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A consumption event is memorable if the memory of the event affects well-
being at times after the material consumption, as originally introduced by Gilboa,
Postlewaite, and Samuelson (2016) and Hai, Krueger, and Postlewaite (2020).
Our main contribution is to develop an axiomatic foundation of memorable con-
sumption in a dynamic setting. Preferences are represented by the present value
of the sum of utilities derived at each date from the current consumption and
from recollecting the past. Our model accommodates well-known phenomena in
psychology, such as the peak-end rule, duration neglect, and adaptation trends.
We also provide foundations for a prominent special case of the representation
with the Markovian property. The model is illustrated with applications in two
different contexts: risk-taking behavior in a principal-agent problem and life-
cycle consumption-savings decisions.
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“We actually don’t choose between experiences, we
choose between memories of experiences. Even when we
think about the future, we don’t think of our future nor-
mally as experiences. We think of our future as antici-
pated memories.” — Daniel Kahneman (2010)

1 Introduction

Psychology and behavioral science have widely recognized that one’s subjective well-being

at any point in time is not determined simply by the consumption at that moment — the

recollection of past experiences plays a crucial role. This idea is at the core of a well-known
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literature initiated by Kahneman and is supported by sizable experimental evidence.1 Evok-

ing early ideas of Bentham (1789) and Edgeworth (1881), Kahneman describes hedonic ex-

periences as consisting of sequences of moments that give rise to two distinct measurements,

so-called ‘moment utility’ and ‘remembered utility.’ The former expresses the instant de-

gree of pain or pleasure associated with moments, while the latter refers to the judgement

arising from the ex post recollection of the overall experience.2 This encompassing notion

of subjective well-being has reached out even to public policy; searching for more adequate

indicators of well-being beyond GDP per capita, policy makers often resort to large-scale

surveys, such as the World Happiness Report and the European Social Survey, that inquire

about citizens’ happiness and life satisfaction.3

From a behavioral perspective, a critical aspect lies in the elicitation of these more inclu-

sive measures of well-being from observables. Experienced utilities reflect hedonic states,

such as the perceived intensity of pain or pleasure, and their measurements are traditionally

based on self-reports of these feelings. The controversies are well-known and have to do with

inherent biases associated with self-reports, the difficulties to attribute ordinal meanings,

and to make interpersonal comparisons.4 The literature report puzzling findings in different

domains: controversial examples are the limited correlation between economic growth and

well-being in the well-known Easterlin’s Paradox (1974, 1995), as well as the significant

differences in life satisfaction among comparable countries (Kahneman et al., 2004). The

psychological phenomenon of hedonic adaptation may tempt one to conclude that even

life-changing events may not have any impact on long-run happiness (Brickman, Coates,

and Janoff-Bulman, 1978).

The main goal of this paper is to bring into formal analysis the psychological ideas of

moment and remembered utilities and develop the notion of memorable consumption by

1Among many, see Elster and Loewenstein (1992), Diener, Suh, Lucas, and Smith (1999), Arieli and
Carmon (2000), Frey and Stutzer (2002), Kahneman, Diener, and Schwarz (1999), Kahneman (2000a,
2000b), and Kahneman and Thaler (2006). The idea that past memories may influence well-being goes
back, at least, to Smith (1759).

2Kahneman, Wakker, and Sarin (1997) provide a formal analysis of this distinction and propose a
measurement method based on the notion of ‘temporally extended outcomes.’

3At the national level, see, e.g., the Integrated Household Survey in UK. Diener (2000), Kahneman,
Krueger, Schkade, Schwarz, and Stone (2004), and Benjamin, Heffetz, Kimball, and Szembrot (2014) inquire
on the development of national indices of subjective well-being.

4Bond and Lang (2019) provide an econometric analysis that reports the difficulties encountered in
comparing two groups of individuals by their average happiness using scale-based surveys.

2

Date: 2023-09-07 17:18:14 Revision: 63aa775



modeling the dynamic effects of memories of past consumption on well-being. Natural ex-

amples of memorable consumption include extraordinary events, such as celebrations of

various occasions, life achievements, lottery wins, exotic dining and entertainment, vaca-

tions, as well as bad customer experiences, job termination, or more traumatic life-changing

events. Apart from extraordinary events, enduring effects on well-being may grow from daily

experiences that are related, for instance, to the person’s income, place and conditions of

living, or social status.

Our contribution is threefold. Our first and main contribution is an axiomatic theory of

memorable consumption in a dynamic setting. Our model accommodates well-known phe-

nomena in psychology, such as the peak-end rule, duration neglect, and adaptation trends.

The axiomatic theory shows that the model has strong uniqueness properties and allows

identification of the memorable effects of consumption in later periods separately from its

material effects at present. The axioms also help to distinguish memorability from other

history-dependent behavioral traits, such as habits and anticipation effects, as well as other

effects and interactions among them. Importantly, we do not rely on an exogenous iden-

tification of what goods or experiences are memorable — the quality of being memorable

is endogenously derived and subjective, and, thus, is allowed to vary across individuals.

Our second contribution is an axiomatic Markovian model that represents a special case of

the general model. In this model, the agent makes decisions on the basis of the “stock” of

accumulated memories, and that stock of memories serves as the sole state variable in the

dynamic process. Markovian evolution of memory makes the model particularly tractable

and suitable for solving it with standard dynamic programming methods. The Markovian

specification also makes it clear that the effect of memories may vary along two dimensions:

they may generate greater utility values (“stronger effect”) or last longer (“longer effect”);

in turn, we can make interpersonal comparisons along these dimensions. Third, we illustrate

the applied relevance and the analytical tractability of the model by introducing memo-

rable effects in two distinct contexts. We study risk-taking behavior in a principal-agent

setting and show that memorability may alter the agent’s willingness to take risks; and,

we study consumption-savings decisions in the presence of memorability, where we obtain

a closed-form solution and illustrate the way memorability interacts with the permanent

income hypothesis, excess sensitivity puzzle, and life-cycle decision patterns.
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1.1 The model’s essential components

We study memorable consumption in a dynamic framework of preferences over consumption

streams. As in Koopmans (1960, 1972), preferences are defined from an ex ante perspective,

before time starts unfolding. A typical consumption stream of length t is denoted by f =

(f0, f1, . . . , ft−1), where fτ ∈ C ⊆ RN for N ≥ 1 is the consumption bundle at time τ =

0, . . . , t − 1. In its simplest and most general form, our agent evaluates a stream f by

computing its value (utility) according to the following formula:

V (f) =
t−1

∑
τ=0

βτ[u(fτ) +M(fτ−1, . . . , f0,0,0, . . .)]. (1)

As in the standard theory of exponential discounting, the parameter β ∈ (0,1) is a dis-

count factor, and the value of u(fτ) represents the direct utility of consuming bundle fτ

at time τ . The novel component is M(fτ−1, . . . , f0,0,0, . . .), which represents the utility

derived from the memory of the consumption history (fτ−1, . . . , f0), while the expression

u(fτ)+M(fτ−1, . . . , f0,0,0, . . .) captures the agent’s total subjective well-being that can be

attributed to time τ . The value ofM(fτ−1, . . . , f0,0,0, . . .) is positive for pleasant memories

and negative for unpleasant memories that the agent would prefer not to carry over into the

future, if possible. We emphasize that our agent is aware that different consumption profiles

may generate different memories. Thus, among other things, Representation (1) formalizes

Kahneman’s idea that people choose among memories of experiences, not simply among

experiences.5

History-dependent phenomena As mentioned earlier, memorable effects are not the

only potential reason for the past to affect the current utility. One striking example of

history dependence is the well-known Mom’s Treat (Machina, 1989, p. 1643). Suppose that

a mom has a single indivisible treat that she can give either to her daughter or to her son.

In principle, she is indifferent between giving the treat to either child. However, if her son

got a treat just yesterday, she will strictly prefer to give the treat to her daughter today.

Naturally, such a preference does not rely on whether a treat to a child is a memorable

experience — it is guided by concerns about fairness. There are many other reasons for

5Anticipation emerges as a manifestation of agents’ rationality and it is distinct from the notion of
anticipation understood as savoring. See, e.g., Kahneman and Riis (2005).
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history dependence, including an intrinsic preference for variety,6 habit formation, and

anticipatory feelings. Therefore, our model is not intended to be a universal theory of

history-dependent utility; rather, we are interested in the phenomenon of memorability, its

effect on individual choices, and its relevance for economic analysis. Our focus manifests

noticeably in the proposed axiomatization, our results on identification and uniqueness,

and applications.

1.2 Special cases and applied relevance

Representation (1) provides a general structure for analyzing different processes by which

the memorable effect of past consumption may accrue over time. We look closely at three

special cases of that functional form.

Peak-end rule Our first example provides a time-dependent specification of the memory

function M that accommodates the so-called peak-end rule and duration neglect (Fredrick-

son and Kahneman, 1993). In these experimentally observed phenomena, the recollection

of a prolonged experience is driven by only two salient points — the peak of the intensity

and the most recent moment — while neglecting the duration of the experience.

Adaptation trends Our second example proposes a time-dependent specification of the

memory function M that captures adaptation to repeated similar experiences. In partic-

ular, an experience becomes memorable and generates utility at later dates depending on

its contrast with previous experiences. The proposed specification can be used in a wide

range of contexts, from capturing the role of breaks in repeated consumption experiences

to thinking about prevention of adaptation in the design of compensation schemes and

promotion of job satisfaction.

Markovian memory We study in more detail a special case of representation (1) in

which memory evolves according to a time-invariant Markov law. A consumption stream

f = (f0, . . . , ft−1) is evaluated according to

V (f) =
t−1

∑
τ=0

βτ[u(fτ) +mτ−1], (2)

6Indeed, on the next occasion, a person would prefer to have different meals and read different fiction
books even if those meals or books are not worth recollecting and not memorable at all.
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where mτ is computed as mτ = ψ(mτ−1, fτ) for τ = 0, . . . , t − 2 and m−1 = 0. The key

feature of this specification is that the utility of memorable consumption can be thought

of as a “stock” variable that is determined at each point in time only by its value in the

previous period and the current consumption. This recursive specification favors simplicity

in keeping track of memorable effects and has the advantage of being highly tractable, as

shown in Section 5.2.

Memorable goods and durable goods Goods that exhibit memorable effects have

certain similarities with durable goods since they both generate flows of utilities for a

significant period of time after the instant of their purchase. Nevertheless, they cannot

be assimilated to one another. Hai et al. (2020) develop an extensive empirical analysis

identifying memorable goods as a distinct category from durable goods. Gilboa et al. (2016)

provide further support for this distinction. In this paper, we also argue that there are

many types of spendings that have never been regarded as durable goods (such as wedding

ceremonies, vacations, social events, and even restaurant meals); yet, they may generate

additional flows of utilities after the time of their direct “consumption.” Moreover, we argue

that those additional flows are taken into account by economic agents and affect their choice

behavior. Our theory is revealed-preference based, and agents’ attitudes towards different

types of consumption are entirely subjective and identifiable by the analyst due to the

strong uniqueness properties of the model.

We observe that a typical durable-goods model would not be sufficient to accommodate

the variety of patterns exhibited by memorable effects. Following an inventory-type dy-

namic, durable goods are subject to a decay rate, and, typically, they are replaced after

complete deterioration. Memorable effects have a different nature. For instance, memories

can be good or bad, and their “sign” may lead to noticeable asymmetries of the correspond-

ing decay rates.7 Moreover, there might be no decay at all: a person may derive pleasure

from the narrative value of recollecting past experiences, and storytelling itself may rein-

force the value of memory. Furthermore, as mentioned earlier, the utility from memories

may be subject to effects such as the peak-end rule or adaptive trends that are extrane-

ous to the usual turnover of durable goods. Our model can accommodate these empirical

7Both introspection and empirical evidence indicate that bad experiences persist into one’s mind longer
and more strongly than good experiences. See, e.g., Baumeister, Bratslavsky, Finkenauer, and Vohs (2001).
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observations, as discussed in Section 2.4.

The rest of the paper is organized as follows. We next discuss the related literature.

Section 2 presents the general model and illustrates its richness with two examples of

time-dependent (non-Markovian) laws of motion for memory that are well-known in psy-

chology — the peak-end rule and the adaptation-level theory. Section 3 proposes a special

case of our model that features time-invariant Markovian dynamics. Section 4 provides an

extensive discussion of Hai et al. (2020) and of our contributions relative to theirs. Section 5

develops two applications that illustrate our model in Micro and Macro settings. Section 6

concludes with a brief summary. All proofs are contained in the appendix.

1.3 Related literature

The key feature of our theory is that it breaks the separability of preferences across time

periods. The agent’s well-being is determined by two components — the joy of instantaneous

consumption and the joy of memories. Preferences typically violate time separability with

respect to the memory component — and this is a natural property of memorable effects.

Indeed, memories generated by a fine dining experience may depend on the reference point

set by past experiences of that sort. From this perspective, our paper belongs to a broad list

of decision-theoretic papers in which the prize obtained by the decision maker in one time

period has effects beyond that period, and, hence, the decision maker’s preferences have

a non-time-separable utility representation.8 What distinguishes us from this literature is

our specific interest in memorability.

In the study of memorability, two key papers are the empirical work of Hai, Krueger,

and Postlewaite (2020), who introduced the notion of memorable good, and the theoretical

work of Gilboa, Postlewaite, and Samuelson (2016). Both works are particularly interested

in functional forms of the utility generated by memorable goods that exhibit adaptation

traits (see Section 2.4). Among their key insights, these papers show that optimal consump-

tion profiles of memorable goods should exhibit spikes that are clearly distinct from those

generated by the consumption of durable goods. Furthermore, those spikes provide a net

distinction of memorable consumption from the predictions of habit formation’s models.

