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Abstract

We study the Smooth Ambiguity decision criterion in the dynamic setting to under-
stand when it can satisfy the Dynamic Consistency and Consequentialism properties.
These properties allow one to rewrite the decision criterion recursively and solve for
optimal decisions by Dynamic Programming. Our result characterizes the possibility
of having these properties through a condition that resembles Epstein and Schnei-
der’s (2003) rectangularity condition for the maxmin model. At the same time, we
show that Dynamic Consistency and Consequentialism can be achieved for Smooth
Ambiguity preferences in a narrower set of scenarios than one would hope for.

1 Introduction

1.1 Motivation and our contribution

In the past decades of research on decisions under uncertainty, the most progress has been
associated with the idea of ambiguity.1 The majority of the theoretical literature studies
ambiguity and decision criteria in the static setting, assuming that uncertainty resolves at
once, without any provisions for partial information. By contrast, a large fraction of applied
research, by necessity, works with choices that are sequential, and in environments in which
some information arrives in every period.

In the dynamic setting (with or without ambiguity), there are two natural properties,
Dynamic Consistency and Consequentialism, that a modeler frequently wants to impose on
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the agent’s decision criterion. We will discuss these properties later in the paper, but, at the
intuitive level, they indeed look quite appealing: Dynamic Consistency, in particular, implies
that the decision maker is willing to carry out a plan of action that was optimal at the ex ante
stage. This rules out various traits from the realm of Behavioral Economics, such as issues
with self-control, unstable preferences, and many others. In turn, Consequentialism postu-
lates the irrelevance of the decision maker’s payoffs that would obtain under contingencies
that are no longer possible. Beyond that, Dynamic Consistency and Consequentialism are
also highly desirable from a purely practical perspective: for instance, they are fundamental
in any setup that deals with the value of information and are indispensable for rewriting and
solving models through Dynamic Programming.

As puzzling as it may be, modeling ambiguity-sensitive choices in the dynamic setting
typically runs into difficulties with satisfying Dynamic Consistency and Consequentialism.
Gilboa and Schmeidler (1993) gave an early indication that satisfying those properties may
not be so easy. Later, Al-Najjar and Weinstein (2009) argued that the difficulties in working
with ambiguity in the dynamic setting seem to have a fundamental nature. For the model
that is most frequently used in both theory and applications—the maxmin model of Gilboa
and Schmeidler (1989)—there is a partial solution for the conundrum. To have a positive
result, Epstein and Schneider (2003) made an additional framework assumption that the
timing and stucture of information disclosure is fixed—that is, the agent knows in advance
the type of information that will arrive in each future time period. Then, they obtained a
result that shows that the maxmin model behaves well in the dynamic setting and satisfies the
desirable properties if and only if the model uses so-called rectangular sets of probabilities.2

However, it has not been known whether a conceptually similar solution exists for the second
most popular model of choice under ambiguity, the Smooth Ambiguity model of Klibanoff,
Marinacci and Mukerji (2005).3 In this paper, we seek to fill this gap.

We study properties of the Smooth Ambiguity model in the dynamic setting with the goal
of understanding when Dynamic Consistency and Consequentialism can hold simultaneously
with respect to a fixed two-period structure of information disclosure. Our main contribution
is a theorem that provides “if and only if” conditions for that. It demonstrates that, in fact,
Dynamic Consistency and Consequentialism hold in a set of scenarios that are narrower than
one would have hoped for. First, they hold trivially if there is no ambiguity in the first or
the second period. Besides those trivial cases, we show that they can hold only if preferences
have the constant absolute ambiguity aversion property. Under constant absolute ambiguity
aversion, the theorem states a condition for the decision maker’s beliefs that delivers Dynamic
Consistency and Consequentialism. Although our condition for the Smooth Ambiguity model
is much more complicated than Epstein and Schneider’s (2003) rectangularity condition for
the maxmin model, there is still a conceptual similarity between them. Besides theoretical
interest, our condition gives practical guidance to writing tractable models that use Smooth
Ambiguity preferences in a dynamic environment.

The rest of the paper is organized as follows. In order to better define our research ques-
tion, we continue this Introduction with an informal presentation of the Smooth Ambiguity

2The precursor of rectangular sets of probabilities was introduced by Sarin and Wakker (1998) under the
name reduced families of probability measures.

3See the discussion of the literature in Section 3.

2
Date: 2023-12-11 14:40:02 Revision: e8dda11



model and the properties of Dynamic Consistency and Consequentialism. In Section 2, we
formally set the stage, state our result, and illustrate it with a concrete example of Smooth
Ambiguity preferences that have the desired properties. Section 3 discusses what can be
learned from our result, alternative approaches, and related literature.

1.2 Informal presentation of the problem

Uncertainty To give the gist of the difficulties surrounding ambiguity in the dynamic
setting and to outline our results, let us assume that uncertainty is represented by the
state space Ω in which each element represents one possible resolution of the uncertainty.
For the purpose of making decisions, each available action can be described by a mapping
from states into outcomes from some set of outcomes X , where the latter can represent
monetary outcomes, levels of the decision maker’s satisfaction, social outcomes, or anything
else. Without losing much of the content, we can also assume that the decision maker chooses
among real-valued random variables defined on this state space. Her choice is assumed to be
captured by a preference relation—a reflexive, transitive, and complete binary relation that
compares mappings from Ω to X .

