.0595) 

Obs 444 433 444 433 444 433 444 433 

Adjusted 𝑅3 2% 12% 4% 24% 0% 0% 2% 18% 

1st stage 𝑅3 9% 46% 14% 17% 5% 30% 7% 51% 
 

 

As in Table 6, for all portfolios except profitability, the coefficients on the predicted 

𝐸𝐵𝑅+#"( are highly significant and indistinguishable from 1, while those on the price to 

dividend ratios are small and insignificant.  The size, investment, and momentum puzzles are 

also solved with expectations. As with HML, the market does not see conservative firms as 

riskier than aggressive ones, nor winners as riskier than losers. Instead, analysts and the 

market appear to hold systematically bullish expectations about firms in the short portfolios, 

compared to firms in the long portfolios, and the former do worse on average because that 

relative optimism systematically decreases.  

 

6. Characteristics and return predictability at the firm level 

If portfolio returns do not reflect systematic risk exposure, the rationale for portfolio level 

analysis diminishes because non-rational expectations can drive return predictability also at 

the firm level.  Here we take the first steps in this direction.  We ask two questions: first, if 

firm level returns are driven by idiosyncratic firm level beliefs, why should standard firm 

characteristic predict returns?  Second, given that forecast errors and revisions – and thus 
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future returns – are predictable from current news, can we tie return predictability to cash 

flow news? 

  One answer to the first question is that characteristics may capture non-rational 

beliefs rather than an elusive connection to risks. In this case, characteristics should also 

predict future firm level EBRs.  To assess this hypothesis, Table 9 regresses, at the firm level, 

future EBRs on current characteristics.  In Columns 1 through 5 we examine how firm level 

book to market, size, investment, profitability and momentum predict future EBRs. We do 

not include firm fixed effects here, because they may absorb the role of the measured 

characteristics themselves. 

Table 9 
Characteristics predict firm level EBRs 

Note: This table presents regressions of firm level log expectations-based returns at horizons (h) of one-month, 
three-months, one-year, three-years, and five-years, 𝐸𝐵𝑅%,$,$#E. The independent variables include: (a) log book-
to-market  ratio (𝑏𝑚%,$) at time 𝑡, (b) one-year growth in assets between 𝑡 − 1 and  t, 𝑖𝑛𝑣%,$, (c) log market value 
of equity at time t, 𝑠𝑖𝑧𝑒%,$,  (d) operating profitability at time 𝑡, 𝑜𝑝%,$,  and (e)  returns between periods 𝑡 − 12 
and 𝑡, 𝑟%,$0"3,$.  All specifications have firm fixed effects. Standard errors are corrected for overlapping 
observations and cross-correlations using the Driscoll and Kraay (1998) procedure.  Except for 𝑟%,$0"3,$, all 
independent variables have unit standard deviation.  The sample period spans from December 1981 to 
December 2023.  Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 10% 
level. 
 

  Dep. variable:	𝐸𝐵𝑅%,$,$#E 

 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

  (1) (2) (3) (4) (5) 

𝑏𝑚%,$ 0.0019a 0.0074a 0.0450a 0.1110a 0.1543a 

 (0.0005) (0.0024) (0.0101) (0.0194) (0.0191) 

𝑠𝑖𝑧𝑒%,$ -0.0021a -0.0081a -0.0364a -0.0660a -0.0704a 

  (0.0002) (0.0011) (0.0031) (0.0056) (0.0093) 

𝑖𝑛𝑣%,$ -0.0018a -0.0047a -0.0050 0.0055 0.0130 

  (0.0003) (0.0010) (0.0045) (0.0101) (0.0116) 

𝑜𝑝%,$ 0.0090a 0.0135a -0.0708a -0.2604a -0.3516a 

  (0.0008) (0.0029) (0.0149) (0.0551) (0.0795) 

𝑟%,$0"3,$ 0.0136a 0.0387a 0.0652a 0.0242b 0.0206b 

  (0.0007) (0.0030) (0.0098) (0.0110) (0.0102) 

Obs 875,404 815,293 772,240 594,850 474,100 

Adj R2 0% 2% 2% 7% 13% 
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On their own, characteristics have strong and highly significant predictive power for 

EBRs (columns 1 to 5).  Low book to market, high investment and low past returns predict 

subsequent disappointment and low EBRs at all horizons, consistent with the average spread 

of the corresponding factors.29 Interestingly, large firms have higher short-term EBRs but 

lower EBRs at horizons of one year and longer. Of all characteristics, only profitability does 

not reliably predict EBRs once other characteristics are controlled for. 

In Appendix D, we further examine the link between characteristics and market 

inefficiency. In a mediation exercise (MacKinnon 2012) we estimate the share of return 

predictability from characteristics that works through their ability to predict analyst 

expectations (versus the share that works through their direct predictive ability after 

controlling for EBRs).  We find that, to a large extent, characteristics predict returns precisely 

because they capture distorted expectations (Table D1).  Following BGLS (2024), we also 

assess the extent to which firm-level return predictability from the book to market ratio is 

accounted for by future expectation errors and revisions, and find that, particularly for longer 

horizons, the strong predictability of 𝑏𝑚!," is entirely captured by expectations (Table D2).   

Finally, since expectations are not rational, future forecast errors and revisions – and 

therefore future returns – should be predictable from current news.  These could include 

intangible news, as in Daniel and Titman (2006), but also tangible news such as growth in 

earnings or sales, as in BGLS (2024). The latter possibility is particularly informative 

because, by directly linking future returns to current news, it constitutes clear evidence of the 

expectations channel. To assess it, we regress firm level returns on lagged news, proxied by 

 
29 These results are consistent with recent work linking characteristics and expectations data. Frey (2023) 
examines a large number of factors and finds that short term growth expectations between the long and short 
arm to converge.  Gormsen and Lazarus (2023) find that characteristics associated with the short arm of factors, 
such as low book to market, high investment, low profitability, high beta and low payout, predict high 𝐿𝑇𝐺. 
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growth in sales (Table 10, panel A) or growth in earnings (panel B), crucially controlling for 

a proxy for required returns such as lagged book-to-market or lagged return.30 

Table 10 
Tangible news predict future returns at the firm level 

Note: This table presents firm-level regressions of log returns across holding horizons (h) of one month, one 
year, and five years. Panel A includes as independent variables: (a) log sales-per-share growth between t-h and t	
ΔE𝑠𝑝𝑠%,$0E,$, (b) log firm-level returns between t-h and t, 𝑟%,$0E,$, and (c) log book-to-market ratio, 	
𝑏𝑚%,$. Panel B replaces ΔE𝑠𝑝𝑠%,$0E,$ with log earnings-per-share growth between t-h and t, ΔE𝑒𝑝𝑠%,$0E,$, as an 
independent variable, while retaining log firm-level returns and the log book-to-market ratio. All specifications 
include firm and time fixed effects.  Except for lagged returns, all independent variables have unit standard 
deviation. Standard errors are corrected for overlapping observations and cross-sectional dependence using the 
Driscoll and Kraay (1998) procedure. The sample includes all firms on CRSP and COMPUSTAT during the 
period spanning December 1981 to December 2023. Superscripts indicate significance levels: a at 1%, b at 5%, 
and c at 10%. 

Panel A. Lagged growth in sales per share 
  Dep. variable:	𝑟%,$,$#M 

  ℎ = 1 ℎ = 12 ℎ = 60 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

ΔE𝑠𝑝𝑠%,$0E,$ 0.0027a 0.0027a 0.0030a -0.0202a -0.0168a -0.0103a -0.1045a -0.0828a -0.0735a 
  (0.0004) (0.0004) (0.0004) (0.0030) (0.0029) (0.0024) (0.0085) (0.0110) (0.0106) 

𝑟%,$0E,$   -0.0049a     -0.0334a     -0.1199a   

    (0.0014)     (0.0113)     (0.0138)   

𝑏𝑚%,$     0.0078a     0.0837a     0.2811a 

      (0.0013)     (0.0125)     (0.0400) 

Obs 1,210,205 1,210,205 1,206,866 1,086,584 1,085,718 1,085,492 629,062 625,433 628,507 
Adj R2 -1% -1% -1% -1% 0% 1% 1% 3% 6% 

 
Panel B. Lagged growth in earnings per share 

  Dep. variable:	𝑟%,$,$#M 

  ℎ = 1 ℎ = 12 ℎ = 60 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

ΔE𝑒𝑝𝑠%,$0E,$ 0.0633a 0.0659a 0.0664a 0.0666a 0.0700a 0.0718a -0.0006 0.0126b 0.0157a 
  (0.0027) (0.0027) (0.0026) (0.0034) (0.0035) (0.0032) (0.0060) (0.0057) (0.0051) 
𝑟%,$0E,$   -0.0422a     -0.0335a     -0.0561a   
    (0.0071)     (0.0083)     (0.0168)   
𝑏𝑚%,$     0.0096a     0.0263a     0.0912a 
      (0.0010)     (0.0029)     (0.0116) 
Obs 1,007,395 1,007,395 1,005,149 985,406 985,326 985,087 871,936 871,443 871,273 
Adj R2 -1% 0% 0% 0% 0% 1% -1% 0% 1% 

 

 
30 The results carry through when controlling for the dividend price ratio, but since firms do not always pay 
dividends, this variable has lower coverage at the firm level. 
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Table 10 confirms that strong performance of a firm, as measured by sales growth, negatively 

predicts returns.  Linking returns to lagged tangible news provides direct evidence of an 

overreaction mechanism, consistent with La Porta (1996) and BGLS (2024).   

 

7.Taking stock 

 We started the paper with a simple question: does understanding the cross-section of 

stock returns by firm characteristics require exotic risk factors, first introduced by Fama and 

French (1993)? The evidence we presented says no. We develop tests of the efficient market 

hypothesis with both constant and time varying required returns, and use analyst forecasts to 

tease out the role of risk and beliefs in driving prices in characteristic-based cross sections of 

stocks.  The risk premia identified by Fama and French appear to reflect corrections of 

measurable and predictable errors in expectations of earnings growth.  We see this result as a 

victory for financial economics, because it points to its ability to explain the data without the 

need for exotic risks.  

Our evidence shows that characteristics-based return spreads arise because 

expectations of future growth of firms in the short arm of the portfolios are systematically too 

optimistic relative to those of firms in the long arm, so that the long portfolio outperforms the 

short one as expectation errors are corrected.  Characteristics such as book to market or 

investment predict returns at least in part because they predict differential optimism and 

forecast errors. Notably, the same mechanism helps account for momentum.  Predictability 

from other characteristics may also work through expectations (van Binsbergen et al 2023, 

Frey 2023, Cho and Polk 2024). Crucially, the very same mechanism and expectations data 

account for aggregate stock return predictability (BGLS 2024), reconciling longstanding 

cross sectional and time series puzzles based on measurable analyst forecasts.  These findings 

have significant implications not just for asset pricing, but also for firm investment policies, 
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financial policies, and other decisions.  We conclude by highlighting two follow-up 

questions. 

The first question concerns the structure of expectations. Analyst beliefs can generate 

return co-movements across firms sharing similar characteristics because expectations 

themselves comove within groups of firms identified by those characteristics.  Where does 

such co-movement come from, and why does it lead firms with certain characteristics to be 

over-priced?  One possibility is that co-movement reflects the non-rational reaction of beliefs 

to common shocks hitting groups of firms or sectors.  Another possibility is that co-

movement in beliefs reflects spurious similarity of firms to their peers (Sarkar 2024). 

Understanding the structure of expectations may also shed light on the evidence that 

idiosyncratic risk is priced (Campbell et al 2001), because such firm-specific return 

differentials may also reflect time varying optimism about firm growth rather than 

compensation for firm specific risk. 

The second question concerns the required rate of return that the dividend discount 

model relies on. What are its properties and determinants?  In standard theory one component 

is the risk premium, which depends on the curvature of the utility of wealth and the quantity 

of risk, another component is interest rates, which are determined by time preference and 

technology. Yet, a large body of work using experimental and field data, including 

applications to the stock market (Benartzi and Thaler 1995, Barberis 2018), shows that risk 

attitudes depend on factors other than the marginal utility of wealth. It is also well known that 

interest rates themselves are highly volatile (Shiller 1980, Singleton 1980, Giglio and Kelly 

2018).  Psychology may also help understand where the required return comes from.  
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ONLINE APPENDIX 
 

Appendix A 
 
A.1 Tests of the Efficient Markets Hypothesis with inference from prices 
 

Consider the case with asset specific, time-invariant required returns.   Returns are: 

𝑟!,"$% = (𝑟! − 𝑟) + 𝑟 +8𝜌'/𝔼:"$% − 𝔼:"3/𝑔!,"$%$'3
'()

 

Here 𝔼:" denote market expectations of cash flow growth.  By differentiating this expression 

across portfolios, we obtain the test in Equation (6) in the case of no inference from prices. 

To account for inference, note that for each asset 𝑖: 

8𝜌'𝔼:"/𝑔!,"$%$'3
'()

= 𝑝𝑑!," −
𝑘 − 𝑟!
1 − 𝜌, 

Thus, 𝐸𝐵𝑅!" for asset 𝑖 at time 𝑡 can be written as: 

𝑟 +8𝜌'/𝔼:"$% − 𝔼:"3/𝑔!,"$%$'3
'()

= 𝑔"$% + 𝑘 + (𝑟 − 𝑟!) + 𝜌 ⋅ 𝑝𝑑!,"$% − 𝑝𝑑!," 

Now, our assumption of price inference is: 

8𝜌'𝔼:"3/𝑔!,"$%$'3
'()

= (1 − 𝜑)𝜆8𝜌'𝔼:"/𝑔!,"$%$'3
'()

+ 𝜑 Z𝑝𝑑" −
𝑘 − 𝑟
1 − 𝜌[ 

We use this assumption to write analyst 𝐸𝐵𝑅3s in terms of market 𝐸𝐵𝑅s.  Consider first the 

case of full inference, 𝜑 = 1.  Then: 

8𝜌'𝔼:"3/𝑔!,"$%$'3
'()

= 𝑝𝑑!," −
𝑘 − 𝑟
1 − 𝜌 

And so analyst EBRs can be written as: 

𝐸𝐵𝑅!,"$%3 = 𝑔"$% + 𝑘 + 𝜌 ⋅ 𝑝𝑑!,"$% − 𝑝𝑑!," 

where the key difference to market EBRs is that the return term (𝑟 − 𝑟!)	cancels out due to 

the analysts’ erroneous assumption about required returns. Taking the difference across 

portfolios, we find: 

𝐸𝐵𝑅+,-,"$%3 = 𝐸𝐵𝑅+,-,"$% + 𝑟+,- 

For general 𝜑: 

𝐸𝐵𝑅+,-,"$%3 = (1 − 𝜑)𝐸𝐵𝑅+,-,"$% + 𝜑=𝐸𝐵𝑅+,-,"$% + 𝑟+,-> = 𝐸𝐵𝑅+,-,"$% + 𝜑 ⋅ 𝑟+,- 

Introducing this in the expression for returns, we find Equation (11): 

𝑟!,"$% = (1 − 𝜑)𝑟+,- + 𝐸𝐵𝑅+,-,"$%3  



 52 

So the constant depends on the true return differential and on the extent of inference.  If there 

is full inference, the constant is zero even if there is a required return 𝑟+,-.   

 

Consider next the case of time-varying required returns.  From Equation (7), we obtain:	

𝔼:"/𝑟!,"$%3 = 𝑘% − (1 − 𝜌𝜂) ⋅ 𝑝𝑑!," + (1 − 𝜌𝜂) ⋅8𝜌'𝔼:"/𝑔!,"$%$'3
'()

																		(𝐴1) 

from which the test (10) follows in the case of no inference from prices (constant terms are 

gathered in 𝑘%).   Under inference from prices, the last term reads: 

8𝜌'𝔼:"/𝑔!,"$%$'3
'()

=
1

(1 − 𝜑)𝜆8𝜌'𝔼:"3/𝑔!,"$%$'3
'()

−
𝜑

(1 − 𝜑)𝜆 Z𝑝𝑑!," −
𝑘 − 𝑟
1 − 𝛼[ 

Inserting this in the previous equation yields: 
 

𝔼:"/𝑟!,"$%3 = 𝑘7 − (1 − 𝜌𝜂) Z1 +
𝜑

(1 − 𝜑)𝜆[ ⋅ 𝑝𝑑!," +
1 − 𝜌𝜂
(1 − 𝜑)𝜆 ⋅8𝜌'𝔼:3"/𝑔!,"$%$'3

'()

			(𝐴2) 

where constant terms are gathered in 𝑘7.  We test the null that expectations are rational, 

which yields Equation (12). 

 

A.2 Return predictability with non-rational growth expectations 

We next generalize the previous analysis by allowing for market expectations of returns, 

𝔼:" ∑ 𝜌'𝑟!,"$%$''() , and of growth rates, 𝔼:" ∑ 𝜌'𝑔!,"$%$''() , that need not be rational.  We 

keep for simplicity the functional form assumption on market expectations of returns: 

𝔼:"8𝜌'𝑟!,"$%$'
'()

=
𝔼:"/𝑟!,"$%3

ψ 																																																(𝐴3) 

for ψ > 0. This nests the case of rational expectations about required returns described by 

Equation (4), considered above, in which case ψ = 1 − 𝜌𝜂.  A benchmark of interest is that 

of i.i.d. required returns, with 𝜂 = 0 and ψ = 1.  Note that for such i.i.d. required returns, 

several non-rational models of expectations (such as diagnostic expectations or rational 

inattention) would also yield ψ = 1. As in the text, we allow for analysts to infer growth 

expectations from prices following equation (10).  To simplify notation, we omit the asset 

index 𝑖. 
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With these beliefs, the Campbell-Shiller decomposition implies: 

𝔼:"8𝜌'𝑟"$%$'
'()

=
𝑘.

