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1 Introduction

Developed economies experience boom-bust cycles in real and financial activity. Booms in

which credit spreads are low, and investment, output, and leverage are high predict busts

in which spreads rise and investment, output, and leverage decline (Schularick and Taylor,

2012; López-Salido et al., 2017), even absent bad fundamental shocks. In most accounts,

busts are due to “financial” shocks such as a spike in investors’ required returns (Korinek

and Simsek, 2016), uncertainty (Arellano et al., 2019), or a bank run (Diamond and Dybvig,

1983), which are amplified by fire sales or demand externalities (Bernanke and Gertler, 1989;

Kiyotaki and Moore, 1997; Eggertsson and Krugman, 2012). But what are financial shocks?

And why do they occur after booms? Existing theories do not answer these questions.1

We offer an alternative approach in which boom-bust cycles are systematic, due to

non-rational expectations. We microfound previous informal arguments (Minsky, 1977;

Kindleberger, 1978) by embedding diagnostic expectations (DE) (Bordalo et al., 2018) in

a workhorse neoclassical model with defaultable debt. DE introduce a single new parameter

capturing belief overreaction to total factor productivity (TFP) news. We discipline beliefs

using data on managers’ expectations about their firms’ profitability.

A realistic degree of overreaction produces realistic credit cycles. During good times

investors are too optimistic, so credit and investment overexpand. When beliefs cool off,

credit markets tighten, real activity declines, and default rates rise, consistent with (Bordalo

et al., 2018, 2019). The model yields sharp reversals even in the absence of large nega-

tive TFP shocks, and matches the nontargeted predictability of realized bond returns at

the firm and aggregate levels, without assuming exotic risk preferences. We show that un-

der rational expectations financial frictions amplify shocks, but cannot generate meaningful

countercyclical volatility of credit spreads, in particular realistic spread hikes and drops in

debt and investment after small negative TFP shocks.

In our setting DE give rise to the following expectations formula, founded in the psychol-

ogy of selective recall:

Eθt (At+1) = Et (At+1) + θ [Et (At+1)− Et−1 (At+1)] , (1)

where At+1 is future TFP, Et (·) is the rational expectation at time t, and θ ≥ 0 is a

diagnosticity parameter. When θ > 0 agents overreact, because good news does not just

increase the true likelihood of good future outcomes, it also causes such outcomes to be top

of mind and thus overweighted in beliefs. DE have two advantages relative to models of

adaptive expectations (Cagan, 1956) or of exaggerated TFP persistence (Angeletos et al.,

1Shleifer and Vishny (1992) offer the original treatment of fire sales. This amplification is also in Lorenzoni
(2008), Stein (2012), and Dávila and Korinek (2017). Demand externalities are studied by Farhi and Werning
(2020), Guerrieri and Lorenzoni (2017), Korinek and Simsek (2016), and Rognlie et al. (2018).

2



2020; Greenwood et al., 2023). First, belief distortions depend on the data generating process

experienced by the agent, making DE immune to the Lucas (1976) critique. Second, under

DE optimism swiftly cools off when good news recede into the past, even in the absence of

bad shocks. As a result, small shocks cause significant instability, which does not arise when

- for instance - agents merely exaggerate persistence. Third, and important, DE modify RE

by a single parameter, θ, that has been estimated in different datasets, including the forecasts

of financial (Bordalo et al., 2019) and macroeconomic analysts (Bordalo et al., 2020). These

estimates discipline our quantifications.

The paper proceeds as follows. In Section 2 we present novel evidence on boom-bust cycles

in expectations, bond returns, and investment at the firm level. We show that managers’

expectations of their firms’ profits overreact: they are too optimistic in good times and

too pessimistic in bad times. In turn, excess optimism predicts a one year-ahead decline

in the firm’s bond return as well as lower investment growth. We then investigate whether

these micro level boom-bust dynamics: i) can be explained by a disciplined departure from

rationality and whether ii) they can produce aggregate instability.

Section 3 introduces the DE model, discussing its foundations and implications. Sections

4 and 5 introduce DE about firms’ TFP in a model in which consumers are risk neutral and

firms hire labor, invest, and issue equity as well as risky debt subject to idiosyncratic and

aggregate TFP shocks. In our main analysis the wage and the interest rate are fixed (deep

pocketed lenders provide credit), but we endogenize an equilibrium wage in Section 7.2. We

structurally estimate the model by matching firm-level moments on profitability, spreads,

debt, investment, and forecast errors. The estimated degree of diagnosticity θ ≈ 1 is in the

ballpark of previous estimates (Bordalo et al., 2019; Pflueger et al., 2020).

The model yields two key results. First, under DE, but not under an estimated RE version

of the model, the reaction of aggregate investment to TFP shocks is highly nonlinear. In

good times, even a small negative TFP shock causes a large drop in aggregate investment,

while the same shock has a muted effect in normal times. Second, in the DE model large

increases in credit spreads occur even after only moderately negative TFP shocks. Under

RE, by contrast, spreads rise little even after much larger negative TFP shocks. Due to

their overreaction and sudden reversal, DE offer a theory of amplification through “financial

shocks”: waning of excess optimism causes a sudden inward shift in the supply of capital,

causing rising credit spreads (Jermann and Quadrini, 2012; Gilchrist and Zakraǰsek, 2012).

In Section 6 we assess the model’s ability to match untargeted facts. We first look at

macro comovements. The DE model overall outperforms the RE model among key financial

dimensions, producing volatile and countercyclical credit spreads. These are central features

of credit cycles, and they are again due to the boom-bust nature of DE. Overeaction produces

an outward shift in the supply of capital during good times, followed by an inward shift due

to belief reversal. In a canonical business cycle accounting exercise (Chari et al., 2007), we
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show that belief fluctuations manifest as a countercyclical investment wedge, which drops

during periods of overoptimism and rises during periods of overpessimism.

We then go back to the firm-level boom-bust cycles in expectations, investment, and

bond returns documented in Section 2. We show that the DE (but not the RE) model offers

a good account of them. We also show that the estimated DE model can produce realistic

cycles at the sectoral level, in which good times are followed by disappointment and lower

credit spreads. These patterns are also fully untargeted in our calibration.

As a final exercise, we ask how large a TFP shock is required in the DE model to

produce the massive increase in credit spreads observed during 2007-09 and investigate the

macroeconomic implications of such a shock. We find that a moderate decline in TFP is

sufficient to generate the observed increase in credit spreads. The RE model is entirely

incapable of matching this performance, with little movement in spreads in response to the

identical shock. The DE model also produces larger declines in aggregate investment and

earnings expectations, explaining a higher fraction of the observed declines in each variable.

The final Section 7 performs two robustness exercises. First, we endogenize the real

wage in general equilibrium by adding a household labor choice with convex effort cost. As

expected, this modification dampens volatility but does not eliminate sizable fragility after

good times, even with flexible wages. Second, we perform sensitivity analysis by varying a

range of model parameters. Again, our key results appear to be robust.

Our paper contributes to two strands of work in macroeconomics. Work on macro-

financial instability maintains rational expectations but produces time-varying risk attitudes

through habits (Campbell and Cochrane, 1999), long-run risk (Bansal and Yaron, 2004),

or disaster risk (Barro, 2006). In these accounts, time-varying risk premia are not directly

measured and predictions regarding survey expectations are counterfactual. Habit formation

predicts countercyclical expected returns while survey expectations of returns are procyclical

(Greenwood and Shleifer, 2014). Investors expects low returns when they expect a crash,

contrary to the predictions of disaster risk models (Giglio et al., 2021). Here we assume

standard preferences, in particular constant required returns, but relax belief rationality in

a manner disciplined by micro data. Future work may combine the two ingredients.

A second strand of work studies departures from full information rational expectations

due to rational inattention (Sims, 2003; Mankiw and Reis, 2002). Coibion and Gorodnichenko

(2015) study inflation forecasts using information rigidities as in Woodford (2003). Kohlhas

and Walther (2021) model asymmetric attention paid to distinct macroeconomic variables.

Kozlowski et al. (2020) links belief dynamics to the persistence of the Great Recession.

This work does not produce excess volatility in beliefs and economic outcomes. Angeletos

et al. (2020) combine dispersed information and exaggerated persistence. We show that

exaggerated persistence cannot produce quantitatively realistic belief volatility. A different

approach emphasizes ambiguity aversion (Hansen and Sargent, 2001; Ilut and Schneider,
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2014; Bianchi et al., 2018; Bhandari et al., 2024), producing excess volatility in beliefs, but

based on an underlying pessimism that is difficult to square with observed excess optimism

in beliefs data.2 Adam et al. (2017) and Farmer et al. (2024) model expectations that may

deviate from rationality for sustained periods due to agents learning about hard-to-identify

processes based on misspecified models. Here, we estimate overreaction also using purely

idiosyncratic firm-level TFP shocks, which are arguably not tied to hard-to-identify aggregate

conditions.

Our key innovation is to discipline belief overreaction using micro data and study its

macro-financial implications. Recent work introduces DE into neoclassical and New Key-

nesian models (Bianchi et al., 2023; L’Huillier et al., 2024) and shows that they generate

quantitatively meaningful amplification and propagation of traditional business cycle shocks.

Relative to this work building DE into canonical representative agent business cycle models,

we add both financial frictions allowing for a study of credit spreads and a heterogeneous firms

model allowing for estimation based on microdata. Further building out our model to include

additional business cycle mechanisms such as aggregate demand shifts (Farhi and Werning,

2020), time-varying capacity utilization (King and Rebelo, 1999), or sharp cuts to firm-level

employment in bad times (Ilut et al., 2018) may offer an even more realistic model of macroe-

conomic volatility. Maxted (2023) introduces DE in He and Krishnamurthy (2019)’s model

of bank runs. Krishnamurthy and Li (2025) also study beliefs and intermediation in a DE

framework. Falato and Xiao (2024) studies overreaction in bank expectations. Chodorow-

Reich et al. (2024) studies overreaction in housing price expectations. Over-reacting beliefs

about future earnings growth can account for longstanding stock market puzzles (Bordalo

et al., 2024a), including return predictability, and shed light on macro-financial fluctuations

(Bordalo et al., 2024b), even in the absence of time variation in required returns.

2 Data

We use survey data to connect belief overreaction to boom-bust cycles in investment and

bond returns at the firm level, controlling for macro shocks.

We use micro data on firm-level forecasts from the IBES manager guidance database,

which records - for an individual firm-fiscal year - a manager’s forecast for their company’s

profits or earnings over the next year. We exploit forecasts made concurrently with the

release of the year’s financials, in a sample spanning the 1999-2018 period. We link this

data to Compustat, which provides standard financial information. We also use the Mergent

2See also Falato and Xiao (2020) and Schaal and Taschereau-Dumouchel (2023) on dispersed information.
Jaimovich and Rebelo (2007) study the impact of other belief distortions in macro models without financial
frictions. Caballero and Simsek (2020) study demand externalities in models with extrapolative beliefs.
Behavioral finance has studied credit cycles Greenwood et al. (2023), including under DE (Bordalo et al.,
2018), without however assessing the quantitative performance of these accounts.
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Fixed Income Securities Database (FISD), which contains issuance information including

spreads on individual securities, and the FINRA’s Trade Reporting and Compliance Engine

(TRACE) dataset, which contains data on secondary market transactions from bond dealers

and hence allows us to compute realized bond returns. The FISD-TRACE sample covers

the years 2003-2018. Appendix B provides more information on data sources and sample

construction, as well as descriptive statistics.

To assess whether expectations overreact, we regress a firm’s next year forecast errors,

defined as realized minus predicted profits, on current-year firm-level profits, investment,

debt issuance, and profit forecasts, controlling for time and firm effects. Under rational

expectations, the manager’s forecast errors should be unpredictable based on any information

available to them when the forecast is made. If beliefs overreact, displaying overoptimism

during good times and pessimism during bad times, then future forecast errors should be

negatively correlated with the firm’s current fundamentals, proxied by investment and debt

issuance. Table 1 reports results consistent with overreaction: firms earning more, investing

more, issuing more debt, or forecasting higher future profits on average experience more

negative earnings surprises in the future.

This evidence confirms the violations of rationality found by Gennaioli et al. (2016) and

Barrero (2022) in different datasets and contexts. Overreaction is a robust feature of firm

forecasts across private and publicly listed firms, with differing strategic incentives (some

forecasts are confidential, others are publicly disclosed).3 The magnitudes are meaningful.

In column (2) a one standard deviation (0.23) higher investment rate on average predicts

0.457 × 0.23 ≈ 10.5 percentage points stronger disappointment in earnings next year.

These results are robust to alternative specifications, as reported in Appendix Table B.3.

We exclude the Great Recession, to avoid the influence of outliers, exclude firms with less

than five years of earnings guidance (which are more likely to manipulate earnings forecasts

Bertomeu et al. (2021)), and exclude firms with high-yield debt, to verify that overreaction

is not restricted to risky firms. We continue to uncover evidence of forecast overreaction.

We also show that the predictability of forecast errors works symmetrically in good and in

bad times, defined as periods with above or below average investment or debt.

These patterns also do not reflect simple constant heterogeneity in optimism across firms,

since each column controls for firm fixed effects. But one might be concerned that firm fixed

effects generate the downward dynamic panel bias of Nickell (1981) in finite samples.4 So in

3Recent work documents overreaction by correlating forecast errors with forecast revisions (Bordalo et al.,
2020, 2019; Coibion and Gorodnichenko, 2015). Here we do not have enough data to perform this type of
revision-based analysis. Bouchaud et al. (2019) study equity analysts’ forecasts. They document that these
forecasts, while correlated with managerial forecasts, display a form of underreaction.

4Intuitively, the forecast errors on the left hand side of these regressions include profit innovations which
in finite samples may influence the mean forecast errors subtracted by the OLS fixed effects estimator. If
firm financial outcomes on the right hand side are correlated with these profit innovations, there will be a
mechanical negative correlation resulting in downward bias of the OLS fixed effect estimator.
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Table 1: Predictable Forecast Errors

(1) (2) (3) (4)
Dependent Variable: Forecast Errort+1

Estimation Method: OLS OLS OLS OLS

Profitst −0.044∗∗

(0.021)

Investmentt −0.457∗∗∗

(0.065)

Debtt −0.326∗∗∗

(0.063)

Forecastt −0.244∗∗∗

(0.031)

Firm Effects X X X X
Year Effects X X X X
Years 1999-2018 1999-2018 1999-2018 1999-2018
Firm-Years 9666 9666 9666 9666

Notes: The table reports panel OLS estimates from the merged Compustat-IBES sample of the coefficients
of a regression of forecast errors on the indicated variable. The standard errors are clustered at the firm
level. All variables are measured at the firm-fiscal year level. Forecast errors in t + 1 are realized earnings
in t + 1 minus firm forecasts in t, scaled by firm tangible assets. Investment in t is capital expenditures,
scaled by firm tangible assets. Debt is long-term and short-term liabilities at the end of t, scaled by firm
total assets. Forecasts are manager guidance in the year t earnings call about earnings in year t+ 1, scaled
by firm tangible assets. ∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Note that 0.01 = 1% relative to
the firm’s assets.

Appendix B we develop a GMM estimator based on covariances of the growth of outcomes

within firms up to the current period with future forecast error growth. The estimator is

asymptotically equivalent to the OLS specifications in Table 1 but not subject to the same

dynamic panel bias. As Table B.2 shows our baseline overreaction patterns go through and,

if anything, strengthen in magnitude using this alternative estimator.

If overreaction produces boom-bust cycles, belief disappointment should be correlated

with reversals in firm-level outcomes. To assess this prediction, Table 2 performs a two-

stage regression exercise. In the first stage, see column (1), we regress future forecast errors

on current investment, analogous to Table 1 for this sample, which detects excess optimism

(pessimism) as predictably negative (positive) forecast errors.

In the second stage, reported in columns (2) and (3), we regress future bond returns and

investment growth on predicted forecast errors, controlling for time effects. Belief-driven
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Table 2: Linking Forecast Errors and Firm Reversals

(1) (2) (3)
Dependent Variable: Forecast Errort+1 Returnt+1 ∆ Investmentt+1

IV Stage: First Second Second
Forecast Errort+1 0.007∗ 0.483∗∗∗

(0.004) (0.061)
Investmentt −0.565∗∗∗

(0.104)
Year Effects X X X
Profit Control X
Years 2002-2018 2002-2018 2002-2018
Firm-Years 2852 2852 2852
First Stage F 29

Notes: The table reports estimates of specifications on the merged Compustat - IBES - FISD/TRACE
sample at the firm-fiscal year level. Column (1) reports IV first-stage estimates, and the remaining columns
report IV second-stage estimates. Column (3) controls for current profits in the second stage. Standard
errors are clustered at the firm level. ∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Note that
0.01 = 1% relative to the firm’s assets.

cycles imply that overoptimism (negative predicted errors) and overpessimism (positive pre-

dicted errors) are followed by reversals in bond returns and investment growth.5 To assuage

the concern that investment and belief errors may be jointly driven driven by mean rever-

sion in fundamentals the investment regression controls for current profits.6 The results in

column (2) suggest that departures of rationality arise not only for managers (as shown in

column (1) and in Table 1) but also for bond market investors, and those in column (3) show

that they can produce investment cycles. Later we confirm these findings using simulated

data from our model, which is immune to omitted variables bias.