8See, among others, Rozen (2010) and Tserenjigmid (2020) who study habit formation; He, Dyer, and
Butler (2013) who study habit formation and satiation; and Dillenberger and Rozen (2015) who study
history-dependent risk attitudes.
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After presenting our model, we devote Section 4 to discuss Hai et al.’s (2020) seminal work

and its relationship with our paper.

The key assumption of Gilboa et al.’s (2016) model is that consumption of the memo-

rable good generates additional flows of utility only if it exceeds a certain threshold level

determined by previous memorable experiences. They study the optimal consumption of

ordinary and memorable goods for different levels of “acclimatization,” and show how the

presence of memorable consumption generates non-smooth patterns. In the domain of ax-

iomatic analysis, they characterize a preference relation that captures memorable effects

across two time periods. Their utility representation takes the form of u(x, y) + v(y, z),

where the term u(x, y) represents the current utility of consuming ordinary goods in quan-

tity x and memorable goods in quantity y, and the term v(y, z) represents the memorable

utility from consuming memorable goods in quantities y in the current period and z in the

past (Gilboa et al., 2016, Section 4).

In comparison with Gilboa et al. (2016), our paper has a different scope. Our main con-

tribution is to propose an axiomatic foundation for a general multiperiod model. Our goal is

to identify the minimal departures from the classic Discounted Expected Utility model that

are necessary to accommodate memorable effects. The general functional form proposed in

this paper encompasses several alternative specifications that include threshold-type spec-

ifications, as well as other psychology-driven specifications, such as the peak-end rule, and

tractable specifications such as the Markovian one.9 Another important contribution of

our work is that, in terms of primitives of the model, we do not make assumptions about

whether any particular good is ordinary or memorable. The property of being memorable

is endogenous, and, by taking a subjective perspective, we let the agent reveal through her

choices what is memorable for her. As a more technical remark, there is also a difference

between our models in terms of timing: in Gilboa et al. (2016), consumption gives rise to

memories and generates additional utility starting from the period in which the memorable

good is consumed, while, in our model, memory starts to generate additional utility starting

from the next period.

We conclude by remarking that memory is traditionally studied as a cognitive constraint.

9In passing, we note that the models of Gilboa et al. (2016) and Hai et al. (2020) are generally not
Markovian in the sense of our Section 3.
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Notable references in economic theory, among others, are Gilboa and Schmeidler (1995),

where choice behavior is driven by similarity with past cases; Mullainathan (2002) and

Bordalo, Gennaioli, and Shleifer (2020) who develop models of selective memory; Fuden-

berg, Lanzani, and Strack (2022), who study the effect of imperfect memory on long-run

behavior; Battigalli and Generoso (2021), who develop a general framework and a formal

language to describe flows of information and players’ ability to recall information for a

large class of sequential games. Finally, we refer to Kahana (2012) for a classic reference on

existing theories and experiments on memory in psychology. Departing from the aforemen-

tioned literature, we view memory not as a constraint for the agent in achieving the best

possible outcome, but rather as a channel for the past to make additional contributions to

the current well-being. We therefore focus on the way this channel works and relate to the

psychological evidence on mechanisms (such as the peak-end rule) leading to memorable

effects.

2 The general model

This section presents formally our general model of memorable consumption. Our goal is to

study memorability in its purest form; we propose a minimal deviation from the standard

exponential discounting paradigm that, nevertheless, allows capturing the essential features

of memorable consumption and distinguishing it from other forms of history-dependent

preferences. As we will illustrate in Section 2.4 and, to a greater extent, in our applications,

our minimal notion of memorability can still accommodate a wide range of psychological

features and generate nontrivial effects in different economic contexts.

2.1 Setup

Let C ⊆ RN for some N ∈ N be the space of consumption bundles, which we assume to be

nondegenerate and connected. Its typical element is denoted by c = (c1, . . . , cN). The set

Ft = Ct for t ∈ N represents the collection of consumption streams of finite length t, with the

typical element given by f = (f0, f1, . . . , ft−1). Also, let ⦸ denote the stream of length zero

and let F0 = {⦸}. We denote by F = ⋃∞t=0Ft the collection of all consumption streams of

finite length. The sets Ft for t ∈ N are endowed with the sup-norm topology. For an element

f ∈ F , let ℓ(f) ∶= t if f ∈ Ft.
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For t ∈ N, let Lt = ∆ (Ft) be the space of lotteries (probability distributions with finite

support) over streams of length t, and let L = ∆(F) be the space of lotteries over all

consumption streams of finite length. The agent’s behavior is described by a preference

relation (complete preorder) ≿ on L.

As usual, for every P,Q ∈ L and α ∈ [0,1], the lottery αP + (1 − α)Q ∈ L is defined

by αP (f) + (1 − α)Q(f) for every f ∈ F . The spaces Lt for t ∈ N are endowed with the

weak* topology: A net {Pα}α in Lt converges to P ∈ Lt iff, for any continuous and bounded

function U ∶ Ft → R, we have ∫ U dPα → ∫ U dP .

Our object of interest is a complete and transitive binary relation ≿ on L. From the

viewpoint of interpretation, if a lottery P delivers the stream f ∈ Ft for some t ∈ N with

probability p, then with probability p the agent receives the sequence of consumption

bundles f0 at date 0, f1 at date 1, and so on up to date t − 1, which represents the last

date of the agent’s lifespan.10 Naturally, the space of lotteries makes the agent’s lifespan

uncertain.

Note that our framework of preferences on lotteries over consumption streams is akin to

the classic setup of Koopmans (1960, 1972), where the modeler takes the perspective of

an agent who makes a single choice among consumption streams at the ex ante stage, i.e.,

before time starts and payoffs in the streams begin to realize.11

We emphasize that, following the route of departing minimally from standard textbook

assumptions, this framework implies that our agent does not have constraints on her capac-

ity to reason, is capable of thinking in advance about her future well-being, and perfectly

able to assess the value of alternative consumption streams in terms of material utility and

generation of memorable effects.12

Throughout the paper, we use the following notation.

10The domain of preferences can be extended to also include infinite consumption streams (as in our
applications in Section 5). Finite length streams are, however, both sufficient and necessary for developing
our theory.

11In the seminal works of Koopmans (1960, 1972), preferences are defined on deterministic consumption
streams of infinite length. Several axiomatic works adopt similar settings: see, e.g., Epstein (1983), Ble-
ichrodt, Rohde, and Wakker (2008), Rozen (2010), Olea and Strzalecki (2014), and Dillenberger, Gottlieb,
and Ortoleva (2020).

12Note that Gilboa et al. (2016) and Hai et al. (2020) focus on cognitively capable and sophisticated
agents, as well. Habit formation models, notably Rozen (2010), have also traditionally maintained the
assumption of unconstrained cognitive abilities.
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Notation. For any f = (f0, f1, . . . , fk) and h = (h0, h1, . . . , hm) in F and P ∈ L,

• let h∣f ∈ F denote the concatenated stream (h0, h1, . . . , hm, f0, f1, . . . , fk).
• let h∣P denote the lottery Q obtained from P by prepending h to the streams in the

support of P : Formally, Q is defined as Q(f) = P (f ′) if f = h∣f ′ for some f ′ ∈ F , and

Q(f) = 0 otherwise.

As usual, we identify a degenerate lottery that gives some stream f ∈ F with probability

one with the stream itself.

2.2 Axioms

We next introduce the behavioral properties that characterize memorable consumption.

They are organized into three groups: properties pertaining to the framework of lotteries

over consumption streams; key axioms capturing memorability effects; and few technical

assumptions.

Framework assumptions The first three assumptions are standard for models that deal

with both time and uncertainty.

The first axiom states that advancing or postponing the timing of a consumption stream

by one period does not affect preferences. It guarantees stability of tastes over time and is

closely related to the standard formulation of Koopmans (1960):

Axiom A1 (Stationarity). There exists a neutral consumption bundle that we identify with

0 such that, for any P,Q ∈ L, we have

P ≿ Q ⇔ (0)∣P ≿ (0)∣Q.
The second axiom imposes the basic economic principle that positive experiences dimin-

ish in value if postponed:

Axiom A2 (Impatience). For any P ∈ L such that P ≻ (0), we have

P ≻ (0)∣P and (0)∣P ≻ (0).
Recall that (0)∣P is the lottery obtained from P by prepending the consumption stream

that has the length of one and offers the neutral consumption element to all the streams

in the support of P . Thus, Impatience states that, for any lottery P that is deemed better

than “nothing,” the agent prefers to consume P immediately rather than postpone it by
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one period. At the same time, she prefers to consume lottery P delayed by one period,

rather than not consuming it at all.

Note that Stationarity and Impatience guarantee that our agents make dynamically

consistent choices, regardless of whether or not consumption has memorable effects.

Finally, Independence is the classic property that delivers the underlying expected utility

form:

Axiom A3 (Independence). For any P,Q,R ∈ L and α ∈ (0,1], we have

αP + (1 − α)R ≿ αQ + (1 − α)R ⇔ P ≿ Q.

Overall, the above three axioms adapt to our notation the classical assumptions of ra-

tional behavior in the presence of time and risk.

Axioms pertinent to memory The next two key axioms delineate the behavioral fea-

tures of memorable consumption. As frequently occurs in axiomatic theory, they do not give

an explicit definition of the phenomenon of memorability by claiming that an agent is sen-

sitive to memorable effects if and only if a certain axiom holds. Instead, they have more of a

suggestive nature — they describe patterns that definitely hold for a standard textbook de-

cision maker and that should also be preserved under memorability. More importantly, they

clarify the notion of memorability by ruling out behavior that is not necessarily associated

with memory and by distinguishing memorability from other forms of history dependence.

Axiom A4 (Risk Preference Consistency). For any f, g ∈ F , p, q ∈ L1, P ∈ L, and α ∈ (0,1],
we have

α(f ∣p)+ (1 −α)P ≿ α(f ∣q)+ (1 −α)P ⇒ α(g∣p)+ (1 −α)P ≿ α(g∣q)+ (1 −α)P.
Risk Preference Consistency guarantees that the agent’s tastes remain unchanged after

varying histories. Despite being a relatively simple property, this axiom is rather powerful.

It rules out various types of backward-looking or reference-dependent evaluations of the

current consumption. First, it immediately rules out the well-known habit formation phe-

nomenon. Indeed, the latter rests on the idea that people feel an additional discomfort if

their consumption falls below the level or departs from the pattern that was established in

the past. Second, it rules out intrinsic preference for variety. The latter captures, for ex-

ample, the reason why a person would prefer to go to The Nutcracker ballet on the second
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night if she watched Swan Lake on the previous one, even if she likes Swan Lake more than

The Nutcracker.

Furthermore, since the streams f and g in the statement of the axiom can have differ-

ent lengths, this axiom ensures that tastes (as in Swan Lake vs. The Nutcracker) remain

unchanged with the passage of time. Moreover, p and q in the statement of the axiom may

be nondegenerate lotteries. Hence, the axiom postulates also that the attitude towards risk

depends neither on the calendar time nor on the realization of outcomes in preceding pe-

riods, thus ruling out direct psychological effects that the realization of extreme outcomes

may have on risk-taking behavior.

The Risk Preference Consistency axiom clearly holds in the standard Discounted Ex-

pected Utility model. In that model, however, the consistent ranking between p and q is

expected to be observed when those one-period lotteries are offered at any position in

otherwise identical streams. Our axiom demands much less than that, and imposes the

consistent ranking only in the last period of the agent’s planning horizon for the reason

that that period surely does not generate any memories that are relevant for the agent’s

problem. By weakening the replacement property in this way, histories of past consumption

are given the freedom to affect memories but not tastes.

As a final note, we highlight that the above axiom imposes consistency on the way the

agent treats one stream — f ∣p vs. g∣p or f ∣q vs. g∣q — in various mixtures that have the

general form of α(f ∣p) + (1 − α)P , where the lottery P may potentially have hundreds of

other streams in its support. Hence, in its statement, the axiom does not insist that the

agent knows the future with certainty. Rather, it asks a question of the form: “If you have

an opportunity to choose your consumption along one possible path of future events, would

you prefer the left option or the right one?” We also note that our memory-related axioms

are formulated having in mind also a normative perspective, so that one can deliberate if

a rational person may agree with the statement of the axiom and adopt it as a rule for her

decision making.

The second memory-related axiom is concerned with tradeoffs between the direct value

of consumption and its contribution to the well-being in subsequent periods. As Risk Pref-

erence Consistency, it involves comparisons of mixtures consisting of a common lottery

component: this allows to introduce an uncertain time horizon in the formulation of the
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axioms by relying on the linear structure of preferences.

Axiom A5 (Memory-Consumption Tradeoff Consistency). For any t ∈ N, f, g ∈ Ft, p, q ∈

L1, P ∈ L, and α ∈ (0,1], we have

α(f ∣p)+(1−α)P ≿ α(g∣(1
2
p+1

2
q))+(1−α)P ⇔ α(f ∣(1

2
p+1

2
q))+(1−α)P ≿ α(g∣q)+(1−α)P.

To interpret this axiom, consider the following tradeoff between consumption in a fixed

(the last) period and pleasant memories that are generated by the consumption stream

from period zero to the second-to-last. Suppose that changes in the initial part of the

consumption stream can be counterbalanced by replacing a consumption lottery p in the

last period with a lottery that is a midpoint between p and some q. The axiom postulates

that, in this case, a similar replacement in the last period of the midpoint between p and q

with q — which is a replacement that has the same distance and direction in the space of

last-period consumption lotteries — should have the same counterbalancing effect. Thus, it

calibrates the relative effects of memory and consumption in quantitative terms. Note that,

together with the other assumptions, this axiom implies the following simple property:13

• For all f, g ∈ Ft, p, q ∈ L1, P ∈ L, and α ∈ (0,1], we have that

α(f ∣p)+(1−α)P ≿ α(g∣p)+(1−α)P ⇔ α(f ∣q)+(1−α)P ≿ α(g∣q)+(1−α)P.
This property ensures that the agent’s preferences are driven by the elements for which the

two mixtures differ, i.e., f and g. Formally, the desirability of the stream f versus the stream

g is independent of the consumption element appended to them, as well as it is independent

of the common element in the mixtures, P , and the probability α with which the mixtures

are played. The axiom thus rules out additional effects on the subjective well-being that

the agent may obtain in early periods from the mere anticipation of her consumption in the

last period (say, positive anticipation of high consumption p versus negative anticipation of

low consumption q).14 The full-fledged Memory-Consumption Tradeoff Consistency rules

out additional forms of forward-looking psychological effects.