1 − 𝜌 − 𝑝𝑑" + 𝔼
:"8𝜌'𝑔"$%$'

'()

 

which, using (A2) and (10), can be written as: 

𝔼:"(𝑟"$%) =
ψ𝑘!.

1 − 𝜌 − ψZ1 +
𝜑

(1 − 𝜑)𝜆[ 𝑝𝑑" +
ψ

(1 − 𝜑)𝜆 𝔼
:"38𝜌'𝑔"$%$'

'()

				(𝐴3) 

which generalises Equation (A.2). Because we now allow for non-rational expectations, we 

need to explicitly account for future news.  By the Campbell Shiller return decomposition, 

the realized return at 𝑡 + 1 is given by: 

𝑟"$% = 𝔼:"(𝑟"$%) − 𝑟"$%P + 𝑔"$%P 																																											(𝐴4) 

where 𝑔"$%P = /𝔼:"$% − 𝔼:"3∑ 𝜌'𝑔"$%$''()  and 𝑟"$%P = /𝔼:"$% − 𝔼:"3∑ 𝜌'𝑟"$%$''(%  are news, 

relative to time-𝑡 market expectations, about growth rates and required returns respectively. 

Inserting (A3) into (A4), we get the process for the future realized returns in terms of 

current analyst expectations of cash flow growth, current price dividend ratio, and future 

news: 

𝑟"$% = 𝑐) − 𝑐% ⋅ 𝑝𝑑" + 𝑐7 ⋅ 𝔼:"38𝜌'𝑔"$%$'
'()

− 𝑟"$%P + 𝑔"$%P 																	(𝐴4) 

with 𝑐) =
QN,

N

%*2
, 𝑐% = 	ψ\1 + 4

(%*4)5
], and 𝑐7 =

Q
(%*4)5

.    

As in Section 2, we study this process with the regression specification: 

𝑟"$% = 𝛽) + 𝛽% ⋅ 𝑝𝑑!," + 𝛽7 ⋅ 𝔼:"38𝜌'𝑔"$%$'
'()

+ 𝑢"$%																					(𝐴5) 

where the term 𝑢"$% is orthogonal to the regressors 𝑝𝑑" and ∑ 𝜌'𝔼:"(𝑔"$%$')'() . Under 

market efficiency, the news terms 𝑟"$%P  and 𝑔"$%P  are orthogonal to information available at 𝑡, 

including the regressors above, so the regression (A5) yields unbiased coefficients 𝛽% = −𝑐% 

and 𝛽7 = 𝑐7.  We are back to the test of EMH given by Equation (12).   
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When expectations are not rational, the news terms may be predictable from information 

at time 𝑡 and therefore yield biased coefficient estimates.  To see this, consider first an 

illustrative case:  

• cash flow news are given by: 

𝑔"$%P = −𝜃 ∙8𝜌'𝔼:"(𝑔"$%$')
'()

+ 𝜐"$%,																																								(𝐴6) 

where 𝜐"$% is the truly unpredictable component of cash flow news.  Expectations of 

cash flow overreact when 𝜃 > 0, so that high optimist today predicts bad news in the 

future, and they underreact is 𝜃 < 0, so that high optimism today predicts good news 

in the future. This is consistent with the evidence in BGLS (2024) as well as with our 

evidence that analyst 𝐸𝐵𝑅s are predictable.   

• required returns are given by 𝔼:"(𝑟"$%) = 𝑟 + 𝜔", where 𝜔!," is i.i.d. with mean zero, 

and the market holds rational expectations about required returns (though not about 

realized returns).  Thus, the term 𝑟"$%P  continues to be unpredictable at time 𝑡, and all 

predictability stems from the current realized required return 𝔼:"(𝑟"$%) and the 

expectations term. 

The process for realized returns, Equation (A4), thus becomes: 

𝑟"$% = 𝑐) − 𝑐% ⋅ 𝑝𝑑" + (𝑐7 − 𝜃) ⋅ 𝔼:"38𝜌'𝑔"$%$'
'()

− 𝑟"$%P + 𝜐"$%															(𝐴7) 

where −𝑟"$%P + 𝜐"$% is indeed a news term, but the regression coefficients in (A5) are now: 

𝛽% = −𝑐%,			𝛾 = 	 𝑐7 − 𝜃 

Overreacting expectations can generate negative predictability of returns, 𝛾 < 0, consistent 

with the evidence in BGLS (2024). In particular, replacing 𝑐7 above yields: 

𝛾 = 	
ψ

(1 − 𝜑)𝜆 − 𝜃. 
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Thus, for a given degree of belief overreaction 𝜃,  𝛾 is negative if investors’ expected returns 

are sufficiently persistent (high 𝜂, thus lower ψ = 1 − ρη), and if analyst beliefs capture or 

even amplify variations in investors’ beliefs, low 𝜑 and high 𝜆 (for instance because the 

marginal investor is less biased than the average analyst, due to the presence of some 

arbitrage forces).  Note that, given that news are the forecast revision, 𝑔"$%P = 𝔼:"$% − 𝔼:", the 

extent of overreaction is given by 𝜃 = =𝑣𝑎𝑟/𝔼:"3 − 𝑐𝑜𝑣/𝔼:"$%, 𝔼:"3>/𝑣𝑎𝑟/𝔼:"3. This increases 

when 𝑐𝑜𝑣/𝔼:"$%, 𝔼:"3 is low, which calls for a sufficiently strong belief reversal.  Over a 

longer timescale, 𝑐𝑜𝑣/𝔼:"$%, 𝔼:"3 can even be negative, 𝜃 > 1, due to optimism reverting to 

pessimism as fundamentals mean revert, but 𝜃 > 1 is not required to obtain 𝛾 < 0. 

 We now turn to the general case.  The coefficient of interest in (A5) is 𝛽7 and its OLS 

estimate is (summarizing the news terms −𝑟"$%P + 𝑔"$%P 	as 𝑛"$%): 

𝛽7 = 𝑐7 +
𝑐𝑜𝑣/𝑛"$%, 𝔼:"33𝑣𝑎𝑟(𝑝𝑑") − 𝑐𝑜𝑣(𝑛"$%, 𝑝𝑑")𝑐𝑜𝑣/𝑝𝑑" , 𝔼:"33

𝑣𝑎𝑟(𝑝𝑑")𝑣𝑎𝑟/𝔼:"33 − 𝑐𝑜𝑣/𝑝𝑑" , 𝔼:"33
7 									(𝐴8) 

where 𝔼:"3 stands for 𝔼:"3 ∑ 𝜌'𝑔!,"$%$''() . To assess the role of overreaction, we wish to write 

the correction term in terms of our primitives, the market expectations of returns 𝑅e" ≡ 

𝔼:" ∑ 𝜌'𝑟"$%$''()  and of growth rates, 𝔼:" = 𝔼:" ∑ 𝜌'𝑔"$%$''() , and in particular in terms of 

the extent to which they predict future news, namely 𝑐𝑜𝑣/𝑛"$%, 𝔼:"3 and 𝑐𝑜𝑣/𝑛"$%, 𝑅e"3. 

 The denominator in the correction term is positive. In the numerator, we use the 

Campbell-Shiller decomposition to rewrite the 𝑝𝑑" terms and Equation (10) on price 

inference to rewrite the 𝔼:"3 terms.  The numerator becomes proportional to: 

𝑐𝑜𝑣/𝑛"$%, 𝔼:"3=𝑣𝑎𝑟/𝑅e"3 − 𝑐𝑜𝑣/𝔼:" , 𝑅e"3> + 𝑐𝑜𝑣/𝑛"$%, 𝑅e"3=𝑣𝑎𝑟/𝔼:"3 − 𝑐𝑜𝑣/𝔼:" , 𝑅e"3>. 

Overreaction of cash flow expectations now corresponds to 𝑐𝑜𝑣/𝑛"$%, 𝔼:"3 < 0. In the 

plausible case where cash flow expectations and return expectations are not positively 
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related, 𝑐𝑜𝑣/𝔼:" , 𝑅e"3 ≤ 0, overreaction lowers 𝛽7 below 𝑐7. If overreaction is strong enough, 

it generates 𝛽7 < 0.   

 If expectations about future required returns also overreact, 𝑐𝑜𝑣/𝑛"$%, 𝑅e"3 > 0, then 

𝛽7 increases. Thus, our negative estimate of 𝛽7 points not only to market inefficiency, but 

also to overreaction of cash flow expectations that dominate the predictability of returns, 

even in the presence of price inference and overreacting expectations about required returns. 

In the simpler case in which required returns are i.i.d., and return expectations are not 

distorted – i.e. 𝔼:"(𝑟"$%) = 𝑟 + 𝜔", e.g. due to diagnostic expectations or rational inattention – 

the numerator of the correction becomes proportional to: 

𝑐𝑜𝑣/𝑛"$%, 𝔼:"3 ∙ 𝑣𝑎𝑟/𝑅e"3, 

so 𝛽7 < 𝑐7 if and only if market expectations overreact, 𝑐𝑜𝑣/𝑛"$%, 𝔼:"3 < 0 (and 𝑣𝑎𝑟/𝑅e"3 >

0). In this case, the denominator also admits a simple expression, and we obtain 𝛽7 = 𝑐7 −

𝑐𝑜𝑣/𝑛"$%, 𝔼:"3/𝑣𝑎𝑟/𝔼:"3, as in our earlier example.  Coefficient 𝛽7 falls short of 𝑐7 due to the 

negative predictability of the forecast revision from past forecasts. 

 

A.3 Adjusting for measurement noise in analysts’ expectations 

Here we present a method for recovering the expected return differential 𝑟+ − 𝑟- from 

Equation (6), in particular from the corresponding regression constant 𝜅, the slope 𝛾, and 

other known moments, under two assumptions: first, that the true return for firm 𝑖 is equal to: 

𝑟!,"$% = 𝑟! + =𝑔!,"$% − 𝔼:"/𝑔!,"$%3> +8𝜌'/𝔼:"$% − 𝔼:"3/𝑔!,"$%$'3
'(%

																											(𝐴9) 

where 𝔼:" are market expectations, and second, that measured analysts’ expectations 𝔼:"3 relate 

to 𝔼:" as: 

𝔼:"3/𝑔!,"$%3 = 𝛽 + 𝜏 ∙ 𝔼:"/𝑔!,"$%3 + 𝜎 ∙ 𝜀!" . 

where 𝜀!" is an iid white noise shock (possibly stock specific), scaled by a volatility 

parameter 𝜎 > 0.  This specification allows for three distortions: 𝛽 ≥ 0 may capture 

analysts’ systematic over-optimism relative to the market, which may be due to agency 
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problems, and 𝜏 captures analysts’ distorted reaction to news compared to the market, where 

analyst reaction is excessive relative to the market for 𝜏 > 1 and insufficient for 𝜏 < 1.  

The revision in measured expectations between 𝑡 and 𝑡 + 1 is given by: 

/𝔼:!,"$%3 − 𝔼:!"3 3/𝑔!,"$%3 = 𝜏 ∙ /𝔼:!,"$% − 𝔼:!"3/𝑔!,"$%3 + 𝜎 ∙ (𝜀!"$% − 𝜀!"). 

The measured forecast error at 𝑡 + 1 is equal to: 

𝑔!,"$% − 𝔼:!,"3 /𝑔!,"$%3 = 𝑔!,"$% − 𝛽 − 𝜏 ∙ 𝔼:!"/𝑔!,"$%3 − 𝜎 ∙ 𝜀!," 

so the measured EBR for firm 𝑖 is equal to: 

EBR!,"$%3 = 𝑟 + =𝑔!,"$% − 𝛽 − 𝜏 ∙ 𝔼:!,"/𝑔!,"$%3 − 𝜎 ∙ 𝜀!">

+ 8 𝜌'=𝜏 ∙ /𝔼:"$% − 𝔼:"3/𝑔!,"$%$'3 + 𝜎 ∙ (𝜀!"$% − 𝜀!")>
'8%,…,:

 

We can then aggregate Equation (A.7) at the level of portfolio 𝑝: 

𝑟R,"$% = 𝑟R + =𝑔R,"$% − 𝔼:"/𝑔R,"$%3> +8𝜌'/𝔼:"$% − 𝔼:"3/𝑔R,"$%$'3
'(%

 

= /𝑟R − 𝑟3 + EBRR,"$%																																																																																							(𝐴10) 

Where EBRR,"$% are true EBRs. Then, EBRS for portfolio 𝑝 is equal to: 

EBRR,"$%3 	= 𝑟 + 𝑔R,"$% − 𝛽 − 𝜏 ∙ 𝔼:R"/𝑔!,"$%3 − 𝜎 ∙ 𝜀R,"

+8𝜌' \𝜏 ∙ /𝔼:"$% − 𝔼:"3] /𝑔R,"$%$'3 + 𝜌'𝜎 ∙ /𝜀R"$% − 𝜀R"3
'(%

= 𝑟 − 𝛽 + (1 − 𝜏)𝑔R,"$% + 𝜏=𝑔R,"$% − 𝔼:R"/𝑔R,"$%3> − 𝜎 ∙ 𝜀R,"

+ 𝜏8𝜌'/𝔼:"$% − 𝔼:"3/𝑔R,"$%$'3 + 𝜌'𝜎 ∙ (𝜀!"$% − 𝜀!")
'(%

= 𝑟(1 − 𝜏) − 𝛽 + (1 − 𝜏)𝑔R,"$% + 𝜏EBRR,"$% − 𝜎 ∙ 𝜀R," + 𝜌'𝜎

∙ (𝜀!"$% − 𝜀!")																																																																																																										(𝐴11) 

We can rewrite equations (A10) and (A11) as  

𝑟R,"$% = 𝑟R + 𝑣R,"$% 

where 𝑣R,"$% = EBRR,"$% − 𝑟, that is 𝑣R,"$% is just the expectations component of EBRR,"$% 

(without the aggregate required return 𝑟), and 

EBRR,"$%3 = 𝑟 − 𝛽 + (1 − 𝜏)𝑔R,"$% + 𝜏 ∙ 𝑣R,"$% + 𝑘% ∙ 𝜀R," + 𝑘7 ∙ 𝜀R,"$%, 

Next, denote by 𝑟R the (sample) average of the realized portfolio return 𝑟R,"$%. The 

estimated portfolio regression gives: 

𝑟R = 𝜅 + 𝛾 ∙ EBRR3 , 

And we also know 𝑟R = 𝑟R + 𝑣R , which implies: 
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𝑟R = 𝜅 + 𝛾 ∙ EBRR3 − 𝑣R 

If we know 𝑣R, we get to know the required return 𝑟R, which is the first ingredient for 

computing the spread we are looking for.  To find 𝑣R, first note that:  

EBRR3 = 𝑟 − 𝛽 + (1 − 𝜏)𝑔R + 𝜏 ∙ 𝑣R																																										(𝐴12) 

Thus, because 𝑟, 𝑔R and EBRR3  are known, if we find out 𝜏 and 𝛽 then we can backup 𝑣R.   

Assume that market expectations are on average unbiased. This implies that measured 

forecast errors, which satisfy: 

=𝑔R,"$% − 𝔼:"3/𝑔R,"$%3> = 𝑔R,"$% − 𝛽 − 𝜏 ∙ 𝔼:"/𝑔R,"$%3 − 𝜎 ∙ 𝜀R" , 

on average obey (again, denoting sample averages with upperbars): 

=𝑔R,"$% − 𝔼:"3/𝑔R,"$%3> = 𝑔R − 𝛽 − 𝜏 ∙ 𝑔R, 

So that: 

𝛽 = (1 − 𝜏) ∙ 𝑔R − 𝑒R, 

where 𝑒R is the average forecast error for portfolio 𝑝 in our sample.  We can then plug this 

expression for 𝛽 in equation (A4) and obtain:  

EBRR3 = 𝑟 + 𝑒R + 𝜏 ∙ 𝑣R 

To recover 𝜏 note that: 

𝑐𝑜𝑣/EBRR3 , 𝑔R3 = (1 − 𝜏) ∙ 𝑣𝑎𝑟/𝑔R3 + 𝜏 ∙ 𝑐𝑜𝑣/𝑣R, 𝑔R3 

where we know 𝑐𝑜𝑣/EBRR3 , 𝑔R3 and 𝑣𝑎𝑟/𝑔R3 but not 𝑐𝑜𝑣/𝑣R, 𝑔R3.  Under our assumptions 

on the true required returns, the latter can be obtained from: 

𝑐𝑜𝑣/𝑣R, 𝑔R3 = 𝑐𝑜𝑣/𝑟R, 𝑔R3. 

This yields: 

𝜏 =
𝑐𝑜𝑣/EBRR3 , 𝑔R3 − 𝑣𝑎𝑟/𝑔R3
𝑐𝑜𝑣/𝑟R, 𝑔R3 − 𝑣𝑎𝑟/𝑔R3

 

This allows us to back up 𝑣R from EBRR3 , and thus the required return spread: 

𝑟+ − 𝑟- = 𝜅+ − 𝜅- + EBR+3 − EBR-3 �𝛾 −
𝑐𝑜𝑣(𝑟+,-, 𝑔+,-) − 𝑣𝑎𝑟(𝑔+,-)

𝑐𝑜𝑣(EBR+,-3 , 𝑔+,-) − 𝑣𝑎𝑟(𝑔+,-)
�

+
𝑐𝑜𝑣(𝑟+,-, 𝑔+,-) − 𝑐𝑜𝑣(EBR+,-3 , 𝑔+,-)
𝑐𝑜𝑣(EBR+,-3 , 𝑔+,-) − 𝑣𝑎𝑟(𝑔+,-)

/𝑔+ − 𝑔-3.																						(𝐴13) 

 
Table A1 presents the corrections to the estimated intercepts of Tables 3 and 7 in the text.   
 