The results are consistent with belief driven boom-bust cycles. Good times with high

investment are systematically followed by disappointment (column 1), low future bond re-

turns (column 2), and low future investment growth (column 3). The opposite occurs after

bad times. In column (2) a firm predictably disappointed with a one standard deviation

(0.78) lower forecast error sees its bond returns fall by 0.007 × 0.78 ≈ 0.5 percentage points

on average. Models without overoptimistic pricing of debt on the part of investors cannot

generate this sort of micro-level return predictability, regardless of the belief structure at

work within firms. Column (3) reveals that the investment rate declines by 0.483 × 0.78 ≈
5In Appendix B we also check that these firm-level cycles are not driven by risky firms, which may display

more cyclicality. We repeat the exercise in Table B.5 for the subset of investment grade firms, excluding all
firms with high-yield debt. Our results are confirmed.

6Column (1), like Table 1, provides evidence of non-rationality of managers’ profit expectations, a result
that is also robust to removing the control for current profits. See Table B.6 in the empirical Appendix B.
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37.8 percentage points at the same firm. The rest of the paper draws out the aggregate con-

sequences of these firm-level patterns by introducing diagnostic expectations into a standard

neoclassical model.

3 Diagnostic Expectations and Neglected Risk

3.1 Diagnostic Expectations

There are multiple models of belief overreaction in the literature. However, the Diagnostic

Expectations (DE) model accounts for a broad range of well-documented departures from ra-

tionality, starting from the work of Kahneman and Tversky in the 1970s. DE were developed

by Bordalo et al. (2018) building on Gennaioli and Shleifer (2010). To see how they work,

consider an agent forecasting a future variable Xt+1, say TFP, on the basis of its history.

The true distribution is Markovian, denoted by f (Xt+1 |Xt ). Under DE, the agent’s beliefs

follow the distorted distribution:

f θ (Xt+1 |Xt ) ∝ f (Xt+1 |Xt )

[
f (Xt+1 |Xt )

f (Xt+1 |Et−J (Xt))

]θ
(2)

where θ ≥ 0 and Et−J (Xt) is the rational expectation of Xt conditional on information at

t− J .7 In Equation (2) beliefs overweight future outcomes that have become more likely on

the basis of the last J periods’ news. Overweighting is captured by the likelihood ratio on the

right hand side, which measures the current increase in the probability of Xt+1 relative to the

case of J periods of neutral news, Xt = Et−J (Xt). θ captures the strength of overweighting.

When θ = 0 expectations are rational. When θ > 0 beliefs overreact.

Equation (2) is founded on selective recall. The data generating process, captured by

f (Xt+1 |Xn ), n ≤ t, is stored in the agent’s memory database. The agent selectively recalls

outcomes that historically became more likely after the most recent J news, and fails to

recall other outcomes. Thus, beliefs overweight the future outcomes that news cause to be

top of mind. Bordalo et al. (2021a) offer a memory foundation for Equation (2) and find

support for it in two experiments. See also Bordalo et al. (2023) for related evidence.

To see the implications of Equation (2), suppose that TFP follows an AR(1) process,

lnAt = ρlnAt−1 +εt, where ρ ∈ (0, 1) and εt is Gaussian with mean zero and variance σ2. At

7Equation (2) assumes that Xt is perfectly observable. Bordalo et al. (2019, 2020, 2023) allow for infor-
mation frictions such as dispersed information about Xt, in which case DE yield a distorted Kalman Filter
that reconciles overreaction of individual forecasts with consensus underreaction. In Equation (2) as we later
discuss, the agent’s reliance on the true data generating process, and hence the dependence of overreacting
beliefs on the “rational expectation” is a byproduct of selective memory retrieval from an unbiased memory
database, not of the agent’s awareness of the rational expectation.
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time t the diagnostic distribution of next period productivity is also Gaussian, with mean:

Eθt (lnAt+1) = ρ lnAt + θρ

J−1∑
r=0

ρrεt−r, (3)

and variance σ2. DE are too optimistic after J periods of on average good news and too

pessimistic after J periods of on average bad news. Future forecast errors are negatively

predicted by current TFP:

Cov
[
lnAt+1 − Eθt (lnAt+1) , lnAt

]
∝ −θρσ2(

1− ρ2J

1− ρ2
) < 0,

which allows DE to account for the error predictability in Table 1. This cannot occur under

RE, with θ = 0, which implies a zero covariance above.

We allow overreaction to current news only, i.e. J = 1. This assumption is common in

applications of DE (Bordalo et al., 2018), and we adopt it to minimize degrees of freedom.

Some applications allow for J > 1 showing that in this case DE produce slowly brewing asset

price bubbles (Bordalo et al., 2019; Maxted, 2023; Bordalo et al., 2021b). In macroeconomics,

Bianchi et al. (2023) show that longer streaks of overreaction can generate hump-shaped

dynamics in New Keynesian models.8

Some of our results could arise from alternative models of overreaction. However, we

think that DE offer two important advantages. First, they are based on the psychology of

memory (Kahana, 2012; Bordalo et al., 2023), which gives DE substantial external relevance

as well as sharp testable predictions based on this memory structure and the reaction of

memory to cues. For example, the role of memory in this context implies that belief dis-

tortions are stronger when the underlying persistence ρ is higher, consistent with Bordalo

et al. (2019, 2020); Afrouzi et al. (2023); Azeredo da Silveira et al. (2020). As result of these

memory-based microfoundations, DE are immune to the Lucas critique (Lucas, 1976). Re-

liance of memory on cues creates sharp belief reversals, in which otherwise stable economic

conditions cause overoptimism to quickly wane, causing excess volatility. These features are

not generally present in models in which agents hold an exogenously misspecified model or

follow adaptive learning.9’10

8Appendix Table B.4 provides empirical evidence on the persistence of forecast overreaction up to lag
J = 2 but finds no effect at lags J > 2. It is thus realistic to focus on J = 1 in our context.

9Suppose for instance that the agent inflates TFP persistence as lnAt = ρ̂ lnAt−1 + εt, where ρ̂ > ρ, as
proposed by Greenwood and Hanson (2013) and Angeletos et al. (2020). Parameter ρ̂ is not linked to the
true DGP, violating forward looking behavior. In addition, beliefs stay overly optimistic as long as TFP
is above its long run mean of lnA = 0, so there are no sharp reversals absent bad news. Substantively,
then, realistic belief volatility requires counterfactually high excess persistence. As we show in Appendix
Section B.6, to obtain belief estimates from Section 5 to this model requires ρ̂ > 1, which is incompatible
with dynamic optimization. Similar problems arise in adaptive models of mechanical extrapolation. Another
approach to capture extrapolation is Fuster et al. (2010)’s Natural Expectations.

10Kohlhas and Walther (2021) show that overreaction may be produced by overconfidence, which cannot,
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The second key advantage of DE is that deviations from rationality are determined by

a single parameter, the degree of diagnosticity θ. θ has been estimated in various settings,

ranging from financial analyst firm-level earnings forecasts (Bordalo et al., 2019), to profes-

sional forecasters who predict macroeconomic variables (Bordalo et al., 2020), to volatility

in stock prices (Pflueger et al., 2020). These estimates point to a value of θ between 0.5 and

1.5. The similarity of these estimates is noteworthy because it highlights a basic psychologi-

cal force toward overreaction operating both for idiosyncratic (i.e. firm level) and aggregate

(i.e. macroeconomic) shocks, which we later confirm in our setting. The ballpark of existing

estimates of θ provides a valuable external benchmark to discipline our quantitative exercise

and assess its reliability.

In sum, although our analysis does not preclude the use of different models, we view

Equation (3) as a microfounded, tractable, and disciplined way to capture the observed

belief overreaction in managers’ beliefs in Section 2. We next use this model to study our

key object of interest: the genesis of financial reversals such as sudden increases in credit

spreads. To do so, we incorporate DE into an incomplete market setting with defaultable

debt. We next present a stylized example to illustrate how in such a setting DE affect the

credit spread demanded by capital supplier. We also discuss the differences between our

approach and models of excess volatility based on uncertainty shocks and time-varying risk

aversion.

3.2 Diagnostic Expectations, Belief Volatility, and Supply-Driven

Bond Pricing: A Toy Model

A firm seeks to roll over one-period defaultable bonds. Deep-pocket risk-neutral lenders

demand a constant expected return R = 1. If the probability of default perceived by lenders

for next period is δθt , the interest rate is R̂t = 1
1−δθt

, so the credit spread is:

R̂t − 1 ≡ St =
δθt

1− δθt
, (4)

which increases in the default risk δθt perceived by lenders.

Suppose that the firm defaults at time t if and only if its productivity is lower than a

threshold, At < A∗. The perceived probability of default is then given by:

δθt = Φ

[
lnA∗ − Eθt (lnAt+1)

σ

]
, (5)

where Φ (·) is the standardized Gaussian CDF. Due to DE, perceived risk is too low after

however, yield overreaction of consensus forecasts, which is documented in Bordalo et al. (2022). Kohlhas
and Walther (2021) show that overreaction can obtain under a form of rational inattention, but not at the
level of individual forecasts as instead documented in Bordalo et al. (2020).
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good news and too high after bad news.

Equation (5) has implications for the path of credit spreads. Substituting δθt in (4) and

linearizing with respect to Eθt (lnAt+1) around its long run mean yields:

St ≈ S∞ − SEθt (lnAt+1) , (6)

where S∞ > 0 is the long run spread and S is a positive scalar. The spread falls when

creditors are more optimistic about future productivity. Inserting (3) into (6) we obtain:

St ≈ S∞ (1− ρ) + ρSt−1 − Sρ (1 + θ) εt + Sθρ2εt−1. (7)

Under RE, with θ = 0, spreads mirror TFP and follow an AR(1) process with persistence

ρ. Under DE, with θ > 0, there are two differences. First, current TFP shocks are amplified,

as captured by the term −Sρ (1 + θ) εt. This is a source of excess volatility: after a positive

TFP shock, beliefs become too optimistic and the spread declines too much. Second, there is

reversal of past TFP shocks, as captured by the term Sθρ2εt−1. This is a source of boom-bust

dynamics: in the future, current optimism wanes and the spread increases.

Due to the second mechanism, DE generate predictable bond returns, which arise because

the current spread St can differ from its RE counterpart S∗t on the basis of current shocks.

Equation (7) implies:

St − S∗t ≈ −Sρθεt. (8)

When current expectations are overly optimistic, θεt > 0, bonds are overpriced. In the

future, bond payouts are systematically disappointing, causing low returns. The converse

holds when expectations are pessimistic. In sum, DE account for: i) overoptimism in good

times, ii) excess shifts in the supply of capital and hence in spreads, which iii) then revert

together with bond returns.

Existing business cycle research has sought to produce such “excess” macroeconomic

volatility under RE by introducing ingredients such as news shocks (Barsky and Sims, 2011;

Bianchi, 2011), ambiguity (Bianchi et al., 2018), and uncertainty (Bianchi and Melosi, 2016;

Bloom et al., 2018; Arellano et al., 2019) in complete or incomplete market neoclassical

models. Another approach emphasizes time varying risk preferences due to habits (Campbell

and Cochrane, 1999), long run risk (Bansal and Yaron, 2004) or disaster risk (Barro, 2006).

The DE approach outlined above, and developed in Section 4, has two advantages compared

to these mechanisms.

First, DE can jointly match market outcomes and beliefs data showing departures from

rationality, as documented in Table 2. Expectations play a key role in macroeconomics, and

building models based on counterfactual expectations is problematic. Second, the empirical

realism of DE yields new implications. For instance, under RE a positive news shock produces

an investment boom but not a concurrent output boom, yielding a counterfactual negative
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correlation between consumption and investment. Under DE, by contrast, excess optimism

is produced by a current TFP boom, so current consumption can also increase. DE also

produce, compared to RE models, sharp reversals of beliefs in the absence of news, which

allows to separate macro volatility from the volatility of TFP, which appears limited in the

data (Fernald, 2014).11

4 Neoclassical Model with Diagnostic Firms and Lenders

A unit mass of firms with different and persistent productivities decides whether to default,

hire labor, invest, issue equity, and borrow subject to capital adjustment costs. Credit

is supplied by a continuum of risk-neutral lenders. The only difference from a workhorse

neoclassical model with firm heterogeneity and risky debt (Khan and Thomas, 2008; Arellano

et al., 2019; Gilchrist et al., 2014) is that firms and lenders form expectations diagnostically.

Our main analysis is in partial equilibrium: we take the risk-free rate R and the wage

rate W as given. The exogenous risk-free rate reflects a deliberate methodological choice.

In conventional macro models the risk-free rate is endogenized by adding curvature to the

utility function. We abstract from these ingredients because, as already argued, time varying

risk preferences are not externally measured. In addition, standard macro models with

utility curvature produce a procylcical risk freerate, which is counterfactual (Winberry, 2021;

Cooper and Willis, 2015; Bachmann et al., 2013).12

The exogeneity of the wage rate is just a simplifying assumption. We relax it in Section

7, where we introduce elastic labor supply. We find that in good times overoptimistic beliefs

boost labor demand and the real wage. This effect could dampen the beliefs-driven cycle

but, as we show, DE continue to create significant nonlinearity in this case as well.

4.1 Firms

Time is discrete. We use ′ to denote future values and −1 to indicate lagged values. Uppercase

letters refer to macro or common values, lowercase letters to idiosyncratic objects. The

generic firm has micro-level TFP z and is subject to macro level TFP A. It uses capital k

and labor n as inputs to produce output according to a decreasing returns technology

y = Azkαnν , α + ν < 1.

11Future work may explore the interaction between DE and uncertainty (Bianchi et al., 2024).
12Furthermore, contrary to the idea that interest rate changes would smooth out micro nonlinearities

(Khan and Thomas, 2008), recently work suggests that nonlinearities survive in the presence of plausibly low
investment elasticities to interest rates (Koby and Wolf, 2020), consistent also with our structural estimates.
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Capital evolves based on investment i, which entails a one-period time to build

k′ = i+ (1− δ)k, 0 < δ < 1.

Investment entails quadratic adjustment costs AC(i, k) = ηk
2

(
i
k

)2
k, where ηk > 0. The log

of micro TFP follows the AR(1) process

log z′ = ρz log z + ε′z, ε′z ∼ N(0, σ2
z), 0 < ρz < 1 , (9)

while the log of macro TFP follows

logA′ = ρA logA+ ε′A, ε′A ∼ N(0, σ2
A), 0 < ρA < 1 . (10)

In each period, firms and lenders form diagnostic beliefs about a firm’s productivity next

period. Given the AR(1) processes (9) and (10), and given Equation (2), beliefs over micro

and macro TFP are described by the lognormal processes:

log z′|(log z, εz) ∼ N
[
ρz(log z + θεz), σ

2
z

]
(11)

logA′|(logA, εA) ∼ N
[
ρA(logA+ θεA), σ2

A

]
. (12)

When θ > 0 the agent forecasts next period’s productivity by overweighting current

news, as if the true productivity process follows an ARMA (1,1). We impose the same

degree of overreaction to fluctuations in micro and macro productivity. This provides tight

discipline to the model, requiring that the degree of overreaction estimated in Section 5

from idiosyncratic fluctuations in firm level profits at the same time lie in the ballpark of

existing estimates of θ from macroeconomic forecasts, and are capable of producing realistic

aggregate boom-bust cycles. The single value θ > 0 is thus the only difference between our

model and a workhorse heterogeneous firms macro-financial model.

We assume that, in each period, firms form expectations about next period’s productivity

according to Equations (11)-(12) and expect to form one step ahead forecasts based on future

productivity shocks using the very same ARMA (1,1) formula. This assumption allows us

to write the firm optimization problem as a recursive and time-consistent dynamic program,

conveniently simplifying computations compared to the alternative formulation in which

agents optimize in each period based on a full term structure of diagnostic beliefs at different
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horizons.13

Firms act competitively. In each period, each firm first decides whether to default on its

debt. If a firm defaults, its assets net of deadweight default costs are recovered by lenders,

and the firm restarts with zero capital and debt after one period. If a firm repays, it also

hires labor at wage W , chooses how much to invest, how much one-period debt to issue, and

pays a dividend to its shareholders or issues equity. Firms maximize the expected discounted

sum of current and future payouts, where the discount rate (R)−1 < 1 reflects the risk-free

rate R.