13We refer to Lemma 7 in the Appendix for a proof of this statement.
14Note that the simplest forms of anticipation effect — for instance, the case of a consumption p in a

stream f ∣p, where f ∈ Ft, giving a constant f -independent utility boost in each of the first t periods — is
ruled out by the Risk Preference Consistency axiom. Indeed, that axiom asserts that p has the same value
after the initial stream f of arbitrary length t as after the stream g = ⦸ of length zero.
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The aforementioned property is complementary to Risk Preference Consistency — both

axioms constitute separability assumptions (that always hold in the standard expected

discounted utility model). However, our assumptions are weaker than standard ones. Indeed,

in Koopmans’ formalization of the standard theory, separability is required with respect

to each period, while we impose it only with respect to two “coordinates” — the periods

from 0 to second-to-last and the last period. This way, our axioms allow for reference

dependence inmemory (as will be illustrated in subsequent examples) but rule out reference

dependence in the direct value of consumption, thereby precluding behavioral phenomena

such as habit formation (ruled out by Risk Preference Consistency) and anticipation (ruled

out by Memory-Consumption Tradeoff Consistency).

Technical requirements We conclude the list of axioms with few technical assumptions.

Axiom A6 (Continuity). (i) For all P ∈ L and all t ∈ N, the sets {Q ∈ Lt ∶ Q ≿ P} and
{Q ∈ Lt ∶ P ≿ Q} are closed. (ii) For all P,Q,R ∈ L, the sets {α ∈ [0,1] ∶ αP +(1−α)Q ≿ R}
and {α ∈ [0,1] ∶ R ≿ αP + (1 −α)Q} are closed.

The above continuity axiom combines two very well-known notions — the stronger Closed

Continuity in Part (i) and the weaker Archimedean axiom in Part (ii). They are defined on

different domains: the first one is applied to lotteries over streams of predetermined length,

while the second one to arbitrary lotteries over consumption streams.

Finally, we assume nondegeneracy of preferences in the following form.

Axiom A7 (Nondegeneracy). There exist c∗, c∗ ∈ C such that (c∗) ≻ (0) ≻ (c∗).
2.3 Basic representation

The following notation will be useful for stating the results throughout.

Notation. Let C∞0 denote the set of infinite sequences of elements of C for which only finitely

many elements are distinct from 0, where 0 is the element of C given by Stationarity.

The space C∞0 is endowed with the following topology: a net {f (α)}α converges to some

f in C∞0 if and only if, for some T ∈ N such that ft = 0 for all t ≥ T , there exists an index α0

such that f
(α)
t = 0 for all α ≥ α0 and t ≥ T , and sup0≤t≤T ∣ft−f (α)t ∣ converges to zero. We also

say that a function Φ ∶ C∞0 → R is finite-horizon-bounded if and only if, for any T ∈ N, there

exists K > 0 such that, for any f ∈ C∞0 such that ft = 0 for all t ≥ T , we have ∣Φ(f)∣ ≤K.
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We are ready to provide a behavioral characterization of preferences that exhibit mem-

orable effects of consumption.

Theorem 1. Let ≿ be a complete preorder on L. The following statements are equivalent:

(i) ≿ satisfies Axioms (A1)–(A7);

(ii) there exist a scalar β ∈ (0,1), a continuous and bounded function u ∶ C → R such that

u(0) = 0 and its range contains positive and negative numbers, and a continuous and

finite-horizon-bounded function M ∶ C∞0 → R with M(0,0, . . .) = 0, such that

V (P ) = ∑
f∈suppP

P (f) ℓ(f)−1

∑
t=0

βt[u(ft) +M(ft−1, . . . , f0,0,0, . . .)] (3)

is a utility representation of ≿ on L.

Theorem 1 delivers a preference representation that enriches the standard exponential

discounting formula to accommodate the memorable effects of consumption. The usual

parameters of the evaluation formula are the scalar β, which represents the discount factor,

and the function u, which measures the utility of a bundle of goods at the time of material

consumption. Besides its direct value, consumption generates additional utilities in the

future, and their flow is measured by a novel object — the function M . Given a stream

f , the overall utility at time t is calculated as the sum u(ft) +M(ft−1, . . . , f0,0,0, . . .), in
which the second term specifies the utility derived from the recollection of past memorable

experiences. Thus, representation (3) can be interpreted as if the agent engages in two

forms of consumption, the material one and the consumption of memories, giving rise

to behaviorally distinct utilities. The notation for the arguments of the function M is

backward-looking: first goes the most recent past consumption, then the second-to-most-

recent, and so on. The sequence of arguments ends with an infinite sequence of zeroes since,

at each point in time, the preceding history is assumed to be finite.15 Note that, if no good

is perceived as memorable, then M(⋅) = 0 and the representation reduces to the standard

exponential discounting model.

Uniqueness The parameters β, u, and M are identified uniquely, as shown next. In

comparison to the standard uniqueness results in utility theory, the only minor difference is

15A single memory function operating on infinite (but vanishing) streams could be replaced by a collec-
tion of functions operating on finite streams — M1(f0), M2(f1, f0), and so on. Specifying functions in this
way would require imposing additional constraints — it must be that M2( ⋅ ,0) ≡M1( ⋅ ), and so on.
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that the functions u and M are unique only up to a positive multiplicative factor, whereas

arbitrary additive constants are not allowed because we impose the convention of assigning

the numeric value 0 to the neutral element identified by Stationarity. Importantly, our

uniqueness result ensures that our model cannot be reinterpreted in terms of other history-

dependent phenomena.

Proposition 2. Suppose that (β,u,M) is a representation of a binary relation ≿ on L as

in Theorem 1. Then, (β̂, û, M̂) is another such representation of the same binary relation

if and only if β = β̂, û = λu, and M̂ = λM for some λ > 0.

2.4 Time- and history-dependent memory

One well-known heuristic about the way people recollect prolonged experiences is called

the peak-end rule. Originally introduced by Fredrickson and Kahneman (1993), it builds

upon the view that any hedonic experience can be thought of as consisting of a sequence of

moments that can be identified, for instance, by the unfolding of time. The retrospective

evaluation of a prolonged experience, whether positive or negative, is determined by the

average of only two salient moments: the most intense moment — that is, the peak — and

the latest moment experience — that is, the end. One notable implication is that the du-

ration of an experience has no impact on its recollection. For instance, a short, but rather

exotic, vacation may generate more intense memories than a longer, but more ordinary, va-

cation. This pattern, dubbed duration neglect, is observed in numerous experimental studies

suggesting that prolonging an unpleasant experience by adding some extra moments of di-

minished discomfort may mitigate the subsequent assessment of the overall experience.16

Our next example proposes a simple specification of the function M that accommodates

the psychological evidence on the peak-end rule and duration neglect.

Example 1 (Peak-end rule). Assume that consumption bundles have one component that

captures memorable experiences — their sign and intensity. For a bundle c ∈ C ⊆ RN , let this

component be N . Assume also that the utility function u is increasing in this component,

so that positive values in this component contribute positively to the agent’s utility. Let the

16For experimental evidence, see Varey and Kahneman (1992), Kahneman, Fredrickson, Schreiber, and
Redelmeier (1993), Fredrickson (2000), and Kahneman (2000a, 2000b). Arieli (1998) points out the rele-
vance of additional factors, such as the rate of change and the intensity trend.
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function M from representation (3) be defined as

M(ft−1, . . . , fl, . . . , fk, . . . , f0,0,0, . . .) = d(t − l − 1)(γ max
i=k,...,l

v(fN
i ) + (1 − γ)v(fN

l ))
if v(fN

i ) > 0 for all i = k, . . . , l,

M(ft−1, . . . , fl, . . . , fk, . . . , f0,0,0, . . .) = d(t − l − 1)(γ min
i=k,...,l

v(fN
i ) + (1 − γ)v(fN

l ))
if v(fN

i ) < 0 for all i = k, . . . , l.

(4)

This specification covers both positive and negative experiences. The function v ∶ R → R

in the formula is the utility function for memory, and we assume that it is increasing and

such that v(0) = 0: that is, the sign of memory is the same as the sign of the instantaneous

utility. The variables k and l are the endpoints of the time interval t = k, . . . , l that con-

stitutes the most recent prolonged experience: formally, one prolonged experience is defined

as a sequence of consecutive periods in which v-utilities of the memorable component of the

consumption bundle are all positive or all negative, and such that it cannot be extended

further in time while maintaining the sign. In both positive and negative cases, the addi-

tional utility generated by memories of an experience is determined by the intensity of the

experience in the end period, fN
l , and the intensity in the most extreme (i.e., the peak)

period. Naturally, the peak of negative experiences is determined by the min operator, hence

formula (4) distinguishes between two cases. In the peak-end combination, the peak experi-

ence contributes to the utility with the weight γ ∈ (0,1] and the latest experience contributes

with the complementary weight. Since the formula takes into account only the utility values

of the end and the peak of an experience, its duration l − k + 1 is neglected. Finally, when

time passes after the end of the experience, its memory is allowed to decay according to the

function d ∶ Z+ → [0,1] such as, for example, d(τ) = βτ . We apply the peak-end rule for

memory formation to a specific economic context in Section 5.1.

Another important class of behavioral regularities related to past memories is studied

in the well-known adaptation-level theory in psychology.17 The most relevant economic

prediction of the theory is that repeated exposure to the same good experience will gradually

attenuate the initial feeling of pleasure; similarly, persistent exposure to the same bad

experience will make the feeling of discomfort wane.

17See Helson (1947, 1948) for origins of the theory that started with the perceptual adaptation in vision.
More recent works include Frederick and Loewenstein (1999) and Diener, Lucas, and Scollon (2006).
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Our model is not intended to capture full-fledged adaptation-level theory. Indeed, our

axioms imply that the current utility from consumption is not reference-dependent. How-

ever, the memorability of experiences and their value at the time of recollection may well

depend on the past history of similar experiences and exhibit adaptation features, as shown

next.

Example 2 (Adaptation). Let the function M from representation (3) be defined as

M(ft, . . . , f0,0,0, . . .) = G(ft,A(ft−1, . . . , f0,0,0, . . .)), (5)

for all f ∈ F and t ∈ Z+, where A ∶ C∞0 → R is defined as A(ft, . . . , f0,0,0, . . .) = α∑∞τ=0(1 −
α)τft−τ , α ∈ (0,1), and G ∶ R×R→ R is a continuous function that is monotone in the first

argument and such that G(0,0) = 0.
The function A(ft−1, . . . , f0,0,0, . . .) represents the adaptation level acquired from con-

sumption up to time t−1 and sets the reference point for new memories at time t. The for-

mula for A can be equivalently written as A(ft, . . . , f0,0,0, . . .) = αft+(1−α)A(ft−1, . . . , f0,0,
0, . . .), making it clear that the coefficient α is the weight attributed to the most recent expe-

rience in determining the new adaptation level. The function G measures the utility value

of the memory from consuming bundle x after a history of consumption summarized by

the reference level r. In Tversky and Griffin’s (1991) terminology, A(ft−1, . . . , f0,0,0, . . .)
corresponds to the endowment level accumulated up to time t, whereas G quantifies the

contrast effect. The simplest specification for G can be G(x, r) = max{x − r,0}, in which a

positive flow of memory utility is generated only if the most recent consumption exceeds the

reference level. A more general specification for G may accommodate a broader spectrum of

adaptation trends in memories’ recollection and, in particular, may not necessarily require

new experiences to beat the prior record. Indeed, a person may have very high standards for

fine dining and, at the same time, enjoy pleasant memories from having coffee and pastries

in some regular bakery. Furthermore, reactions to new circumstances may result into only

partial adaptation.18 This is consistent with our subjective approach to memorability.

Adaptation-level theory gives rise to a number of well-known patterns. For instance, it

suggests that introducing an interval of lower consumption in a lengthy stream of positive

18In an empirical study, Diener et al. (2006) suggest that individuals may have multiple adaptation
points. They also report evidence on the heterogeneity of the adaptation process across individuals. Lucas,
Clark, Georgellis, and Diener (2004) report evidence on limited adaptation to unemployment.
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consumption may make the agent appreciate it more.19 Within our setup, we can exemplify

this idea by considering the following preference over mixtures of consumption streams:

1

3
(c, c,0, c, c,0, . . .) + 1

3
(0, c, c,0, c, c, . . .) + 1

3
(c,0, c, c,0, c, . . .) ≻

2

3
(c, c, c, c, c, c, . . .) + 1

3
(0,0,0,0,0,0, . . .).

According to the standard discounted expected utility, the agent should be indifferent be-

tween them because, at each date, she consumes c with two thirds probability and zero with

one third probability on both the left-hand and right-hand sides. However, if memorability

is taken into account, a constant stream of high consumption may generate less memory

(and less utility from memory) than streams in which high consumption is interrupted. Our

model can easily accommodate such a preference for intermittent consumption — if the

utility from recollecting past experiences follows an adaptation process, then an intermit-

tent profile will generate higher utility flows from memory than will an equivalent constant

one. This observation has prescriptive implications, and it may offer new insights into, for

instance, designing optimal wage schemes, promotions, or unemployment benefits.20

3 Markovian memory

This section studies a special case of our general representation that is particularly suitable

for applications. Specifically, we present and provide a behavioral characterization of a

version of the model in which the memory of past consumption follows a Markovian law

of motion: the value of memories (i.e., the utility derived from them) at any time t is

determined only by the corresponding value at time t − 1 and the consumption at time t,

and it does not depend directly on the patterns of consumption at earlier dates. Hence,

the utility from memorable consumption can be thought of as a “stock” variable that

is driven by the current consumption and evolves according to a time-invariant Markov

process. Besides theoretical interest, the Markovian law of motion has a huge practical

advantage over other specifications in terms of its simplicity and tractability. As shown

in Section 5.2, the Markovian specification allows an analytical closed-form solution of

19This prediction is supported by evidence from psychology and marketing. See, e.g., Ratner, Kahn, and
Kahneman (1999), Ariely and Zauberman (2000), and Nelson and Meyvis (2008).