Table A1 
Expectation based estimates of long-short portfolios required return spread 
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Note: This table presents estimates of the required return premia (adjusted κ) for the long-short value minus 
growth (HML), small minus big market capitalization (SMB), conservative minus aggressive investment 
(CMA), robust minus weak profitability (RMW), and winners minus losers momentum (WML) portfolios.  The 
adjustment allows for three distortions in expectations-based returns (EBRs) as described in Equation (A13). As 
benchmarks, we report (in the first row) the sample long-short annual spreads for the relevant portfolios for 
horizons h of one-month, three-month, one-year, three-year, and five-year horizons. The second row reports the 
intercept from a univariate regression of annualized log returns of relevant long-short portfolio and horizon h on 
their EBRs.  The last row reports annualized estimates of the annualized required risk premia.  Standard errors 
are corrected for overlapping observations using the Newey-West (1987) procedure. The sample period extends 
from December 1981 to December 2023.  Superscripts: a significant at the 1% level, b significant at the 5% 
level, c significant at the 10% level. 

 Dep. variable:	𝑟'(),$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
 Value (HML) (1) (2) (3) (4) (5) 

Average HML 0.0522b 0.0471b 0.0395b 0.0316b 0.0237c 
  (0.0204) (0.0195) (0.0199) (0.0150) (0.0122) 

Average κ 0.0374c 0.0197 -0.0067 -0.0112 -0.0074 
  (0.0209) (0.0179) (0.0138) (0.0153) (0.0085) 
Adjusted κ 0.0252 0.0142 -0.0104 -0.0049 -0.0027 
  
Size (SMB) (1) (2) (3) (4) (5) 

Average SMB 0.0271 0.0308 0.0376c 0.0285 0.0261c 
  (0.0212) (0.0201) (0.0208) (0.0178) (0.0150) 

Average κ 0.0332 0.0390b 0.0220 0.0167c 0.0185c 
  (0.0208) (0.0187) (0.0135) (0.0097) (0.0098) 
Adjusted κ 0.0377 0.0403 0.0178 0.0273 0.0383 
  
Investment (CMA) (1) (2) (3) (4) (5) 

Average CMA 0.0584a 0.0568a 0.0515a 0.0339a 0.0254a 
  (0.0123) (0.0112) (0.0105) (0.0081) (0.0068) 

Average κ 0.0358b 0.0159 -0.0113 -0.0030 -0.0071 
  (0.0140) (0.0124) (0.0127) (0.0142) (0.0056) 
Adjusted κ -0.0208 -0.0240 -0.0253 -0.0064 -0.0055 

           
Profitability (RMW) (1) (2) (3) (4) (5) 

Average RMW 0.0225 0.0217 0.0160 0.0043 -0.0047 
  (0.0167) (0.0142) (0.0139) (0.0063) (0.0062) 

Average κ 0.0420b 0.0464a 0.0396a 0.0226a 0.0161a 
  (0.0165) (0.0133) (0.0106) (0.0055) (0.0042) 
Adjusted κ 0.0480 0.0239 -0.0136 0.0224 0.0038 
            
Momentum (WML) (1) (2) (3) (4) (5) 

Average WML 0.0596b 0.0501b 0.0019 -0.0088 -0.0083 
  (0.0270) (0.0230) (0.0214) (0.0119) (0.0083) 

Average κ 0.0007 -0.1972a -0.1513a -0.0429a -0.0221a 
  (0.0528) (0.0613) (0.0412) (0.0106) (0.0066) 
Adjusted κ -0.2827 -0.2915 -0.1727 -0.0557 -0.0330 
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The findings in the text are broadly confirmed. For investment the correction proves 

important for spreads at short rather than long horizons. For profitability and momentum, 

EBRs may have more noise and the corrections are accordingly larger. For profitability the 

estimated required return spreads decline, especially at longer horizons.  The corrections for 

momentum are in line with the earlier interpretation that firms in the long portfolio (winners) 

are if anything viewed as safer than those in the short portfolio. 

 
Appendix B: Expectation Based Returns (EBRs), assumptions and robustness 

 
 
B.1 Samples and robustness. 

In this Section, we present descriptive statistics, assess the robustness of our construction of 

EBRs to alternative choices regarding sample selection, assumptions about payout ratios, and 

value weighting portfolio EBRs.  Table B.1 compares our main sample, defined in Section 

2.2, to the full CRSP / COMPUSTAT sample.  

Table B1 
Sample descriptive statistics 

Note: This table presents descriptive statistics for the sample of firms that meet the CRSP/COMPUSTAT data 
requirements of Fama and French (1992) and the subsample with an expectations-based return (EBR) for July of 
year 𝑡 (Our Sample).  We report sample means for: (1) the book-to-market ratio, (2) the one-year change in total 
assets in fiscal year 𝑡 − 1 divided by 𝑡 − 2 total assets (investment), (3) annual revenues minus cost of goods 
sold, interest expense, and selling, general, and administrative expenses divided by book equity (operating 
profitability), (4) market capitalization, (5) the lagged one-year return, (6) the earnings-to-price ratio, (7) the 
ratio of the three-year moving average of earnings per share to price (CAPE ratio), (8) the dividend to price 
ratio, and (9) the average number of observations. For each variable, we report sample means for the two 
samples, their difference, the standard error of the difference, the z-stat, and the significance of the difference 
between the two means (p). 
  Sample mean 

Difference Standard 
error z-stat 𝑝 

  
All CRSP/ 

COMPUTAT 
Our 

Sample 

book-to-market 0.6365 0.6109 0.0256 0.0038 6.72 0.0% 
investment 0.1905 0.1918 -0.0013 0.0020 -0.67 50.3% 
operating profitability 0.3320 0.3256 0.0064 0.0378 0.17 86.6% 
market capitalization (mill) 7,256 7,842 -586 65 -8.99 0.0% 
Lagged one-year return 0.1527 0.1687 -0.0160 0.0020 -8.12 0.0% 
earnings-to-price ratio 0.0202 0.0452 -0.0250 0.0035 -7.06 0.0% 
CAPE ratio 0.0300 0.0461 -0.0161 0.0024 -6.63 0.0% 
dividend-to-price ratio 0.0159 0.0165 -0.0006 0.0001 -6.87 0.0% 
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observations 2,162 1,786 375.8 34.8 10.80 0.0% 
 
 
Next, we show that the results of Tables 1 and 2 on how portfolio level EBRs compare to 

actual returns are qualitatively similar under an alternative payout definition.  We use the 

expected payout ratio implied from analysts’ expectations of dividends and earnings, namely 

𝔼:"𝐷𝑃𝑆!,"$%7/𝔼:"𝐸𝑃𝑆!,"$%7 for observations with available expectations of dividends.   When 

this data is not available, we set the expected payout ratio to zero if the firm did not pay a 

dividend the previous year.  If the firm did pay a dividend the previous year, we set the 

payout ratio to the average expected payout ratio 𝔼
=*
+>?-,,*-./
𝔼=*+@?-,,*-./

 in our sample for those firms 

which paid dividends that year, 𝐷𝑃𝑆!,"$%7 > 0, which equals 0.41. In the text we assumed a 

constant payout ratio, which has a correlation with the above specification of over 97%. 

Table B2 
EBRs with Alternative Measures of Payout Ratio 

Note: Panel A presents sample means of log expectations-based returns (EBR) returns for portfolios of stocks 
formed on book-to-market, investment, size, profitability and momentum over holding horizons ranging from 
one month to five years. EBRs are computed following Equation (13) in the text with the payout ratio set to: (1) 
the ratio of expected dividends-to-earnings in period t+12,  𝔼"!"𝐷𝑃𝑆#,!%&'/𝔼"!"𝐸𝑃𝑆#,!%&', for those observations 
where expectations of dividends are available, or (2) zero if the firm did not pay a dividend the previous year 
and 𝔼H$𝐷𝑃𝑆%,$#"3 is unavailable, or (3) the average expected payout ratio, 𝔼"!"𝐷𝑃𝑆#,!%&'/𝔼"!"!𝐸𝑃𝑆#,!%&',  in our 
sample for those firms which paid dividends in the previous year but do not have 𝔼"!"𝐷𝑃𝑆#,!%&'.  Portfolio EBRs 
are equally weighted with monthly rebalancing.  Panel B shows pairwise correlations between log returns and 
EBR for high and low portfolios of stocks formed on book-to-market, investment, size, profitability and 
momentum sorts over holding horizons ranging from one month to five years.   See Table 1 for portfolio 
definitions. The sample period spans December 1981 to December 2023. 

  Panel A:  EBRs 
Holding 
Horizon Growth Value Aggressive Conservative Small Big Weak Robust Losers Winners 

1 Month 10.7% 13.5% 15.0% 7.4% 10.2% 11.5% 15.2% 9.7% -16.0% 33.0% 
3 Months 9.9% 13.0% 14.6% 6.7% 9.9% 11.1% 14.4% 9.4% -13.4% 30.0% 
1 Year 9.2% 13.7% 14.4% 6.9% 11.6% 10.3% 13.9% 9.6% -0.8% 20.2% 
3 Years 9.4% 13.1% 13.0% 8.2% 11.3% 10.3% 13.1% 10.0% 7.9% 12.9% 
5 Years 9.6% 12.5% 12.6% 8.9% 10.9% 10.2% 13.0% 9.9% 9.2% 11.8% 
  Panel B:  Correlation between returns and EBRs 
Holding 
Horizon Growth Value Aggressive Conservative Small Big Weak Robust Losers Winners 

1 Month 7% 18% 14% 9% 14% 9% 11% 12% 11% 5% 
3 Months 22% 34% 30% 24% 29% 23% 28% 21% 27% 25% 
1 Year 35% 50% 36% 40% 45% 33% 43% 32% 46% 42% 



 62 

3 Years 43% 49% 35% 51% 60% 30% 46% 33% 52% 49% 
5 Years 34% 37% 25% 40% 47% 16% 38% 23% 35% 32% 

 
 
Next, we show our baseline analysis in Table 3 is robust to various choices regarding the 

construction of EBRs.  In Table B3, we consider two alternative specifications of the terminal 

value in the analyst price (Equation 14).  Panel A considers the case where LTG forecasts are 

assumed to last until 10 years out (compared to 5 years out in our baseline specification), 

while Panel B considers the case where forecasted growth rates gradually converge from firm 

specific LTG five years out towards a common terminal growth rate g ten years out.  The 

Table shows the results are very robust, consistent with the fact that correlations of the above 

specifications with our baseline specification (e.g. at the 1 month horizon) are of 93.5% and 

99.9% respectively. 

Table B3 
Alternative Measures of Expectation based returns and the HML  

Note: This table presents univariate regression results of log returns for the long-short value minus growth 
(HML) portfolio on two alternative measures of expectations-based returns, 𝐸𝐵𝑅D(',$#E. Both measures of 
EBRs define the analyst price (𝑃F%,$5 )  as the present value of expected earnings between years one and ten, plus a 
terminal value based on a perpetuity growth rate 𝑔 (which is set to match the average stock price across all firms 
and months in our sample).  The first alternative EBR measure assumes that the expected earnings growth rate 
during the period from 𝑡 + 60 to 𝑡 + 120 is 𝐿𝑇𝐺%,$.  The second alternative EBR measure assumes that the 
expected earnings growth rate declines linearly from 𝐿𝑇𝐺%,$ at period  𝑡 + 60 to 𝑔 at period to 𝑡 + 120.  
Separate regressions are estimated for holding horizons (ℎ) of one month, three months, one year, three years, 
and five years. Standard errors are corrected for overlapping observations using the Newey-West (1987) 
procedure.  The sample period spans from December 1981 to December 2023.  Superscripts: a significant at the 
1% level, b significant at the 5% level, c significant at the 10% level.  

Panel A:  EBR based on expected earnings growth of 𝑳𝑻𝑮𝒊,𝒕  
during the period 𝒕 + 𝟔𝟎  to  𝒕 + 𝟏𝟐𝟎 

  (1) (2) (3) (4) (5) 

𝐸𝐵𝑅D(',$#E 0.3910a 0.6787a 0.8704a 1.0352a 0.9594a 

  (0.1139) (0.1299) (0.0915) (0.1471) (0.1263) 

Constant 0.0016 -0.0031 -0.0457a -0.1395a -0.1644a 

  (0.0020) (0.0053) (0.0155) (0.0493) (0.0354) 
Obs 504 502 493 469 445 
Adj R2 4% 16% 46% 48% 51% 

 
Panel B:  EBR based on expected earnings growth declining from 𝑳𝑻𝑮𝒊,𝒕 to g  

during the period 𝒕 + 𝟔𝟎  to 𝒕 + 𝟏𝟐𝟎 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

  (1) (2) (3) (4) (5) 
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𝐸𝐵𝑅D(',$#E 0.5132a 0.8358a 1.0275a 1.1537a 1.1428a 

  (0.1490) (0.1590) (0.1158) (0.2255) (0.1793) 

Constant 0.0033c 0.0052 -0.0059 -0.0283 -0.0321 

  (0.0018) (0.0046) (0.0139) (0.0457) (0.0425) 

Obs 503 502 493 469 445 

Adj R2 5% 17% 46% 45% 49% 

 
 
Next, we show our baseline analysis in Table 3 is robust to value weighting portfolio EBRs.  

The correlation of this specifications of EBRs with our baseline specification ranges from 

70% to 95% at the yearly horizon. 

Table B4  
Value weighted EBRs and Returns 

Note: Panel A presents univariate regression results of log value-weighted returns for the long-short value minus 
growth (HML) portfolio on expectations-based returns (EBRs) for that portfolio in columns 1 to 5 and for the 
long-short small minus big (SMB) portfolio in columns 6 to 10. Separate regressions are estimated for horizons 
ℎ of one month, three months, one year, three years, and five years horizon. Panel B repeats the analysis for the 
long-short portfolio robust minus weak profitability (RMW) portfolio in columns 1 to 5 and the long-short 
portfolio conservative minus aggressive investment (CMA) portfolio in columns 6 to 10.  Panel C shows 
analogous results for the long-short winners minus losers (WML) portfolio. Standard errors are corrected for 
overlapping observations using the Newey-West (1987) procedure.  The sample period is December 1981 to 
December 2023.  Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 10% 
level.  
 

Panel A: Book to market and size 
  Dep. variable: 𝑟D(',$,$#E Dep. variable: 𝑟)(O,$,$#E 
  ℎ = 1	 ℎ = 3	 ℎ = 12	 ℎ = 36	 ℎ = 60	 ℎ = 1	 ℎ = 3	 ℎ = 12	 ℎ = 36	 ℎ = 60	

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
𝐸𝐵𝑅'(),$#E 0.2398b 0.5377a 0.8245a 1.0648a 1.0778a 0.6007a 0.9965a 1.1643a 1.2857a 1.1787a 

  (0.0991) (0.1401) (0.1314) (0.1598) (0.1757) (0.1438) (0.1868) (0.1879) (0.2032) (0.2162) 

Constant 0.0012 0.0028 0.0025 -0.0131 -0.0106 0.0049b 0.0098c -0.0020 -0.0615 -0.0677 

  (0.0020) (0.0051) (0.0157) (0.0368) (0.0469) (0.0019) (0.0051) (0.0193) (0.0423) (0.0516) 
Obs 504 502 493 469 445 504 502 493 469 445 
Adj R2 2% 11% 37% 56% 59% 6% 19% 38% 54% 49% 

 
Panel B: Profitability and investment 

  Dep. variable: 𝑟P(Q,$,$#E Dep. variable: 𝑟R(S,$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
𝐸𝐵𝑅'(),$#E 0.0645 0.3204a 0.5553a 0.5242a 0.5076a 0.3024a 0.4724a 0.8755a 0.9631a 0.9690a 

  (0.0806) (0.0898) (0.1197) (0.1159) (0.0944) (0.0711) (0.0852) (0.1293) (0.1317) (0.0974) 

Constant 0.0016 0.0080b 0.0417a 0.0654a 0.0603 0.0018 0.0049 0.0071 -0.0022 -0.0061 

  (0.0016) (0.0038) (0.0120) (0.0235) (0.0367) (0.0014) (0.0038) (0.0126) (0.0269) (0.0336) 
Obs 504 502 493 469 445 504 502 493 469 445 
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Adj R2 0% 6% 23% 33% 40% 4% 11% 33% 52% 56% 
 

Panel C: Momentum 
  Dep. variable: 𝑟Q(',$,$#E 
 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

  (1) (2) (3) (4) (5) 
𝐸𝐵𝑅'(),$#E 0.1561 0.5484a 0.5909a 0.7103a 0.5882a 

  (0.1035) (0.0979) (0.0914) (0.1351) (0.1518) 

Constant -0.0034 -0.0440a -0.1040a -0.1347a -0.1151b 

  (0.0043) (0.0111) (0.0230) (0.0446) (0.0535) 
Obs 504 502 493 469 445 
Adj R2 1% 11% 21% 37% 25% 

 

B.2 Decomposition of EBR spreads and the role of news  

We next expand on the EBR decomposition analysis presented in Table 4 for the HML 

portfolio.  We first complement Table 4 by including only expectation revisions (i.e. we drop 

changes in long-term growth forecasts, ΔE𝐿𝑇𝐺"$E, which entails a shift in horizon for the 5-

year out forecast). The results are very similar.   