Consider the firm’s problem, starting from the last stage. The firm’s dividend d is given

by the standard formula

d = (1− τ) [y −Wn− AC(i, k)− φ] + qθ(s, k′, b′)b′ − i− b+ τ(R− 1 + δk), (13)

which includes profits, given by the firm’s output minus the wage bill, the adjustment cost,

and a fixed production cost φ > 0, net of the corporate income tax rate τ ∈ (0, 1). It

also includes the resources raised by issuing new debt b′ priced by the schedule qθ, minus

the investment cost i and debt repayment b. Finally, it includes the tax rebates for capital

depreciation and interest expenses on debt.14

If dividends are negative, d < 0, the firm issues equity. Following Gomes (2001), this

entails a cost IC (d) = I (d < 0) (ηf + ηd |d|), where ηf > 0 is the fixed and ηd > 0 is the

variable cost of issuance.

The firm makes its other decisions considering four state variables: its current micro TFP

z, macro TFP A, the micro shock εz and the macro shock εA. The exogenous news states

are relevant for forming diagnostic expectations, and we collect all of the firm’s exogenous

states in the vector s = (z, εz, A, εA). A firm is also identified by two endogenous states, its

inherited capital stock k and debt b. Given an overall state (s, k, b), the firm’s problem can

be written recursively. Upon entering the current period, the value of the firm is given by:

V θ (s, k, b) = max
[
V θ
D(s), V θ

ND(s, k, b)
]

, (14)

where V θ
ND(s, k, b) is the continuation value from not defaulting and V θ

D(s) the continuation

from defaulting. Condition V θ
ND (s, k, b) < V θ

D(s) identifies states in which the firm optimally

13This is equivalent to assuming that agents’ time t beliefs about At+s is the product
Πs
j=1f

θ(At+j |At+j−1, εA,t+j−1) of the one-step conditional distributions between t and t + s − 1 computed
along the paths of shocks that may materialize. This “factorized” distribution has the same mean as the
time t diagnostic distribution about TFP at t+ s, fθ(At+s|At, εAt), but has larger variance. This is due to
overreaction of one-step ahead beliefs to possible news in the interim periods, which does not arise in the
long term forecast because the latter takes into account that news in the interim periods are zero on average.

14For computational simplicity, we assume the rebate is on average equal to the risk-free rate R− 1.
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defaults. The continuation value from not defaulting is recursively determined as:

V θ
ND(s, k, b) = max

k′,b′,n

{
d− IC(d) +

1

R
Eθ
[
V θ(s′, k′, b′)|s

]}
. (15)

If the firm does not default, it hires labor n, capital k′ and sets debt b′ to maximize its

current dividend plus its diagnostically expected discounted future value V θ(s′, k′, b′). The

labor choice n is statically optimized, leaving only the intertemporal choices of k′ and b′.

If the firm defaults, its assets k net of deadweight costs are claimed by lenders during a

period of reorganization with no production. The firm restarts with zero debt and assets:

V θ
D(s) =

{
0 +

1

R
Eθ [V (s′, 0, 0)|s]

}
. (16)

After defaulting, a firm must borrow to invest. Equations (14), (15), and (16) determine the

optimal default policy by df θ(s, k, b) and, for non defaulting firms having df θ(s, k, b) = 0,

the policies for endogenous states k′θ(s, k, b) and b′θ(s, k, b).

4.2 Lenders

Firms borrow from risk-neutral deep-pocket lenders whose required expected return is the

risk-free rate R. If a firm (s, k, b) defaults on debt b, the lender receives the recovery rate

R(k, b) = (1− τ) γ
(1− δ)k

b

which reflects, net of tax, an exogenous fraction γ of the liquidation value (1− δ) k of the

firm’s capital stock. The remaining fraction 1− γ is a deadweight loss.

The price of debt qθ(s, k′, b′) adjusts endogenously so that the diagnostically expected

bond return is equal to the risk free rate R :

qθ(s, k′, b′) =
1

R
Eθ
[
1 + df θ(s′, k′, b′) (R(k′, b′)− 1) |s

]
. (17)

To equalize expected bond returns across firms, riskier firms promise a higher interest rate.15

Thus, the firm’s interest rate spread relative to the risk-free rate is given by:

Sθ(s, k′, b′) =
1

qθ(s, k′, b′)
−R.

These equations illustrate how diagnosticity affects spreads. On the demand side, diagnostic-

ity affects the firm’s default df θ(s, k, b), debt b′θ(s, k, b), and investment k′θ(s, k, b) policies.

On the supply side, diagnosticity affects the probability of default perceived by lenders, as

15The realized firm bond return is given by Rfirm(s, s′, k′, b′) =
1+dfθ(s′,k′,b′)(R(k′,b′)−1)

qθ(s,k′,b′)
.
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captured by the operator Eθ(·) in (17). The interaction between demand and supply plays

a key role in producing macroeconomic fluctuations.

4.3 Solving the Model

A partial equilibrium is a collection of i) firm policies b′θ, k′θ, and df θ, ii) firm values V θ
ND, V

θ
D,

and V θ, and iii) a lender debt price schedule qθ such that iv) taking as given debt prices

qθ, firm policies and values satisfy Equations (14), (15), and (16), v) taking as given firm

policies, debt prices satisfy the zero-profit condition in Equation (17), and vi) expectations

in the firm and lender problems Eθ reflect the dynamics in Equations (11) and (12).

We solve the model numerically. In addition to the set of Bellman equations for V θ, V θ
ND,

and V θ
D, the model features an equilibrium fixed point between firm default policies df θ and

credit prices qθ in Equation (17). We employ an iterative approach detailed in Appendix A.

First, we guess a firm default rule df θ, computing the implied debt price schedule qθ according

to the lenders’ zero-profit condition. Then, we solve the Bellman equations for V θ, V θ
D, and

V θ
ND using discretization and policy iteration. If the implied default states, i.e., those with

V θ
ND < V θ

D, match the set of initial guesses, then the iteration is complete. Otherwise, we

compute the newly implied default states and repeat the process. The algorithm we employ

is standard within the literature solving quantitative dynamic corporate finance models and

follows the implementation in Strebulaev and Whited (2012).16

DE create a wedge between the value functions of two firms reaching the same current

productivity via different news: the firm experiencing good recent news displays overopti-

mism and hence an inflated continuation value relative to a firm experiencing bad recent

news (see Appendix Figure A.1). This effect on the demand side for credit, combined with

diagnostic shifts in the supply of capital by lenders, leads to aggregate effects.

5 Estimating the Model & Inspecting the Mechanism

5.1 Estimation

Our model has sixteen parameters, listed in Tables 3 and 4. The six parameters in Table

3 are set to conventional values for a model like ours. The remaining ten parameters are:

ρz and σz, which govern the micro-level TFP process, ηk and φ capture the adjustment and

operating costs, γ the lenders’ recovery rate, σA encodes macro volatility, ηf and ηd the

equity issuance costs. θ is the key diagnosticity parameter. We also allow for and estimate

16Our numerical approach here is highly computationally intensive, given the presence of four exogenous
states, two endogenous states, an endogenous default rule, and a debt-pricing fixed point. However, judicious
application of parallelization and an economical approach to storage of micro-level outcomes following Young
(2010) and Terry (2017) allow for solution of the model in several minutes on a desktop computer.
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Table 3: Externally Fixed Parameters

Parameter Role Value Source
1 δ Depreciation rate 0.10 Annual Solution
2 R Risk-free rate 1.04 Annual Solution
3 α Capital elasticity 0.25 Bloom et al. (2018)
4 ν Labor elasticity 0.50 Bloom et al. (2018)
5 ρA Macro TFP autocorrelation 0.95 Bloom et al. (2018)
6 τ Corporate income tax 0.20 Effective rates, CBO (2017)

Notes: The table reports the parameter symbol, numerical value, a description, and source information for
each of the externally fixed parameters.

the volatility σπ of iid measurement noise in profits, which captures spurious variability in

measured profits due to accounting conventions.

Using the simulated method of moments (SMM) we structurally estimate these ten pa-

rameters using sixteen statistics. Three of them are macro moments: the average credit

spread, the average frequency of default, and GDP growth volatility. Macro data on default

and spreads encode information about the fixed cost φ and recovery rate γ, GDP growth

volatility is informative about macro shocks σA. The remaining thirteen moments are at

the firm level. One set of firm level moments comes from the variance-covariance matrix

of profits, investment rates, spreads, and debt issuance. Profits and their correlations yield

information about firm-level productivity and noise, helping to identify σz, ρz, and σπ. Firm

investment also reflects adjustment costs, helping to identify ηk. Debt issuance, together

with credit spreads, aid in the identification of equity issuance costs ηf and ηd.

Three additional moments use data on forecast errors, whose use is the key innovation

in our estimation, directly disciplining the degree of overreaction θ. One moment is the

standard deviation of forecast errors. The other two moments are the correlation of the

change in future forecast errors with current changes in the investment rate and debt issuance.

Moments based on within-firm changes allow for systematic heterogeneity across firms, i.e.,

firm fixed effects, while still naturally linking to overreaction. Suppose that investment it,

debt issuance b′t and profits πt are linearly increasing in expected log TFP, with positive

slope coefficients respectively given by ai, ab, and aπ. Using Equation (3) the covariance

between the future change in forecast errors and the current change in investment and debt

is then given by:

cov
[(
πt+2 − Eθ

t+1πt+2

)
−
(
πt+1 − Eθ

t πt+1

)
, xt − xt−1

]
= aπaxρθ (1 + θ) , x = i, b. (18)

Equation (18) is positive if and only if expectations are diagnostic, θ > 0. If beliefs overreact,
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Table 4: Parameter Estimates

Parameter Role DE Model RE Model
1 θ Diagnosticity 0.913(0.097) −
2 ρz Micro TFP autocorrelation 0.670(0.024) 0.924(0.011)
3 σz Micro TFP volatility 0.251(0.010) 0.096(0.004)
4 ηk Capital adjustment cost 4.023(0.329) 3.490(0.174)
5 φ Fixed operating cost 0.155(0.014) 0.075(0.002)
6 γ Recovery rate 0.233(0.102) 0.177(0.275)
7 σA Macro TFP volatility 0.006(0.001) 0.008(0.002)
8 ηf Equity fixed cost 0.012(0.004) 0.076(0.003)
9 ηd Equity linear cost 0.109(0.028) 0.100(0.223)
10 σπ Earnings noise 0.678(0.172) 0.390(0.077)

Notes: The table reports point estimates and standard errors for each of the parameters in our SMM
estimation of both the DE model and the RE model. The moment covariance matrix is based on firm-level
clustering in the micro block and a stationary block bootstrap in the macro block. The moment Jacobian
is computed numerically. In the SMM estimation, the weighting matrix is optimal, i.e., the inverse of the
moment covariance matrix.

good news leads to systematic disappointment next period, but no disappointment two

periods from now, causing forecast errors to grow between t+ 1 and t+ 2.17 The RE model

is instead unable - because of its more general failure to generate forecast error predictability

- to generate any comovement between future forecast error growth and investment or debt

changes of the firm.

Table 5 reports the moments we target in the Data column. We obtain these moments

using our combined datasets with firm financials, earnings forecasts, and credit spreads

described in Section 2. Just as in Section 2 we focus on idiosyncratic variation, residualizing

the underlying investment, debt, and spread series with respect to firm and time effects. As

seen in Section 2, the micro data shows overreaction, as reflected in the positive forecast

error growth covariances. To estimate the model parameters, we minimize the deviation

of the empirical moments in Table 5 from those computed in a comparable unconditional

simulation of the model. We weight the moments optimally using the inverse of our estimate

of the moment covariance matrix, implying an asymptotically efficient SMM estimator. See

Appendix B for a more detailed description of the variable definitions, sample construction,

and our approach to computing the SMM point estimates and standard errors. Given our

use of ten parameters to target sixteen moments, this is a highly overidentified structural

17Appendix B offers a detailed analysis of this property and further derivations of moment conditions in
closed form in the linear case discussed above. Note that while our quantitative model is clearly nonlinear,
and the formula in Equation (18) is therefore approximate, the intuition still holds in the more general model
and proves useful for identification of the parameter θ. In particular, the covariance moments grow with the
value of θ in our DE simulations.
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estimation of a nonlinear model. We can exploit a great deal of information but are not in

general able to deliver an exact fit.

Table 5: Estimated Model Fit

Moment Data DE Model RE Model
Panel A: Micro Moments
1 Cov(∆ Forecast Errort+1,∆ Investmentt−1) 0.003 0.005 0.000
2 Cov(∆ Forecast Errort+1,∆ Debtt−1) 0.004 0.010 0.000
3 Std. Dev(Forecast Errort+1) 0.305 0.207 0.200
4 Std. Dev(Profitt) 0.262 0.181 0.197
5 Corr(Profitt, Investmentt) 0.257 0.423 0.125
6 Corr(Profitt, Debtt) 0.120 0.479 0.111
7 Corr(Profitt, Spreadt) −0.159 −0.039 0.025
8 Std. Dev(Investmentt) 0.067 0.066 0.040
9 Corr(Investmentt,Debtt) 0.104 0.807 0.515
10 Corr(Investmentt,Spreadt) −0.057 −0.071 0.135
11 Std. Dev(Debtt) 0.112 0.109 0.101
12 Corr(Debtt,Spreadt) −0.036 −0.025 0.204
13 Std. Dev(Spreadt) 0.011 0.007 0.006
Panel B: Macro Moments
14 E(Spreadt) 0.029 0.023 0.004
15 E(Defaultt) 0.003 0.005 0.002
16 Std. Dev(∆ GDPt) 0.015 0.013 0.017

Notes: The moments were computed on a sample combining information from the Compustat, IBES Man-
ager Guidance, and FISD/Trace Bond databases. For the micro moments, the forecast error, profit, and
investment, series are expressed relative to firm tangible capital stocks, while the debt series is scaled by
total assets and the spread is in proportional units. For the macro moments, the mean spread is the av-
erage across years of the mean spread across firms in the FISD/Trace Bond-Compustat merged database,
mean default is the average across years of the mean default rate across firms in the FISD/Trace-Compustat
merged database. The GDP series in annual GDP in chained 2012 dollars.

Table 4 reports the SMM point estimates and standard errors for our DE model. The

diagnosticity parameter θ ≈ 0.9 is in the ballpark of the values found by Bordalo et al. (2018)

using data on professional forecasts of credit spreads (θ = 0.9), by Bordalo et al. (2019) using

analyst expectations of US listed firms’ long-term earnings growth (θ = 0.9), by Pflueger

et al. (2020) using stock price-derived measures of risk perception (θ = 1), and by Bordalo

et al. (2020) using professional forecasts of several macro series (θ = 0.5). Intuitively, a value

of θ near 1 means that forecast errors are roughly equal to the size of incoming news.

The estimated values governing physical factors such as micro TFP volatility σz and

capital adjustment costs ηk are close to those from other work estimating firm-level shock

processes with similar data (Gourio and Rudanko, 2014; Terry, 2023; Khan and Thomas,

2008). The parameters governing financial frictions indicate equity issuance costs ηf , ηd and
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recovery rates γ comparable to those in Hennessy and Whited (2007). The fixed operating

costs φ in model units is linked to average default rates and spreads. Finally, the estimated

measurement error in profits σπ suggests that a high degree of noise in accounting conventions

is needed to match the covariance of profits and other firm-level outcomes.

Using the same micro and macro moments, we also conduct a constrained SMM esti-

mation exercise to pin down the nine parameters of a RE model in which we set θ = 0,

eliminating diagnosticity in beliefs. We do not expect this model to succeed, for it abstracts

from many dimensions such as financial intermediaries, etc. However, it allows us to quantify

the improvement obtained when adding only the overreaction parameter θ. Point estimates

and standard errors for the RE model are reported in Table 4. In the DE model we estimate a

substantially lower persistence ρz of micro TFP shocks, and a lower aggregate TFP volatility

σA compared to the RE model. After good news, the DE manager becomes overoptimistic

about the future, which boosts investment “as if” the current shocks were more persistent.

DE is also a source of “shocks,” which reduces the estimated σA: when optimism wanes,

investment is cut “as if” a negative shock hit. In addition, DE also inflates perceived volatil-

ity. Because production function-based payoffs are convex, this implies that a firm’s average

incentive to default are also lower. To match the observed default frequency, the DE model

estimates a higher fixed operating cost φ. Overall, the fact that the estimates of both θ and

several other parameters match those in previous work, as well as the fact that DE reduces

the required volatility of TFP shocks, suggest that DE may provide a useful and tractable

account of the data.

We next turn to moment fit, reported in Table 5. The DE model fits the micro moments

well, especially considering its strong nonlinearity and the overidentified SMM estimation.