20Kahneman and Thaler (1991) examine some implications of adaptation on job satisfaction.
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the classical consumption-savings problem with the memorable component. The resulting

formulas provide transparent insights and facilitate a deeper understanding of the effects

of memorability on the response to uncertainty and the consumption-savings dynamics.

The Markovian property To present the Markovian model, we need to introduce a few

concepts. We start with the notion of a tradeoff between memory and consumption.

Definition 1. We say that the memory after a stream f k-dominates the consumption z,

where k > 0, f ∈ F , and z ∈ C, if

f ∣0 ≿ 1

k + 1
f +

k

k + 1
(f ∣z). (6)

We denote relationship (6) by f ≿m∶k z. A similar strict preference

f ∣0 ≻ 1

k + 1
f +

k

k + 1
(f ∣z)

is denoted by f ≻m∶k z.

To understand the gist of this definition, observe that the left-hand side of (6), in com-

parison to the right-hand side, offers the agent a greater chance of enjoying the memory of

f in the subsequent time period — on the left-hand side, the probability of enjoying such a

memory is one, while on the right-hand side it is only k
k+1 , a difference of 1

k+1 . In exchange

for that, the right-hand side offers the agent a potentially higher level of consumption in

the last period, z instead of zero.21 The additional consumption of z is available to the

agent with probability k
k+1 . Thus, the pattern in (6) describes a preference for enjoying the

memory produced by f over the direct benefits of consuming z. Moreover, this preference

is quantified: if the agent prefers the left-hand side, then, loosely speaking, the pleasure of

the memory produced by f is at least k times greater than the pleasure of consuming z.22

The notion of consumption-memory tradeoff allows us to compare consumption streams

in terms of their value for generating future memories. As formally stated next, a stream f

memory-wise dominates another stream g if, for any consumption bundle z that the agent

is willing to give up to enjoy the memory of g, she is willing to give it up to enjoy the

memory of f a fortiori.

21The use of the neutral element 0 on the left-hand side of (6) is convenient but not mandatory. This
and subsequent definitions can be modified to use a different reference point for measuring tradeoffs.

22As is usually the case, the usage of lotteries allows us to give cardinal meaning to relationships between
utility levels.
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Definition 2. For any f, g ∈ F , we say that

• f generates a higher value of memory for the next period in comparison to g if

g ≿m∶k z ⇒ f ≿m∶k z for all k > 0 and z ∈ C. We denote this relationship by f R≿ g.

• f generates a strictly higher value of memory for the next period in comparison to g

if g ≿m∶k z ⇒ f ≻m∶k z for all k > 0 and z ∈ C. We denote this relationship by f S≿ g.

• f generates the same value of memory for the next period as g if g ≿m∶k z ⇔ f ≿m∶k z

for all k > 0 and z ∈ C. We denote this relationship by f I≿ g.

The above definitions achieve two important goals. First, they provide a behavioral notion

of what it means for one consumption stream (f0, . . . , ft−1) to produce a higher-valued

memory for the period t relative to another stream (g0, . . . , gt−1), regardless of the utilities

that these streams generate for periods 0, . . . , t − 1. We will use this property shortly to

set up the Markovian case. Second, these definitions enable the comparison of the value of

memory for streams of different lengths. As a consequence, they can be used to verify that it

is, indeed, behaviorally meaningful to attribute the memory utility M(ft−1, . . . , f0,0,0, . . .)
to date t in the general representation (3).

We use the above definition to formulate our key axiom for the Markovian representation.

Axiom A8 (Markovian Property). For any f, g ∈ F ,

f I≿ g ⇒ f ∣c I≿ g∣c for all c ∈ C.

The antecedent of this property considers the situation in which the memory effect of

f is equivalent to that of g, that is, both streams generate the same value of memory, as

measured in the time period that follows those respective streams. The axiom maintains

that if these two streams are extended by an additional period of identical consumption,

then the extended streams also produce memories of the same value — all differences

between streams f and g are deemed irrelevant for the future.23 The Markovian axiom (and,

as will be seen later, the functional form for the memory evolution rule) is minimalistic in

its nature: the history of past consumption may matter for the formation of memories, but

only through one channel, the current stock of memories. From a psychological viewpoint,

this may capture the behavior of a person who aims for simplicity and summarizes her

23Mathematically, this reflects the idea of Markov process: the value of memory generated by past
consumption is a sufficient statistic of the past, so that this value and the current consumption uniquely
determine the value of memory for the next period.
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experiences by a single number (such as star rating) to avoid overloading. We note that all

other memory evolution rules that have been mentioned in the paper — the peak-end rule

and the adaptation-level rule, as well as the rules specified in Gilboa et al. (2016) and Hai

et al. (2020) — are generally not Markovian.

Characterization of the Markovian case Our next theorem shows that the above

property, together with our basic axioms (A1)–(A7), delivers a convenient time-invariant

Markovian representation.

For a function ψ ∶ I × C → R, where I ⊆ R and 0 ∈ I, we say that it is normalized if

ψ(0,0) = 0, and it is recursively bounded if all sets It for t ∈ N ∪ {0} defined recursively as

I0 = {0} and It = ψ(It−1,C) for t ∈ N are bounded.

Theorem 3. Let ≿ be a complete preorder on L. The following statements are equivalent:

(i) ≿ satisfies Axioms (A1)–(A7) and (A8);

(ii) there exist a scalar β ∈ (0,1), a continuous and bounded function u ∶ C → R with u(0) =
0, an interval I of R that contains 0, and a normalized, continuous, and recursively

bounded function ψ ∶ I × C → I with rangeψ = I such that a utility representation of

≿ on L is V (P ) = ∑f∈suppP P (f)V (f) for all P ∈ L, where V (f) for all f ∈ F is

computed as

V (f) = ℓ(f)−1

∑
t=0

βt[u(ft) +mt−1],
where mτ = ψ(mτ−1, fτ) for τ = 0, . . . , ℓ(f) − 2,

m−1 = 0.

(7)

According to representation (7), the evaluation of a stream f at any time t is given

by u(ft) +mt−1, where u(ft) is the material utility of ft and mt−1 is the stock of memory

accumulated up to time t. The function ψ describes the process of incorporating the memory

effect of consuming ft into mt−1, giving rise to the next-period value, mt. Similar to all

specifications of the memory utility discussed earlier, memory may have long-lasting effects

here, as well. However, the dependence of mt on consumption in periods t − 1, . . . ,1,0 is

encapsulated in the previous stock of memory, mt−1. This is the nature of our Markovian

evolution of memory. Note that such a recursive process of computing the values of mt is

particularly tractable because the function ψ is independent of time.
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Uniqueness Theorem 3 represents preferences in terms of quadruples of the form (β,u, I,
ψ). These quadruples are unique up to rescaling, as shown next.

Proposition 4. Suppose that (β,u, I,ψ) is a representation of a binary relation ≿ on L as

in Theorem 3. Then, (β̂, û, Î , ψ̂) is another such representation of the same binary relation

if and only if β̂ = β and there exists λ > 0 such that û = λu, Î = λI, and ψ̂(m,c) = λψ(m/λ, c)
for all m ∈ Î and c ∈ C.

Comparative statics analysis The structure of the Markovian model makes salient

two independent dimensions along which one can measure the influence of memorable

consumption on choice behavior and, in turn, compare agents. One of them is longevity of

memories in the agent’s mind, that is negatively related to the rate at which past memories

decay. The other one is the sensitivity of the agent’s memory to new consumption and the

ability of the latter to increase the stock of memories, which also captures the strength of

memorable effects relative to the direct utility from consumption.

To illustrate, consider two agents with the same utility of consumption u(c) and the

same discount factor, and suppose that their Markovian evolution functions for memory

are ψi(m,c) = αimax{m,Kiu(c)} + (1 − αi)Kiu(c) for i = 1,2, where αi ∈ [0,1] and Ki > 0

are parameters. Then, we can say that αi and Ki capture the effects of, respectively, the

longevity of memory and the strength of memory for the agents. Moreover, these parameters

are independent, in the sense that if K1 > K2 then Agent 1 exhibits stronger effects of

memory, regardless of the values of α1 and α2; similarly, if α1 > α2, then Agent 1 exhibits

longer effects of memory, regardless of the values of K1 and K2.

4 Comparison with Hai, Krueger, and Postlewaite (2020)

Hai, Krueger, and Postlewaite (2020) is the first paper to formalize the concept of memo-

rable good and introduce it within a conventional consumption-saving model. They propose

a model that splits total consumption into consumption of ordinary nondurable goods and

memorable goods, and considers a household that solves the intertemporal consumption-

savings problem of maximizing

E0

∞

∑
t=0

βt [ξC1−γ
nt

1 − γ
+ (1 − ξ)(Cmt + ζMt)1−γ

1 − γ
] ,
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where Cnt is the consumption of ordinary nondurable goods at date t, Cmt is the con-

sumption of memorable goods at date t, Mt is the stock of memory at date t from past

memorable consumption, ξ and ζ are weight parameters, γ is the risk aversion parameter,

and β is the discount factor.

The key feature of the model is the assumption that extraordinary consumption of the

memorable good generates new memories, that is, the stock of memory increases only if

the current consumption Cmt exceeds a dynamic threshold Nt,

Mt+1 = (1 − δm)Mt +max{Cmt −Nt,0},
where δm is the decay rate for memory.24 In turn, the threshold Nt evolves according to

Nt = (1 − ρ)Nt−1 + ρCm,t−1,

where ρ is a parameter such that 1 − ρ reflects the persistence of the threshold.

This parametric model is calibrated to the US economy in 1980–2003. Hai et al.’s (2020)

most important result is an estimation of the impact of consumption fluctuations on welfare.

They show that, despite their volatility, the presence of memorable goods significantly

reduces welfare losses compared to an equivalent model without such goods. The reason

lies in the fact that the memory stock acts as a substitute for the actual consumption of

memorable goods in the utility function; thus, even when consumption exhibits spikes, the

memory stock behaves as a mechanism to smooth overall utility. Second, Hai et al. (2020)

show the role of memorable goods consumption in explaining the observed excess sensitivity

of consumption to expected income changes.

Our paper has many complementarities with Hai et al.’s (2020). While Hai et al. (2020)

are seminal in identifying memorable goods as a distinct category and in empirically demon-

strating their relevance for economic analysis, our contribution is more conceptual — we

establish an axiomatic foundation of the phenomenon of subjective memorability in a mul-

tiperiod setting. Our theory describes a minimal departure from the standard paradigm of

expected utility that allows memorable effects, and provides a way to distinguish memora-

bility from other psychologically-driven phenomena that lead to history-dependent felicity

from consumption or experiences at the foundational level. Besides that, our uniqueness

24The threshold law of the evolution of memory is also used by Gilboa et al. (2016).
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theorem provides foundation for model identification: for any parametric model that con-

forms to our general representation (3), our result can be used to show that the parameters

of the model can be empirically identified — at least, when the data size is unbounded.

Regarding the form of the utility function that is assumed by Hai et al. (2020), one may

ask how it relates with our representation (3). We observe, first, that Hai et al. (2020)

measure the memory stock in consumption units and treat it on equal terms with the

current consumption of memorable goods. In their expression (Cmt+ζMt)1−γ

1−γ , Cmt represents

the direct contribution of consuming memorable goods and Mt is the contribution of past

memories: the stock of memory and the current consumption of memorable goods are

perfect substitutes. In our model, the memory stock is measured in utility units; similarly

to Gilboa et al. (2016), the value of memory is combined additively with the utility derived

directly from consumption. Therefore, our and Hai et al.’s (2020) models are generally

non-nested.

Besides differences in measuring memorable effects, Hai et al. (2020) assume a law of

memory evolution that incorporates adaptation motives in the form of thresholds. Pursuing

our goal of developing an axiomatic foundation for the concept of memorability, we present a

more general functional specification that can accommodate many different laws of motion,

including the notable peak-end rule and the Markovian rule. Note that Hai et al.’s (2020)

specification is not Markovian (in the sense of Section 3). Indeed, in their specification,

the value of the memorable component of the total utility, (Cmt+ζMt)1−γ

1−γ , or its core term

Cmt+ζMt, are not sufficient to uniquely determine the future evolution of memory because

the latter depends also on the second state variable, Nt. As we will illustrate in Section 5.2,

Markovian specifications have the additional benefit of high tractability in comparison with

non-Markovian ones. In our application, we complement the result of Hai et al.’s (2020)

numerical simulation by deriving the excess sensitivity of consumption in the presence of

memorability through a closed-form solution of the model.

5 Memorable consumption: two illustrations

This section presents two illustrations of our theory of dynamic memorable consumption

in different applied contexts. Albeit simplified, our applications are suggestive of how our

model can be used as a building block of larger economic models.
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The first application considers a multiperiod principal-agent setting and builds up a

simple model in which the agent intrinsically cares about the outcomes resulting from

her actions; importantly, these outcomes may generate memorable effects for her. For the

evolution of the agent’s memories, we assume a version of the peak-end rule introduced in

Section 2.4. As we illustrate, memorability does not simply increase the agent’s intrinsic

motivation, but creates nontrivial intertemporal tradeoffs for her. In turn, she may choose

inefficient actions and behave either too conservatively or too recklessly since her choices

depend on both the history of outcomes and the length of the relationship. Memorability

of outcomes affects the principal’s behavior, as well, and requires him to adjust the optimal

incentive scheme. Overall, an agent for whom outcomes are memorable may become more

costly for the principal in comparison with a similar agent with no memorable effects.