Table B5 
Portfolio level forecast errors and revisions predict spreads 

Note: This table presents multivariate regressions of log returns for the long-short value minus growth portfolio, 
𝑟D(',$,$#E. Separate regressions are estimated for holding horizons (ℎ) of one year, three years, and five years. 
The independent variables include: (a) forecast errors between 𝑡 and 𝑡 + ℎ,  𝐹𝐸D(',$#E (defined in the text), and 
(b) forecast revisions for short-term earnings growth between 𝑡 and 𝑡 + ℎ, ΔE𝑆𝑇𝐺D(',$#E	(defined in the text). 
All independent variables have unit standard deviation.  Standard errors are corrected for overlapping 
observations using the Newey-West (1987) procedure. The sample period spans from December 1981 to 
December 2023. Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 10% 
level. 

 Dep. variable: 𝑟D(',$,$#E 
 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
 (1) (2) (3) (4) (5) 
𝐹𝐸D(',$#E 

  
0.1456a 0.1814a 0.1737a 

  
  

(0.0134) (0.0258) (0.0369) 
∆E𝑆𝑇𝐺D(',$#E 0.3731a 0.4313a 0.0896a 0.0631b -0.0002 
  (0.0566) (0.0679) (0.0128) (0.0250) (0.0299) 
Constant 0.0055a 0.0119b -0.0894a -0.2600a -0.2439a 
  (0.0017) (0.0047) (0.0201) (0.0554) (0.0821) 
Obs 476 474 493 469 445 
Adj R2 8% 13% 50% 48% 41% 
F-stat 43.3 40.2 59.0 25.4 11.1 

  



 65 

We next reproduce the EBR decomposition analysis of Table 4 for all factors.  We further 

control for the spread in portfolios’ price dividend ratios as a means to control for spreads in 

discount rates incorporated in lagged valuation ratios. 

Table B6  
Portfolio level forecast errors and revisions predict spreads 

Note: Panel A presents multivariate regressions of log returns for the long-short value minus growth (HML) 
portfolio and the small minus big (SMB) portfolio for horizons (h) of one year, three years, and five years. The 
independent variables include: (a) spreads in forecast errors in earnings between 𝑡 and 𝑡 + ℎ, 𝐹𝐸'(),$#E (defined 
in the text), (b) spreads in forecast revisions for short-term earnings growth between 𝑡 and 𝑡 + ℎ, 
∆E𝑆𝑇𝐺'(),$#E	(defined	in	the	text), (c) spreads in changes in long-term earnings growth forecasts between 𝑡 
and 𝑡 + ℎ, ∆E𝐿𝑇𝐺'(),$#E, and (d) the log price-dividend ratio, 𝑝𝑑'(),$. Panel B presents analogous results for 
the conservative minus aggressive investment (CMA) portfolio and the robust minus weak profitability (RMW) 
portfolio. Panel C shows results for the winners minus losers (WML) portfolio.   All independent variables have 
unit standard deviation.  Standard errors are corrected for overlapping observations using the Newey-West 
(1987) procedure. The sample period spans December 1981 to December 2023. Superscripts: a significant at the 
1% level, b significant at the 5% level, c significant at the 10% level. 

Panel A: Book to market and Size 
 Dep. variable: 𝑟D(',$,$#E Dep. variable: 𝑟)(O,$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
𝐹𝐸'(),$#E     0.1305a 0.1744a 0.1351a     0.0648a 0.0736a 0.1023a 
      (0.0137) (0.0267) (0.0376)     (0.0089) (0.0126) (0.0199) 

ΔE𝑆𝑇𝐺'(),$#E     0.0802a 0.0569b -0.0251     0.0495a 0.0399a 0.0332b 
     (0.0128) (0.0248) (0.0284)     (0.0081) (0.0123) (0.0134) 
∆E𝐿𝑇𝐺'(),$#E -0.0002 0.0141a 0.0278a 0.0197 0.0487 0.0032a 0.0115a 0.0149b 0.0428a -0.0207 
  (0.0017) (0.0043) (0.0094) (0.0212) (0.0345) (0.0010) (0.0025) (0.0065) (0.0137) (0.0202) 
𝑝𝑑'(),$ -0.0024 -0.0065 -0.0021 0.0044 -0.0502 0.0006 -0.0018 -0.0123c 0.0133 -0.0197 
  (0.0017) (0.0049) (0.0107) (0.0263) (0.0351) (0.0010) (0.0027) (0.0067) (0.0135) (0.0185) 
Constant 0.0005 -0.0102 -0.1144a -0.2830a -0.3671a -0.0039c -0.0019 0.0215 0.0449 0.0524 
  (0.0034) (0.0097) (0.0259) (0.0661) (0.0916) (0.0023) (0.0062) (0.0157) (0.0319) (0.0515) 
Obs 504 502 493 469 445 504 502 493 469 445 
Adj R2 0% 5% 53% 48% 48% 2% 7% 46% 47% 39% 

 
Panel B: Investment, Profitability 

 Dep. variable: 𝑟R(S,$,$#E Dep. variable: 𝑟P(Q,$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
𝐹𝐸'(),$#E     0.0490a 0.0651a 0.0143     0.1037a 0.1295a 0.0382 
      (0.0155) (0.0173) (0.0167)     (0.0204) (0.0367) (0.0486) 
𝑆𝑇𝐺'(),$#E     0.0226 0.0074 0.0213     0.0337c 0.0110 -0.0340 
     (0.0158) (0.0173) (0.0164)     (0.0184) (0.0262) (0.0351) 
∆E𝐿𝑇𝐺'(),$#E 0.0030b 0.0014 -0.0200 -0.0135 -0.0096 0.0003 -0.0016 -0.0280b 0.0175 0.0799b 
  (0.0014) (0.0035) (0.0127) (0.0147) (0.0217) (0.0018) (0.0049) (0.0139) (0.0291) (0.0351) 
𝑝𝑑'(),$ 0.0011 0.0011 0.0129 0.0345b 0.0101 -0.0031c -0.0117b -0.0251c -0.0239 -0.0663 
  (0.0014) (0.0038) (0.0132) (0.0164) (0.0255) (0.0018) (0.0050) (0.0148) (0.0342) (0.0485) 
Constant 0.0041 0.0084 0.0323 0.0439 0.0594 -0.0114b -0.0403a -0.1415a -0.1896c -0.2954c 
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  (0.0028) (0.0074) (0.0245) (0.0274) (0.0460) (0.0055) (0.0156) (0.0442) (0.1069) (0.1545) 
Obs 504 502 493 469 445 504 502 493 469 445 
Adj R2 0.0065 -0.003 11% 20% 4% 0% 2% 34% 40% 26% 

 
Panel C: Momentum 

 Dep. variable: 𝑟𝑒𝑡Q(',$,$#E 
 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 
𝐹𝐸'(),$#E     0.1317a 0.1794a 0.0705b 
      (0.0270) (0.0292) (0.0342) 

𝑆𝑇𝐺'(),$#E     0.0821a 0.0662a 0.0237 
     (0.0228) (0.0235) (0.0256) 
∆E𝐿𝑇𝐺'(),$#E 0.0004 0.0134a 0.0193 0.0428c 0.0012 
  (0.0023) (0.0052) (0.0176) (0.0249) (0.0393) 
𝑝𝑑'(),$ -0.0038c -0.0091 -0.0142 0.0329 -0.0600 
  (0.0023) (0.0056) (0.0165) (0.0237) (0.0371) 
Constant 0.0052c 0.0033 -0.1582a -0.0898b 0.0144 
  (0.0030) (0.0076) (0.0379) (0.0352) (0.0478) 
Obs 504 502 493 469 445 
Adj R2 0% 3% 30% 46% 16% 

 

Section 2.5 discusses the hypothesis that analyst expectations may surreptitiously capture 

discount rates that may be incorporated in prices. Here we show, following BGLS (2024), 

that changes in measured beliefs respond to realized fundamentals, and do not appear to 

mechanically respond to prices.  Table B7 regresses portfolio level EBRs on 

contemporaneous portfolio level returns (which would drive the results if analysts 

mechanically infer forecasts from prices), as well as on contemporaneous cash flow news.  

Table B7 
EBRs and contemporaneous news 

Note: This table presents portfolio-level regressions of expectations-based returns (EBRs) at horizons (ℎ) of one 
month, three months, one year, three years, and five years. Panel A presents results for the long-short value 
minus growth (HML) portfolio and the small minus big (SMB) portfolio. Panel B presents results for the long-
short conservative minus aggressive investment (CMA) portfolio and the robust minus weak profitability 
(RMW) portfolio. Panel C presents results for the long-short winners minus losers (WML) portfolio.  Each 
panel reports results for two sets of regressions. The independent variables in the first set of regressions are: (a) 
log return between 𝑡 and 𝑡 + ℎ, 𝑟'(),$#E, (b) earnings growth between 𝑡 and 𝑡 + ℎ, ∆E𝑒'(),$#E, and  (c) the (log) 
forecast error for earnings growth between 𝑡 and 𝑡 + ℎ, 𝐹𝐸'(),$#E (defined in the text). The independent variable 
in the second set of regressions is the log return between 𝑡 and 𝑡 + ℎ. Except for 𝑟'(),$#E ,all independent 
variables have unit standard deviation. Standard errors are corrected for overlapping observations using the 
Newey-West (1987) procedure. The sample period spans December 1981 to December 2023. Superscripts: a 
significant at the 1% level, b significant at the 5% level, c significant at the 10% level. 

Panel A: book to market and size 
 Dep. variable: 𝐸𝐵𝑅D(',$#E Dep. variable: 𝐸𝐵𝑅)(O,$#E 
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  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

𝑟'(),$#E 0.6313a 0.4407a 0.2819a 0.2631a 0.2765a 0.5551a 0.4168a 0.1457a 0.2315a 0.3035a 

 (0.1111) (0.0753) (0.0492) (0.0577) (0.0637) (0.0901) (0.0646) (0.0349) (0.0534) (0.0690) 

∆E𝑒'(),$#E 1.7713a 0.8254a 0.2801a 0.2021a 0.2096b 1.2244a 0.5266a 0.0126 -0.0411 -0.2125 
 (0.3345) (0.1355) (0.0686) (0.0767) (0.0912) (0.3545) (0.1452) (0.0685) (0.1020) (0.1933) 

𝐹𝐸'(),$#E     0.1342b 0.5288c 0.8856c     0.3297a 1.6494a 3.4592a 

      (0.0639) (0.2761) (0.5174)     (0.0535) (0.2744) (0.8469) 

Constant 0.0338a 0.0266a -0.0097 0.0085 0.0126 0.0135 0.0083 0.0355a 0.0914a 0.1208b 

  (0.0106) (0.0094) (0.0131) (0.0250) (0.0326) (0.0098) (0.0087) (0.0098) (0.0296) (0.0613) 
Obs 493 493 493 469 445 493 493 493 469 445 

Adj R2 24% 36% 57% 56% 63% 17% 27% 58% 76% 70% 

                 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
  1 Mo 3 Mo 1 yr 3 yrs 5 yrs 1 Mo 3 Mo 1 yr 3 yrs 5 yrs 

𝑟'(),$#E 0.7452a 0.5792a 0.4476a 0.1523a 0.4260a 0.6280a 0.4788a 0.2982a 0.1954a 0.4516a 

  (0.1312) (0.0905) (0.0498) (0.0530) (0.0665) (0.0982) (0.0694) (0.0426) (0.0354) (0.1002) 

Constant 0.0418a 0.0379a 0.0270a 0.0279b 0.0817a 0.0127 0.0103 0.0041 -0.0036 -0.0138 

  (0.0121) (0.0108) (0.0086) (0.0120) (0.0195) (0.0104) (0.0093) (0.0080) (0.0097) (0.0377) 
Obs 493 493 493 469 445 493 493 493 469 445 

Adj R2 8% 18% 46% 12% 50% 9% 20% 34% 34% 49% 

 
Panel B: Investment and profitability 

 Dep. variable: 𝐸𝐵𝑅R(S,$#E Dep. variable: 𝐸𝐵𝑅P(Q,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

𝑟'(),$#E 0.6677a 0.5822a 0.3262a 0.1717b 0.3588a 0.6522a 0.5484a 0.2675a 0.4881a 0.5255a 
 (0.1323) (0.0955) (0.0528) (0.0707) (0.0763) (0.1411) (0.1137) (0.0650) (0.1101) (0.0865) 

 Δ𝑒'(),$#E 0.4480 0.2204c 0.0280 0.2330a 0.1873c 0.5070c 0.3237b 0.2613a 0.2475a 0.4244a 
 (0.2841) (0.1154) (0.0521) (0.0777) (0.1088) (0.2972) (0.1271) (0.0544) (0.0913) (0.0884) 

𝐹𝐸'(),$#E     0.2402a 0.5612b 0.2571     0.1635a 0.1859 -0.3512 

      (0.0470) (0.2245) (0.4179)     (0.0621) (0.3016) (0.3792) 

Constant 0.0675a 0.0612a 0.0318a 0.0951a 0.1250a -0.0322b -0.0230 -0.0048 -0.0430 -0.0153 

  (0.0087) (0.0080) (0.0069) (0.0140) (0.0269) (0.0154) (0.0153) (0.0171) (0.0385) (0.0287) 
Obs 493 493 493 469 445 493 493 493 469 445 

Adj R2 8% 19% 51% 42% 48% 7% 16% 44% 42% 60% 

                 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

𝑟'(),$#E 0.7165a 0.6256a 0.4534a 0.1313b 0.4898a 0.6498a 0.5682a 0.3335a 0.2644a 0.6561a 
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  (0.1372) (0.0978) (0.0581) (0.0582) (0.0699) (0.1430) (0.1173) (0.0821) (0.0820) (0.1186) 

Constant 0.0750a 0.0694a 0.0553a 0.0626a 0.1330a -0.0500a -0.0517a -0.0545a -0.0481a -0.1639a 

  (0.0074) (0.0068) (0.0068) (0.0111) (0.0127) (0.0116) (0.0110) (0.0108) (0.0107) (0.0228) 
Obs 493 493 493 469 445 493 493 493 469 445 

Adj R2 6% 17% 36% 8% 42% 5% 11% 16% 14% 42% 

 

Panel C: Momentum (WML) 
 Dep. variable: 𝐸𝐵𝑅Q(',$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 
𝑟'(),$#E 0.7864a 0.7271a 0.2403a 0.4357a 0.5007a 
 (0.1248) (0.0931) (0.0456) (0.0851) (0.1161) 

 Δ𝑒'(),$#E 0.9235b 0.4931a 0.1464c -0.0318 0.1481 
 (0.4523) (0.1677) (0.0749) (0.1073) (0.2198) 

𝐹𝐸'(),$#E     0.4035a 1.3463a 0.9940 

      (0.0553) (0.2896) (0.8039) 

Constant 0.1360a 0.1146a 0.0634a 0.0818a 0.1166b 

  (0.0357) (0.0309) (0.0190) (0.0258) (0.0513) 
Obs 493 493 493 469 445 

Adj R2 12% 29% 62% 63% 40% 

            
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 
𝑟'(),$#E 0.7611a 0.7223a 0.3904a 0.2582a 0.5731a 

  (0.1269) (0.0974) (0.0627) (0.0679) (0.1135) 

Constant 0.2016a 0.1964a 0.2045a 0.2151a 0.1389a 

  (0.0161) (0.0141) (0.0142) (0.0219) (0.0442) 
Obs 493 493 493 469 445 

Adj R2 8% 24% 29% 20% 33% 

 

 

Consistent with our portfolio level results (Tables 3 and 6), portfolio level EBRs have 

significant loadings on contemporaneous portfolio level returns (Panel A). In turn, Panel B 

shows that, controlling for actual return spreads 𝑟+,-,"$E, EBRs strongly responds to news, in 

terms of both contemporaneous realized growth ΔE𝑒+,-,"$E and realized forecast errors, 

which are a broader proxy for news including forward looking news.  In particular, 
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accounting for forecast errors leads to a substantial increase in the adjusted R2, as well as a 

drop in the correlation of EBR and actual returns in most cases.  Thus, stock returns are not 

mechanically incorporated into expectations. In the next section we present an analogous firm 

level result. 

 

B3. Firm level results 

In this section we complement our portfolio level analysis with three sets of exercises at the 

firm level.  We first repeat the baseline analysis of Table 3 regressing returns on EBRs, 

because Equation (3) for realized returns holds at that level, too.  This exercise confirms our 

findings that EBRs explain contemporaneous returns, and addresses a possible critique of our 

approach, namely that there it relies on a relatively small number of observations.   Next, we 

show (following Table 4) that the components into of EBRs – forecast errors and revisions – 

explain returns.  Finally, we repeat the analysis in Table B7, assessing the extent to which 

firm level EBRs respond to firm level news, controlling for firm level returns, which 

confirms that expectations respond strongly to news controlling for prices and is evidence for 

the validity of analyst expectations as proxies for market expectations.  

Starting with the baseline analysis, there is substantial firm level variation in beliefs 

that can be exploited to detect the link between expectations and returns. In BGLS (2024) we 

already showed robust predictability of returns from lagged expectations at the firm level.  

Here, in line with Equation (6), we similarly report the explanatory power of 

contemporaneous firm level EBR for actual firm level returns.   