Critically, DE can obtain predictable forecast errors, while the RE model cannot. This

will prove critical for producing excess macroeconomic instability. Realistically high belief

volatility also allows the DE model to fit higher investment volatility and, importantly, to

match the negative correlation of credit spreads with profits, investment, and debt. In the RE

model, inability to match beliefs yields counterfactually procyclical spreads. The intuition

is simple: with DE lenders’ overoptimism after good news causes a stronger outward credit

supply shift, lowering spreads even in the face of increased debt or credit demand, which

does not occure under RE.

One discrepancy of the DE model with the data is that it produces a counterfactually

high correlation between debt and both investment and profits. We speculate that an ex-

tended version of our model allowing for empirically realistic costs of debt financing, such

as restrictive contractual covenants, would moderate debt movements and further improve

the DE model’s fit. Overall, though, Table 5 shows the ability of the DE model to match

realistic belief overreaction and therefore moments tied to macrofinancial volatility.

We now show that these differences between the DE and RE models prove critical to
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Figure 1: Investment Response to a Negative TFP Shock
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Notes: The figure plots the simulated generalized impulse responses of investment (right panel) to a one-
standard deviation negative shock to macro TFP (left panel) occurring at period 0. The DE model (red) and
RE model (blue) paths are based on identical shocks to TFP over 10,000 simulated experiments following
the Koop et al. (1996) methodology.

account for boom-bust cycles, both at the aggregate and firm levels.

5.2 Model Mechanisms

5.2.1 Nonlinearity in the Investment Response to TFP shocks

To study the real implications of DE, we simulate the contemporaneous response of macro

investment to a negative macro TFP shock. We compute this response for different initial

conditions, captured by TFP shocks of varying magnitudes in the previous period. This

exercise highlights one important consequence of DE: fragility after good times. This non-

linearity is critical in our framework to account for boom-bust credit cycles.

Figure 1 plots the average impulse response of investment to a negative shock to macro

TFP in the DE model (red line) and RE model (blue line).18 These responses reflect “typical

times,” based on simulated reactions to negative TFP shocks across 10,000 experiments

following the methodology of Koop et al. (1996). In normal times, the investment responses

to TFP shocks differ only slightly across the DE and RE models.

We next simulate the impact of the same negative shock to macro TFP varying the initial

conditions. Figure 2 reports the investment response in the DE model (vertical axis, red line)

as a function of the magnitude of the previous period’s macro TFP shock (horizontal axis).

There is a strong nonlinearity taking the form of “fragility in good times:” the same adverse

TFP shock is much more damaging for aggregate investment when it occurs in good times.

Figure 2 adds to the same diagram the response of investment in the RE model (blue line).

The latter is almost the same across initial conditions, with little nonlinearity or fragility in

good times. Recent work shows that investment is more sensitive to shocks during booms

18The shock is identically sized in the two experiments as a one standard deviation shock to macro TFP
using the parameter estimate σ̂A from the DE model.
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Figure 2: Investment Nonlinearity
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Notes: The vertical axis in the figure reports the simulated first-period impulse response of macro invest-
ment to a one-standard deviation negative shock to macro TFP, and the horizontal axis reports the initial
conditions, i.e., the magnitude of the shock to macro TFP in the previous period. Both the DE model (red
line) and RE model (blue line) are reported on the figure.

than during normal times (Bachmann et al., 2013; Winberry, 2021; Bloom et al., 2018).

Figure 2 shows that belief overreaction can produce this feature. Here nonlinearity arises

because even a small negative shock can induce a sharp reversal after good times. DE models

with longer overreaction lags, J > 1, can further amplify reversals, as shown by (Bianchi

et al., 2023).

The investment response in Figure 2 combines two forces: the demand for capital re-

flecting managers’ expectations of future profits, and the supply of capital reflecting lenders’

expectations of default. In good times, diagnostic managers are overly optimistic, so they

borrow and invest more than under RE. Diagnostic lenders are also overly optimistic, and

hence are more willing to lend than under RE. Under DE, then, both the demand and the

supply of credit overreact in good times, which causes a leverage and investment boom.

When a negative shock hits, managers and lenders become too pessimistic, both the demand

and the supply of credit contract, and firms drastically cut investment.19 The effect is drastic

19Interestingly, state-dependence in Figure 2 also generates a positive response during bad times under
DE, when even a moderate negative shock to TFP can be considered “good news” relative to overpessimistic
beliefs. Under RE, the response curve is uniformly negative.
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because, starting from a position of overoptimism, firms are overindebted to begin with.20

One question is whether credit supply or demand play a larger role in creating fragility

after good times. To shed light on this issue we impose that lenders are fully rational, they

have θ = 0, while θ is unconstrained for firms. Reestimating the model for this case, we

simulate a set of “rational pricing” responses of investment to a negative TFP shock compa-

rable to those in Figure 2. Qualitatively, the response of investment displays the nonlinearity

typical of the DE model, with a quantitatively dampened magnitude in Appendix Figure

A.2.21 We conclude that under DE shifts in the supply of credit play an important role in

creating fragility during booms, especially due to overreaction to aggregate shocks, a pattern

which is also evident in the next exercise.

5.2.2 Financial Reversals

A second related implication is that DE can produce strong macro-financial reversals without

large negative TFP shocks. We simulate the model unconditionally for 50,000 periods and

consider large financial reversals, defined as periods in which spread growth is in the top 10%

of the distribution and investment growth is in the bottom 10%. We extract the average

dynamics of TFP, leverage, investment and spreads around these episodes (labelled as period

“0”) for both the DE and the RE model and report them in Figure 3.

Consistent with existing evidence, in the DE model (red lines) reversals arise after only

a mild decline in TFP (top left panel) relative to the RE case (blue lines). Despite a

relatively small fundamental TFP disruption the DE model generates declines in leverage

(top right panel) and investment (bottom left panel) similar to the RE model.22 And,

unlike the RE model which generates hardly any movement in credit spreads during financial

disruptions (bottom right panel), the DE model exhibits large increases. Two forces are at

work. First, overreaction leads pessimistic firms under DE to cut back severely on investment

and financing even in the face of only small changes in TFP. Second, under DE but not

under RE, credit supply also shifts downwards in an overly pessimistic fashion, boosting

spreads even in the face of a decline in aggregate leverage. This confirms the importance of

overreacting lenders to account for shifts in the supply of capital and hence in credit spreads.

20One can decompose the DE nonlinearity in Figure 2 into contributions from direct belief reversals versus
endogenous increases in the riskiness of overoptimistic firms’ states k and b. Appendix Figure A.4 reveals
that both channels play a meaningful quantitative role.

21In Appendix Figure A.3 we reproduce investment responses for another special case, one with lender
DE over aggregate shocks and RE over firm-level shocks. The resulting aggregate investment nonlinearity is
similar to our baseline DE case.

22Note that in the particular exercise in Figure 3 we find that large reversals can be generated by small
negative TFP shocks, but the broader DE framework can in fact generate even richer dynamics. For example,
in Bianchi et al. (2023) fluctuations are sometimes driven by disappointment of overoptimistic expectations
alone, rather than through the direct negative impact of TFP shocks, a fact which demonstrates another
potential advantage of DE versus RE models.
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Figure 3: Financial Disruptions on Average

-1 0 1 2
Period

-2

-1

0

1

P
er

ce
nt

Productivity

DE Model
RE Model

-1 0 1 2
Period

-2

-1

0

1

P
er

ce
nt

Leverage

-1 0 1 2
Period

-15

-10

-5

0

5

P
er

ce
nt

Investment

-1 0 1 2
Period

0

1

2

3

P
er

ce
nt

ag
e 

P
oi

nt
s

Spread

Notes: The figure plots the average path of macro TFP A (top left), macro leverage B′/K (top right),
macro investment I (bottom left), and the macro spread E Spread (bottom right) around periods of financial
disruption from an unconditional simulation of the DE model (red line) versus the RE model (blue line).
The variables are plotted in percent (TFP, credit, and investment) or percentage point (spread) deviations
from the pre-disruption period. A financial disruption, dated at period t on the horizontal axis, is a period
with spread growth in the top 10% and investment growth in the bottom 10% of realizations in the simulated
data for each model.

6 Quantitative Implications

We examine the model’s ability to quantitatively match two sets of untargeted facts. The

first set concerns our motivating evidence on: i) macro credit spread fluctuations, ii) the

boom-bust dynamics of beliefs, returns, and investment documented in Section 2. The

second set of facts concerns movements of credit spreads and other aggregates around the

financial crisis of 2008.

6.1 Volatile Credit Spreads

Consider the ability of our model to reproduce macro credit spread fluctuations, which are

entirely untargeted in our calibration procedure. Table 6 reports both the volatility of the
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mean credit spread (column 1) and its cyclicality or correlation with output (column 2) in

the data, the DE model, and the RE model. The DE and RE model moments are computed

based on an identical set of exogenous shocks, i.e., we feed the same sample paths for

TFP into the two models. In the data, the standard deviation of credit spreads is about 1%

annually. Unlike the RE model, which is unable to produce meaningful volatility (generating

a standard deviation of only 0.1%), the DE model generates substantial fluctuations in

line with the data, with a standard deviation of around 1.4%. The DE model’s aggregate

credit spread fluctuations are realistically countercyclical (column 2). The RE model also

produces aggregate spread countercyclicality, but with too little volatility to be quantitatively

meaningful.

Table 6: Macro Credit Spread Fluctuations

(1) (2)
Standard Corr. with
Deviation Output

Data 0.011 −0.237
DE Model 0.014 −0.563
RE Model 0.001 −0.627

Notes: The table reports the standard deviation (column 1) and the correlation with aggregate output
(column 2) of the aggregate credit spread. Empirically, output is real GDP from the US NIPA accounts, and
the credit spread is the mean across firms in a given year in the merged Compustat - IBES - FISD/TRACE
sample. Empirically, output is HP-filtered in logs with smoothing parameter 100. The model moments are
computed from an unconditional simulation for the DE model (middle row) and the RE model (bottom
row), with an identical set of aggregate TFP shock draws for both model versions. Model quantities refer
to the total value (output) or average value (spread) computed from the distribution of firms. Units are in
proportional terms, i.e., 0.01 = 1%.

This result shows the promise of DE for producing realistic macrofinancial volatility

(and in particular countercyclical spreads) in business cycle models. It is thus instructive

to consider the contribution of a “DE block” using the language of “wedges,” in the spirit

of Chari et al. (2007). Appendix Section A.7 analytically shows in a simplified version

of our model that DE generate countercyclical fluctuations in the investment wedge, with

a standard deviation of around 1% per year.23 That is, overoptimism during good times

causes a DE firm to act as if its investment price was low from the perspective of a business

cycle accountant imposing belief rationality, and the reverse during good times.

The mapping of DE to an investment rather than, say, an efficiency or labor wedge is

important. Investment wedges are often the target of macro-financial models (Kiyotaki and

Moore, 1997; Justiniano et al., 2011; Brinca et al., 2016), and DE can produce realistic

23Unsurprisingly, in our model with frictionless static labor demand, DE does not cause fluctuations in
labor or efficiency wedges in the analysis in Appendix Section A.7.
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fluctuations in them, and hence in macro-financial outcomes thanks to its ability to produce

realistic movement in beliefs. This makes our model particularly useful for understanding

conditional facts such as large, predictable macro-financial reversals after good times.24

Of course, DE alone cannot generate a perfect fit of untargeted business cycle moments,

which also reflect factors (aggregate demand, price rigidities, etc.) from which we abstract

here. In particular, mechanisms moving labor and efficiency wedges such as uncertainty

shocks and nominal rigidities (Christiano et al., 2014) are also needed. An important issue

is whether a combination of these forces with DE can improve our understanding of uncon-

ditional business cycle variation, as some initial work seems to show (Bianchi et al., 2023;

L’Huillier et al., 2024).

6.2 Boom-Bust Cycles in Financial and Real Activity

We next assess the explanatory power of the model for the firm-level boom-bust cycles

documented in Section 2 as well as its ability to account for aggregate (i.e., sector-level)

cycles. Consider firm-level cycles first. We simulate the DE and RE models for many

periods and then use the simulated data to re-estimate the two-stage regressions of Table 2

in Section 2. In the first stage, we regress future profit forecast errors on current investment.

In the second stage, we use these fitted errors as an explanatory variable for future bond

returns on the financial side and investment growth on the real side. Table 7 reports the

results. In line with the estimates of Table 2, in the DE model high investment predicts future

negative forecast errors in column (1), indicating that expectations are overly optimistic in

good times. Of course, the RE model (unreported) fails completely, by construction, to

generate forecast error predictability of the type seen in column (1).

In columns (2) and (3) the DE model also captures the positive correlation between

predicted forecast errors, bond returns, and investment growth: when borrowers and lenders

are overly optimistic (their profit forecasts are systematically above reality), realized bond

returns and investment growth are lower. Quantitatively, comparing Table 7 from simulated

data to the estimates from Table 2, the DE model somewhat reasonably reproduces the

untargeted size of the first- and second-stage coefficients.25 We conclude that firm-level

reversals in real and financial conditions after good times are plausibly sized in the DE

model while being completely absent in the RE model.

24These conditional implications of DE are linked to movements in underlying investment wedges. Our
measure of the investment wedge derived in Appendix Section A.7 moves by about three standard deviations
over the full range of Figure 2, by about one and a half standard deviations during the financial disruption
in Figure 3, and by about two standard deviations in the Great Recession exercise we conduct in Figure 4
below.

25While the first-stage coefficient in Table 7’s column (1) is formally untargeted, our SMM estimation
procedure does target a set of closely linked firm-level covariances. In light of this, a comparison of the also
untargeted second-stage coefficients in columns (2)-(3) to their empirical counterparts in Table 2 provides a
tighter test.
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Table 7: Linking Forecast Errors and Micro Reversals in the Model

(1) (2) (3)
Dependent Variable: Fcst. Errort+1 Returnt+1 ∆Investmentt+1

IV Stage: First Second Second
Forecast Errort+1 0.011∗∗∗ 1.108∗∗∗

(0.001) (0.004)
Investmentt −0.860∗∗∗

(0.007)
Year Effects X X X
Profit Control X
Firms 1000 1000 1000
Firm-Years 250000 250000 250000
First Stage F 15146

Notes: The table reports first- and second-stage estimates based on simulated firm-level data from the DE
model. Column (1) reports the first stage, and columns (2)-(3) report second-stage regressions. Standard
errors are clustered at the firm level. ∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Forecast error is
realized minus expected profits normalized by the firm’s capital stock. Investment is the investment rate,
i.e., capital expenditures normalized by the firm’s capital stock. The bond return is the realized bond return.
Column (3) controls for current profits. For all series, 0.01 = 1%.

Firm-level reversals need not translate into aggregate reversals. First, firm managers

may be particularly attentive to firm-level news, not aggregate news, and hence overreact

only to the former. Second, and related, the effect of overoptimism may be amplified during

extreme conditions such as a firm’s financial distress, but the aggregate-level consequences

may be muted due to the paucity of defaulting firms. Investigating these patterns at a more

aggregated level therefore offers an important test.

Studying belief dynamics at the macroeconomic level is difficult due to the relatively short

post-2000 time window for our annual manager expectations dataset. As an alternative,

we implement our two-stage empirical approach at the 3-digit sector level, which offers

meaningful aggregation while also allowing us to exploit cross-sectoral variation. Panel A of

Table 8 reports the results. In column (1), our first stage reveals that periods of high average

investment in a sector predict lower average forecast errors in the subsequent year, i.e., good

times beget excess optimism. In columns (2)-(3), we see that periods of excess optimism are

followed by lower bond returns and lower investment growth in the same sector. An industry

in which overoptimistic firms are predictably disappointed by one standard deviation more

on average, with a decline in the forecast error of 0.32, sees average bond returns decline

by 0.32 × 0.047 ≈ 1.5 percentage points (column 2) and average investment rate declines of

0.32 × 1.221 ≈ 39 percentage points (column 3).26 There are significant boom-bust sectoral

26The empirical results in Panel A of Table 8 are quite robust. The exact level of aggregation turns out to
not be crucial for our results. Appendix Table B.7 reports similar results based on industry data aggregated

28



Table 8: Linking Forecast Errors and Aggregate Reversals

(1) (2) (3)
Dependent Variable: Forecast Errort+1 Returnt+1 ∆ Investmentt+1

IV Stage: First Second Second
Panel A: Industry Data
Forecast Errort+1 0.047∗∗∗ 1.221∗∗∗

(0.014) (0.050)
Investmentt −0.476∗∗∗

(0.153)
Industry Effects X X X
Controls X X
Industries 111 111 111
Industry-Years 1291 1291 1291
First Stage F 10
Panel B: DE Model
Forecast Errort+1 0.053∗∗∗ 2.039∗∗∗

(0.002) (0.012)
Investmentt −0.513∗∗∗

(0.004)
Industry Effects X X X
Controls X X
Years 50000 50000 50000
First Stage F 17279

Notes: The table reports first- and second-stage estimates based on industry data from the Compustat-
IBES-FISD/TRACE sample at the SIC3 × fiscal year level (Panel A) and simulated aggregate data from
the estimated DE model (Panel B). Forecast error is average realized minus expected profits normalized by
capital stocks. Investment is the average investment rate, i.e., capital expenditures normalized by the capital
stock. Return is the average realized bond return, and spread is the average realized bond spread relative to
the risk-free rate. Column (1) reports the first stage, and columns (2)-(3) report second-stage regressions.
Standard errors are clustered at the industry level. For the purposes of rough comparison with industry
data in Panel A, simulated aggregate data in Panel B is grouped into sequential blocks or industries with
the same average length as in the data. So in Panel B “industry effects” refers to fixed effects for these
groupings. ∗ = 10% level, ∗∗ = 5% level, and ∗∗∗ = 1% level. Columns (2)-(3) control for the lagged spread
and current profits relative to the capital stock. For all series, 0.01 = 1%.

cycles in the data.