The second application is closer to the analysis of Hai et al. (2020) and introduces

memorable consumption into a standard linear-quadratic consumption-savings problem.

For the evolution of memories, we assume a version of our Markovian specification. In

equilibrium, the solution exhibits two key features: (1) a higher sensitivity of consumption

to income shocks in comparison with the standard models; and, (2) a negative dependence

of the optimal consumption on the accumulated stock of memory, which highlights the

potential relevance of memorable consumption in explaining some well-known puzzles about

life-cycle dynamics of consumption and savings.

5.1 Risk taking in the Principal-Agent setting

Consider a setting in which a principal hires an agent (a manager) who has to decide

whether to implement innovative but risky projects. Suppose that the relationship lasts a

predetermined finite number of periods T > 1, after which the employment terminates (and

the agent presumably obtains a new job for a different principal). In each period t, the

agent either runs business as usual (at = 0) or implements a project (at = 1) that can be

one of two possible types, Pg or Pb. If a project is implemented, its duration is one period

and it produces an outcome xt ∈ {−2,−1,1,2} at the end of the period. The outcome xt

generates revenue pxt for the principal, where p > 0 is a model parameter, while business

as usual generates zero revenue. Conditional on the choice of projects, the outcomes xt are

independent across time periods t. The types of a project, Pg or Pb, can be thought of as
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probability distributions from which the outcome is drawn, and we assume that Pg is a

good type with a positive expected value, and Pb is a bad type with a negative expected

value.

The agent derives utility from her wage payment as well as from the outcome of the

project that she chooses. The latter component of the utility captures her intrinsic motiva-

tion and can be attributed to psychological feelings of job satisfaction, sense of fulfillment,

competence, and pride. Moreover, we assume that these feelings can be memorable, and

generate not only instantaneous but also long-lasting utility. To formally incorporate mem-

orable effects into an otherwise standard framework, we assume that the “consumption

space” C consists of triples (w,a,x), where w is the wage that the agent receives in the

current period, a is the decision to implement a project and x is the outcome of the project

undertaken in that period. As formalized shortly, the wage w will be the ordinary (not

memorable) part of the bundle. We assume that the realized outcome x of a project gener-

ates memories that can be either positive, if x > 0, or negative, if x < 0. For the evolution

of memorable utility, we assume a version of the peak-end rule discussed in Section 2.4.

The memory component M(at−1, xt−1;at−2, xt−2; . . . ;a0, x0; 0,0; . . .) of the total utility from

a stream evaluated at time t will be computed according to the rules described below. First,

we postulate that the memory component is positive if xt−i > 0 for the first index i such

that at−i = 1;25 it is negative if xt−i < 0 for the first index i such that at−i = 1; and it is zero

otherwise. The value of the memory component in the positive case is computed as

M = κ((1 − γ)at−1xt−1 + γmax{at−1xt−1, at−2xt−2, . . . , at−lxt−l}), (8)

where (at−1, xt−1;at−2, xt−2; . . . ;at−l+1, xt−l+1; 1, xt−l) is the longest sequence that does not

contain negative outcomes, that is, l ∈ {1, . . . , t} is the largest number such that at−l = 1,

xt−l > 0, and xt−i > 0 for all i = 1, . . . , l − 1 such that at−i = 1. In this specification, the

agent’s utility from memories is determined by the last outcome (with weight 1 − γ, where

γ ∈ (0,1] is a preference parameter) and the best result (with weight γ) in the continuous

spell of non-negative outcomes. The periods in which she did not implement a project

(and was doing business as usual) are not memorable, as they do not generate any positive

psychological feelings. This way of computing utility also implies that negative outcomes

25That is, if at−i = 1, xt−i > 0, and at−j = 0 for all 0 < j < i.
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generate a sense of failure, so that, after a negative outcome, the agent needs to accumulate

positive memories over again. Furthermore, the preference parameter κ ≥ 0 in the formula

captures the strength of memorable effects. In the negative case, the memory component

of the total utility is computed symmetrically,

M = κ((1 − γ)at−1xt−1 + γmin{at−1xt−1, at−2xt−2, . . . , at−lxt−l}), (9)

where (at−1, xt−1;at−2, xt−2; . . . ;at−l+1, xt−l+1; 1, xt−l) is again the longest sequence that does

not contain positive outcomes. Similarly to the specification discussed in Section 2.4, the

formula contains the min operator because the agent’s memory is driven by the most

extreme outcome, which is negative in this case.

For the purpose of computing and interpreting the agent’s optimal strategies, it is useful

to rewrite specification (8)–(9) of the peak-end rule recursively using an auxiliary variable

µt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{xt, µt−1} if atxt > 0,

min{xt, µt−1} if atxt < 0,

µt−1 if at = 0

(10)

and letting

M(at−1, xt−1;at−2, xt−2; . . . ;a0, x0; 0,0; . . .) = κ((1 − γ)xt−1 + γµt−1).
To make this specification fully consistent with (11) and (8)–(9), the initial values for the

recursion should be set as µ−1 = 0 and x−1 = 0.

The overall utility function that the agent uses at time t ∈ {0,1, . . . , T − 1} to evaluate

the stream (wt, at, xt;wt+1, at+1, xt+1; . . . ;wT , aT , xT ) is
Vt = Et−1 [T−1∑

τ=t

βτ−t(u(wt) + daτxτ +M(aτ−1, xτ−1; . . . ;a0, x0; 0,0; . . .))] , (11)

where Et−1 denotes the expectation conditional on variables known at period t−1 (inclusive);

β ∈ (0,1) is a parameter of preferences that captures the discount factor; u is a strictly

increasing and strictly concave utility function for money; and d > 0 is another preference

parameter that reflects the magnitude of the instantaneous psychological utility from the

project’s outcome. Note that this model uses an extension of the framework that has

been assumed throughout the paper: previously, we have considered a decision maker who
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makes a single ex ante decision, while here the agent makes decisions in multiple periods,

t = 0,1, . . . , T −1. However, it can be verified that the utility function (11) makes the agent

dynamically consistent : her sequential decisions are the same as those she would make if

she were asked ex ante to form a plan of actions for every period t and contingent on any

possible realization of past stochastic outcomes x0, . . . , xt−1.

Finally, as usual for incomplete contracts, we assume that the principal cannot offer

payments conditional on the agent’s action and is restricted to contracts in which the

payment wt in each period is a linear function of obervables, i.e., wt = Aatxt + B. The

principal chooses the parameters of the contract A ≥ 0 and B ∈ R to maximize his expected

profit

E[T−1∑
t=0

βt(patxt −wt)] ,
where p > 0 is a model parameter and β ∈ (0,1] is the discount factor (that is the same as

for the agent) subject to the agent’s participation constraint V0 ≥ U , where U is the agent’s

reservation utility. To make the problem interesting, we assume that the reservation utility

is such that the principal can attract an agent who always implements Pg, and employing an

agent who always runs business as usual generates negative profit.26 As usual, to guarantee

the existence of solutions, we also assume that if the agent is indifferent between actions,

she chooses the one that is the most beneficial for the principal.

The solution of this model in the absence of memorability (κ = 0) is very simple.

Proposition 5. If κ = 0 and d > 0, then the optimal contract for the principal is to set

A = 0 and choose B so that the participation constraint binds. Under this contract, the

agent always chooses the efficient-type project, Pg.

The above result is intuitive: since the agent’s utility contains the term dxt, it follows

that, even with a flat payment scheme, she has non-monetary incentives to choose the

project with the highest expected value and, hence, the interests of the agent and the

principal are perfectly aligned with respect to the choice of the project.

The situation changes drastically if the agent is affected by the memorability of the out-

comes of the selected project. Memories from good outcomes affect the agent’s utility over

26Formally, we assume that 1−βT

1−β
u(peg) > U >

1−βT

1−β
u(0), where eg is the expected value of the outcome,

E[xt], when a Pg-type project is implemented.
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multiple periods; thus, memorability increases the enjoyability of good outcomes and seem-

ingly increases the power of incentives to implement good projects. However, the real effect

of memorability on incentives is more complicated because the utility boosts have a non-

trivial temporal structure. When the memorability of the outcomes is taken into account,

the agent has additional concerns about the effects of her choices on the accumulated stock

of memories and about the time horizon over which her current memories will continue to

generate utility flows.

The following proposition illustrates these effects.

Proposition 6. Let T = 4. There exist parameters of the model — preference parameters,

payoffs (p > 0), and distributions of outcomes Pg and Pb — such that the optimal contract

has A > 0 and the agent’s strategy has the following features:

1. At t = 3, the agent always chooses an efficient Pg project.

2. At t ∈ {1,2}, if µt−1 = −1 and xt−1 = −1 then the agent chooses an efficient Pg project.

3. At t ∈ {1,2}, if µt−1 = 2 and xt−1 = 2 then the agent chooses at = 0.

4. At t = 2, if µt−1 = −2 and xt−1 = −2 then the agent chooses a risky inefficient Pb

project.

5. At t = 1, if µt−1 = −2 and xt−1 = −2 then the agent chooses an efficient Pg project.

The main point of the proposition is that, as a part of her optimal strategy, the agent

may choose inefficient actions: her choices are affected by the realized history of outcomes

as well as the calendar time. From the principal’s perspective, the optimal contract for an

agent with memorable effects may need to provide extrinsic motivation in the form of A > 0

on top of the intrinsic motivation to implement good projects that comes from the dxt

term.

More specifically, the above proposition illustrates that there are two situations in which

the agent may choose an inefficient project.

First, if she has very good memories generated by past outcomes, she may value those

memories sufficiently high so that, in order to preserve them, she stops to take risks; she

prefers to choose the safe option instead of a positive expected-value but risky project.

Conventional wisdom and some empirical evidence suggest that success frequently leads
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to increased risk-taking behavior,27 and, for that, there is a clear behavioral channel —

disproportional increase in beliefs in one’s abilities. In our model, memorability has a coun-

tervailing effect and makes the agent more conservative.

Second, if the agent is hit by a negative outcome, she may subsequently choose a negative

expected-value project if it gives her higher chances of recovery.28 Such a risk-seeking be-

havior following prior losses is not novel: the behavioral literature traditionally rationalizes

it using Prospect Theory (see, e.g., Kahneman and Tversky, 1979, p. 287). In the finance

literature, observably similar behavior is known as “gambling for resurrection.” Here, we

see that there exists another channel for risk-seeking, namely, memorability. We also note

that our present model treats positive and negative memories symmetrically. In a recent

experimental paper, Gödker, Jiao, and Smeets (2021) find that investors tend to distort

memories of investment outcomes in the direction of excessive optimism. Asymmetries and

biases in memories can further distort individuals’ behavior in terms of the risks they take

and the efficiency of their choices.

Finally, we observe that the agent’s optimal choice of the project may also depend on

the time period. Indeed, in the state µt−1 = −2 and xt−1 = −2, the agent may choose a Pg

project at t = 1, but a Pb project at t = 2. The intuition for this behavior is that, in earlier

time periods, there are more opportunities for the agent to gain positive memory by natural

forces, without sacrificing the direct utility dxt from projects’ outcomes.

To sum up, we have shown that the memorability of outcomes creates nontrivial in-

tertemporal tradeoffs and may lead to the agent choosing inefficient actions and behaving

either too conservatively or taking excessive risks. In turn, these intertemporal tradeoffs

affect the optimal incentive scheme that the principal should offer to the agent.

5.2 Consumption-savings decisions with memorable effects

Suppose that, in periods t = 0,1,2 . . ., a consumer receives income yt that is stochastic

and i.i.d. across time. There are no borrowing constraints, hence she can reallocate income

between periods by borrowing or saving at the gross interest rate R > 0. The time horizon

27For instance, Thaler and Johnson (1990) and Malmendier and Nagel (2011) support the idea that
prior gains (resp., losses) make individuals more (resp., less) willing to take risks.

28For that, it is needed that Pr(xt > 0) is greater under Pb than under Pg despite the lower expected
value of xt under Pb.
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is infinite, and the future is discounted using discount factor β ∈ (0,1). For simplicity, we

assume that there is only one good (N = 1). Utility from physical consumption is given

by u(c) = c − 1
2
c2; utility from consuming memories conforms to a convenient special case

of (7), where the memory stock follows an AR(1)-type law given by ψ(m,c) = v(αv−1(m)+
(1 − α)c), m = v(m̃), and v(m̃) = bm̃ − 1

2
am̃2 with a, b > 0.29

Thus, the consumer faces the following maximization problem:

maximize
{ct}∞t=0,{st}

∞

t=0
,{m̃t}∞t=0 adapted

E0 [∞∑
t=0

βt (ct − 1
2
c2t + bm̃t−1 −

1

2
am̃2

t−1)]
s.t. ct + st = yt +Rst−1 for t = 0,1, . . .,

m̃t = αm̃t−1 + (1 − α)ct for t = 0,1, . . .,
m̃−1 = 0,
s−1 is given.

(12)

Finally, assume that R = 1
β
, s−1 ≥ 0, and E[y] > 0.

Our goal here is to see how memorable effects change the standard Permanent-Income-

type solution of the model.30

The Lagrangian of the problem is

L = E0 [∞∑
t=0

βt (ct − 1
2
c2t + bm̃t−1 −

1

2
am̃2

t−1

−λt (ct + st − yt − 1

β
st−1) − µt(m̃t − αm̃t−1 − (1 − α)ct)) ]

and the First-Order Conditions become

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − ct − λt + (1 − α)µt = 0

− λt +Et[λt+1] = 0
β(b − am̃t) − µt + βαEt[µt+1] = 0.