Table B8  
Expectation based returns and actual returns 

Note: This table presents firm-level univariate regression results for log returns, 𝑟%,$,$,#E, against expectations-
based returns,	𝐸𝐵𝑅%,$#E. We estimate separate regressions for one month, three months, one year, three years, 
and five years horizons. Each regression is run with time and firm fixed effects (odd columns) and without fixed 
effects (even columns). Standard errors are corrected for overlapping observations using the Newey-West 
(1987) procedure. The sample period spans December 1981 to December 2023.  Superscripts: a significant at the 
1% level, b significant at the 5% level, c significant at the 10% level. 

Dep. variable: 𝑟%,$,$,#E 
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 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

𝐸𝐵𝑅%,$#E 0.1552a 0.1734a 0.2064a 0.2438a 0.4141a 0.4715a 0.5951a 0.6612a 0.6752a 0.7486a 
  (0.0045) (0.0099) (0.0069) (0.0148) (0.0152) (0.0220) (0.0222) (0.0238) (0.0225) (0.0203) 

Constant   0.0027   0.0088   0.0455b   0.1207a   0.1691a 
    (0.0028)   (0.0074)   (0.0206)   (0.0380)   (0.0493) 
Obs 899,458 899,977 837,316 837,792 790,868 791,014 604738 604,871 479,198 479,282 

Adj R2 3% 3% 7% 7% 25% 26% 45% 47% 51% 54% 
F-stat 0.0 0.0 0.1 0.1 0.2 0.3 0.4 0.5 0.5 0.5 
Time FE Y N Y N Y N Y N Y N 
Firm FE Y N Y N Y N Y N Y N 

 

To focus on firm level variation in beliefs, in some specifications we include time and firm 

fixed effects in firm level regressions. In those specifications, 𝑅7s capture explanatory power 

relative to the demeaned variables. Firm level EBRs have strong explanatory power for 

realized returns, and more so at longer horizons.  The explanatory power is similar with and 

without fixed effects.  This is an important finding: first, it suggests that firm level 

differences in required returns are negligeable (since firm fixed effects do not matter).  

Second, and related, it suggests that aggregate changes in required returns are also 

negligeable (since time fixed effects do not matter). 

Next, we present a firm-level counterpart to Table 4, which decomposes the link 

between EBRs and returns into EBR’s forecast error and forecast revision components. 

Table B9 
Forecast errors and revisions predict returns at the firm level 

Note: This table presents firm-level multivariate regressions of log returns, 𝑟%,$,$,#E,	over holding horizons (ℎ) of 
one year, three years, and five years. The independent variables include: (a) the (log) forecast error for earnings 
growth between 𝑡 and 𝑡 + ℎ, 𝐹𝐸%,$#E (defined in the text), (b) forecast revisions for the short-term growth 
forecast between 𝑡 and 𝑡 + ℎ, ΔE𝑆𝑇𝐺%,$#E, and  (c) changes in the forecast for long-term earnings growth 
between 𝑡 and 𝑡 + ℎ ∆E𝐿𝑇𝐺%,$#E.  Regressions include time and firm fixed effects in columns (1), (4), and (7), 
only time fixed effects in columns (2), (5), and (8), and no fixed effects in columns (3), (6), and (9).  All 
independent variables have unit standard deviation.  Standard errors are corrected for overlapping observations 
and cross-correlations using the Driscoll and Kraay (1998) procedure. The sample period spans December 1981 
to December 2023.  Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 
10% level.  

Dep. variable: 𝑟%,$,$,#E 
 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

𝐹𝐸%,$#E 0.2946a 0.2989a 0.3070a 0.4556a 0.4643a 0.4725a 0.3996a 0.4269a 0.4445a 
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  (0.0103) (0.0107) (0.0134) (0.0122) (0.0138) (0.0121) (0.0113) (0.0132) (0.0160) 
ΔE𝑆𝑇𝐺%,$#E 0.2073a 0.2158a 0.2262a 0.2378a 0.2552a 0.2636a 0.1713a 0.1553a 0.1691a 

  (0.0076) (0.0082) (0.0114) (0.0074) (0.0081) (0.0092) (0.0058) (0.0086) (0.0127) 

∆E𝐿𝑇𝐺%,$#E 0.0340a 0.0351a 0.0394a 0.0532a 0.0490a 0.0498a 0.0291 0.0196 0.0234 

  (0.0044) (0.0044) (0.0043) (0.0122) (0.0101) (0.0105) (0.0250) (0.0181) (0.0181) 
Constant     0.1432a     0.4276a     0.6330a 
      (0.0171)     (0.0325)     (0.0451) 
Obs 695,893 696,107 696,107 570,256 570,431 570,431 447,310 447,421 447,421 

Adj R2 28% 30% 28% 44% 46% 43% 35% 37% 36% 

Time FE Y Y N Y Y N Y Y N 
Firm FE Y N N Y N N Y N N 

 

Consistent with Equation (4), all three expectations measures have strong explanatory power 

for the variation of firm level returns over time, with a large aggregate adjusted 𝑅7.  Each 

specification is run with and without time and fixed effects; remarkably the explanatory 

power of expectations – both the coefficients and R2 – remains unchanged.  In sum, Tables 

B7 and B9 place constraints on the role of required returns in the Campbell Shiller 

decomposition.  The results are consistent with the decomposition (4) with the persistent 

component of required return being a constant 𝑟!E that scales with horizon ℎ, as captured by 

the constant term in columns 3, 6, and 9.31   

Finally, we replicate Table B7 above at the firm level.  Specifically, we examine 

whether firm level EBRs are explained entirely by contemporaneous firm level returns 

(which would hold if analysts mechanically infer forecasts from prices), or whether they 

reflect contemporaneous cash flow growth.  All specifications have firm fixed effects. 

Table B10 
Expectations based returns and contemporaneous news 

Note: Panel A presents firm-level univariate regressions of expectations-based returns, 𝐸𝐵𝑅%,$#E, at horizons (ℎ) 
of one month, three months, one year, three years, and five years on the log return between 𝑡 and 𝑡 + ℎ, 𝑟%,$#E. 
Panel B presents firm-level multivariate regressions of 𝐸𝐵𝑅%,$#E at horizons (h) of one month, three months, one 
year, three years, and five years. The independent variables include: log returns between 𝑡 and 𝑡 + ℎ,  𝑟%,$#E, (b) 
earnings growth between 𝑡 and 𝑡 + ℎ, ΔE𝑒%,$#E, and (c) the forecast error for earnings growth between 𝑡 and 𝑡 +
ℎ, 𝐹𝐸%,$#E (defined in the text).  All specifications include firm fixed effects.  Except for 𝑟%,$$#E, all independent 

 
31 In line with the prediction, the coefficients for 1 year horizon are larger for forecast errors and smaller for 
long-term forecasts (note that for long horizons, information about long-term forecasts is already included in the 
other two regressors). 
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variables have unit standard deviation.  Standard errors are corrected for overlapping observations and cross-
correlations using the Driscoll and Kraay (1998) procedure. The sample period spans December 1981 to 
December 2023. Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 10% 
level. 

Panel A:  Dependent variable 𝑬𝑩𝑹𝒊,𝒕,$𝒉 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 
𝑟%,$#E 0.1221a 0.2265a 0.4741a 0.6325a 0.6424a 
  (0.0015) (0.0093) (0.0151) (0.0168) (0.0110) 
Obs 721,554 683,366 731,977 540,744 406,309 
Adj R2 2% 7% 26% 47% 55% 

 
Panel B: Dependent variable 𝑬𝑩𝑹𝒊,𝒕,$𝒉 

  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 
𝑟%,$,$#E 0.1185a 0.2113a 0.3449a 0.3952a 0.4648a 
  (0.0014) (0.0091) (0.0140) (0.0117) (0.0119) 
ΔE𝑒%,$#E 0.0098a 0.0319a 0.0219a -0.0170b 0.0059 
  (0.0002) (0.0014) (0.0026) (0.0071) (0.0183) 
𝐹𝐸%,$#E     0.1451a 0.3095a 0.2334a 
      (0.0056) (0.0103) (0.0173) 
Obs 721,347 683,145 731,768 540,564 406,189 
Adj R2 2% 7% 36% 59% 60% 

 

Consistent with our portfolio level results (Tables 3 and 7 in the text, and Table B7 above), 

firm level EBRs have significant loading on firm level contemporaneous returns, which 

increase at longer horizons (Panel A).  In turn, Panel B shows that, controlling for actual 

returns 𝑟!,"$E, EBRs strongly responds to news, in terms of both contemporaneous realized 

growth ΔE𝑒"$E and realized forecast errors, which are a broader proxy for news including 

forward looking news.  In fact, accounting for news leads to a significant drop in the 

correlation of EBR and actual returns, as well as a substantial increase in the adjusted R2.  

Table B10 shows that stock returns are not mechanically incorporated into expectations.   

 

B.4 Log versus raw returns 

As discussed in Section 2.3, our analysis uses log, not raw, returns.  A concern with the 

logarithmic transformation is that it may cause a violation in the martingale-difference 

property, due to the differential volatility of the long and short portfolio EBR components. 
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By Jensen’s inequality, such differential volatility may cause the portfolio EBR to be 

different from zero on average.  Here, we show that our key tests are not affected if we use 

log returns and a Jensen inequality term is allowed for. We also show that our empirical 

analysis changes little if we use raw returns rather than log returns (but we argue below that, 

in line with standard practice, when compounding over multiple periods the use of log returns 

is more appropriate).   

Consider first the issue of allowing for Jensen’s inequality term when using log 

returns. We discuss it in the context of the class of time-constant required return models, 

given that this is the class of models where the issue is most pressing (constant volatility 

differences between the EBRs in the long and short portfolio would not matter for the return 

predictability exercise).  The raw gross return on the long minus short portfolio based on 

characteristic 𝑖 is: 

𝑟!"
H,W3X = 𝑟!

H,W3X + EBR!" 

where 𝑟! is the constant required return on the portfolio and EBR!" is its expectations-based 

return.  This decomposition follows from the definition of return 𝑟!"
H,W3X = (𝑃!," + 𝐷!,")/𝑃!,"*% 

and the assumption that the price is the NPV of rationally expected dividends under a 

constant gross discount rate 𝑟!H . In this equation, EBR!" is a function of forecast revisions of 

dividends scaled by 𝑃!,"*% (in particular, it is not the specification used in Equation (5) which 

obtained under log returns and the Campbell-Shiller decomposition).  The current definition 

preserves the key properties that EBRs are mean zero and unpredictable.      

Assume that, under the rational expectations null, EBR!" has mean zero and variance 

𝜎!7 (which is the sum of the variances of the EBRs of the long and short portfolios minus 

twice the covariance between them). Taking logs and defining the net actual and required 

returns as 𝑟!"W3X = 𝑟!"
H,W3X − 1 and  𝑟!W3X = 𝑟!

H,W3X − 1 we find that, either exactly (if EBRs 

are lognormal) or based on a second order approximation, the log gross return obeys: 
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E[ln(1 + 𝑟!"W3X)] 	= E[ln(1 + 𝑟!W3X + EBR!")] ≈ ln 𝐸[1 + 𝑟!W3X + EBR!"] − 𝑘 ∙ 𝜎!7 

= 𝑟!W3X − 𝑘 ∙ 𝜎!7 ≈ 𝑟!W3X + 𝐸[ln(EBR!")]. 

This equation simply reflects the fact that, under the log transformation, the mean of the 

EBRs of portfolio 𝑖 is no longer zero, but equal to −𝑘 ∙ 𝜎!.  When regressing the log return of 

portfolio 𝑖 on the log EBRs of the same portfolio, the Jensen’s inequality adjustment would 

be captured by the mean observed log EBR.  As a result, under the rational null the constant 

𝛼! from regressing the log return of portfolio 𝑖 on its log EBR is equal to: 

𝛼! = E[ln(𝑟!")] − 𝐸[ln(EBR!")] = 𝑟! . 

It is therefore the case that, even if we allow for a Jensen’s inequality correction, the 

regression constant identifies the risk premium in the rational expectations null. This, in turn, 

implies that if we take the difference of the log return of a long and short portfolio and we 

regress it on the difference in the logs of their EBRs, by the linearity of the log regression the 

constant will be equal to the required return difference, 𝛼+,- = 𝑟+ − 𝑟-. Thus, our 

interpretation of Equation (6) is valid under the log return approximation, which we have 

assumed to derive it, as well as under raw returns and raw EBRs. The logic for the validity of 

the log transformation is that, notwithstanding the Jensen’s-inequality term, this term appears 

both on the average return spread (the explanandum) and on the EBR (the explanatory 

variable).  Differencing out the two, which is what the regression constant does, leaves us 

with the risk premium.32    

We now come to the second point, namely that the results do not change appreciably 

when we use raw returns rather than log returns.  This is important, because whether taking 

 
32 The implications carry through if we allow for an i.i.d. shock to affect the required return of different 
portfolios (due for instance to liquidity or other transient factors), which would be captured by the error term in 
Equation (6). This return shock would reduce the average log return of each portfolio, due to a Jensen’s 
inequality adjustment.  Being i.i.d., it would cancel out when taking long minus short differences. Even in the 
more general case in which such return shock has different variances for the long and the short portfolio, the 
difference in the corresponding Jensen’s inequality term would be a stable feature of log return differences 𝛼%. 
Thus, under the efficient market null, variation in log EBRs would not explain it away. We see the opposite in 
the data, rejecting the efficient market hypothesis’ prediction that differences in raw or average log returns only 
reflect stable or idiosyncratic required return variation across portfolios.     
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logs affects or not our results is also and crucially an empirical matter.  Specifically, Table 

B11 below reproduces Table 1 in the paper, by computing average raw expectations-based 

returns on long versus short portfolios and compares them to the corresponding raw realized 

returns. Levels of raw returns are higher as expected by the Jensen inequality, but the 

resulting spreads are essentially identical to those in Table 2 at horizons of 1 year and above.  

For shorter horizons, particularly at 1 month, we run into the problem of averaging over raw 

returns that can be very large (as well as systematically larger when due to a price increase 

rather than a price decrease). 

Table B11.  Average raw returns and raw EBRs of portfolios 
Note: Panel A presents sample means of portfolio raw returns over holding horizons ℎ ranging from one month 
to five years. Portfolios are formed independently based on quintiles. Results are displayed for the following 
five quintile portfolios: (1) book-to-market, Growth stocks in the bottom quintile and Value stocks in the top 
quintile, (2) investment, Aggressive stocks in the top quintile and Conservative ones in the bottom quintile, (3) 
size, Big stocks in the top quintile and Small ones in the bottom quintile, (4) profitability, Weak profitability in 
the bottom quintile and Robust profitability in the top quintile), and (5) momentum, Losers stocks in the bottom 
quintile and Winners stocks in the top quintile.  Panel B presents sample means of expectations-based raw 
returns (EBRs) following Equation (13) in the text for the same groupings of stocks. Portfolio returns and EBRs 
are equally weighted with monthly rebalancing.  The sample period extends from December 1981 to December 
2023. 

 
Panel A. Average portfolio (raw) returns 

Holding 
Horizon Growth Value Aggr. Cons. Big Small Weak Robust Losers Winners 

1 Month 44.9% 60.4% 52.9% 48.2% 60.5% 31.8% 59.8% 45.0% 102.1% 47.3% 
3 Months 21.4% 30.7% 28.0% 21.3% 32.2% 17.9% 26.7% 23.7% 33.7% 25.9% 
1 Year 14.1% 19.9% 18.8% 12.9% 20.5% 14.0% 15.8% 16.5% 18.4% 16.1% 
3 Years 13.3% 17.3% 16.2% 12.3% 17.0% 13.5% 14.4% 14.8% 15.4% 14.1% 
5 Years 13.4% 16.4% 15.6% 12.7% 16.2% 13.1% 14.8% 14.1% 14.9% 13.8% 

 
Panel B. Average portfolio (raw) EBRs 

Holding 
Horizon Growth Value Aggr. Cons. Big Small Weak Robust Losers Winners 

1 Month 12.7% 18.5% 20.3% 9.2% 13.8% 13.4% 20.3% 11.5% -11.2% 41.5% 
3 Months 11.3% 16.6% 18.3% 7.9% 12.3% 12.5% 18.0% 10.6% -10.2% 36.3% 
1 Year 10.1% 16.0% 16.6% 7.5% 13.2% 11.2% 16.1% 10.3% 0.8% 22.6% 
3 Years 10.2% 14.5% 14.5% 8.8% 12.4% 11.1% 14.7% 10.6% 9.1% 13.9% 
5 Years 10.6% 13.8% 14.2% 9.8% 12.2% 11.2% 14.8% 10.7% 10.5% 12.8% 
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Comparing Table B11 to Table 1 reveals that raw EBR spreads are similar to the log EBR 

spreads which in turn are similar to the raw return spreads.  Our regression results are also 

robust to using raw rather than log returns.  Table B12 below reproduces Table 3 in the paper, 

regressing raw return spreads on raw expectations-based returns, again with very similar 

results, both for HML (shown below) and for the other portfolios (available upon request). 

Table B12: EBRs and the HML spreads 
Note: Panel A presents univariate regression results of raw returns for the long-short value minus growth, 
𝑅D(',$,$#E, portfolio on expectations-based raw returns 	𝐸𝐵𝑅D(',$,$#E, for that portfolio. Separate regressions are 
estimated for horizons ℎ of one-month, three-month, one-year, three-year, and five-year horizon. Standard 
errors are corrected for overlapping observations using the Newey-West (1987) procedure.  The sample period 
is from December 1981 to December 2023.  Superscripts: a significant at the 1% level, b significant at the 5% 
level, c significant at the 10% level.  