Even though our model lacks an explicit industry structure, we assess its ability to pro-

duce sector-level cycles by grouping long time series of simulated aggregate data from our

model into nonoverlapping sequential blocks or “industries.” We then run panel two-stage

regressions, carefully maintaining symmetry between our simulated data and empirical work

by: i) including industry effects and ii) only considering blocks or industries with average

to the 2-digit level. In columns (2)-(3) we control for lagged spreads and profits, to maintain comparability
with our firm-level analysis, but this is not essential as shown in Appendix Table B.8. Including industry
effects is also not essential, as shown in Appendix Table B.9.
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length at just above 10 years as in the data. Panel B reports the estimates based on sim-

ulated data from our estimated DE model, since the unreported RE model is unable, by

construction, to produce forecast error predictability. We see that the DE model repro-

duces the aggregate link between good times (in which investment is high) and negative

future forecast errors, reversals in realized bond returns, and reversals in investment growth.

Quantitatively, the DE model decently matches the estimated coefficients in Panel A, which

is remarkable given the entirely untargeted nature of these aggregate boom-bust patterns.

We conclude that the DE model offers a good account of systematic or aggregated sources

of boom-bust cycles in real and financial activity at the firm and aggregate levels. Targeting

beliefs data improves quantitative macro models’ match to the data in a parsimonious way.

6.3 The Financial Crisis of 2007-09

Lastly, we study the ability of the DE model to generate the increase in credit spreads

associated with the Lehman crisis in September 2008. Our model misses some important

elements of large crises such as gradual and persistent asset price inflation and runs on

financial intermediaries. Asset price bubbles can be obtained under DE by introducing

information frictions as in Bordalo et al. (2021b), but here we abstract from them to isolate

the role of overreaction in the sharpest way. For the same reason, we abstract from financial

intermediaries considered in Maxted (2023) and Krishnamurthy and Li (2025).

What type of TFP shock does the DE model need to exactly reproduce the observed

jump in spreads in the late 2000’s? What are the macro consequences of such shocks? To

answer these questions, we perform a crisis decomposition exercise. We separate the 2004-

2009 period into a “pre-crisis” period, 2004 - 2007, and a “crisis” period, 2008 - 2009. As

mentioned before, our model yields neither a gradual path of asset price inflation nor the

gradual spread reduction during 2004-2007, making these broader periods the more natural

quantitative target for us. During these years, US credit spreads jumped from an average of

1.6% to 4.5%.

We use the simulated DE model to reverse engineer the TFP path needed to reproduce

this path for credit spreads. Figure 4 reports this TFP path along with its implications for

the growth of investment, corporate profit forecasts, and credit spreads. We report results

for the DE and the RE model under the same TFP path. The red (blue) bars show the

difference between crisis and pre-crisis outcomes produced by the DE (RE) model, while

the green lines are data. In the bottom left panel, the DE model by construction perfectly

matches the pre-crisis and crisis spreads and hence, by construction, the plotted spread

growth. Remarkably, though, the bottom right panel shows that the DE model explains

the credit spreads increase with a path for TFP growth that is very similar to measured

TFP growth. This fact is noteworthy because the TFP dynamics are untargeted. With
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the same TFP path, the RE model does not produce any increase in the spread. Clearly,

the limited ability of the RE model to provide overall spread volatility seen in Table 6 also

prevents the model from generating realistic credit market fluctuations in response to this

TFP shock. In the top row, we see that belief dynamics are key drivers of the different

behavior of the two models. The decline in investment (top left) is larger in the DE model

and moves together with a larger drop in profit forecasts (top right) than in the RE case.

So DE beliefs appear critical to quantitatively account for sudden reversals in macro and

financial activity occurring with modest fundamental shocks.

Figure 4: The Financial Crisis of 2007-09
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Notes: Each panel plots a macro series from our crisis decomposition exercise, with the data (green),
DE model (red), and RE model (blue) included. The panels plot changes from the pre-crisis to crisis
periods. In the data, all empirical values are averages drawn from the pre-crisis (2004-07) or crisis (2008-09)
periods. Spread is the average spread across firms in our Mergent FISD-TRACE-Compustat sample, private
nonresidential fixed investment is from NIPA, the macro TFP level is from John Fernald’s website, and
profit forecasts are the sum of predicted earnings across all firms in our Compustat-IBES guidance data. In
the DE model, we choose the TFP growth series in the bottom right panel in order to exactly match the
empirical spread values in the bottom left panel. We feed the resulting TFP growth series into the RE model
to produce the RE bar in each panel.

Such reversals are due to fragility built during good times. This fragility entails realistic

macro consequences: a large disruption in credit markets and investment, together with a

strong reduction in profit forecasts. These macroeconomic changes in the DE model are

not identical to those in the data, but the quantitative fit is noteworthy considering the
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simplicity of our model. Even with the same TFP shock, the RE model produces substan-

tially more modest dynamics. As evident from the impulse response analysis of Section 5.2,

fragility during good times under DE offers a powerful amplifier of nonlinearities that can

help quantitatively account for large crisis episodes even in our simple model.

This exercise shows that DE help account for the salient features of boom-bust cycles in

macro-financial aggregates. The realism of the analysis and its fit can be improved by adding

ingredients that have likely played a role, such as the housing bubble, intermediary leverage,

and the link between household debt and consumption. Boom-bust belief dynamics, however,

seem a realistic and parsimonious ingredient to generate overexpansion in good times, and

a sharp financial and real contraction after modest TFP shocks.

7 Robustness

We conclude by reporting the results of two robustness exercises. First, we explore the

robustness of our investment nonlinearity result to a range of alternative parameterizations.

Second, we endogenize wages in general equilibrium, which can dampen volatility, and again

assess the contemporaneous response of macro investment to TFP shocks.

7.1 Robustness to Alternative Parameterization

In Appendix Figure A.7 we explore the robustness of investment nonlinearity to alternative

parameterizations of the model. Starting from the DE parameter estimates in Table 4, a

parameterization which we label Baseline, we vary each of the parameters to round higher

and lower values, recomputing the sensitivity of investment to a negative shock over the

full range of initial conditions. Nonlinearity remains meaningful in each of these robustness

checks, with a downward-sloping response indicating more fragility during good times.

7.2 General Equilibrium

Anticipated procyclical price movements may dampen changes in the anticipated marginal

product of capital and hence push against volatility or nonlinearity in investment. To assess

the importance of this mechanism, we extend the model to general equilibrium. This exercise

poses a Krusell and Smith (1998)-style challenge, and we develop a novel solution technique

for overcoming this challenge in Appendix A. Although our solution method proves accurate

and preserves the nonlinearity of the model, it is highly computationally intensive with a

nested inner loop/outer loop alternation that makes structural estimation of the general

equilibrium model infeasible.

For a representative household we model period utility as U(C,N) = C − ω
1+ 1

λ

N1+ 1
λ ,

where C is consumption, the disutility of labor is governed by ω > 0, and the elasticity of
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labor supply is given by λ > 0. See Appendix A for a full definition of general equilibrium,

involving optimal labor supply and savings decisions by the household, optimal lending

choices by a competitive group of lenders, optimal capital investment, labor demand, and

risky borrowing decisions by a distribution of nonfinancial firms, and various market clearing

and consistency conditions.

One aspect of the equilibrium is straightforward to characterize. The real interest rate

is constant and pinned down by the inverse of the household’s subjective discount factor

0 < β < 1, i.e., R = 1
β
. However, as usual in this class of heterogeneous firms models

with anticipated macro shocks, general equilibrium presents two computational challenges

(Krusell and Smith, 1998). In particular, let µ(s, k, b) be the cross-sectional distribution of

micro states s = (z, εz), capital k, and debt b. The macro state is (µ,A, εA). The first

challenge is that the macro state (µ,A, εA) is intractable because µ is a distribution. The

second challenge is that the mapping W (µ,A, εA) is a complicated implicit object which

must be consistent with the firm-level decisions embedded in market clearing through(
W (µ,A, εA)

ω

)λ
=

∫
n(s, k, b, µ, A, εA|W )dµ(s, k, b), (19)

where the left hand side is the household’s closed-form labor supply and the right hand side

reflects labor demand generated by the current cross-sectional distribution of firms µ.

We follow a novel computational approach tailored to our problem and detailed in Ap-

pendix A. Our approach is to replace the macro state (µt, At, εAt) with a truncated history

of macro shocks (At, At−1, ..., At−K), nonparametrically storing predictions of the wage Wt

given each shock history. We then follow an outer loop/inner loop approach, guessing a wage

mapping, solving and simulating the model, and updating the wage predictions until conver-

gence. Our solution technique proves tractable and accurate in practice. We parameterize

the model based on the estimated values from Table 4. We further assume a conservative

Frisch elasticity of labor supply of λ = 0.5 and choose β to deliver the same fixed 4% annual

real interest rate as considered above.

In the general equilibrium model, a positive productivity shock increases perceptions of

the future demand for capital and labor and hence future wage growth relative to the par-

tial equilibrium model. These anticipated wage increases dampen investment today. Our

general equilibrium solution investigates whether the investment nonlinearities highlighted

above under partial equilibrium survive these price movements. Appendix Figure A.6, the

general equilibrium analog of Figure 2, reports the response of investment to a negative

TFP shock for different initial conditions. Endogenous wages moderate the magnitude of

the investment response relative to partial equilibrium. But the investment response con-

tinues to display substantial nonlinearity under DE (red line): the negative shock exerts

a much larger negative impact in good times. In the RE model (blue line), by contrast,
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the general equilibrium feedback working through wages eliminates the already very slight

state dependence of investment almost entirely. In sum, even after allowing for fully flexible

wages in general equilibrium, the DE economy proves more fragile than the RE economy in

good times and hence more responsive to negative shocks due to the boom-bust mechanism

created by overreacting beliefs.

8 Conclusion

The financial crisis of 2008 renewed economists’ interest in financial instability. One key

challenge is to understand where such instability comes from. We showed that non-rational

beliefs, and in particular overreaction to news, can generate realistic credit cycles without

relying on financial shocks. These boom-bust dynamics exhibit predictability in line with

the evidence on cyclical movements in credit spreads (López-Salido et al., 2017) and on

large financial crises (Greenwood et al., 2022). Critically, our results are obtained in a

neoclassical model in which a single new parameter, the degree of belief overreaction, is

estimated using microdata on managers’ errors in forecasts of the earnings growth of their

firms. Realistic micro-level belief distortions can, once aggregated, generate realistic credit

cycles with financial overexpansion in good times, fragility, and sharp reversals as small

adverse news arrives.

Future work can enrich our approach. A key factor is the role of financial intermediaries,

which recent work has already begun to investigate (Maxted, 2023; Krishnamurthy and Li,

2025). Another important aspect is household debt, which has been shown to be a key

determinant of drops in aggregate demand during financial tightenings (Mian et al., 2017;

Mian and Sufi, 2009). Prolonged asset price bubbles may also be important, especially to

account for large crises Greenwood et al. (2022). These factors open exciting avenues for

studying the transmission of beliefs to the real economy. As an initial step, we show that

realistic departures from rationality disciplined by expectations data can be introduced into

standard macroeconomic models and significantly improve their explanatory power.
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Appendices for Online Publication Only

A Model

A.1 Solving the Model

The computational algorithm involves iteration on an outer loop (related to debt pricing)

and an inner loop (related to firm policies). Before solving the model, we discretize the state

space (s, k, b) = (z, εz, A, εA, k, b) into nz × nz × nA × nA × nk × nb grid points. We then

discretize the rational and perceived diagnostic transitions of the exogenous states according

to Tauchen (1986). The computational algorithm - following Strebulaev and Whited (2012)

- proceeds as follows:

Start outer loop.

1. Guess a default policy df θ(s, k, b), and compute the implied debt prices qθ(s, k, b) ac-

cording to the lenders diagnostic zero-profit condition Equation (17).

Start inner loop.

(a) Given the debt prices qθ(s, k, b) and default policy df θ(s, k, b), solve the diagnos-

tic firm’s Bellman Equations (14), (15), and (16) for V θ(s, k, b), V θ
ND(s, k, b), and

V θ
D(s) as well as the implied optimal policies for investment and debt issuance

k′θ(s, k, b), b′θ(s, k, b). Use standard discrete-state, discrete-policy dynamic pro-

gramming policy iteration to do so.

2. Compute updated default policies df θ(s, k, b) according to the default choice defining

V θ in Equation (14), i.e., V θ
ND(s, k, b) < V θ

D(s).

3. Compute the ergodic distribution µ(s, k, b) implied by the firm policies for default,

capital, and debt df θ(s, k, b), k′θ(s, k, b), and b′θ(s, k, b).

4. Compute the mass of states in which the guessed default policy differs from the updated

default policy. If this set of states has mass lower than some tolerance, exit. If not,

then go to top and restart with the updated set of default states as your new guess.

Table A.1 reports the value of several dimensions used for the baseline solution of the

model. Figure A.1 plots the perceived value function V θ in our estimated DE model for a

range of different capital and productivity news realizations, with overreaction generating

more perceived value after goods news even conditional upon today’s productivity state. The
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value function in the RE model, also plotted, displays no such overreaction in the direction

of recent news.

Table A.1: Computational Choices

Quantity Description Value

T sim Simulated periods 6
T erg Initially discarded periods 50
N firm Number of firms 1000
N IRF Number of IRF economies 10000
T IRF Length of IRF economies 75
T decomp Length of historical decomposition 2
nz Micro productivity grid size 5
nA Macro productivity grid size 5
nk Capital grid size 30
nb Debt grid size 30

Notes: The table reports various computational values used in discretizing and solving the model.

A.2 Simulating the Model

After the model is solved, we unconditionally simulate the model by drawing exogenous

uniform random shocks and combining this information with the transition matrix for macro

TFP to simulate the macro process for At for some periods t = 1, ..., T sim + T erg. At the

micro level, we simulate the model “non-stochastically” according to the method of Young

(2010), i.e., we store the dynamics of the weight of the cross-sectional distribution at each

discretized point in the state space (s, k, b) rather than simulating a large number of firms.

Note that when simulating the model, all macro shocks and distributional dynamics are

determined according to the rational or true representations of the driving process, even

though debt pricing and firm polices may involve diagnostic expectations.

With the simulated distribution in hand for each period, macro series of interest are

simply weighted sums of micro-level outcomes across this distribution, discarding the first

T erg periods to remove the influence of initial conditions. Note that we do in fact simulate

a number of individual firms N firm for the purpose of computing moments within our SMM

estimation algorithm, but this is not a step required for the purpose of solving the model or

simulating within-period business cycle aggregates.
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Figure A.1: Firm Value and Diagnosticity
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Notes: The figure plots the perceived value function V θ as a function of firm capital k for the estimated
DE model, together with the firm’s value function V in the estimated RE model. All lines hold fixed micro
TFP z, macro TFP A, macro news εA, and the firm’s debt b at identical representative values. The four
lines reflect different realizations of micro TFP news εz, with positive news in the DE model (green line),
medium news in the DE model (blue line), bad news in the DE model (red line), and any news in the RE
model (black line).
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A.3 Computing Impulse Responses

Our approach to impulse response calculation in this nonlinear context follows Koop et al.

(1996), i.e., we compute nonlinear generalized impulse responses. To understand the impact

of a given sequence of shocks, we perform the following:

1. For a large number N irf of economies of length T irf , simulate two different versions

of the simulation, the “shock” and “no shock” versions. For each economy and each

version, we simulate the macro TFP process by first drawing T irf uniform shocks

for comparison with the macro TFP transition matrix. Then, simulate both versions

unconditionally using identical macro TFP shocks until period T shock < T irf .

2. From period T shock and continuing as long as the desired sequence of exogenous inno-

vations you wish to impose lasts, impose a number of periods of certain pre-determined

innovations in productivity for the “shock” case, while continuing to simulate the “no

shock” economy unconditionally.