By combining this system with the constraints, we eventually obtain the following solution:

ct = ((1 − β)yt + βE[y] + 1 − β

β
st−1) (1 + κ) − κm̃t−1, (13)

29With this change of variable, the stock m̃t is measured in different “units” in comparison with (7),
leading to a convenient specification for applications: AR(1)-type law for memory and non-linear utility.
Note also that, in order to make a net comparison with the standard linear-quadratic consumption-saving
model, we let u and ψ be unbounded in this application.

30We ignore the usual issues related to non-monotonicity of the utility from consumption and the exact
structure of conditions at infinity.
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where κ ≥ 0 is a constant given by

κ =

√
1 − 2β(α2 − a(1 −α)2) + β2(α2 + a(1 − α)2)2 − (1 − β(α2 − a(1 −α)2))

2α(1 − βα) .31

Expression (13) has a familiar intuition. If the effect of memorability is absent (a = 0 or

α = 1), then κ = 0 and we recover Hall’s (1978) classic result that “consumption follows

a random walk.” In this case, the agent consumes the sum of the fraction (1 − β) of the
income shock yt−E[y], the average income E[y], and the interest from savings 1−β

β
st−1; the

fraction β of her income shock and the body of the savings are kept as savings.

By contrast to the standard preferences, in the presence of memorability (a > 0 and

0 < α < 1), the agent exhibits a stronger reaction to income shocks and consumes more out

of them (κ > 0). Albeit framed within a simplified setting, our finding suggests, similarly

to Hai et al. (2020), that memorable consumption may help explain the well-known em-

pirical evidence on excess sensitivity of consumption to income changes.32 Note that Hai

et al. (2020) make this observation on the basis of simulations in their calibrated model.

We follow a purely theoretical path of including memorable effects into the textbook linear-

quadratic consumption-savings model. Then, as can be seen from our closed-form solution,

the excess sensitivity holds under a very wide range of parameters of the model. Further-

more, in comparison with Hai et al. (2020), we employ different specifications for the accu-

mulation of memories — ours is Markovian whereas theirs does not satisfy the Markovian

property but has adaptation features. Our result is, hence, complementary to theirs, and

can be viewed as providing further support for the existence of a general channel through

which memorability affects the sensitivity of consumption to income shocks.

Expression (13) also contributes to distinguishing the effects of memorability on con-

sumption decisions from those produced by habit formation. Indeed, the optimal level of

consumption is negatively correlated with the stock of memory — it increases as the stock

of memory decreases, and vice versa. Such a negative relationship indicates that material

consumption (of memorable goods) and consumption of memories behave as substitutes.

This distinguishing feature contrasts typical patterns observed in habit formation models

31This consumption rule is supported by µt that depends on state variables also linearly, µt =

((1 − β)yt + βE[y] + 1−β

β
st−1 − m̃t−1)κ′ + β

1−βα
(b − am̃t−1), with a suitably chosen constant κ′.

32See, e.g., the surveys of Attanasio (1999) and Jappelli and Pistaferri (2010).
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where the habit stock and the consumption level move in a complementary way, reinforcing

each other.

To further study the properties of the solution, assume for a moment that there is no

income uncertainty and yt = E[y] for all t. Then, the consumption rule can be rewritten as

ct = c̄t+κ(c̄t−m̃t−1), where c̄t = E[y]+ 1−β
β
st−1. In the standard linear-quadratic consumption-

savings model, the expression for c̄t corresponds to the permanent income. In our model,

it becomes a reference that determines the level of consumption, taking into account the

accumulation of memory. If m̃t−1 = c̄t, then the agent is in a steady state, and both her

consumption and the stock of memory will stay constant; if m̃t−1 exceeds c̄t, then she

will consume less than c̄t and opt for depleting part of her stock of memory; and, if m̃t−1

has not reached c̄t, then she will consume more than c̄t in order to build up her stock of

memory. From the viewpoint of life-cycle profiles, these dynamics imply that agents tend

to under-save and over-consume when they are young (as they start with m̃−1 = 0 < c̄0).

As the stock of memory accumulates in subsequent periods, the gap will reduce and over-

consumption will attenuate. If we compare consumption paths across agents, then those

with higher κ over-consume more at young age, save less, and approach the steady state

with lower savings. This behavior is rational, and can be interpreted as hidden savings in the

form of investment in pleasant memories that substitutes for investment in financial assets.

Furthermore, these dynamics may represent one key source of support for the empirical

evidence according to which individuals consume too little at retirement age compared to

the predictions of the canonical model.

The magnitude of the agent’s excessive reaction to income shocks (relative to predictions

of the standard model), as well as features of the life-cycle consumption pattern such as

over-consumption when young, depend on the parameters of preferences through the value

of κ. Holding everything else fixed, κ is an increasing function of the parameter a that,

jointly with b, captures the strength of memorable effects of consumption. Hence, stronger

memorable effects lead to greater over-consumption at young ages, as well as stronger

reactions to income shocks. The longevity of memory is captured by the parameter α, and

the strength of its effect has the inverse U-shaped form.

To sum, we have shown that the introduction of memory effects in the simplest consump-

tion-savings model maintains the general random-walk structure of the solution; at the same
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time, it helps to explain the excess sensitivity puzzle and generates time profiles in which

young agents under-save and over-consume, and old agents do the opposite. Moreover,

memory effects are distinct (and, in a sense, opposite) to habit effects.

6 Conclusions

We present a model of memorable consumption in a dynamic setup. The model allows us

to elicit from observables whether consumption is memorable or not for the agent. Due

to the uniqueness properties, we can distinguish between the utility derived from material

consumption and the utility derived from the “consumption of memories;” moreover, those

utilities can be rightfully attributed to time periods. Our axioms consist of testable prop-

erties that distinguish memorable effects from other types of history-dependent behavior

that violate time separability.

We show that our model can encompass various psychological evidence on intensity, du-

ration, and interruption of experiences. In particular, we can accommodate the well-known

peak-end rule. While the latter is a time-dependent, non-Markovian specification, we can

also characterize the case of Markovian evolution of memory which should be particularly

useful for macro and other dynamic applications. The Markovian setting brings to the

fore two independent channels through which agents can be compared — according to

the strength of memorable effects and to the longevity of their memory. Finally, we apply

our model to a principal-agent problem and to a macroeconomic setting and show that

memorable effects may have powerful implications on classic issues therein.

Appendix

A Proof of the basic representation

Lemma 7. Suppose that ≿ is a preference relation on L that satisfies the Memory-Con-

sumption Tradeoff Consistency and Continuity axioms. Then, for any t ∈ N, f, g ∈ Ft, and

p, q ∈ L1, we have

f ∣p ≿ g∣p ⇔ f ∣q ≿ g∣q.
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Proof. First, we claim that, for any n ∈ N, and for any t ∈ N, f, g ∈ Ft, and p, q ∈ L1,

f ∣p ≿ g∣(n−1
n
p + 1

n
q) ⇔ f ∣( 1

n
p + n−1

n
q) ≿ g∣q. (14)

Indeed, for n = 1, this statement is a triviality. Suppose that it holds for some n ∈ N, and that

f ∣p ≿ g∣( n
n+1p +

1
n+1q) for some t ∈ N, f, g ∈ Ft, and p, q ∈ L1. Let q′ ∶= 1

n+1p +
n

n+1q. Note that

n−1
n
p + 1

n
q′ = n

n+1p +
1

n+1q and, hence, it follows from assumptions that f ∣( 1
n
p + n−1

n
q′) ≿ g∣q′.

Now, observe that q′ is the midpoint between 1
n
p + n−1

n
q′ and q. Therefore, by Memory-

Consumption Tradeoff Consistency, f ∣q′ ≿ f ∣q, which completes the inductive step.

Now, the claim of the lemma follows from (14) by taking the limit n → ∞. Indeed, fix

arbitrary t ∈ N, f, g ∈ Ft, and p, q ∈ L1. If f ∣p ≻ g∣p then, by continuity, for all sufficiently

large n, we have f ∣p ≻ g∣(n−1
n
p + 1

n
q), which gives f ∣( 1

n
p + n−1

n
q) ≻ g∣q by the previous step

and, in the limit as n → ∞, f ∣q ≿ g∣q. If g∣p ≻ f ∣p, then the claim similarly holds. By the

symmetry of the claim with respect to renaming p and q, the only remaining case is f ∣p ∼ g∣p
and f ∣q ∼ g∣q, in which the claimed equivalence holds, as well.

Lemma 8. Let X be a connected separable topological space, Y a convex subset of a sepa-

rable topological vector space, and ≽ a continuous complete preorder on X × Y that has the

following properties:

(i) There exist x,x′, x0 ∈ X and y, y′, y0 ∈ Y such that (x, y0) ≻ (x′, y0) and (x0, y) ≻
(x0, y′).

(ii) For all x,x′ ∈X and y, y′ ∈ Y , (x, y) ≽ (x′, y)⇒ (x, y′) ≽ (x′, y′).
(iii) For all x,x′ ∈X and y, y′ ∈ Y , (x, y) ≽ (x, y′)⇒ (x′, y) ≽ (x′, y′).
(iv) For all x,x′ ∈X and y, y′ ∈ Y , (x, y) ≽ (x′, 1

2
y + 1

2
y′)⇔ (x, 1

2
y + 1

2
y′) ≽ (x′, y′).

Then, there exist a continuous function Ux ∶ X → R and a continuous affine function

Uy ∶ Y → R such that

(x, y) ≽ (x′, y′) ⇔ Ux(x) +Uy(y) ≥ Ux(x′) +Uy(y′).
Proof. To verify the conditions of Wakker (1989, Th. III.4.1), observe that the assumptions

of the lemma immediately guarantee the existence of two essential coordinates and that

the coordinate independence property is satisfied.

It remains to show that the hexagon condition holds. Indeed, suppose that a, b, c ∈X and

u, v,w ∈ Y are such that (b, u) ≍ (a, v)33 and (c, u) ≍ (b, v) ≍ (a,w). Our goal is to show

33Here, we use ≍ to denote the symmetric part of ≽.
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that (c, v) ≍ (b,w). Let r = 1
2
u + 1

2
w. We claim that

(a, r) ≍ (a, v). (15)

If (b, u) ≻ (a, r) then, on the one hand, (a, v) ≻ (a, r). On the other hand, (b, u) ≻ (a, r)
implies by (iv) that (b, r) ≻ (a,w), which means that (b, r) ≻ (b, v). We obtained a contradic-

tion with (iii). The situation (a, r) ≻ (b, u) similarly leads to a contradiction. We conclude

that (a, r) ≍ (b, u) ≍ (a, v). Then, observe that (c, u) ≍ (b, v) ≍ (b, r), where the first part

holds by assumption and the second follows from (15) and (iii). Then, (c, r) ≍ (b,w) by (iv).

As follows from (15) and (iii), we also have (c, r) ≍ (c, v). The desired relationship follows

by transitivity.

Now, we can apply Wakker (1989, Th. III.4.1) to obtain that there exist nonconstant

continuous functions Ux ∶ X → R and Uy ∶ Y → R such that

(x, y) ≽ (x′, y′) ⇔ Ux(x) +Uy(y) ≥ Ux(x′) +Uy(y′). (16)

It remains to show that Uy must be affine. Indeed, (16) and property (iv) imply that, for

any y, y′ ∈ Y ,

Uy(y) −Uy(12y + 1
2
y′) ≥ Ux(x′) −Ux(x)⇔ Uy(12y + 1

2
y′) −Uy(y′) ≥ Ux(x′) −Ux(x)

for all x,x′ ∈ X .

(17)

Fix an arbitrary [a, b] ⊆ rangeUx, where a < b, and let ε ∈ (0, b−a). Then, the arbitrariness
of x and x′ in (17) gives that, for any y, y′ ∈ Y such that ∣Uy(y) −Uy(y′)∣ ≤ ε,

Uy(y) −Uy(12y + 1
2
y′) = Uy(12y + 1

2
y′) −Uy(y′).

Applying it repeatedly, this equation can be extended to all y, y′ ∈ Y . Moreover, it can be

rewritten as Uy(12y+ 1
2
y′) = 1

2
Uy(y)+ 1

2
Uy(y′). By continuity, it implies that Uy is affine.

Proof of Theorem 1. Only if part. Suppose that ≿ is a complete preorder on L that

satisfies Axioms (A1)–(A7). Throughout the proof, we will write zt for t ∈ N to denote an

element of Ft such that zt = (0,0, . . . ,0).
Step 1. On the subset L1 ⊂ L, ≿ admits an expected utility representation: there exists

a continuous and bounded function u ∶ C → R such that p ≿ q ⇔ Ep[u] ≥ Eq[u] for all
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p, q ∈ L1. Note that u is continuous and bounded because L1 is endowed with the weak*

topology and ≿ on L1 satisfies the Closed Continuity axiom (Part (i) of Axiom A6).34 Let u

be normalized such that u(0) = 0. Moreover, Nondegeneracy directly implies that the range

of u admits both positive and negative values.

Step 2. Independence, Part (ii) of Continuity, and Nondegeneracy ensure that the condi-

tions of the mixture space theorem (Herstein and Milnor, 1953) are satisfied and, therefore,

there exists an affine function V ∶ L → R that represents ≿ on L: P ≿ Q⇔ V (P ) ≥ V (Q)
for all P,Q ∈ L. By the uniqueness of the expected utility representation on L1, it must be

that the restriction of V to L1 is a positive affine transformation of the mapping p↦ Ep[u]
for p ∈ L1. Normalizing if necessary, assume that V (p) = Ep[u] for all p ∈ L1. Note that, by

the continuity axiom, V must be continuous when restricted to convex sets Lt for all t ∈ N.

Step 3. Risk Preference Consistency and Stationarity imply that, for all f, g ∈ F and

p, q ∈ L1,

f ∣p ≿ f ∣q ⇔ g∣p ≿ g∣q ⇔ p ≿ q.