  Dep. variable: 𝑅D(',$,$#E 

  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 

𝐸𝐵𝑅D(',$#E 0.4635a 0.7850a 0.9944a 1.1931a 1.3523a 

  (0.1523) (0.1613) (0.1053) (0.2084) (0.3151) 

Constant 0.0036b 0.0066 -0.0008 -0.0244 -0.0384 

  (0.0017) (0.0046) (0.0164) (0.0707) (0.0783) 

Obs 504 502 493 469 445 

Adj R2 4% 15% 40% 40% 41% 

 

In these regressions, the constant term –the estimate for the required return spread – is very 

small and statistically insignificant. Finally, Table B13 below reproduces Table 4 in the 

paper, which regresses return spreads – here replaced with raw realized spreads – on the 

components of expectations-based returns.  The results are again very robust. 

Table B13 
Portfolio level forecast errors and revisions predict HML returns 

Note: This table presents multivariate regressions of log returns for the long-short value minus growth (HML) 
portfolio for horizons (h) of one-year, three-years, and five-years. The independent variables include: (a) 
spreads in forecast errors between 𝑡 and 𝑡 + ℎ, 𝐹𝐸D(',$#E (defined in the text),	 (b) forecast revisions for the 
short-term growth forecast between 𝑡 and 𝑡 + ℎ, ΔE𝑆𝑇𝐺D(',$#E	(defined in the text), and (c) spreads in changes 
in long-term growth forecasts between 𝑡 and 𝑡 + ℎ, ∆E𝐿𝑇𝐺D(',$#E. All independent variables have unit standard 
deviation. Standard errors are corrected for overlapping observations using the Newey-West (1987) procedure. 
The sample period spans from December 1981 to December 2023. Superscripts: a significant at the 1% 
level, b significant at the 5% level, c significant at the 10% level. 
 

Dep. variable: 𝑅D(',$,$#E 
 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) 
𝐹𝐸D(',$#E 0.1491a 0.2356a 0.2023b 
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 (0.0195) (0.0513) (0.0914) 
ΔE𝑆𝑇𝐺D(',$#E 0.0868a 0.0813c -0.0174 
 (0.0180) (0.0457) (0.0681) 
∆E𝐿𝑇𝐺D(',$#E 0.0361a 0.0350 0.2105b 
 (0.0132) (0.0354) (0.0829) 
Constant -0.1213a -0.3350a -0.5406a 
 (0.0293) (0.1127) (0.1956) 

Obs 465 441 417 
Adj R2 44% 35% 38% 

 

In sum, using raw rather than log returns does not materially change our results.  We 

continue to reject the presence of significant required returns spreads after variation in 

expectations is accounted for. 

 
Appendix C: Return predictability 

 
C1. Portfolio level results. 

In the return predictability analysis of Table 5, return spreads are predicted from lagged 

expectations variables and from the price to dividend ratio (as a proxy for required returns).  

As discussed in Footnote 24, this is very demanding since, whether or not market efficiency 

holds and for any level of price inference, the pd variable also reflects measured expectations.  

Table C1 repeats the analysis omitting the 𝑝𝑑 ratio. 

Table C1.  Predicting future return spreads from expectations data alone 
Note: the table presents regressions of log returns for portfolios that are long value and short growth stocks, 
𝑟D(',$,$#E. Separate regressions are estimated for horizons (h) one-month, one quarter, and one, three and five 
years. The set of independent variables includes: (a) the change in the portfolio forecast for long-term 
earnings growth between 𝑡 − ℎ and 𝑡, ∆E𝐿𝑇𝐺D(',$, (b) the lagged portfolio forecast for long-term earnings 
growth at 𝑡 − ℎ, 𝐿𝑇𝐺D(',$0E, (c) forecast revisions for the short-term growth forecast between 𝑡 and 𝑡 + ℎ, 
ΔE𝑆𝑇𝐺D(',$#E, (d) the lagged portfolio short-term growth forecast at 𝑡 − ℎ, 𝑆𝑇𝐺D(',$0E (defined in the text),  
(e) the forecast error in portfolio earnings between 𝑡 − ℎ and 𝑡, 𝐹𝐸D(',$0E,$ (defined in the text),  (f) the 
change in the portfolio forecast for long-term aggregate earnings growth between 𝑡 − ℎ and 𝑡, ∆E𝐿𝑇𝐺(F$,$, 
and (f) the lagged portfolio forecast for long-term aggregate earnings growth at 𝑡 − ℎ , 𝐿𝑇𝐺(F$,$0E.  All 
independent variables are standardized. The last row reports the R2 from a univariate regression of  𝑟'(),$#E 
on 𝑝𝑑'(),$.  Standard errors are corrected for overlapping observations using the Newey-West (1987) 
procedure. The sample period spans from December 1981 to December 2023. Superscripts: a significant at the 
1% level, b significant at the 5% level, c 0% level.  

 
 Dep	variable:	𝑟D(',$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
   (1) (2) (3) (4) (5) 

∆E𝐿𝑇𝐺D(',$ 0.0045c 0.0089 -0.0875b -0.0583c -0.0115 
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  (0.0026) (0.0072) (0.0344) (0.0303) (0.0446) 

𝐿𝑇𝐺D(',$0E -0.0163c -0.0546b -0.2928a -0.4428a -0.4735a 

  (0.0089) (0.0247) (0.0903) (0.1435) (0.1694) 

ΔE𝑆𝑇𝐺D(',$ -0.0023 0.0019 0.0457a 0.0795a 0.0883a 

  (0.0023) (0.0076) (0.0173) (0.0306) (0.0307) 

𝑆𝑇𝐺D(',$0E 0.0170c 0.0619c 0.2130a 0.4220a 0.2378b 

  (0.0094) (0.0338) (0.0514) (0.1226) (0.1135) 

𝐹𝐸D(',$0E,$     0.0422c 0.0326 -0.1061a 

      (0.0232) (0.0423) (0.0325) 

∆E𝐿𝑇𝐺(F$,$ -0.0045c 0.0038 0.0238 0.0557 0.2505a 

  (0.0025) (0.0068) (0.0288) (0.0341) (0.0488) 

𝐿𝑇𝐺(F$,$0E 0.0040c 0.0124c 0.0317 0.1265a 0.1324a 

  (0.0022) (0.0068) (0.0282) (0.0343) (0.0394) 

Constant -0.0389b -0.1223b -0.4069b -1.0812a -1.4077a 

  (0.0155) (0.0497) (0.1664) (0.3043) (0.3348) 
Obs 444 442 433 409 385 

Adj R2 5% 7% 18% 27% 67% 

R2 univariate 𝑝𝑑D(',$ 0% 1% 3% 1% 5% 

 

Relative to Table 5, the evidence on overreaction of LTG is considerably strengthened, and in 

particular the lagged level of LTG significantly, and negatively, predicts returns at all 

horizons. 

 Table C2 extends the return predictability exercise of Table 5 to the other factors. As 

in the text, we adopt the following notation for forecasts of short-term growth, 𝑆𝑇𝐺+,-,"*E =

𝔼:"*E3 ∆%7𝑒+,-,"*E$7Y and ΔE𝑆𝑇𝐺+,-," = 𝔼:"3∆%7𝑒F,+,"$7Y − 𝔼"*E∆%7𝑒F,+,"*E$7Y. 

Table C2 
Predicting return spreads from expectations data and the price dividend ratio spreads 

Note: The table presents portfolio-level regressions of log returns (𝑟'(),$#E) at horizons (h) of one month, three 
months, one year, three years, and five years. Panel A presents results for the long-short small minus big 
(SMB) portfolio and the conservative minus aggressive investment (CMA) portfolio.  Panel B presents 
results for the long-short robust minus weak profitability (RMW) portfolio.  Panel C presents results for 
the long-short winners minus losers (WML) portfolio.  Each panel presents two sets of regressions The 
independent variables in the first set of regressions includes: (a) the portfolio log price-dividend ratio at time t, 
𝑝𝑑D(',$, (b) the change in the portfolio forecast for long-term earnings growth between 𝑡 − ℎ and 𝑡, 
ΔE𝐿𝑇𝐺D(',$, (c) the lagged portfolio forecast for long-term earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺D(',$0E, (d) the 
change in the portfolio forecast for short-term earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝑆𝑇𝐺D(',$ (defined in 
the text), (e) the lagged portfolio forecast for short-term earnings growth at 𝑡 − ℎ, 𝑆𝑇𝐺D(',$0E,  (f) the 
portfolio forecast error in earnings between 𝑡 − ℎ and 𝑡, 𝐹𝐸D(',$0E,$ (defined in the text), (g) the change in the 
aggregate forecast for long-term aggregate earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝐿𝑇𝐺(F$,$, and (h) the 
forecast for long-term aggregate earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺(F$,$0E. The independent variable in the 
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second set of regression is the log price-dividend ratio for the relevant long-short portfolio at time t (𝑝𝑑'(),$). 
All independent variables have unit standard deviation. Standard errors are corrected for overlapping 
observations using the Newey-West (1987) procedure. The sample period spans from December 1981 to 
December 2023. Superscripts: a significant at the 1% level, b significant at the 5% level, c 10% level.  
 

Panel A: Size and investment 
 𝑟)(O,$,$#E 𝑟R(S,$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
𝑝𝑑'(),$ -0.0077 -0.0641c -0.1188 -0.0984 -0.6169a 0.0066 0.0396 -0.0652 0.2482c 0.0273 
 (0.0120) (0.0365) (0.0902) (0.0941) (0.1418) (0.0115) (0.0296) (0.0721) (0.1340) (0.1611) 
ΔE𝐿𝑇𝐺'(),$ 0.0060b -0.0020 0.0055 -0.0147 -0.0195 0.0038b 0.0051 0.0062 -0.0730a -0.0514 
 (0.0025) (0.0104) (0.0275) (0.0519) (0.0580) (0.0016) (0.0045) (0.0169) (0.0155) (0.0365) 
𝐿𝑇𝐺'(),$0E 0.0052 0.0280 0.0341 -0.2033c 0.1689 -0.0098c -0.0386a -0.1432a -0.2839b -0.1183 
 (0.0068) (0.0172) (0.0700) (0.1038) (0.1482) (0.0057) (0.0138) (0.0515) (0.1164) (0.1301) 
∆E𝑆𝑇𝐺'(),$ 0.0020 0.0028 0.0455a 0.0435a 0.0192 -0.0007 0.0044 0.0138 0.0013 0.0207 
 (0.0026) (0.0079) (0.0158) (0.0150) (0.0177) (0.0017) (0.0043) (0.0112) (0.0229) (0.0238) 
𝑆𝑇𝐺'(),$0E 0.0304b 0.0407 0.1332c 0.0193 -0.1077 0.0081 0.0197 0.1228a -0.0146 0.1096 
 (0.0132) (0.0261) (0.0756) (0.1358) (0.1442) (0.0092) (0.0243) (0.0461) (0.1181) (0.1522) 

𝐹𝐸'(),$0E,$     0.0015 -0.0298 0.0078     -0.0013 -0.0048 0.0248 
     (0.0157) (0.0413) (0.0279)     (0.0085) (0.0138) (0.0175) 
ΔE𝐿𝑇𝐺(F$,$ 2.4655a 0.1018 -0.1510 4.2048a 5.4256a -0.6611c 0.3459 0.8748 0.2023 1.6040b 
 (0.8304) (1.4134) (1.2195) (1.0503) (1.2486) (0.3377) (0.4043) (0.5567) (0.7860) (0.7338) 
𝐿𝑇𝐺(F$,$0E 0.1402 0.2952 2.2585b 5.9413a 3.6553a 0.1758a 0.5494a 1.2001a 0.8635 2.1723b 
  (0.1461) (0.3174) (0.9535) (1.2544) (1.3941) (0.0624) (0.1595) (0.4383) (0.9310) (0.9002) 
Constant -0.0307 -0.0314 -0.2567 -0.4361b 0.0057 -0.0255a -0.0722a -0.2518a -0.1022 -0.2077 
  (0.0271) (0.0542) (0.1590) (0.1699) (0.2301) (0.0086) (0.0223) (0.0687) (0.1825) (0.1337) 
Obs 444 442 433 409 385 444 442 433 409 385 
Adjusted R2 4% 3% 23% 43% 58% 6% 11% 26% 19% 14% 

           

           

𝑝𝑑'(),$ -0.0093 -0.0408c -0.1597b -0.3820a -0.4896a 0.0009 -0.0180 -0.1425a -0.0563 -0.0865 

 (0.0080) (0.0230) (0.0718) (0.1471) (0.1462) (0.0070) (0.0200) (0.0423) (0.0765) (0.0561) 

Constant 0.0101 0.0413b 0.1707a 0.4201a 0.5668a 0.0052b 0.0089 0.0056 0.0617c 0.0614b 

 (0.0064) (0.0187) (0.0634) (0.1413) (0.1514) (0.0024) (0.0070) (0.0161) (0.0336) (0.0277) 

Obs 444 442 433 409 385 444 442 433 409 385 

Adjusted R2 0% 2% 7% 19% 26% 0% 0% 8% 0% 1% 
 

Panel B: Profitability and momentum 
 𝑟P(Q,$#E 𝑟Q(',$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
𝑝𝑑'(),$ -0.0176 -0.0686 -0.1065 0.2879 0.1332 -0.0088 -0.0093 -0.0696 -0.0814 -0.3051a 
 (0.0164) (0.0420) (0.1525) (0.2586) (0.1522) (0.0121) (0.0237) (0.0696) (0.0650) (0.0753) 
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ΔE𝐿𝑇𝐺'(),$ 0.0014 -0.0026 -0.0055 0.0045 0.0160 0.0031 0.0018 -0.0279 -0.0151 0.0122 
 (0.0023) (0.0043) (0.0161) (0.0205) (0.0216) (0.0030) (0.0082) (0.0231) (0.0357) (0.0617) 
𝐿𝑇𝐺'(),$0E 0.0034 0.0210 0.0818 -0.1707 0.3391a -0.0134c -0.0372b -0.1462b -0.1798a -0.0042 
 (0.0080) (0.0172) (0.0733) (0.1126) (0.0958) (0.0075) (0.0149) (0.0571) (0.0511) (0.1136) 
∆E𝑆𝑇𝐺'(),$ 0.0039 0.0052 0.0022 0.0013 -0.0228c 0.0075b 0.0199b 0.0692b 0.0960a 0.0871b 
 (0.0025) (0.0047) (0.0117) (0.0196) (0.0134) (0.0032) (0.0093) (0.0268) (0.0248) (0.0399) 
𝑆𝑇𝐺'(),$0E 0.0234c 0.0410c 0.0076 0.0161 -0.1541 0.0558a 0.1102a 0.2517a 0.4210a 0.4535 

 (0.0139) (0.0238) (0.0674) (0.1349) (0.1259) (0.0176) (0.0387) (0.0707) (0.1448) (0.3202) 

𝐹𝐸'(),$0E,$     -0.0175c -0.0066 -0.0102   -0.0116 -0.0088 -0.0240 
     (0.0090) (0.0321) (0.0386)   (0.0350) (0.0394) (0.0445) 
ΔE𝐿𝑇𝐺(F$,$ -2.3797a -0.9571 1.8280 -0.0563 1.5699c 0.6559 0.0205 0.3969 -3.4682a -3.6590a 
 (0.6772) (0.8804) (1.2404) (1.1091) (0.9360) (0.7280) (0.9215) (0.8756) (1.3153) (1.1701) 
𝐿𝑇𝐺(F$,$0E 0.1201 0.4940c 1.6938 -1.6826 6.6079a 0.1297 0.3554 -0.9316 -3.0757a -3.2093c 
  (0.1266) (0.2719) (1.2554) (1.8974) (1.9104) (0.1257) (0.2729) (1.3530) (1.1357) (1.8777) 
Constant -0.0102 -0.0579c -0.1951 0.2645 -0.7383a 0.0027 0.0056 0.2329 0.4724a 0.4727c 
 (0.0170) (0.0311) (0.1532) (0.2384) (0.2486) (0.0160) (0.0335) (0.1818) (0.1622) (0.2592) 
Obs 444 442 433 409 385 444 442 433 409 385 
Adjusted R2 5% 4% 9% 7% 28% 7% 16% 26% 36% 23% 

           

           

𝑝𝑑'(),$ -0.0001 -0.0131 0.0038 0.1155 0.3221b -0.0055 -0.0163 -0.0992c -0.1340 -0.1338b 

 (0.0081) (0.0198) (0.0618) (0.0793) (0.1282) (0.0077) (0.0163) (0.0524) (0.0818) (0.0678) 

Constant 0.0010 -0.0023 0.0097 0.0511 0.0928b 0.0040 0.0093 -0.0068 -0.0487 -0.0726b 

 (0.0033) (0.0086) (0.0255) (0.0317) (0.0434) (0.0025) (0.0067) (0.0216) (0.0336) (0.0363) 

Obs 444 442 433 409 385 444 442 433 409 385 

Adjusted R2 0% 0% 0% 3% 13% 0% 0% 4% 4% 3% 
 

The results in Table C2 generalize those of Table 5 to other factors:  the dividend price ratio 

is nearly never significant and often of the wrong sign, while the coefficients on expectations 

variables are large, particularly at long horizons.  The dividend price ratio’s predictive power 

in univariate regressions is very low, while adding lagged expectations dramatically increases 

it in all specifications, as measured by higher adjusted 𝑅7.  The same results obtain when 

replacing the price to dividend ratio with the book-to-market ratio or lagged return spread, 

shown in Table C3.  