3. After the imposed shocks sequence is complete, simulate macro TFP in both economies

as normal.

4. After the macro TFP process is determined for each pair of economies, compute the

business cycle aggregates of interest in each economy, period, and version by using the

simulation approach outlined above.

5. If business cycle aggregate Xshock
i,t is series X in economy i in period t in the shock case,

and Xnoshock
i,t is series X in economy i in period t in the no shock case, then define the

impulse response to the predetermined sequence of innovations as

IRFX
t =

1

N irf

N irf∑
i=1

Xshock
i,t −Xnoshock

i,t

Xnoshock
i,t

.

The main text’s set of impulse response figures reports the series IRFX for the indicated

macro-financial aggregates. Note, however, that the impulse responses presented in the text

are scaled to equal an exact shock size, while the productivity grid in the model varies

discretely. We achieve this by imposing movements up or down by a single grid point,

imposing Step 2 above only with a certain probability chosen in each period to deliver the

desired average shock size.

A.4 Performing the Spread Matching Exercise

In a classic linear setting, performing historical decompositions such as the one used in

Section 6 for the Great Financial Crisis is typically a trivial matter of inverting a data

4



path using simple linear algebra. However, our nonlinear model with heterogeneity and a

discretized productivity process poses some additional computational challenges. Given the

empirical path to match across Tdecomp periods for macro credit spreads (S1, S2, ..., S
decomp
T )

we proceed as follows.

First, we pick an initial period drawn from a representative location in the unconditional

simulation of the model, fixing the associated simulated cross-sectional distribution of firm-

level states µ0 drawn from the simulation of the model. Call this period t = 0, and note

that at the end of period 0 a cross-sectional distribution µ1 is pre-determined. Then for each

period t = 1, ..., T decomp, do the following:

1. Guess a value for macro TFP At, and find the bracketing interval [Ai−1, Ai] together

with linear interpolation weights ω(At, i) = At−Ai−1

Ai−Ai−1
for the guessed value of produc-

tivity.

2. Compute the implied policies of all firms in the cross-sectional distribution µt given

a macro TFP level equal to Ai, together with the implied macro spread level S(Ai).

Repeat the process for macro TFP equal to Ai−1 to obtain S(Ai−1).

3. Assume that firms play a “mixed strategy” over the two macro TFP grid points, in

which case the resulting macro spread level is (1− ω(At, i))S(Ai−1) + ω(At, i)S(Ai).

4. If the implied macro spread level is not equal to the desired spread value St to within

some tolerance, then update your guess for macro TFP At and return to Step 1.

Otherwise proceed.

5. Given a productivity guess which delivers exactly the correct interpolated value of

macro productivity in period t, compute the beginning-of-period distribution µt+1 of

firm-level states by pushing forward a fraction ω(At, i) of the distribution µt using firm

policies associated with Ai and a fraction 1− ω(At, i) of the distribution µt using firm

policies associated with Ai−1.

At the end of this process, you have determined a smooth value of productivity At which

gives you an implied macro spread series exactly consistent with the target value in period

t, and you have updated the cross-sectional distribution in an internally consistent fashion

given the smooth value of productivity between grid points. Repeating this process for each

period t = 1, ..., T decomp yields a productivity path At, as well as a set of cross-sectional

distributions µt, which exactly match the target data path for spread. All other macro

aggregates of interest can then be computed from the distributional and macro TFP path.

Note that for the spread matching exercise for the Great Recession and financial crisis in

Section 6, we set T decomp = 2, with t = 1 being the “Pre-Crisis” period and t = 2 being the

“Crisis” period.
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A.5 DE Firms with RE Lenders

Figure A.2 plots the equivalent of Figure 2, plotting investment responses to a negative TFP

shock for a range of initial conditions, in a re-estimated model in which firms exhibit DE

with θ > 0 but lenders exhibit RE with θ = 0. Figure

Figure A.2: Investment Nonlinearity with Rational Pricing

-1.5 -1 -0.5 0 0.5 1 1.5
Initial Conditions: Multiples of A

-8

-6

-4

-2

0

2

4

P
er

ce
nt

Investment Response

DE Model
RE Model
DE Firm Model

Notes: The vertical axis in the figure reports the simulated first-period impulse response of macro invest-
ment to a one-standard deviation negative shock to macro TFP, and the horizontal axis reports the initial
conditions, i.e., the magnitude of the shock to macro TFP in the previous period. The DE model (red line),
RE model (blue line), and DE model with diagnostic firms and rational lenders (green line) are reported on
the figure.

Figure A.3 also plots investment responses to a negative aggregate TFP shock in a model

in which lenders exhibit DE with respect to aggregate shocks but RE with respect to firm-

level shocks.

A.6 Belief Updating versus Endogenous Sensitivity

The IRF nonlinearity revealed in the main text in Figure 2 can in principle stem from one

of two not mutually exclusive sources: i) direct reversals of overoptimistic diagnostic beliefs

after good news, or ii) higher riskiness in the distribution of overoptimistic firms’ endogenous

states b and k after a good news. To piece apart the direct contribution of beliefs versus the

indirect contribution of firm states, we compute the response of the diagnostic economy to

a one-standard deviation negative shock to TFP after a range of different initial shocks, in
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Figure A.3: Investment Nonlinearity with Rational Pricing at Firm Level
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Notes: The vertical axis in the figure reports the simulated first-period impulse response of macro invest-
ment to a one-standard deviation negative shock to macro TFP, and the horizontal axis reports the initial
conditions, i.e., the magnitude of the shock to macro TFP in the previous period. The DE model (red line),
RE model (blue line), and model with DE firms, lender RE on firm-level shocks, and lender DE on aggregate
shocks (green line) are reported on the figure.

each case holding the distribution of endogenous states equal to the one which would have

obtained without the negative TFP shock. The green line in Figure A.4 reveals the resulting

investment responses as a function of the initial conditions. Without the endogenously higher

riskiness in capital and debt positions generated by firms, the green line continues to slope

down but is not quite as strongly sloped as the red line in some regions. Therefore, both

the direct belief reversal and endogenous distributional shifts due to diagnosticity matter for

generating the overall nonlinearity in Figure 2.
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Figure A.4: Investment Nonlinearity with No Distributional Dynamics
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Notes: The vertical axis in the figure reports the simulated first-period impulse response of macro invest-
ment to a one-standard deviation negative shock to macro TFP, and the horizontal axis reports the initial
conditions, i.e., the magnitude of the shock to macro TFP in the previous period. The DE model (red line),
RE model (blue line), and DE model with no shift in the distribution of endogenous states (light blue line)
are reported on the figure.
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A.7 Investment Wedges

Consider a benchmark representative firm version of our PE model without investment fric-

tions, i.e., without adjustment costs or financial frictions. In this case, the representative

firm solves

max
K′

...−K ′ + 1

R
Efirm [Π(A′, K ′) + (1− δ)K ′, ] + ...

where the profit function is defined as

Π(A,K) = max
N

AKαN ν −WN

and the expectations operator Efirm obeys whatever belief system the firm uses (RE, DE,

etc...). Static labor optimization implies that

Π(A,K) = (1− ν)
( ν
W

) ν
1−ν

A
1

1−νK
α

1−ν ,

so the capital FOC for the frictionless representative economy is given by

R− 1 + δ = Efirm
∂

∂K ′
Π(A′, K ′), (20)

where again the expectations operator can be either DE or RE depending on the firm’s belief

system. FOC (20) together with the profit function expression lead to the capital choice

K ′ =

(
α

R− 1 + δ

) 1−ν
1−(α+ν) ( ν

W

) ν
1−(α+ν)

(
Efirm

[
A′

1
1−ν
]) 1−ν

1−(α+ν)
. (21)

Ok, so now consider an investment wedge representation of a similar economy. In this case,

the firm is assumed to solve the problem

max
K′

...− τIK ′ +
1

R
E [Π(A′, K ′) + (1− δ)K ′τ ′I , ] + ... (22)

where τI is typically assumed to be an investment wedge that follows an AR(1) with auto-

correlation ρI and E is the RE operator. In this case, the FOC with the investment wedge

is given by

τI =
1

R
E
[
∂

∂K ′
Π(A′, K ′) + (1− δ)τ ′I

]
τI [R− ρI(1− δ)] = E

[
∂

∂K ′
Π(A′, K ′)

]
. (23)

Here, the expectation E on the RHS is the rational expectation, and K ′ is whatever capital

choice is made by the firm. Two results are immediate.

First, if capital K ′ is chosen by a RE decisionmaker, then Efirm = E. And inspecting
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Equations (20) and (23) reveals that only a constant τI = 1 (and associated ρI = 1) are

consistent with the model. In other words, the investment wedge does not move if there are

no frictions and the representative decisionmaker has RE beliefs. This is not an interesting

result, it’s simply stating that in a RE model with no frictions, the investment wedge is

trivially constant and equal to 1.

Second, if the decisionmaker chooses capital K ′ in equation (21) subject to DE beliefs,

then the RE version of FOC (20) will not be satisfied and in general you must have movement

in the investment wedge τI in Equation (23) which must be satisfied under RE. In particular,

the investment wedge equation becomes

τI [R− ρI(1− δ)] = E
[
∂

∂K ′
Π(A′, K ′

θ
)

]
, (24)

where the expectation E is rational but the DE value K ′θ is given from (21) in this specialized

case as

K ′
θ

=

(
α

R− 1 + δ

) 1−ν
1−(α+ν) ( ν

W

) ν
1−(α+ν)

(
Eθ
[
A′

1
1−ν
]) 1−ν

1−(α+ν)
. (25)

Straightforward calculations, substituting (25) into (24), reveal that

τI ∝
EA′

1
1−ν

EθA′
1

1−ν
.

The numerator is RE, the denominator is DE. But these are both analytically tractable

lognormal expectations under a Gaussian lognormal AR(1) assumption for A:

EA′
1

1−ν = e
ρA
1−ν logA+

σ2A
2(1−ν)2

EθA′
1

1−ν = e
ρA
1−ν (logA+θεA)+

σ2A
2(1−ν)2 .

We therefore obtain the formula

τI ∝ e−
ρA
1−ν θεA , (26)

This reveals that the investment wedge is indeed an AR(1) with a lognormal innovation and

no persistence. In logs, as this is usually presented, we obtain that

log τI = Ω− ρA
1− ν

θεA

up to some constant Ω. So, we have uncovered that in a PE frictionless representative agent

version of our economy, DE does indeed generate investment wedge fluctuations. In this

economy DE only creates investment wedge fluctuations, with efficiency, labor, and govern-

ment consumption wedges constant trivially due to the representative firm’s lack of financial

10



frictions, static labor optimization, and lack of a government respectively. Intuitively, with

good news, an economist doing business cycle accounting under RE perceives that the DE

firm acts like its price of capital investment declines. With bad news, the RE economist doing

business cycle accounting perceives that the DE firm acts like its price of capital investment

increases.

A.8 General Equilibrium Definition

In Section 7.2 we consider an extended model with a representative household and endoge-

nously flexible wages. Here, we outline the household, lender, and firm problems, define the

equilibrium, and derive the two household first-order conditions used in the main text.

A.8.1 Household

A diagnostic representative household supplies labor N and saves in a risk-free bond B′ in

zero-net supply according to

Hθ(µ,A, εA, B) = max
B′,N

[
C − ω

1 + 1
λ

N1+ 1
λ + βEθ

(
Hθ(µ′, A′, ε′A, B

′)|µ,A, εA
)]
. (27)

The household states include the distribution µ(s, k, b) across firm states s = (z, εz), k, and

b, macro TFP A, macro news εA, and holdings of the bond B. The household’s budget

constraint is given by

C +B′ = RB +WN +DF +DL + T.

Above DF reflects net aggregate payouts from the firm sector, and DL reflects aggregate

payouts from lenders, both of whom are owned by the household. T reflects lump-sum

transfers of corporate taxes from firms and lenders to the household. The household takes

as given both the real interest rate R and the wage W .

A.8.2 Lenders

A continuum of diagnostic risk-neutral lenders funds itself via risk-free debt, taking as given

the real interest rate R. Each lender participates in a range of competitive credit markets

for firms with state s, future capital k′, and a desired loan amount b′. If a borrower firm

defaults on its debt, the lender receives the after-tax recovery rate

R(k′, b′) = γ(1− τ)(1− δ)k
′

b′
,

where 1− γ reflects a deadweight loss upon default. A lender’s expected present discounted

value of participating in the market for lending to firm (s, k′, b′) given the aggregate state
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(µ,A, εA) is given by

−q(s, k′, b′, µ, A, εA)b′

+ 1
R
Eθ [(1− df(s′, k′, b′, µ′, A′, ε′A))b′ + df(s′, k′, b′, µ′, A′, ε′A)b′R(k′, b′)|s, µ,A, εA]

. (28)

A lender must choose to enter, or not to enter, each individual credit market, and any net

profits are paid to the household owner.

A.8.3 Firms

A continuum of competitive diagnostic firms with idiosyncratic states (s, k, b) owned by the

household takes as given the real interest rate R, the wage W , and a debt price schedule

q(s, k′, b′, µ, A, εA), choosing investment for future capital k′, debt issuance b′, static labor

demand n, and whether to default in order to maximize the expected present discounted

value of its payouts according to

V θ (s, k, b, µ, A, εA) = max
df∈{0,1}

[
dfV θ

D(s, µ,A, εA) + (1− df)V θ
ND(s, k, b, µ, A, εA)

]
(29)

V θ
ND(s, k, b, µ, A, εA) = max

k′,b′,n

{
d− IC(d) +

1

R
Eθ
[
V θ(s′, k′, b′, µ′, A′, ε′A)|s, µ,A, εA

]}
(30)

d =
(1− τ) [y −Wn− AC(i, k)− φ]

+q(s, k′, b′, µ, A, εA)b′ − i− b+ τ(R− 1 + δk)

V θ
D(s, µ,A, εA) =

{
0 +

1

R
Eθ [V (s′, 0, 0, µ′, A′, ε′A)|s, µ,A, εA]

}
(31)

A.8.4 Definition

An equilibrium in this economy under diagnostic expectations is a collection including

• a wage function W θ(µ,A, εA),

• a fixed real interest rate R,

• a debt pricing function qθ(s, k′, b′, µ, A, εA),

• household value Hθ and policy functions N θ, B′θ (each functions of (µ,A, εA, B)),

• lender participation decisions for each credit market (s, k′, b′),
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• firm value and policy functions V θ, V θ
ND, V θ

D, k′θ, b′θ, nθ and df θ (each functions of

(s, k, b, µ, A, εA)), and

• a transition mapping µ′ = Γθ(µ,A, εA) for the distribution µ(s, k, b) across periods

such that

• taking as given wages and the interest rate, household values and policies satisfy their

dynamic problem (27) under DE beliefs from (12),

• taking as given debt prices and firm policies, lenders optimally whether to participate

or not in each credit market given their payoffs (28) under DE beliefs from (12) and

(11),

• taking as given wages, the interest rate, and debt prices, firm values and policies satisfy

their dynamic problem defined by (29), (30), and (31) under DE beliefs from (12) and

(11),

• labor markets clear with labor demand from firms equal to labor supply from house-

holds ∫
nθ(s, k, b, µ, A, εA)dµ(s, k, b) = N θ(µ,A, εA, B),

• individual firm credit markets clear with nonpositive expected payouts in (28) for each

market (s, k′, b′) and strictly zero expected payouts when the market is active,

• the risk-free debt market clears with risk-free debt supply from the households equal

to the total funding needs of the lenders as required by firm borrowing

B′
θ
(µ,A, εA, B) =

∫
b′
θ
(s, k, b, µ, A, εA)dµ,

and

• the transition mapping Γθ accurately reflects transitions of states given firm policies

and diagnostic expectations, i.e.,∫
{(s′,k′,b′)∈A}

dµ′(s′, k′, b′) =

∫
B
f θ(s′|s)dµ(s, k, b)

B(A, µ, A, εA) = {(s, k, b)|(s′, k′θ, b′θ) ∈ A for some s′}

for any well behaved set A whenever µ′ = Γθ(µ,A, εA).
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A.8.5 Characterization of Prices

Note that the linearity of household utility over consumption, together with optimal savings

in risk-free debt, implies that a constant risk-free rate R = 1
β

is the only one consistent

with equilibrium. Discounted payoffs of firms and lenders at this interest rate are therefore

equivalent to expected present discounted value maximization at the household’s stochastic

discount factor (in this case degenerate to β). Furthermore, a household’s labor supply

optimality condition is given by

ωN
1
λ = W,

and since this expression doesn’t depend upon consumption C it must also not depend upon

household debt B. Therefore, the labor market clearing condition above can be rewritten(
W θ(µ,A, εA)

ω

)λ
=

∫
nθ(s, k, b, µ, A, εA)dµ(s, k, b),

which is equivalent to the Equation (19) given in the main text. Also note that linearity of

the household’s preferences allows us to avoid specifying the nature of aggregate resource

constraints or goods market clearing, since these details do not impact firm, lender, or

household policies at the margin, although it is natural and harmless to assume that the

structure of taxation clears a fiscal budget constraint each period and that the household

absorbs any unexpectedly high or low aggregate payouts from diagnostic firms and lenders.