Hence, by the uniqueness of the expected utility representation, it must be that for all t ∈ N,

there exist αt ∶ Ft → R and βt ∶ Ft → R++ such that

V (f ∣p) = αt(f) + βt(f)Ep[u] for all f ∈ Ft and p ∈ L1.

Step 4. This step establishes an alternative representation for ≿ restricted to Ft ×L1 for

all t ∈ N: we claim that there exist continuous functions Wt ∶ Ft → R such that

f ∣p ≿ g∣q ⇔ Wt(f) +Ep[u] ≥Wt(g) +Eq[u]
for all f, g ∈ Ft and p, q ∈ L1.

If, for some t ∈ N, we have f ∣p ∼ zt∣p for all f ∈ Ft and p ∈ L1, then, as follows from

Stationarity, we can let Wt(f) = 0 for all f ∈ Ft.

Otherwise, we obtain the claim by Lemma 8: Assumption (iv) holds due to Memory-

Consumption Tradeoff Consistency, (iii) by Risk Preference Consistency, (ii) by Lemma 7,

and (i) with respect to the second coordinate holds by Nondegeneracy and Stationarity.

Therefore, there exist continuous Wt ∶ Ft → R and continuous affine W ′
t ∶ L1 → R such

34This result can be found, e.g., is Kreps, 1988, Theorem 5.21.
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that f ∣p ≿ g∣q ⇔ Wt(f) +W ′
t (p) ≥ Wt(g) +W ′

t (q) for all f, g ∈ Ft and p, q ∈ L1. Then, as

follows from Risk Preference Consistency, p ≿ q⇔W ′
t (p) ≥W ′

t (q) for all p, q ∈ L1. Hence,
by the uniqueness of the expected utility representation, it must be that, for all t ∈ N, W ′

t

are positive affine transformations of our representation of ≿ restricted to L1 obtained in

Step 1. Then, normalizing if necessary, we can assume that, for all t ∈ N, W ′
t (p) = Ep[u] for

all p ∈ L1.

Step 5. For all t ∈ N, the range of the mapping (f, p) ↦ Wt(f) + Ep[u] is convex, and,

therefore, by the uniqueness of ordinal representations, there must exist continuous and

strictly increasing functions ζt ∶ R→ R such that V (f ∣p) = αt(f) + βt(f)Ep[u] = ζt(Wt(f)+
Ep[u]) for all f ∈ Ft and p ∈ L1. Observe that, for any t ∈ N and any fixed f ∈ Ft, the

left-hand side of this equality is an affine function of p ∈ L1. Hence, ζt(⋅) must be positive

affine functions for all t ∈ N: ζt(x) = At + Btx for some At ∈ R and Bt ∈ R++. If we let

W̃t(f) ∶= At +BtWt(f) for all t ∈ N and f ∈ Ft, we obtain:

V (f ∣p) = W̃t(f) +BtEp[u] for all t ∈ N, f ∈ Ft, and p ∈ L1. (18)

Step 6. Since any c ∈ C can be expressed as a degenerate lottery δc ∈ L1, the Impatience

axiom directly implies that (c) ≻ (0, c) ≻ (0) for all c ∈ C such that (c) ≻ (0). By taking the

limit c → 0 in the above and using continuity, we obtain (0,0) ∼ (0). Using Stationarity

and mathematical induction, it can be seen that zt ∼ (0) and V (zt) = 0; in turn, by (18),

we also have W̃t(zt) = 0.
Let β ∶= B1 and note that Impatience implies that β < 1. For any c ∈ C, let pc ∈ L1 be

defined as pc ∶= βδc+(1−β)δ0, and observe that V (0, c) = βu(c) = Epc[u] = V (pc), where the
first equality holds by (18) and the last equality by construction of V in Step 2. For any t ∈ N,

Stationarity gives that zt∣0∣c ∼ zt∣pc and, hence, by (18), Bt+1u(c) = BtEpc[u] = Btβu(c).
Since c was arbitrarily chosen, we have that Bt = βt for all t ∈ N and

V (f ∣p) = W̃t(f) + βt
Ep[u] for all t ∈ N, f ∈ Ft, and p ∈ L1. (19)

This equation holds also for t = 0 by letting W̃0 ∶= 0.

Step 7. Let M0 ∶ F0 → R be zero and Mt ∶ Ft → R for t ∈ N be defined as

Mt(ft−1, . . . , f0) ∶= β−t(W̃t(f0, . . . , ft−1) − V (f0, . . . , ft−1)). (20)
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Using this definition in (19), we obtain that, for all t ∈ N and f ∈ Ft+1,

V (f0, . . . , ft−1, ft) = V (f0, . . . , ft−1) + βtMt(ft−1, . . . , f0) + βtu(ft).
Then, for all t ∈ N ∪ {0},

V (f0, . . . , ft) = t

∑
τ=0

βτ[u(fτ) +Mτ(fτ−1, . . . , f0)] for all f ∈ Ft+1.

Step 8. We claim that, for all t ∈ N and P ∈ L, V (zt∣P ) = βtV (P ). First, recall that
it was shown in Step 6 that V (zt∣0) = 0 for all t ∈ N. Now, fix t ∈ N, and observe that,

by Stationarity, both P ↦ V (P ) and P ↦ V ((0)∣P ) are representations of the restriction

of ≿ to L. Hence, by uniqueness of affine representations, there exists b > 0 such that

V ((0)∣P ) = bV (P ) for all P ∈ L. As follows from (19), it must be that b = β. The claim

now follows by induction. Note that, by (19), we also have W̃ℓ(f)+t(zt∣f) = βtW̃ℓ(f)(f) for
all t ∈ N and f ∈ F .

Step 9. Now, we can define M ∶ C∞0 → R for all h ∈ C∞0 by letting M(h) = Ml(h) for an
arbitrary l ∈ N such that hτ = 0 for all τ ≥ l. (Note that, by the result of the previous step,

this definition does not depend on the choice of l.) Then, for all t ∈ N ∪ {0},
V (f0, . . . , ft) = t

∑
τ=0

βτ[u(fτ) +M(fτ−1, . . . , f0,0,0, . . .)] for all f ∈ Ft+1.

Step 10. Observe that M is continuous in the specified topology: for any t ∈ N, M(f)
coincides with Mt(f) for all f that are zero starting from time t. Functions Mt for t ∈ N

are defined through V and Wt that are continuous (Steps 2 and 4).

Furthermore, M is finite-horizon-bounded: for that, it is sufficient to show that Mt for

all t ∈ N are bounded. Indeed, note that we can rewrite (20) in Step 7 as Mt(ft−1, . . . , f0) =
β−t(V (f0, . . . , ft−1,0)−V (f0, . . . , ft−1)) for all f ∈ Ft. Then, the function V restricted to Ft

is bounded by the von Neumann-Morgenstern expected utility theorem because ≿ restricted

to Lt is a continuous preference relation. Representation (3) is now proven.

If part. Suppose that ≿ admits a utility representation via a function V , as specified

in (3). We next show that the axioms hold.

Stationarity. Let 0 ∈ C denote an element that is mapped by u into 0 ∈ R. Then, equa-
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tion (3) gives

V ((0)∣P ) = ∑
f∈suppP

P (f)⎧⎪⎪⎨⎪⎪⎩u(0) +
ℓ(f)

∑
t=1

βt[u(ft−1) +M(ft−2, . . . , f0,0,0, . . .)]
⎫⎪⎪⎬⎪⎪⎭ =

u(0) + βV (P ) = βV (P )
for all P ∈ L, which implies that (0)∣P ≿ (0)∣Q⇔ P ≿ Q for all P,Q ∈ L.

Impatience. If P ≻ (0) for some P ∈ L, then, by (3), V (P ) > 0 and, hence, V (P ) > βV (P ).
As was proven above, βV (P ) = V ((0)∣P ), so V (P ) > V ((0)∣P ) and V ((0)∣P ) > 0.

Independence. Follows immediately from the linear structure of the representation.

Risk Preference Consistency. For any f, g ∈ F and p, q ∈ L1, we have by (3) that f ∣p ≿
f ∣q⇔ Ep[u] ≥ Eq[u] because the other terms in the inequality V (f ∣p) ≥ V (f ∣q) cancel out;
in turn, Ep[u] ≥ Eq[u]⇔ g∣p ≿ g∣q. For α ≠ 1, the implication in the statement of the axiom

follows from Independence.

Memory-Consumption Tradeoff Consistency. Define S ∶ Ft → R as

S(f) ∶= t−1

∑
τ=0

βτ[u(fτ) +M(fτ−1, . . . , f0,0,0, . . .)] + βtM(ft−1, . . . , f0,0,0, . . .).
Then, for any t ∈ N, f, g ∈ Ft, and p, q ∈ L1, we have by (3) that

f ∣p ≿ g∣(1
2
p + 1

2
q) ⇔ S(f) + βtEp[u] ≥ S(g) + βt (1

2
Ep[u] + 1

2
Eq[u]) ⇔

S(f) − S(g) ≥ βt (1
2
Eq[u] − 1

2
Ep[u]) ⇔

S(f) + βt (1
2
Ep[u] + 1

2
Eq[u]) ≥ S(g) + βtEq[u] ⇔ f ∣(1

2
p + 1

2
q) ≿ g∣q.

For α ≠ 1, the equivalence in the statement of the axiom follows from Independence.

Continuity. For each t ∈ N, the mapping Ft → R defined as f ↦ ∑t−1
τ=0 β

τ[u(fτ) +
M(fτ−1, . . . , f0,0,0, . . .)] is continuous and bounded by the corresponding properties of u

andM . Hence, when restricted to Lt, V defined by (3) is continuous in the weak* topology,

which establishes the first part of the axiom. The second part follows immediately from the

expected utility structure of V .

Nondegeneracy. The property follows directly from the fact that the range of u contains

both positive and negative values.

Proof of Proposition 2. Let (β,u,M) and (β̂, û, M̂) represent the same binary relation

≿ on L as in Theorem 1. By Wakker (1989, Obs. III.6.6′), there exist λ > 0 and d, d′ ∈ R such
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that û = λu+d, and M̂ = λM+d′. As required by Theorem 1, it must be that u(0) = 0 = û(0).
Thus, d = 0 = d′, implying that û = λu and M̂ = λM . Moreover, it clearly must be that β = β̂

for the two triples to represent the same binary relation. The sufficiency of the conditions

can be directly verified.

B Proofs of Theorem 3 and Related Results

We start with a preliminary lemma that will be useful to prove Theorem 3.

Lemma 9. Suppose that a complete preorder ≿ on L satisfies Axioms (A1)–(A7), and let

(β,u,M) be its representation as in Theorem 1. Then, for all z ∈ C and k > 0,

(f ∣0) ≿ 1

k + 1
f +

k

k + 1
(f ∣z) ⇔ M(fℓ(f)−1, . . . , f0,0,0, . . .) ≥ ku(z).

Proof. Let t ∶= ℓ(f). Using representation (3), we obtain

(f ∣0) ≿ 1

k + 1
f +

k

k + 1
(f ∣z) ⇔

V (f) + βtM(ft−1, . . . , f0,0,0, . . .) ≥
1

k + 1
V (f) + k

k + 1
[V (f) + βtu(z) + βtM(ft−1, . . . , f0,0,0, . . .)] ⇔

M(ft−1, . . . , f0,0,0, . . .) ≥ ku(z).

Proof of Theorem 3. Only if part. Suppose that ≿ is a complete preorder on L that

satisfies the specified axioms.

Step 1. Let V ∶ L → R be a utility representation of ≿ as in (3), with β, u, and M as

specified in Theorem 1. Let I ∶= {M(ft−1, . . . , f0,0,0, . . .) ∣ f ∈ Ft, t ∈ N} and note that I

contains 0 bacause M(0,0, . . .) = 0. Define ψ ∶ I × C → I as follows: For r ∈ R and c ∈ C,

ψ(r, c) ∶= M(c, ft−1, . . . , f0,0,0, . . .), where f ∈ Ft for some t ∈ N is an arbitrary act such

that M(ft−1, . . . , f0,0,0, . . .) = r.
Step 2. We claim that, in the above definition of ψ, the value of ψ(r, c) is independent

of the choice of f . Indeed, fix an arbitrary c ∈ C, and let f ∈ F and f ′ ∈ F be such that

M(ft−1, . . . , f0,0,0, . . .) =M(f ′t′−1, . . . , f ′0,0,0, . . .), where t = ℓ(f) and t′ = ℓ(f ′). Let f̂ ∈ Ft−1

and f̂ ′ ∈ Ft′−1 be the truncated streams: f = f̂ ∣ft−1 and f ′ = f̂ ′∣f ′t−1. We have

M(ft−1, . . . , f0,0,0, . . .) ≥ ku(z)⇔M(f ′t′−1, . . . , f ′0,0,0, . . .) ≥ ku(z) for all z ∈ C and k > 0,
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and, therefore, by Lemma 9,

f̂ ∣ft−1 ≿m∶k z ⇔ f̂ ′∣f ′t−1 ≿m∶k z for all z ∈ C and k > 0.

By Axiom A8, we have

f ∣c ≿m∶k z ⇔ f ′∣c ≿m∶k z for all z ∈ C and k > 0.

Applying Lemma 9 again, and since z and k are arbitrary, we conclude that M(c, ft−1, . . . ,
f0,0,0, . . .) =M(c, f ′t′−1, . . . , f ′0,0,0, . . .).

Step 3. Now, we show that rangeψ = I. Let r ∈ I be chosen arbitrarily. By definition,

r = M(ft−1, . . . , f0,0,0, . . .) for some t ∈ N and f ∈ Ft. Let r̃ =M(ft−2, . . . , f0,0,0, . . .), and
observe that ψ(r̃, ft−1) = r by the result of the previous step. Hence, r ∈ rangeψ.