Table C3 
Robustness of return predictability from expectations data 
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Note: The table presents regressions of log returns for the long-short value minus growth (HML) portfolio, the 
small minus big (SMB) portfolio, the conservative minus aggressive investment (CMA) portfolio, the robust 
minus weak profitability (RMW) portfolio, and the winners minus losers (WML) portfolio. Separate 
regressions are estimated for horizons (h) one month and one year. The set of independent variables includes 
(a) the change in the portfolio forecast for long-term earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝐿𝑇𝐺D(',$, (b) 
the lagged portfolio forecast for long-term earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺D(',$0E, (c) the change in the 
portfolio forecast for short-term earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝑆𝑇𝐺D(',$ (defined in the text), (d) 
the lagged portfolio forecast for short-term earnings growth at 𝑡 − ℎ, 𝑆𝑇𝐺D(',$0E,  (e) the portfolio forecast 
error in earnings between 𝑡 − ℎ and 𝑡, 𝐹𝐸D(',$0E,$ (defined in the text), (f) the change in the aggregate 
forecast for long-term aggregate earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝐿𝑇𝐺(F$,$, (g) the forecast for 
long-term aggregate earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺(F$,$0E,  and (h) the log book-to-market ratio, 	 𝑏𝑚'(),$ 
for the relevant long-short portfolio at time t in Panel A,  (i) and the log lagged portfolio return between 𝑡 − ℎ 
and 𝑡, 𝑟'(),$0E,$ , in Panel B. The last row reports the R2 from a univariate regression of  𝑟'(),$#E on 𝑏𝑚'(),$ 
(Panel A) or on 𝑟'(),$ (Panel B).  All independent variables have unit standard deviation. Standard errors are 
corrected for overlapping observations using the Newey-West (1987) procedure. The sample period spans 
December 1981 to December 2023. Superscripts: a significant at the 1% level, b significant at the 5% level, c 

10% level.    
 

Panel A: Controlling for book-to-market ratio spreads 
 𝑟D(',$,$#E 𝑟)(O,$,$#E 𝑟R(S,$,$#E 𝑟P(Q$,$#E 𝑟Q(',$,$#E 

 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
𝑏𝑚'(),$ -0.0144c 0.0733 -0.0080b 0.0305 -0.0096b 0.0053 -0.0123b 0.1435a -0.0076b 0.0291 
 (0.0079) (0.0748) (0.0037) (0.0289) (0.0039) (0.0265) (0.0059) (0.0436) (0.0037) (0.0258) 
∆E𝐿𝑇𝐺'(),$#E 0.0046c -0.0872a 0.0043a 0.0005 0.0017 -0.0110 0.0063b -0.0158 0.0036 -0.0238 
  (0.0027) (0.0311) (0.0016) (0.0165) (0.0024) (0.0179) (0.0026) (0.0257) (0.0032) (0.0227) 
𝐿𝑇𝐺'(),$0E -0.0058 -0.3722a -0.0110b -0.1508a -0.0002 0.0346 0.0016 0.0082 -0.0227a -0.1354b 
  (0.0083) (0.1224) (0.0049) (0.0419) (0.0057) (0.0354) (0.0056) (0.0488) (0.0074) (0.0550) 
∆E𝑆𝑇𝐺'(),$ -0.0025 0.0462a -0.0010 0.0156 0.0042c 0.0048 0.0021 0.0364b 0.0084a 0.0703a 
 (0.0024) (0.0167) (0.0017) (0.0104) (0.0024) (0.0130) (0.0026) (0.0166) (0.0032) (0.0244) 
𝑆𝑇𝐺'(),$0E 0.0119 0.2449a 0.0078 0.1056b 0.0221 0.0058 0.0338a 0.1355c 0.0620a 0.1992a 
 (0.0091) (0.0662) (0.0088) (0.0456) (0.0141) (0.0686) (0.0125) (0.0716) (0.0172) (0.0746) 
𝐹𝐸'(),$0E,$   0.0374b   0.0057   -0.0168c   0.0122   0.0037 
   (0.0181)   (0.0092)   (0.0097)   (0.0136)   (0.0358) 
ΔE𝐿𝑇𝐺(F$,$  -0.0044c 0.0151 -0.0024b 0.0223c -0.0081a 0.0333 0.0085a -0.0414c 0.0018 0.0086 
 (0.0024) (0.0283) (0.0012) (0.0120) (0.0023) (0.0223) (0.0029) (0.0250) (0.0025) (0.0188) 
𝐿𝑇𝐺(F$,$0E 0.0050b 0.0231 0.0028c 0.0303a 0.0029 0.0273 0.0059 0.0044 0.0010 -0.0095 
 (0.0022) (0.0293) (0.0015) (0.0095) (0.0026) (0.0247) (0.0036) (0.0186) (0.0028) (0.0308) 
Constant -0.0132 -0.5367b -0.0184c -0.2734a -0.0272 -0.1168 -0.0398 -0.1857 0.0029 0.1927 
  (0.0176) (0.2136) (0.0102) (0.0666) (0.0175) (0.1652) (0.0268) (0.1332) (0.0162) (0.1815) 
Obs 442 433 442 433 442 433 442 433 442 433 
Adjusted R2 6% 19% 8% 27% 6% 8% 5% 27% 9% 27% 

Univariate R2 2% 0% 2% 1% 1% 0% 0% 16% 0% 9% 
 

Panel B: Controlling for lagged return spreads 
 𝑟D(',$,$#E 𝑟)(O,$,$#E 𝑟R(S,$,$#E 𝑟P(Q,$,$#E 𝑟Q(',$,$#E 

 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 ℎ = 1 ℎ = 12 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

𝑟'(),$0E,$ 0.1728a 0.0336 0.1691a 0.0016 0.1897a -0.0657b 0.2056a -0.0570c 0.1352a 0.0257 
 (0.0261) (0.0296) (0.0208) (0.0276) (0.0268) (0.0281) (0.0203) (0.0292) (0.0233) (0.0270) 
∆E𝐿𝑇𝐺'(),$#E 0.0051b -0.0938a 0.0024c 0.0035 -0.0020 -0.0087 0.0023 -0.0093 0.0017 -0.0185 
  (0.0026) (0.0340) (0.0013) (0.0170) (0.0020) (0.0153) (0.0021) (0.0252) (0.0027) (0.0273) 
𝐿𝑇𝐺'(),$0E -0.0118 -0.2815a -0.0064 -0.1640a -0.0002 0.0480 0.0023 -0.0104 -0.0129c -0.1881a 
  (0.0082) (0.0857) (0.0044) (0.0385) (0.0046) (0.0343) (0.0045) (0.0510) (0.0068) (0.0530) 
∆E𝑆𝑇𝐺'(),$ 0.0012 0.0439b 0.0005 0.0138 0.0025 0.0102 0.0039b 0.0510a 0.0050 0.0770a 
 (0.0022) (0.0183) (0.0014) (0.0112) (0.0020) (0.0141) (0.0019) (0.0154) (0.0040) (0.0266) 
𝑆𝑇𝐺'(),$0E 0.0163c 0.1769a 0.0090 0.1080b 0.0088 0.0225 0.0228b 0.1637b 0.0315c 0.2085a 
 (0.0089) (0.0607) (0.0080) (0.0427) (0.0119) (0.0709) (0.0102) (0.0740) (0.0165) (0.0693) 
𝐹𝐸'(),$0E,$   0.0366   -0.0017   -0.0107   0.0261   0.0001 
   (0.0252)   (0.0092)   (0.0103)   (0.0219)   (0.0340) 
ΔE𝐿𝑇𝐺(F$,$  0.0005 0.0272 -0.0002 0.0193 -0.0006 0.0188 0.0030 -0.0065 0.0019 -0.0030 
 (0.0022) (0.0266) (0.0012) (0.0120) (0.0022) (0.0230) (0.0026) (0.0247) (0.0024) (0.0196) 
𝐿𝑇𝐺(F$,$0E 0.0029 0.0299 0.0023c 0.0261a 0.0015 0.0265 0.0021 0.0505b 0.0021 -0.0354 
 (0.0019) (0.0279) (0.0013) (0.0097) (0.0022) (0.0233) (0.0025) (0.0201) (0.0026) (0.0331) 
Constant -0.0289b -0.3836b -0.0174b -0.2421a -0.0057 -0.1190 -0.0241 -0.2960b 0.0012 0.2272 
  (0.0137) (0.1684) (0.0078) (0.0671) (0.0131) (0.1263) (0.0208) (0.1427) (0.0151) (0.1834) 
Obs 444 433 444 433 444 433 444 433 444 433 
Adjusted R2 23% 19% 24% 26% 25% 13% 29% 24% 24% 26% 

Univariate R2 21% 2% 23% 1% 26% 9% 29% 2% 21% 0% 
 

 

Table C4 presents the first stage of the exercise of Tables 6 and 8, in which EBRs spreads are 

predicted from lagged expectations variables and from the price to dividend ratio.  

 
Table C4 

Note: The table presents portfolio-level regressions of log portfolio expectations-based returns (EBRs) at 
horizons (ℎ) of one month, three months, one year, three years, and five years.  Panel A presents results for the 
long-short value minus growth (HML) portfolio and the small minus big (SMB) portfolio. Panel B presents 
results for the long-short conservative minus aggressive investment (CMA) portfolio and the robust minus 
weak (RMW) portfolio.  Panel C presents results for long-short winners minus losers (WML) portfolio.  In each 
panel, the independent variables in the regression include: (a) the portfolio log price-dividend ratio at time t, 
𝑝𝑑D(',$, (b) the change in the portfolio forecast for long-term earnings growth between 𝑡 − ℎ and 𝑡, 
ΔE𝐿𝑇𝐺D(',$, (c) the lagged portfolio forecast for long-term earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺D(',$0E, (d) the 
change in the portfolio forecast for short-term earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝑆𝑇𝐺D(',$ (defined in 
the text), (e) the lagged portfolio forecast for short-term earnings growth at 𝑡 − ℎ, 𝑆𝑇𝐺D(',$0E,  (f) the 
portfolio forecast error in earnings between 𝑡 − ℎ and 𝑡, 𝐹𝐸D(',$0E,$ (defined in the text), (g) the change in the 
aggregate forecast for long-term aggregate earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝐿𝑇𝐺(F$,$, and (h) the 
forecast for long-term aggregate earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺(F$,$0E.All independent variables have unit 
standard deviation. The last row reports the R2 from a univariate regression of log 𝐸𝐵𝑅'(),$#E on 𝑑𝑝'(),$.  
Standard errors are corrected for overlapping observations using the Newey-West (1987) procedure. The sample 
period spans December 1981 to December 2023. Superscripts: a significant at the 1% level, b significant at the 
5% level, c 10% level. 
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Panel A: Value and size 

 𝐸𝐵𝑅D(',$#E 𝐸𝐵𝑅)(O,$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
𝑝𝑑'(),$ 0.0078 0.0308 0.1739b 0.1467 -0.0028 0.0033 -0.0051 0.0314 -0.0132 -0.3141a 
 (0.0066) (0.0189) (0.0882) (0.1374) (0.0723) (0.0042) (0.0130) (0.0451) (0.0609) (0.0566) 
ΔE𝐿𝑇𝐺'(),$ 0.0033a 0.0125a -0.0671a -0.0471c -0.0169 0.0011 0.0029 0.0032 -0.0331 -0.0548b 
 (0.0010) (0.0037) (0.0193) (0.0244) (0.0202) (0.0008) (0.0031) (0.0098) (0.0238) (0.0266) 
𝐿𝑇𝐺'(),$0E -0.0052 -0.0267 -0.3003a -0.3747b -0.1416 -0.0040c -0.0098 -0.0642a -0.2041a -0.0554 
 (0.0049) (0.0166) (0.0940) (0.1608) (0.0951) (0.0022) (0.0066) (0.0198) (0.0428) (0.0529) 
∆E𝑆𝑇𝐺'(),$ -0.0039a -0.0094a 0.0417a 0.0553a 0.0608a -0.0004 -0.0020 0.0329a 0.0623a 0.0587a 
 (0.0009) (0.0025) (0.0112) (0.0116) (0.0122) (0.0008) (0.0029) (0.0071) (0.0122) (0.0075) 
𝑆𝑇𝐺'(),$0E -0.0000 0.0121 0.1612a 0.2695a 0.2152b 0.0170a 0.0363a 0.1224a 0.2175a 0.3404a 
 (0.0041) (0.0119) (0.0421) (0.0681) (0.0940) (0.0045) (0.0133) (0.0267) (0.0553) (0.0715) 

𝐹𝐸'(),$0E,$     0.0371b 0.0053 -0.0356b     0.0250a -0.0112 0.0173 
     (0.0176) (0.0145) (0.0156)     (0.0070) (0.0288) (0.0284) 
ΔE𝐿𝑇𝐺(F$,$ -0.0001 0.0028 0.0277b 0.0318b 0.0961a 0.0014 0.0007 0.0181b 0.0409b 0.0269 
 (0.0008) (0.0032) (0.0113) (0.0137) (0.0207) (0.0010) (0.0032) (0.0083) (0.0159) (0.0193) 
𝐿𝑇𝐺(F$,$0E 0.0024a 0.0072a 0.0277b 0.0537a 0.0170 0.0000 0.0007 0.0212a 0.0142 -0.0321a 
  (0.0008) (0.0026) (0.0131) (0.0133) (0.0174) (0.0007) (0.0023) (0.0059) (0.0138) (0.0111) 
Constant -0.0174a -0.0588a -0.3236a -0.4989a -0.2083 -0.0087 -0.0122 -0.0920c 0.0511 0.4416a 
  (0.0055) (0.0210) (0.0939) (0.1550) (0.1557) (0.0067) (0.0192) (0.0557) (0.1294) (0.1579) 
Obs 444 442 433 409 385 444 442 433 409 385 
Adjusted R2 14% 28% 32% 34% 56% 9% 16% 46% 56% 68% 

R2 univariate 1% 2% 0% 0% 0% 1% 6% 16% 30% 46% 
 

Panel B: Investment and profitability 

 𝐸𝐵𝑅R(S,$,$#E 𝐸𝐵𝑅P(Q,$,$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
𝑝𝑑'(),$ 0.0114c 0.0434a -0.0049 0.0569 -0.1896b -0.0035 -0.0180 -0.0394 0.0195 -0.0503 
 (0.0060) (0.0167) (0.0462) (0.0836) (0.0874) (0.0076) (0.0195) (0.0633) (0.1002) (0.1510) 
ΔE𝐿𝑇𝐺'(),$ 0.0010 0.0014 0.0132 -0.0388a -0.0103 0.0012 0.0078a 0.0188b 0.0011 0.0404c 
 (0.0007) (0.0036) (0.0104) (0.0143) (0.0169) (0.0009) (0.0022) (0.0089) (0.0122) (0.0216) 
𝐿𝑇𝐺'(),$0E -0.0039 -0.0156b -0.0790b -0.1263c -0.0366 0.0062c 0.0178b -0.0337 -0.0954c 0.0889 
 (0.0035) (0.0071) (0.0356) (0.0732) (0.0575) (0.0032) (0.0081) (0.0394) (0.0487) (0.0852) 
∆E𝑆𝑇𝐺'(),$ -0.0045a -0.0029 0.0205b 0.0148 0.0508a -0.0009 0.0006 0.0183b 0.0270b 0.0291c 
 (0.0009) (0.0023) (0.0096) (0.0091) (0.0089) (0.0009) (0.0023) (0.0087) (0.0125) (0.0157) 
𝑆𝑇𝐺'(),$0E -0.0058 0.0065 0.1136a 0.1580a 0.3033a 0.0055 0.0229c 0.1453a 0.2332a 0.1429 
 (0.0048) (0.0124) (0.0336) (0.0454) (0.0489) (0.0047) (0.0123) (0.0400) (0.0682) (0.1055) 
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𝐹𝐸'(),$0E,$     0.0006 -0.0158 0.0074     -0.0158c -0.0521 -0.0208 
     (0.0071) (0.0104) (0.0149)     (0.0081) (0.0345) (0.0339) 
ΔE𝐿𝑇𝐺(F$,$ -0.0003 0.0014 0.0118 0.0029 0.0194 -0.0012 -0.0025 -0.0132 -0.0020 -0.0123 
 (0.0007) (0.0026) (0.0088) (0.0106) (0.0134) (0.0008) (0.0025) (0.0094) (0.0141) (0.0259) 
𝐿𝑇𝐺(F$,$0E 0.0018a 0.0071a 0.0169a -0.0069 0.0407a 0.0007 0.0024 -0.0143 -0.0056 0.0152 
  (0.0007) (0.0021) (0.0064) (0.0093) (0.0091) (0.0009) (0.0026) (0.0142) (0.0205) (0.0386) 
Constant -0.0049 -0.0202 -0.0967b 0.1110 -0.1992b -0.0035 -0.0131 0.0920 0.0446 -0.1949 
  (0.0046) (0.0138) (0.0488) (0.0904) (0.0771) (0.0059) (0.0149) (0.0778) (0.1394) (0.2534) 
Obs 444 442 433 409 385 444 442 433 409 385 
Adjusted R2 14% 15% 17% 17% 30% 5% 13% 30% 20% 22% 

R2 univariate 3% 4% 1% 0% 0% 3% 5% 1% 2% 7% 
 

Panel C: Momentum 

 𝐸𝐵𝑅Q(',$#E 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 
𝑝𝑑'(),$ 0.0097c 0.0203 -0.0119 0.0335 -0.1154a 

 (0.0057) (0.0134) (0.0387) (0.0389) (0.0444) 
ΔE𝐿𝑇𝐺'(),$ -0.0009 -0.0052 -0.0745a -0.0771a -0.0305 

 (0.0011) (0.0035) (0.0149) (0.0189) (0.0257) 
𝐿𝑇𝐺'(),$0E -0.0097a -0.0342a -0.0989a -0.2397a -0.0764 

 (0.0032) (0.0091) (0.0278) (0.0293) (0.0723) 
∆E𝑆𝑇𝐺'(),$ -0.0005 -0.0025 0.0441a 0.0774a 0.0804a 

 (0.0011) (0.0026) (0.0090) (0.0094) (0.0108) 
𝑆𝑇𝐺'(),$0E 0.0059 0.0333b 0.2025a 0.4334a 0.4122a 

 (0.0045) (0.0146) (0.0499) (0.1076) (0.1199) 

𝐹𝐸'(),$0E,$   0.0363b 0.0422c -0.0040 
   (0.0176) (0.0225) (0.0237) 

ΔE𝐿𝑇𝐺(F$,$ -0.0008 0.0068c 0.0336a -0.0067 0.0250a 
 (0.0012) (0.0037) (0.0119) (0.0085) (0.0092) 

𝐿𝑇𝐺(F$,$0E 0.0049a 0.0151a 0.0318a -0.0174b -0.0106 
 (0.0011) (0.0026) (0.0116) (0.0081) (0.0149) 

Constant 0.0142b 0.0259 0.0589 0.2978a 0.2472b 
 (0.0071) (0.0167) (0.0745) (0.0776) (0.1079) 

Obs 444 442 433 409 385 
Adjusted R2 7% 25% 51% 53% 32% 

R2 univariate 0% 0% 1% 4% 0% 
 

C2. Firm level results 
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Here we perform, at the firm level, the analysis of Table 10: we first show that firm level 

future EBRs are predictable from current expectations (Table C5 Panel A), and then run a 

horse race between predicted EBRs and current dividend price ratio (Panels B), the latter 

being a proxy for required returns.   