Finally, note that for any market in which lending is active, the competitive nature of lending

together yields zero diagnostically expected discounted profits in Equation (28) so that

qθ(s, k′, b′, µ, A, εA) =
1

R
Eθ
[
(1− df θ(s′, k′, b′, µ′, A′, ε′A)) + df θ(s′, k′, b′, µ′, A′, ε′A)R(k′, b′)|s, µ,A, εA

]
.

(32)

A.8.6 General Equilibrium Solution Algorithm

One might suspect that this problem poses more difficulty than the usual rational expec-

tations model because of diagnostic expectations. But the characterization of prices above,

dependent upon the careful assumption of linear consumption utility, actually implies that

we face only the usual numerical challenges that arise in any model with a “Krusell Smith

problem.” In other words, there are two familiar computational challenges to numerically

solving the general equilibrium model laid out above. First, the distributional state µ enter-

ing into the pricing function W θ is intractable. Second, the transition mapping Γθ (implicitly

appearing in the optimal debt pricing condition and firm value functions) and the wage map-

ping W θ appearing in firm and household problems are also intractable and unavailable in

closed form.
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We implement a tractable approach to addressing both problems by replacing the dis-

tributional state µ with a truncated history of length K of the aggregate TFP shocks

(At−K , At−K+1, ..., At−1, At). For moderate history lengths K, the approximate state is more

tractable than the distribution µ, and the mapping Γθ collapses to the simple diagnostic ex-

pectations of the evolution of the exogenous process which we have already exploited. With

this simplification in hand, we then follow an outer loop/inner loop approach to solving the

model.

1. Guess a mapping from a truncated history of macro states

(At−K , At−K+1, ..., At−1, At)→ Wt.

2. Solve the model conditional upon this tractable truncated history, where (At, At−1, ...., At−K)

enters the firm’s state vector and hence the Bellman equations determining investment,

default, and debt issuance policies.

3. Simulate the model for a large number of periods t = 1, ..., T , clearing markets with

Wt in each period t by numerically solving the nonlinear equation(
Wt

ω

)λ
=

∫
n(s, k, b|Wt)dµt(s, k, b)

for each period t in the simulation. Note that this is a well behaved nonlinear equation

in one variable. The analytically computable static labor policies n(s, k, b|Wt) are

strictly declining in Wt on the RHS and the function on the LHS is strictly increasing

in Wt. In practice, markets can be cleared robustly using bisection or another similar

algorithm.

4. Based on the simulated wage data, update your wage prediction mapping from Step

1. If the mapping has converged to within some tolerance, exit. If not update the

mapping and return to Step 1.

A few practical comments are in order about this approach to solving the Krusell Smith

problem, which to our knowledge is a novel, although conceptually straightforward, solution

method. First, given the discretized macro TFP state space, we store the wage mapping

nonparametrically as a matrix of mean wages conditional upon each combination of truncated

macro TFP histories. After simulation, the wage mapping update step simply involves

repeated calculations of mean wages within the appropriate subsamples of the simulated data.

Second, because the macro state is replaced with macro TFP shock histories rather than

with an augmented endogenous macro moment, there is no need to create an approximate

anticipated default rule used to price debt. Lenders simply price debt according to the usual
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Figure A.5: Wage Predictions and TFP Lags
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Notes: The figure plots the R2 of nonparametric regressions of log wages on discrete histories of macro TFP
of increasing length.

no-arbitrage condition in Equation (32) above. Third, because no endogenous moments are

forecasted in our solution method, there is no Den Haan (2010)-style distinction between

static and dynamic forecasts of the wage. In other words, there is no room for forecast errors

about endogenous macro moments to accumulate over time, since only exogenous shock

histories are used for forecasts. So, unlike in typical adaptations of the Krusell and Smith

(1998) method, the R2 of the implicit wage forecast rule is in this case an appropriate metric

of accuracy. With this in mind, Figure A.5 plots the estimated R2 of regressions of the log

wage on fully populated sets of dummies for macro TFP histories of up to a given lag length.

Once a single lag is taken into account, incorporating information from yesterday’s TFP

level about the current distribution of capital and hence labor demand in the cross section,

the R2 measures mostly stabilize. Our baseline case, which uses a single lag with K = 1 in

the wage prediction rule, is therefore a parsimonious but apparently accurate choice.

We use this solution to re-compute investment nonlinearities in Figure 2 for the GE case,

with the results contained in Figure A.6.
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Figure A.6: Investment Nonlinearity with General Equilibrium
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Notes: The vertical axis in the figure reports the simulated first-period impulse response of macro invest-
ment to a one-standard deviation negative shock to macro TFP, and the horizontal axis reports the initial
conditions, i.e., the magnitude of the shock to macro TFP in the previous period. Both the DE model
(red line) and RE model (blue line) are reported on the figure. These results are computed in the general
equilibrium model with labor market clearing.
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A.9 Parameter Robustness Checks for Investment Nonlinearity

In the baseline estimated DE model in partial equilibrium we recomputed investment the

nonlinearity plot in Figure 2 for a range of parameter robustness checks, with the resulting

responses of investment plotted in Figure A.7.

Figure A.7: Investment Nonlinearity with Alternative Parameters
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Notes: The vertical axis in the figure reports the simulated impulse response of macro investment to a
one-standard deviation negative shock to macro TFP, and the horizontal axis reports the initial conditions,
i.e., the magnitude of the shock to macro TFP in the previous period. All models are perturbations of the
estimated Baseline DE model, with a single parameter shifted to round higher or lower values bracketing
the parameter point estimate. The autocorrelation of micro TFP ρz is set to 0.75 (high) and 0.6 (low).
The volatility of micro TFP σz is set to 0.3 (high) and 0.2 (low). The capital adjustment cost ηk is set
to 4.3 (high) and 3.7 (low). The fixed operating cost φ is set to 0.25 (high) and 0.05 (low). The recovery
rate γ is set to 0.30 (high) and 0.15 (low). The equity fixed cost ηf is set to 0.025 (high) and 0.005 (low).
The equity linear cost ηd is set to 0.15 (high) and 0.05 (low). Macro TFP volatility σA, not reported, is
held constant in order to keep the shock experiment constant. The magnitude of diagnosticity θ, also held
constant, is already varied in Figure 2 to extreme values. The noise in earnings σπ, also not reported, affects
only simulated micro moments.
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B Data

B.1 Microdata on Firm Beliefs from Compustat and IBES-Guidance

In our analysis of firm financial and profit forecasts we use a combination of the Compustat

Fundamentals Annual and IBES manager guidance databases (S&P Global and CRSP, 2020;

Thomson Reuters, 2017, 2019; WRDS, 2020b). The combined sample for the Compustat-

IBES data spans 1999-2017 for 9666 firm-fiscal years spanning 1391 firms. To construct our

sample, we discard utilities and financials as well as any firm-years with negative values for

assets, capital, employment or sales. Descriptive statistics for each variable from this sample

used in our analysis, as well as firm revenues and capital, are reported in Table B.1.

Table B.1: Sample Descriptive Statistics

Quantity Mean Standard Deviation

Sales 6549.4 22231.5
Capital 1492.1 6185.2
Assets 6689.6 27242.3
Profit 0.4362 1.0310

Investment 0.3104 0.2331
Debt 0.2708 0.2377

Forecast Error -0.2609 0.7842
Forecast 0.7994 0.9256

Notes: The table reports descriptive statistics for the sample of 1391 firms from 1999-2017 and 9666 firm-
years in the combined Compustat-IBES database. The first three rows represent revenues and the book value
of the capital stock and total assets, in $ millions. The remaining rows reflect the ratio of realized earnings to
the book value of the capital stock, the capital expenditures investment rate, the ratio of end of period total
liabilities to the asset stock, the next-period forecast error defined as realized future profits minus manager
guidance scaled by firm capital, and the next period forecast defined as manager profit guidance scaled by
firm capital. The sample was winsorized before computing the descriptive statistics above.

The variable definitions are given as follows, with both empirical and model information

attached:

• Earnings or profits are equal to GAAP net income, Compustat ib. The model

equivalent is π = (1− τ)(y −Wn− AC(i, k)− φ) + τ((R− 1)b+ δk)− δk.

• Capital k is equal to the book value of plants, property, and equipment, Compustat

ppent. The model equivalent is the state variable k.

• Investment i is equal to the total value of capital expenditures, Compustat capxv.

The model equivalent is the policy variable i = k′ − (1− δ)k.

• Debt b is equal to the total net value of liabilities, Compustat dltt+ dlc− che. The

model equivalent is the state variable b.

19



• Forecast error fe is equal to the realized value of earnings π minus the forecast level of

earnings πf made from the previous fiscal year, where realized earnings are Compustat

ib and forecast earnings are equal to manager guidance from the IBES database. The

model equivalent is the earnings value π above, minus the forecast level implied by

firm-level diagnostic expectations, the definition of π, and firm policies predetermined

in the previous period.

We also use the merged Compustat-IBES guidance sample to run various robustness

checks to the firm forecast error predictability regressions reported in the main text. Table

B.3 shows similar forecast error predictability maintains after the Great Recession, in a

sample of firms present for five or more years in the data, and after discarding all firms with

high-yield debt as classified by Moody’s ratings.

B.2 Microdata on Bonds from FISD-TRACE

We use the WRDS US Corporate Bond Return database (WRDS, Mergent, and FINRA,

2020; WRDS, 2020a), which merges the Mergent FISD and FINRA TRACE datasets with

issuance and secondary market information on corporate bond issues, respectively. We

consider only unsecured, unconvertible debentures and convert secondary market yields to

spreads based on comparable Treasury rates, with a resulting dataset of around 80,000 is-

sues from mid-2002 to late 2019. We link the bond return database to Compustat firm

financials through the WRDS CRSP link, and we aggregate from the issue to firm level by

computing average yields and bond returns for a firm in Q4 of a given year. The resulting

dataset spans around 1,500 large US public firms. Linking this panel to the IBES-manager

guidance data yields the sample used in Table 2 in the main text. Table B.5 replicates Table

2 conditioning only on investment grade bonds. Table B.6 replicates Table 2 but does not

include current profit controls for the investment regressions nor lagged spread controls for

the spread regressions.

B.3 Macro Data

At the macro level, we use a combination of information from the NIPA accounts, the US

Treasury, and John Fernald’s website (BEA, 2020b; US Treasury, 2020; BEA, 2020a; Fernald,

2020). The following variables are relevant, all at annual frequency or converted to annual

frequency by averaging.

• Output Y is real GDP from the NIPA accounts.

• Investment I is real nonresidential private investment from the NIPA accounts in the

data.
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• Spreads are the mean spread across firms in a given year in our FISD-TRACE or

WRDS US Corporate Bond Return Database. The spreads are computed as yields

relative to a matched-maturity Treasury yield in the same period.

• TFP is the annualized value of the series dtfp from John Fernald’s website.

• Profit Fcst is the sum of earnings guidance across firms in a given year from our

Compustat-IBES merged database.

In the spread matching/Great Recession exercise in Figure 4, we report the average spread

growth and the average growth of investment, TFP, and profit forecasts in each subperiod.

B.4 SMM Estimation

Our SMM estimation exercise in Section 5.1 involves three steps: 1) moment and covariance

matrix calculations, 2) model estimation, and 3) standard error calculation. We detail each

of these steps in turn.

B.4.1 Moment and Covariance Matrix Calculation

Table 5 reports a set of target moments at the micro and macro levels for our SMM estimation

exercise. The micro moments are a covariance matrix of the vector

Xit = (Profitit, Investmentit,Debtit, Spreadit)
′

for firm i in fiscal year t from our merged Compustat-IBES-FISD-TRACE sample. The micro

moments also include the covariance of future forecast error growth with lagged investment

and debt issuance growth at a two-period horizon, together with the variance of future

forecast errors. The merged sample with all of the required variables available spans 493

firms and 4697 total observations. To compute the micro moments, we use the following

procedure:

• Demean Xit by firm and year to obtain X̂it

• Compute the covariance matrix as the mean of X̂itX̂
′
it.

• Apply the standard formula for the clustered covariance of a mean vector to obtain

the moment covariance matrix ΩMicro, clustering across firms.

With the estimated micro moments and the estimated moment covariance matrix for

the micro moments in hand, we then turn to the calculation of the macro moments and

their covariance matrix. Note that the macro moments are the mean default rate, the mean
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spread, and the standard deviation of real GDP growth. We compute the mean default and

spread series from our merged FISD-TRACE data on corporate debt, and we compute real

GDP growth from the NIPA data. The point estimates of these macro moments are trivial

to compute. We then compute an estimate of the covariance matrix of these macro moments

ΩMacro using a stationary block bootstrap.

Note that for our later inference based on clustering at the firm level, we will rely upon

an assumption that the macro sample length Tmacro and the total number of observations in

the microdata sample T behave proportionally with Tmacro/T → γ for some constant γ as

N →∞. This allows us to rely on asymptotics of the basic form

√
Tmacro(µ̂− µ)→d N(0,Ω), (33)

where µ̂ is the estimated moment vector (with micro and macro moments) and Ω is the joint

moment covariance matrix. Table 5 reports µ̂.

B.4.2 Point Estimate Calculation

We compute the point estimates β̂ for the vector of estimated parameters β in Table 4 by

solving the following standard SMM optimization problem

min
β

(µS(β)− µ̂)′Ω̂−1(µS(β)− µ̂)

where µS(β) is the model value of the moments given β computed from simulated data,

Ω̂−1 is the asymptotically efficient weighting matrix given by the inverse of the estimated

moment covariance matrix, and µ̂ is the empirical moment vector. We employ particle swarm

optimization to solve this optimization problem, a stochastic global optimization routine that

bears substantial similarity to simulated annealing and genetic algorithms.

B.4.3 Standard Error Calculation

Given the ratio between the number of observations T sim in the model simulation used to

compute µS(β) and the empirical number of observations T , the SMM estimator’s asymptotic

covariance matrix Σ follows

√
T (β̂ − β)→d N(0,Σ) (34)

where

Σ =

(
1 +

T

T sim

)(
∂µS(β)

∂β′
Ω−1∂µ

S(β)

∂β

)−1

. (35)

Equation (35) yields a feasible formula for Σ after substitution of the estimated covariance
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matrix Ω̂ and numerical calculation of the moment Jacobian matrix ∂µS(β)
∂β′

within the model

using forward differentiation from the point estimates β̂. With these elements in hand,

Tables 4 reports standard errors based on the approximating variance from (34).

B.5 GMM Regression Coefficients with Firm Fixed Effects

In this appendix section we provide a statistical framework for the analysis of forecast over-

reaction allowing for firm fixed effects through the use of within-firm differences and GMM

estimators. We use these results directly to provide reduced-form regression coefficients with

firm fixed effects in Appendix Table B.2 via GMM, and they also prove useful for generating

intuition for the identification of the beliefs parameter θ in our quantitative SMM estimation

of the neoclassical model in Section 5.1.

B.5.1 Data Generating Process

Let xit be the observed value of the forecasted variable x̃it (e.g., profits) for firm i in period

t, following an AR(1) with firm fixed effects µxi and subject to measurement error νxit with

MA(1) dynamics:

x̃it = µxi + ρx̃it−1 + εit, εit ∼ N(0, σ2
ε )

xit = x̃it + νxit + γxν
x
it−1, νxit ∼ N(0, σ2

x,ν)

Let yit be the observed value of a variable ỹit (e.g., investment) linked linearly to the

forecasted variable, subject to its own fixed effects µyi and its own MA(1) measurement error

νyit:

ỹit = µyi + αx̃it

yit = ỹit + νyit + γyν
y
it−1, νyit ∼ N(0, σ2

y,ν).

Allow forecasts x̃fit+1|t to follow the DE formula, but also allow for forecast bias in the

form of fixed effects µfi and for MA(1) measurement noise νfit in the observed value xfit+1|t

x̃fit+1|t = µfi + ρx̃it + ρθεit

xfit+1|t = x̃fit+1|t + νfit + γfν
f
it−1, νfit ∼ N(0, σ2

f,ν).