Step 4. We claim that ψ is recursively bounded. Indeed, the sets It, t ∈ N ∪ {0} defined
recursively as I0 = {0} and It = ψ(It−1,C) for t ∈ N coincide with {M(ft−1, . . . , f0,0, . . .) ∣ f ∈
Ft} and, hence, are bounded for all t ∈ N ∪ {0} because M is finite-horizon bounded.

Step 5. Finally, we prove that ψ is continuous. Suppose, by contradiction, that ψ is not

continuous: there exist sequences {rn}∞n=1 in I and {cn}∞n=1 in C such that rn → r ∈ I,

cn → c ∈ C, ψ(rn, cn) → K ∈ R ∪ {−∞,+∞} as n → ∞, but K ≠ ψ(r, c). Passing to a

subsequence, we can assume that the sequence {rn}∞n=1 is either increasing or decreasing.

Note that I = ⋃∞t=1 It, where It = {M(ft−1, . . . , f0,0,0, . . .) ∣ f ∈ Ft}. Recall that M is

continuous; for each t ∈ N, Ft is connected and, hence, It is an interval; moreover, 0 ∈ It.

Therefore, we can find some t ∈ N such that r ∈ It and rn ∈ It for all n ∈ N. Let f (1) and

f in Ft be such that M (f (1)t−1 , . . . , f
(1)
0 ,0,0, . . .) = r1 and M (ft−1, . . . , f0,0,0, . . .) = r. For

n ∈ N, n ≥ 2, let f (n) ∶= (1 − γn)f (1) + γnf , where, for each n ∈ N, n ≥ 2, γn is chosen

such that M (f (n)t−1 , . . . , f
(n)
0 ,0,0, . . .) = rn, which is possible by continuity. Passing to a

subsequence, {γn}∞n=1 converges, and, hence, {f (n)}∞n=1 converges to some f (∞) ∈ Ft. Observe

that r = limn→∞ rn = limn→∞M (f (n)t−1 , . . . , f
(n)
0 ,0,0, . . .) =M (f (∞)t−1 , . . . , f

(∞)
0 ,0,0, . . .) by the

continuity of M . By the result of Step 2, we have ψ(rn, cn) =M (cn, f (n)t−1 , . . . , f
(n)
0 ,0,0, . . .)

for all n ∈ N and ψ(r, c) = M (c, f (∞)t−1 , . . . , f
(∞)
0 ,0,0, . . .); by the continuity of M , we have

limn→∞M (cn, f (n)t−1 , . . . , f
(n)
0 ,0,0, . . .) = M (c, f (∞)t−1 , . . . , f

(∞)
0 ,0,0, . . .); and we obtain that

limn→∞ψ(rn, cn) = ψ(r, c), a contradiction to our assumption.

If part. Assume that there exist a scalar β ∈ (0,1), a function u ∶ C → R, and a function
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ψ ∶ I × C → I for some interval I ⊆ R as described in the theorem, such that V (P ) =
∑f∈suppP P (f)V (f) for all P ∈ L, where V (f) is computed as in (7).

Let M ∶ C∞0 → R be defined as follows. For h = (h0, h1, . . . , ht−1,0,0, . . .) ∈ C∞0 , where

t ∈ N ∪ {0}, let m−1 = 0; for τ = 0, . . . , t − 1, mτ = ψ(mτ−1, hτ); and, finally, M(h) = mt−1.

Note that in this construction, the value of M(h) does not depend on the choice of t as

long as hτ = 0 for all τ ≥ t.

Clearly, M satisfies the normalization condition M(0,0, . . .) = 0.
Next, observe that it is also finite-horizon-bounded: for any T ∈ N ∪ {0}, the range of

M when restricted to the set {f ∈ C∞0 ∶ ft = 0 for all t ≥ T} can be computed recursively as

I0 = {0} and It = ψ(It−1,C) for t ∈ N and is bounded since ψ is recursively bounded.

Finally, we establish the continuity of M . Suppose that a net {h(α)}α converges to some

h in C∞0 . Hence, for some T ∈ N such that ht = 0 for all t ≥ T , there exists an index α0

such that h
(α)
t = 0 for all α ≥ α0 and t ≥ T , and sup0≤t≤T ∣ht − h(α)t ∣ converges to zero. Then,

M (h(α)) = ψ (ψ (. . . ψ (0, h(α)T−1) , . . . , h(α)1 ) , h(α)0 )→M(h) = ψ(ψ(. . . ψ (0, hT−1) , . . . , h1), h0)
because of the continuity of ψ.

Thus, we can apply the converse direction of Theorem 1 to conclude that Axioms (A1)–

(A7) hold. It remains to show that Axiom (A8) holds, as well.

Suppose that f, g ∈ F and x, y ∈ C are such that

f ∣x ≿m∶k z ⇔ g∣y ≿m∶k z for all z ∈ C and k > 0.

By Lemma 9, this gives

M(x, fℓ(f)−1, . . . , f0,0,0, . . .) ≥ ku(z)⇔M(y, gℓ(g)−1, . . . , g0,0,0, . . .) ≥ ku(z) ∀z ∈ C, k > 0.
Due to the arbitrariness of z and k and the fact that rangeu takes both positive and negative

values, it must be that M(x, fℓ(f)−1, . . . , f0,0,0, . . .) = M(y, gℓ(g)−1, . . . , g0,0,0, . . .). Fix an

arbitrary c ∈ C. Then, M(c, x, fℓ(f)−1, . . . , f0,0,0, . . .) = ψ(M(x, fℓ(f)−1, . . . , f0,0,0, . . .), c) =
ψ(M(y, gℓ(g)−1, . . . , g0,0,0, . . .), c) =M(c, y, gℓ(g)−1, . . . , g0,0,0, . . .). By Lemma 9, again,

f ∣x∣c ≿m∶k z ⇔ g∣y∣c ≿m∶k z for all z ∈ C and k > 0.
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Proof of Proposition 4. We will prove the necessity by using the fact that Theorem 3

is a special case of the general representation in Theorem 1. Let (β,u, I,ψ) and (β̂, û, Î , ψ̂)
represent the same binary relation ≿ on L as in Theorem 3.

Define M ∶ C∞0 → R recursively via ψ in the same way as in the proof of the “if part” of

Theorem 3, and, similarly, M̂ via ψ̂. As pointed out in that proof, such functionsM and M̂

satisfy the properties of Theorem 1. By the uniqueness result for the general representation

(Proposition 2), β = β̂, and there exists λ > 0 such that û = λu and M̂ = λM . Now, fix

arbitrary r ∈ Î and c ∈ C. Let t ∈ N and f ∈ Ft be such that r = M̂(ft−1, . . . , f0,0,0, . . .), and
note that r = λM(ft−1, . . . , f0,0,0, . . .). Then, by the construction of the functions M and

M̂ , we have M̂(c, ft−1, . . . , f0,0,0, . . .) = ψ̂(r, c) and M(c, ft−1, . . . , f0,0,0, . . .) = ψ ( 1λr, c),
which gives ψ̂(r, c) = λψ ( 1

λ
r, c).

The sufficiency of the conditions can be verified directly.

C Proofs of the results from Section 5.1

Proof of Proposition 5. If κ = 0, then the agent’s objective function (11) can be simpli-

fied to Vt = Et−1 [∑T−1
τ=t β

τ−t(u(Aaτxτ +B) + daτxτ)]. Let eg denote the expected value of a

project of type Pg. Then, for any contract (A,B) that is acceptable to the agent and such

that A ≥ 0, it must be that

U ≤ V0 = E[T−1∑
τ=0

βτ(u(Aaτxτ +B) + daτxτ)] ≤
T−1

∑
τ=0

βτ{u(Et−1[Aaτxτ +B]) + dEt−1[aτxτ ]} ≤ T−1

∑
τ=0

βτ(u(Aeg +B) + deg).
Hence,

Aeg +B ≥ u−1 ( 1 − β

1 − βT
U − deg) .

For the principal’s expected profit, we have

E[T−1∑
t=0

βt(patxt −wt)] = T−1

∑
t=0

βt
E[patxt−Aatxt−B] ≤ 1 − βT

1 − β
(peg − u−1 ( 1 − β

1 − βT
U − deg)) .

This upper bound can be achieved only if all earlier inequalities hold as equalities. Given

that u is strictly concave, it is possible only if A = 0 and the agent chooses to implement

good projects in each period.
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If A = 0 and B = u−1 ( 1−β
1−βT (U − deg)), then the agent accepts the contract and chooses

to implement Pg projects in every period because this strategy maximizes

Et−1 [T−1∑
τ=t

βτ−t(u(B) + daτxτ)]
for all t = 0, . . . , T − 1. Thus, the upper bound for the principal’s profit is achievable.

Proof of Proposition 6. The parameters that yield the described optimal contract and

the agent’s strategy may be, for example, as follows:

u(c) = 3c

c + 3.5
d = 0.05 k = 2 γ = 3/4

β = 0.999 p = 100 U = 10

and the outcome distributions

−2 −1 1 2

Pg 0.01 0.53 0.12 0.34

Pb 0.34 0.01 0.64 0.01

Note that the expected value of xt under Pg is 0.25, and the expected value of xt under Pb

is −0.03.

Given a contract (A,B), the agent’s problem can be written recursively in a Bellman

equation-type manner. In each period t ∈ {0,1,2,3}, the variable µt−1 and the variable

yt−1 = at−1xt−1 contain all information that is relevant for the agent’s payoffs in the current

and future periods, so they can serve as state variables. Therefore, the agent’s optimal

expected discounted value at time t is

Vt(µt−1, yt−1) =max

⎧⎪⎪⎨⎪⎪⎩u(B) + βVt+1(µt−1,0),
max

P ∈{Pg,Pb}
∑

xt∈{−2,−1,1,2}

[u(Axt +B) + dxt + βVt+1(G(µt−1, xt), xt)]
⎫⎪⎪⎬⎪⎪⎭

+ κ((1 − γ)yt−1 + γµt−1)
where G(µt−1, xt) is the right-hand side of the recursive memory evolution formula (10),

G(µt−1, xt) = max{xt, µt−1} if xt > 0 and G(µt−1, xt) = min{xt, µt−1} if xt < 0. The action

that the agent chooses is determined by the term that delivers the maximum in the right-

hand side of the Bellman equation — the maximizing distribution from {Pg, Pb} or at = 1
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if the first term in the first maximum gives a greater value. The recursion terminates with

VT (µ, y) ≡ 0, and the ex ante value for the agent is V0(0,0).
The principal maximizes his profit over all contracts (A,B) such that A ≥ 0 and V0(0,0) ≥

U . This is an optimization problem that, for any given values of the parameters, can be

solved numerically. For the values given above, the optimal contract (up to four digits after

the decimal point) is A = 0.1881 and B = 3.5132, and the agent’s strategy has the features

described in the statement of the proposition.

While the existential claim of the proposition is established purely numerically, we pro-

vide some intuition and illustrate the tradeoffs that shape the agent’s strategy and the

optimal contract.

Let us start with investigating the optimal agent’s action at t = 2 after a history that

leads to µ1 = −2 and x1 = −2, that is, the worst possible memory. We observe that, at t = 3,

the agent always chooses a3 = 1 and the efficient Pg-type project. Indeed, the outcome of

that period’s project, x3, enters her utility via the terms u(Ax3 + B) + dx3 and nothing

else because V4 ≡ 0, and, hence, the agent simply chooses the project that maximizes the

expected value of u(Ax3+B)+dx3. For the specified parameter values and under the optimal

contract, we compute

V3(−2,−2) = −2.4768 V3(−2,−1) = −1.9768
V3(1,1) = 3.5232 V3(2,2) = 5.5232.

If we break down the agent’s total expected utility at t = 2 into three components — the

current utility term u(Axt +B) + dxt, the memorable utility from the past κ((1 − γ)xt−1 +
γµt−1), and the continuation value βVt+1(µt, xt), we find the following numbers for her

choice of Pg and Pb projects:

Pg Pb

current 1.5232 1.4979

memorable −4 −4

continuation 1.2270 1.4468

total −1.2498 −1.0554

In this case, a Pb-type project gives the agent a greater continuation value because of

a greater probability of positive outcomes under Pb that is not fully offset by the high
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probability of the +2 outcome under Pg. In turn, the continuation value here outweighs the

advantage of Pg in the current utility.

Next, let us discuss the agent’s action at t = 2 after a history that leads to µ1 = 2 and

x1 = 2, that is, the best possible memory. If she chooses a2 = 0, then she is sure that her

memory will be preserved and she will get V3(2,0) = V3(2,2) − 1 = 4.5232. If she chooses

a2 = 1 and a good project, then her memory cannot improve; instead, with the 54% chances,

it will turn negative. The breakdown of the agent’s total utility is

Pg a2 = 0

current 1.5232 1.5028

memorable 4 4

continuation 2.2010 4.5187

total 7.7242 10.0215

and the agent’s choice of a2 = 0 is clearly superior. Similarly, the agent chooses a1 = 0 if

µ0 = 2 and x0 = 2.

Finally, let us study the optimal contract. It has A > 0 for the following reason: if A = 0,

then the agent an inefficient Pb project at t = 1 if µ0 = −2 and x0 = −2 for reasons similar

to the reasons for choosing Pb at t = 2 after µ1 = −2 and x1 = −2 that were discussed above.

In fact, for the values of the parameters that we specified, the optimal value of A = 0.1881

is the minimal value that induces the agent to choose Pg project instead of Pb project at

t = 1 if µ0 = −2 and x0 = −2. If the principal chooses A > 0, he will need to compensate

the risk-averse agent for the variation in her payoffs when she chooses at = 1. In our case,

the mechanical increase of A from 0 to 0.1881 reduces the principal’s expected profit from

55.98 to 55.95 due to this compensation, but the agent’s switch from Pb to Pg at t = 2 after

µ1 = −2 and x1 = −2 more than counterbalances and bumps the expected profit to 56.22.
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