Table C5 
Predicted EBRs explain returns at the firm level   

Note:  Panel A presents firm-level regressions of log expectations-based returns (EBRs) over holding horizons (ℎ) of 
one month, three months, one year, three years, and five years.  The set of independent variables includes: The 
set of independent variables includes: (a) the log price-dividend ratio at time t, 𝑝𝑑%,$, (b) the change in the 
forecast for long-term earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝐿𝑇𝐺%,$, (c) the lagged forecast for long-term 
earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺%,$0E, (d) the change in the forecast for short-term earnings growth between 𝑡 −
ℎ and 𝑡, ΔE𝑆𝑇𝐺%,$ (defined in the text), (e) the lagged forecast for short-term earnings growth at 𝑡 − ℎ, 
𝑆𝑇𝐺%,$0E,  (f) the forecast error in earnings between 𝑡 − ℎ and 𝑡, 𝐹𝐸%,$0E,$ (defined in the text), (g) the change in 
the aggregate forecast for long-term aggregate earnings growth between 𝑡 − ℎ and 𝑡, ΔE𝐿𝑇𝐺(F$,$, and (h) 
the forecast for long-term aggregate earnings growth at 𝑡 − ℎ, 𝐿𝑇𝐺(F$,$0E.   Except for the last two variables, 
all variables are defined at the firm level.  All independent variables have unit standard deviation. The 
dependent variable in Panel B is firm-level returns over the same holding horizons h, ri,t+h.  The independent 
variables in Panel B include: (a) 	𝑝𝑑%,$ and (b) the EBRs predicted by the Panel A regressions (𝐸𝐵𝑅u%,$#E).  All 
regressions include firm fixed effects. Standard errors are corrected for overlapping observations and cross-
correlations using the Driscoll and Kraay (1998) procedure. The sample period spans December 1981 to 
December 2023. Superscripts: a significant at the 1% level, b significant at the 5% level, c 10% level. 
 

Panel A: Predicting firm level EBRs 
 Dependent Variable:  𝐸𝐵𝑅%,$,$#E	 
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 
𝑝𝑑%,$ 0.0043a 0.0132a 0.0235a 0.0255a 0.0264c 
 (0.0005) (0.0016) (0.0053) (0.0070) (0.0140) 

ΔE𝐿𝑇𝐺%,$ 0.0019a 0.0010 -0.0519a -0.1380a -0.1577a 
 (0.0003) (0.0012) (0.0058) (0.0109) (0.0218) 

𝐿𝑇𝐺%,$0E -0.0050a -0.0221a -0.1058a -0.1505a -0.1686a 
 (0.0007) (0.0027) (0.0099) (0.0144) (0.0257) 

∆E𝑆𝑇𝐺%,$ -0.0107a -0.0343a -0.0025 -0.0096 -0.0065 
 (0.0007) (0.0045) (0.0140) (0.0196) (0.0266) 

𝑆𝑇𝐺%,$0E -0.0117a -0.0197a 0.0241c 0.0158 0.0554b 
 (0.0010) (0.0049) (0.0143) (0.0179) (0.0279) 

𝐹𝐸%,$0E,$   0.0255a -0.2916a -0.5641a 
   (0.0090) (0.0354) (0.0664) 

ΔE𝐿𝑇𝐺(F$,$ 0.0040a 0.0136a -0.0061 -0.0588a -0.0205 
 (0.0008) (0.0032) (0.0076) (0.0175) (0.0291) 

𝐿𝑇𝐺(F$,$0E 0.0002 -0.0025 -0.0308a -0.0005 -0.0692c 

  (0.0006) (0.0022) (0.0091) (0.0244) (0.0372) 
Observations 501,342 467,941 443,350 355,688 273,440 
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Adj R2 0% 2% 2% 5% 5% 
F-Stat 69 41 34 28 21 

 
Panel B: Predicted EBRs and actual returns 

 Dependent Variable:  ri,t+h 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 

𝑝𝑑%,$ -0.0014 -0.0057 -0.0301a -0.0625a -0.1195a -0.0015 -0.0070c -0.0317a -0.0540a -0.0826a 
 (0.0014) (0.0037) (0.0101) (0.0211) (0.0273) (0.0016) (0.0037) (0.0099) (0.0177) (0.0184) 

𝐸𝐵𝑅u%,$#E      0.0363 0.1370 0.4556a 0.5797a 0.8565a 
      (0.1650) (0.1171) (0.1057) (0.1246) (0.1748) 
Obs 501,342 467,941 443,334 355,657 273,400 501,342 467,941 443,334 355,657 273,400 
Adj R2 -1.0% -1.0% -0.8% -0.6% 0.2% -1.0% -1.0% -0.1% 1.6% 4.4% 
F-stat 1.0 2.3 8.8 8.8 19.1 0.5 2.3 10.6 13.5 15.0 

 
 

 
APPENDIX D: Characteristics, expectations and market efficiency 

 

We complement our analysis in a text with a mediation exercise (MacKinnon 2012), whose 

goal is to obtain an estimate of the share of return predictability from characteristics that 

works through their ability to predict analyst expectations (versus the share that works 

through their direct predictive ability after controlling for EBRs). We regress firm level 

realized returns on contemporaneous EBRs and lagged firm characteristics.  The exercise 

shows that, to a large extent, characteristics predict returns precisely because they capture 

distorted expectations.  Specifically, we run the regression: 

𝑟!,","$E = 𝑎W + 𝑏 ∙ EBR!,","$E + 𝑐ZS ⋅ 𝑏𝑚!," + 𝑐!P[ ∙ 𝑖𝑛𝑣!," + 𝑐'!\& ⋅ 𝑠𝑖𝑧𝑒!," + 𝑐RW]^ ∙ 𝑜𝑝!,"

+ 𝑐S]S ∙ 𝑟!,"*%7," + 𝜖"$E , (𝐷1) 

where coefficients 𝑐_ capture the predictive power of characteristic 𝜒 for returns that is 

independent of the firm level EBR.  The predictive power of a characteristic such as book to 

market working through EBRs can then be quantified as 𝑏 ∙ 𝑑ZS, where 𝑑ZS is the coefficient 

on the regression that predicts EBRs from characteristics (Table 9 in the text): 
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EBR!,","$E = 𝑎&ZW + 𝑑ZS ⋅ 𝑏𝑚!," + 𝑑!P[ ∙ 𝑖𝑛𝑣!," + 𝑑'!\& ⋅ 𝑠𝑖𝑧𝑒!," + 𝑑RW]^ ∙ 𝑜𝑝!," + 𝑑S]S

∙ 𝑟!,"*%7," + 𝜀"$E .																						(𝐷2) 

Finally, the predictive power of book to market working through EBRs, 𝑏 ∙ 𝑑ZS, can be 

compared to the independent predictive power 𝑐ZS of book to market alone, and similarly for 

other characteristics. This exercise offers a lower bound for the role of growth expectations 

(and their predictable errors and reversals) on the documented return predictability from 

characteristics: our measured analyst beliefs in fact contain only partial information about 

market beliefs, not only due to measurement noise, but also because we observe expectations 

only for specific forecast horizons. 

Table D1 shows the empirical results, reporting Equation (D2) in Panel A. 

Table D1 
Return predictability from characteristics is mediated by expectations 

Note: Panel A presents regressions of log firm-level returns, 𝑟%,$,$#E at horizons (h) of one month, three months, 
one year, three years, and five years. The independent firm-level variables include: (a) log expectations-based 
returns at the same horizons, 𝐸𝐵𝑅%,$,$#E, (b) log book-to-market ratio at time 𝑡, 𝑏𝑚%,$,  (c) log market value of 
equity at time t, ln 𝑠𝑖𝑧𝑒%,$, (d) one-year growth in assets between 𝑡 − 12 and 𝑡, 𝑖𝑛𝑣%,$, (e) operating profitability 
at time 𝑡, 𝑜𝑝%,$, and (f) returns between periods 𝑡 − 12 and 𝑡, 𝑟%,$0"3,$.  All specifications have firm fixed effects. 
All independent variables have unit standard deviation. Standard errors are corrected for overlapping 
observations and cross-correlations using the Driscoll and Kraay (1998) procedure. The sample period spans 
December 1981 to December 2023.  Panel B shows the share of predictability of log firm-level returns at each 
horizon h accounted for by ln 𝑏𝑚%,$, ln 𝑠𝑖𝑧𝑒%,$, 𝐼𝑛𝑣%,$ 𝑜𝑝%,$, and 𝑟%,$0"3,$ as detailed in Equations (D1, D2) and in 
the text. Superscripts: a significant at the 1% level, b significant at the 5% level, c significant at the 10% level. 

 
Panel A: Explaining Returns 

 Dep. variable:  𝑟!,","$E  
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 
EBR%,$,$#E 0.1701a 0.2440a 0.4456a 0.5609a 0.6016a 
  (0.0012) (0.0138) (0.0221) (0.0227) (0.0223) 
𝑏𝑚%,$ 0.0126a 0.0213a 0.0460a 0.0758a 0.1107a 
 (0.0003) (0.0054) (0.0097) (0.0149) (0.0217) 
ln 𝑠𝑖𝑧𝑒%,$	 -0.0029a -0.0081a -0.0189a -0.0191a -0.0124b 
  (0.0002) (0.0018) (0.0049) (0.0043) (0.0050) 
𝑖𝑛𝑣%,$	 0.0034a 0.0088a 0.0284a 0.0378a 0.0513a 
  (0.0002) (0.0017) (0.0051) (0.0084) (0.0079) 
𝑜𝑝%,$ 0.0038a -0.0364a -0.1610a -0.2681a -0.3424a 
  (0.0003) (0.0068) (0.0215) (0.0414) (0.0610) 
𝑟%,$0"3,$ -0.0022a -0.0115a -0.0560a -0.0646a -0.0821a 
 (0.0001) (0.0033) (0.0108) (0.0120) (0.0094) 
Obs 875,404 815,293 772,217 594,792 474,032 



 88 

Adj R2 2% 7% 31% 51% 59% 
 

Panel B: Share of predictability from characteristics via expectations 
𝑏𝑚%,$ 113% 70% 46% 38% 43% 
ln 𝑠𝑖𝑧𝑒%,$	 17% 24% 22% 16% 10% 
𝑖𝑛𝑣%,$	 -58% -54% -253% 385% 237% 
𝑜𝑝%,$ 7% -65% 102% 58% 59% 
𝑟!,"*%7→"*% -3% -7% -38% -148% -239% 

 

 Panel A shows that EBR has substantial explanatory power: conditioning on 

characteristics, 𝑏 is large and significant, consistent with Table B.6.  The converse is also true 

(𝑐_ are large and significant) which, on its own, is consistent both with a characteristic based 

required return and with the earlier remark that our measures of market beliefs are partial.  

Momentum has the wrong sign in Table D1 panel A but the correct sign in Table 9, 

suggesting all of the predictability is captured by EBR.   

We next compute a lower bound for the expectation-channel share of the 

predictability of characteristic 𝜒 = 𝑏𝑚, 𝑠𝑖𝑧𝑒, 𝑖𝑛𝑣, 𝑝𝑟𝑜𝑓,𝑚𝑜𝑚 as Z⋅aT
Z⋅aT$bT

, which are reported 

in Table D1 panel B. At horizons of 1 year or longer, most predictability from 𝑏𝑚, 𝑠𝑖𝑧𝑒 and 

𝑚𝑜𝑚, and a substantial share of predictability from 𝑖𝑛𝑣, works through the expectations 

channel.  Controlling for other characteristics, there is no explanatory power for profitability.  

These results offer direct evidence that analyst expectations help explain the documented 

predictive power of firm characteristics for future returns. 

As a further test, we offer another lower bound on the role of expectations by 

following the residualization strategy in BGLS (2024). Specifically, we first predict returns 

𝑟!,"$E	at the firm level using a saturated specification of contemporaneous expectations 

measures: forecast errors 𝐹𝐸!,"$D, revisions of long-term forecasts Δc𝐿𝑇𝐺!,"$D and of short-

term forecasts ΔD𝐸"$DΔ𝑒!,"$D$% for 𝑗 = 1,… , ℎ.  We also include measures of lagged 

aggregate optimism 𝐿𝑇𝐺", Δ𝐿𝑇𝐺"*% which BGLS (2024) show predict the future value 
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premium. These regressions achieve 𝑅7s ranging from 27% to 48%. We next regress the 

residual firm level returns on firm level book to market 𝑏𝑚!,".  Since 𝑏𝑚!," is scaled by 

market price, and thus includes a measure of market expectations, this sequential procedure 

helps better identify the component of returns that is orthogonal to the (noisier) measured 

expectations component.  The regressions do not include time or firm fixed effects, since they 

seek to capture cross-sectional variation in returns arising from firm level characteristics.  

Table D2 
Residualization exercise 

Note: In Panel A, we regress firm-level log returns, 𝑟%,$,$#E, at horizons (h) of one month, three months, one 
year, three years, and five years on the log book-to-market ratio at time t, 𝑏𝑚%,$.  In Panel B, we regress 
residualized log returns—derived from separate regressions (not shown) of returns at the same horizons h on 
forecast errors and revisions in both long-term and short-term growth between t and t+h—on log book-to-
market at time t.  𝑏𝑚%,$ has unit standard deviation. Standard errors are corrected for overlapping observations 
using the Newey-West (1987) procedure. The sample period spans December 1981 to December 2023. 
Superscripts:  a significant at the 1% level, b significant at the 5% level, c significant at the 10% level. 
 

Panel A. Book to market and firm level returns 
 Dep. variable: 𝑟%,$#E	 
 ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
 (1) (2) (3) (4) (5) 

𝑏𝑚%,$ 0.0049a 0.0118a 0.0402a 0.0746a 0.1006a 
  (0.0012) (0.0029) (0.0084) (0.0183) (0.0235) 
Constant 0.6959a 2.0899a 8.3633a 24.5599a 40.0203a 
  (0.0015) (0.0037) (0.0124) (0.0244) (0.0302) 
Obs 477,256 445,657 506,844 478,353 416,251 
Adj R2 0% 0% 1% 1% 1% 
F-stat 18.1 16.8 22.9 16.6 18.3 

 
Panel B. Book to market and firm level residual returns 

 Dep. variable: residual 𝑟%,$#E  
  ℎ = 1 ℎ = 3 ℎ = 12 ℎ = 36 ℎ = 60 
  (1) (2) (3) (4) (5) 
𝑏𝑚%,$ 0.0043a 0.0074a 0.0165b 0.0115 0.0085 

  (0.0012) (0.0028) (0.0065) (0.0125) (0.0179) 
Constant -0.0023 -0.0040 -0.0086 -0.0060 -0.0043 
  (0.0015) (0.0032) (0.0083) (0.0177) (0.0231) 
Obs 477,256 445,657 401,537 352,841 302,816 
Adj R2 0% 0% 0% 0% 0% 
F-stat 13.3 7.0 6.4 0.8 0.2 
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The Table shows that 𝑏𝑚!," has strong predictive power for firm level returns in our sample 

(panel A).  The predictive power of 𝑏𝑚!," drops substantially, both in magnitude and in 

significance, when contemporaneous measured expectations are controlled for (panel B). At 

the 1-year horizon, the slope coefficient drops by more than 40% which, given the limits in 

the measures of expectations, this is a lower bound for the role of expectations.  For longer 

horizons, the strong predictability of 𝑏𝑚!," is entirely captured by expectations.   

These results also complement the finding in BGLS (2024) that the return 

predictability of the aggregate price dividend ratio for returns on the aggregate market 

disappears once contemporaneous expectations are taken into account. These two 

conceptually similar exercises show that return predictability from valuation ratios is to a 

large extent a predictability of (differential) expectation revisions.  This fact implies that 

characteristics encode information about beliefs, and specifically about departures from 

rationality. 

 

 