The implied observed forecast errors feit+1 = xit+1 − xfit+1|t are then given by

feit+1 =
(
µxi + ρx̃it + εit+1 + νxit+1 + γxν

x
it

)
−
(
µfi + ρx̃it + ρθεit + νfit + γfν

f
it−1

)
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feit+1 =
(
µxi − µ

f
i

)
+ εit+1 + νxit+1 + γxν

x
it − ρθεit − ν

f
it − γfν

f
it−1

B.5.2 Nonoverlapping Difference Covariances as Useful Moments

Choose any difference horizons s̄, s ≥ 1. Then the data generating process laid out above

implies that the covariance of future forecast error growth with current profit growth in the

firm is given by

cov(feit+s̄ − feit, xit−1 − xit−s) =

cov

(
εit+s̄ + νxit+s̄ + γxν

x
it+s̄−1 − ρθεit+s̄−1 − νfit+s̄−1 − γfν

f
it+s̄−2

−εit − νxit − γxνxit−1 + ρθεit−1 + νfit−1 + γfν
f
it−2

,
εit−1 + νxit−1 + γxν

x
it−2 + ρx̃t−2

−ρx̃t−2−s − εit−1−s − νxit−1−s − γxνxit−1−s−1

)

= ρθcov(εit−1, εit−1)− γxcov(νxit−1, ν
x
it−1) = ρθσ2

ε − γxσ2
ν,x.

We immediately obtain our first result, that the covariance of future forecast growth with

profit growth can offer evidence of diagnosticity in beliefs but may be inconclusive in the

presence of MA(1) measurement error in profits.

Result 1: If cov(feit+s̄ − feit, xit−1 − xit−s) = ρθσ2
ε − γxσ2

ν,x > 0 for some s̄, s ≥ 1 and

γx > 0, then θ > 0.

To exploit similar intuition but avoid cross-contamination with profit measurement error,

we can also compute the covariance of future forecast error growth with the growth of

outcomes yit in the firm such as investment or debt.

cov(feit+s̄ − feit, yit−1 − yit−s) = αρθcov(εit−1, εit−1) = αρθσ2
ε

We then immediately obtain our second result, which is that covariances of future forecast

error growth with investment or debt growth in the firm should be zero unless expectations

are diagnostic with θ = 0.

Result 2: If cov(feit+s̄ − feit, yit−1 − yit−s) = αρθσ2
ε > 0 for some s̄, s ≥ 1 and α > 0,

then θ > 0.

Result 2, which holds analytically in closed form and still holds approximately in our

nonlinear neoclassical model, provides direct motivation for our use of the forecast error

growth covariance moments in Section 5.1.

B.5.3 Obtaining Regression Coefficients

In this section, we derive formulas for the asymptotically normal and consistent GMM esti-

mation of regression coefficients of future forecast errors on investment in the firm, allowing

for both measurement error and fixed effects in all series. In particular, using the notation

of our data generating process, our goal is to estimate regression coefficients linking the

following “cleansed” variables to one another:
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• Forecast errors without measurement error or fixed effects fe∗it+1 = εit+1 − ρθεit

• The linked variable y without measurement error or fixed effects y∗it = ỹit − µyi

Now, note a few simple results based on our data generating process above.

cov(fe∗it+1, y
∗
it) = cov (εit+1 − ρθεit, αyεit + ...) = −αyρθσ2

ε

var(y∗it) = α2 σ2
ε

1− ρ2
.

Therefore, the probability limit of a univariate regression of forecast errors fe∗it+1 on the

linked variable y∗it is given by

βy =
cov(fe∗it+1, y

∗
it)

var(y∗it)
=
−αρθσ2

ε

α2 σ2
ε

1−ρ2
=
−ρθσ2

ε

α σ2
ε

1−ρ2
.

Now, this is true for each linked variable y, and in particular for y = i (investment) and y = b′

(debt issuance). The statistical framework above implies the following moment relationships.

m1 = cov(feit+1 − feit, iit−1 − iit−1) = αiρθσ
2
ε

m2 = cov(feit+1 − feit, b′it−1 − b′it−1) = αb′ρθσ
2
ε

m3 = cov(b′
∗
it−1, i

∗
it) = αiαb′

σ2
ε

1− ρ2

But all of these are estimable consistently. m1 and m2 are probability limits of covariances

of differences. m3 is the probability limit of the covariance of residualized investment and

debt. Consider a general central limit theorem

√
N(m(X)−m)→d N(0,Σ)

where m(X) = (m1,m2,m3)′ is the moment estimate from the data X, N is the observation

count and Σ is the asymptotic variance of m(X) allowing for firm-level clustering. Note that

Σ can be estimated via off-the-shelf closed-form form econometric formulas. Then consider

the desired regression coefficient βi = −m2

m3
, which is a function of the underlying vector m.

Via the Delta method we have

√
N(β̂i − βi)→d N(0,Ω),

where the asymptotic variance of the regression coefficient vector is given by

Ω =
∂βi
∂m′

Σ
∂βi
∂m

.
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All of these objects have feasible estimators, since the Jacobian has a simple form given by

∂βi
∂m′

=
[

0 −1
m3

m2

m2
3

]
.

With this framework in hand, we note that Appendix Table B.2 in column (3) reports the

regression coefficient point estimate β̂i = βi(m̂) as well as the standard error

√
diagΩ̂
N

.

B.6 AR(1) with Misperceived Persistence

There are multiple departures from full information rational expectations which in principle

can generate overreaction of beliefs, including both DE as well as models in which agents

systematically inflate the perceived persistence of an underlying AR(1) model. To compare

the two belief systems, consider data Xt which follows an underlying true AR(1)

logXt+1 = ρ logXt + εt+1, εt+1 ∼ N(0, σ2).

A agent with diagnostic beliefs governed by parameter θ makes forecast

Eθt logXt+1 = ρ logXt + θρεt,

leading to forecast error

FEθ
t+1 = logXt+1 − Eθt logXt+1

= ρ logXt+1 + εt+1 − (ρ logXt + θρεt)

= εt+1 − θρεt,

implying a negative covariance, i.e., overreaction, given by

cov
[
FEθ

t+1, logXt

]
= cov [εt+1 − θρεt, ρ logXt−1 + εt]

= −θρσ2.

Now, as an alternative, consider an agent who in the same context perceives an AR(1) process

with persistence ρ̂. The agent’s forecast is

Eρ̂t logXt+1 = ρ̂ logXt,

leading to forecast error

FE ρ̂
t+1 = logXt+1 − ρ̂ logXt

= ρ logXt + εt+1 − ρ̂ logXt
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= (ρ− ρ̂) logXt + εt+1,

implying a covariance

cov
[
FE ρ̂

t+1, logXt

]
= cov [(ρ− ρ̂) logXt + εt+1, logXt]

= (ρ− ρ̂)cov [logXt, logXt]

= (ρ− ρ̂)
σ2

1− ρ2
.

This covariance is negative, i.e., overreaction occurs on the part of the agent, whenever ρ̂ > ρ.

So overestimated persistence maps to overreaction.

To compare the two belief systems, it is useful to consider the degree of perceived persis-

tence ρ̂ required to equalize the degree of overreaction across the diagnostic and misperceived

AR(1) versions of beliefs. In this case ρ̂ must satisfy

cov
[
FE ρ̂

t+1, logXt

]
= cov

[
FEθ

t+1, logXt

]
(ρ− ρ̂)

σ2

1− ρ2
= −θρσ2

ρ̂ = ρ
(
1 + θ(1− ρ2)

)
.

As expected, to match diagnostic expectations with overreaction and θ > 0 requires ρ̂ > ρ.

Operationalizing this formula using our baseline micro and macro TFP process estimates,

together with the estimated degree of diagnosticity, from Table 4 implies perceived persis-

tence parameters given by

Micro TFP: ρ̂z = 1.0071

Macro TFP: ρ̂A = 1.0346.

Forecast overreaction to the degree we estimate in our baseline requires nonstationary AR(1)

beliefs with ρ̂ > 1. Nonstationary beliefs are incompatible with the stationary Bellman

Equations (15) and (16) characterizing firm decisionmaking. Intuitively, the degree of over-

reaction and forecast error volatility we see in the data are high, requiring a perceived

persistence incompatible with stationarity because of the high fundamental persistence com-

mon in macroeconomic and firm-level analysis. An advantage of diagnostic beliefs in this

context is therefore the maintained stationarity of beliefs which nevertheless match observed

overreaction patterns.
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B.7 Robustness Tables and Figures

Figure B.1: Aggregate Forecast Errors
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Notes: Horizontal axis is year. Red line is mean investment rate. Blue line is mean forecast error in the
following year. Variables standardized. Correlation in the two series is -0.61.
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Table B.2: Predictable Forecast Errors, OLS vs GMM

(1) (2) (3)
Dependent Variable: Forecast Errort+1

Estimation Method: OLS OLS GMM

Investmentt −1.037∗∗∗ −0.457∗∗∗ −3.647∗

(0.069) (0.065) (2.080)

Firm Effects X X
Year Effects X X X
Years 1999-2018 1999-2018 1999-2018
Firm-Years 9666 9666 7095

Notes: The table reports panel estimates from the merged Compustat-IBES sample of the coefficients of a
regression of forecast errors on the indicated variable. Columns 1 and 2 reflect OLS panel estimators, while
column 3 reflects the GMM estimator outlined in Data Appendix B. The standard errors are clustered at
the firm level. All variables are scaled by the firm’s tangible capital stock and measured at the firm-fiscal
year level. Forecast errors in t+ 1 are realized earnings in t+ 1 minus firm forecasts in t. Investment in t is
capital expenditures. ∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Note that 0.01 = 1% relative to
the firm’s assets.

Table B.3: Predictable Forecast Errors, Robustness

(1) (2) (3) (4) (5) (6)
Dep. Variable: Forecast Errort+1

Sample: Baseline Inv. Grade ≥ 5 Yrs. Post-G.R. High Inv. Low Inv.

Investmentt −0.457∗∗∗ −0.448∗∗∗ −0.365∗∗∗ −0.468∗∗∗ −0.372∗∗∗ −0.569∗∗∗

(0.065) (0.067) (0.073) (0.107) (0.087) (0.199)

Firm Effects X X X X X X
Year Effects X X X X X X
Years 1999-2018 1999-2018 1999-2018 2009-2018 1999-2018 1999-2018
Firm-Years 9666 8639 7973 4388 4625 4599

Notes: The table reports panel OLS estimates from the merged Compustat-IBES sample of the coefficients
of a regression of forecast errors on the indicated variable. Each column, across rows, reports coefficients for
a particular sample of interest. The standard errors are clustered at the firm level. All variables are scaled
by the firm’s tangible capital stock and measured at the firm-fiscal year level. Forecast errors in t + 1 are
realized earnings in t + 1 minus firm forecasts in t. Investment in t is capital expenditures. ∗ = 10% level,
∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Note that 0.01 = 1% relative to the firm’s assets.
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Table B.4: Predictable Forecast Errors by Horizon

(1) (2) (3)
Dependent Variable: Forecast Errort+1

Estimation Method: OLS OLS OLS

∆ Investmentt −0.179∗∗∗

(0.058)

∆ Investmentt−1 −0.153∗∗∗

(0.055)

∆ Investmentt−2 −0.029
(0.049)

Year Effects X X X
Years 1999-2018 2000-2018 2001-2018
Firm-Years 9747 9342 8937

Notes: The table reports panel OLS estimates from the merged Compustat-IBES sample of the coefficients
of a regression of forecast errors on the indicated variable. The standard errors are clustered at the firm
level. All variables are scaled by the firm’s tangible capital stock and measured at the firm-fiscal year level.
Forecast errors in t + 1 are realized earnings in t + 1 minus firm forecasts in t. Investment in t is capital
expenditures. ∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Note that 0.01 = 1% relative to the firm’s
assets.
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Table B.5: Linking Forecast Errors and Firm Reversals: Investment Grade
Firms

Panel A: Second Stage (1) (2) (3) (4)
Dep. Variable: Returnt Returnt ∆ Investmentt ∆ Investmentt
Estimation Method: OLS IV OLS IV
Forecast Errort 0.000 0.006∗ 0.022∗∗ 0.436∗∗∗

(0.000) (0.004) (0.009) (0.078)
Panel B: First Stage Dep. Variable: Forecast Errort
Investmentt−1 −0.523∗∗∗ −0.523∗∗∗

(0.118) (0.118)
Year Effects X X X X
Years 2002-2018 2002-2018 2002-2018 2002-2018
Firm-Years 2000 2000 2000 2000
First Stage F 20 20

Notes: The table reports estimates of specifications on the merged Compustat - IBES - FISD/TRACE
sample at the firm-fiscal year level, restricting to firms with Moody’s rated investment grade debt. The top
panel plots OLS and IV second-stage estimates. The bottom panel, where relevant, reports IV first-stage
estimates. Columns (3)-(4) control for current profits in the second stage. Standard errors are clustered at
the firm level. ∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Note that 0.01 = 1% relative to the firm’s
assets.

Table B.6: Linking Forecast Errors and Firm Reversals: No Controls

Panel A: Second Stage (1) (2) (3) (4)
Dep. Variable: Returnt Returnt ∆ Investmentt ∆ Investmentt
Estimation Method: OLS IV OLS IV
Forecast Errort 0.001 0.007∗ 0.008 0.452∗∗∗

(0.001) (0.004) (0.007) (0.095)
Panel B: First Stage Dep. Variable: Forecast Errort
Investmentt−1 −0.565∗∗∗ −0.565∗∗∗

(0.104) (0.104)
Year Effects X X X X
Years 2002-2018 2002-2018 2002-2018 2002-2018
Firm-Years 2852 2852 2852 2852
First Stage F 29 29

Notes: The table reports estimates of specifications on the merged Compustat - IBES - FISD/TRACE
sample at the firm-fiscal year level. The top panel plots OLS and IV second-stage estimates. The bottom
panel, where relevant, reports IV first-stage estimates. Standard errors are clustered at the firm level.
∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Note that 0.01 = 1% relative to the firm’s assets.
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Table B.7: Linking Forecast Errors and Industry Reversals in the Data: SIC2
Sectors

(1) (2) (3)
Dependent Variable: Forecast Errort Returnt ∆Investmentt
IV Stage: First Second Second
Forecast Errort 0.048∗∗∗ 0.567∗∗∗

(0.014) (0.046)
Investmentt−1 −0.873∗∗∗

(0.246)
Industry Effects X X X
Industries 35 35 35
Industry-Years 453 453 453
First Stage F 13

Notes: The table reports first- and second-stage IV estimates based on industry aggregated data from the
Compustat- IBES-FISD/TRACE sample at the SIC2 × fiscal year level. Column (1) reports the first stage,
and columns (2)-(3) report second-stage regressions. Standard errors are clustered at the industry level.
∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Forecast error is average realized minus expected profits
normalized by capital stocks. Investment is the average investment rate, i.e., capital expenditures normalized
by the capital stock. The return is the average realized bond return. Columns (2)-(3) control for the lagged
spread and current profits relative to the capital stock. Note that 0.01 = 1% relative to the firm’s assets.

Table B.8: Linking Forecast Errors and Industry Reversals in the Data: No
Controls

(1) (2) (3)
Dependent Variable: Forecast Errort Returnt ∆Investmentt
IV Stage: First Second Second
Forecast Errort 0.047∗∗∗ 1.266∗∗∗

(0.016) (0.408)
Investmentt−1 −0.476∗∗∗

(0.153)
Industry Effects X X X
Industries 111 111 111
Industry-Years 1291 1291 1291
First Stage F 10

Notes: The table reports first- and second-stage IV estimates based on industry aggregated data from the
Compustat- IBES-FISD/TRACE sample at the SIC3 × fiscal year level. Column (1) reports the first stage,
and columns (2)-(3) report second-stage regressions. Standard errors are clustered at the industry level.
∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Forecast error is average realized minus expected profits
normalized by capital stocks. Investment is the average investment rate, i.e., capital expenditures normalized
by the capital stock. The return is the average realized bond return. Note that 0.01 = 1% relative to the
firm’s assets.
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Table B.9: Linking Forecast Errors and Industry Reversals in the Data: No
Industry Effects

(1) (2) (3)
Dependent Variable: Forecast Errort Returnt ∆Investmentt
IV Stage: First Second Second
Forecast Errort 0.009∗∗∗ 0.242∗∗∗

(0.003) (0.025)
Investmentt−1 −0.956∗∗∗

(0.142)
Industries 111 111 111
Industry-Years 1291 1291 1291
First Stage F 46

Notes: The table reports first- and second-stage IV estimates based on industry aggregated data from the
Compustat- IBES-FISD/TRACE sample at the SIC3 × fiscal year level. Column (1) reports the first stage,
and columns (2)-(3) report second-stage regressions. Standard errors are clustered at the industry level.
∗ = 10% level, ∗∗ = 5% level, and ∗ ∗ ∗ = 1% level. Forecast error is average realized minus expected profits
normalized by capital stocks. Investment is the average investment rate, i.e., capital expenditures normalized
by the capital stock. The return is the average realized bond return. Columns (2)-(3) control for the lagged
spread and current profits relative to the capital stock. Note that 0.01 = 1% relative to the firm’s assets.
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