Dynamic Consistency and Consequentialism Now, we introduce the basic principles
of Dynamic Consistency and Consequentialism that are essential for describing the objectives
of our research and our results. Suppose that the state space Ω is partitioned into two events,
E1 and E2 and, to simplify the illustration, assume that these events, as well as the entire Ω,
are finite: E1 = {ω1, . . . , ωk} and E2 = {ωk+1, . . . , ωn}. We are interested in the relationship
between the decision maker’s choices at two stages—the ex ante stage at which no information
is revealed to her yet, and the interim stage at which she has been informed whether the
true state belongs to E1 or E2. Consider the situation in which the decision maker’s choice
matters only if E1 occurs; in the case of E2, she obtains outcomes h(ωk+1), . . . , h(ωn) in
states ωk+1, . . . , ωn regardless of her choice. If we think of the decision maker and Nature
making moves sequentially, one can compare the two decision trees shown on Figure 1 that
differ in the order of moves.

Dynamic Consistency postulates that, in the first tree, the decision maker should realize
that her choice between the left branch and the right branch matters only if E1 occurs.
Hence, in the first tree, her choice should be the same as her choice in the second tree after
she has learned that E1 has occurred: she should exhibit strict preference for the left branch
in the first tree if and only if she exhibits strict preference for the left branch in the second
tree; she should exhibit strict preference for the right branch in the first tree if and only if
she exhibits strict preference for the right branch in the second tree; and she should exhibit
indifference between the two branches in the first tree if and only if she exhibits indifference
in the second tree.

Next, consider a different version of the second tree in which the vector of outcomes
(h(ωk+1), . . . , h(ωn)) for states ωk+1, . . . , ωn is replaced with some other vector of outcomes
(h̃(ωk+1), . . . , h̃(ωn)), keeping the rest of the tree unchanged. Consequentialism postulates
that the decision maker’s choice between the left and the right branches should be the
same for the two versions of the second tree—by the time the decision maker is given an
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D

N

f(ω1) . . . f(ωk) h(ωk+1) . . . h(ωn)

N

g(ω1) . . . g(ωk) h(ωk+1) . . . h(ωn)

N

D

N

f(ω1) . . . f(ωk)

N

g(ω1) . . . g(ωk)

E1

N

h(ωk+1) . . . h(ωn)

E2

Figure 1: Decision trees with ex ante and conditional decisions

The nodes are marked by D and N to reflect whether it is the decision maker or
Nature, respectively, that makes a move at this node.
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opportunity to choose, the payoffs in the states that belong to E2 should become irrelevant
(“inconsequential”).

More generally, a decision maker is said to satisfy Dynamic Consistency and Consequen-
tialism with respect to a partitioning (E1,E2) of Ω if, for any two mappings f and g from Ω to
X that coincide on E2, her preference between them at the ex ante stage are the same as her
preference conditional on learning that E1 has occurred, and is independent of the common
payoff vector in the states that belong to E2; and similarly with E1 and E2 interchanged.

As has been argued in the literature, the principles of Dynamic Consistency and Conse-
quentialism are quite reasonable normatively, as well as desirable from the applied perspec-
tive. For instance, violations of Dynamic Consistency imply negative value of information—
not only does the decision maker refrain from acquiring information that is relevant for her
decisions, but she must also be willing to pay a positive amount of money in order not to
get informed. Violations of Consequentialism are also unappealing. They look as if the
decision maker is influenced by immaterial details of the presentation of decision problems
and, thus, falls victim to the “framing effect.” Applied analysis frequently relies on Dy-
namic Consistency and Consequentialism implicitly because these properties always hold if
the environment presumes no ambiguity, and decisions follow the canonical expected utility
criterion—a mapping f is preferred over g whenever

∫
Ω

u(f(ω))µ(dω) ≥ ∫
Ω

u(g(ω))µ(dω) (1)

(for some fixed probability measure µ on Ω and utility index u ∶ X → R), with conditional
probabilities µ( ⋅ ∣ Ei) replacing µ for decisions made after learning an event Ei.

Restrictions on preferences imposed by Dynamic Consistency and Consequen-
tialism As mentioned earlier, Dynamic Consistency and Consequentialism present sur-
prising difficulties for modeling ambiguity in settings with gradual disclosure of informa-
tion. Without going into a general discussion, we are interested in specific restrictions that
these two principles imply for one of the most frequently used models of ambiguity-sensitive
preferences—the Smooth Ambiguity model.

Epstein and Schneider’s (2003) seminal paper solved a similar problem for a different
model of preferences—the maxmin model of Gilboa and Schmeidler (1989). In that model,
a mapping f is preferred over g whenever it yields a higher utility value computed as

V (f) =min
µ∈M ∫Ω u(f(ω))µ(dω) (2)

for some fixed convex and compact set M of probability measures and some utility index u.
The key insight from Epstein and Schneider’s (2003) analysis goes as follows. Suppose that
the decision maker’s ex ante preferences ≿ have the maxmin form with the utility index u

and a set M of probability measures on Ω; her preferences ≿1 conditional on the event E1

have the maxmin form with the utility index u and a set M1 of probability measures on E1;
and her preferences ≿2 conditional on the event E2 have the maxmin form with the utility
index u and a set M2 of probability measures on E2. Then, her system of preferences satisfies
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Dynamic Consistency and Consequentialism with respect to the partitioning (E1,E2) if and
only if the set M has a rectangular form:

M = {αµ1 + (1 −α)µ2 ∣ α ∈ [α,α], µ1 ∈M1, µ2 ∈M2}.
In words, the set of probability measures M for the ex ante preference relation is obtained by
combining three components independently : probability measures conditional on E1; prob-
ability measures conditional on E2; and the weight that is given to E1 versus E2.4 Clearly,
this structure of the set of probability measures is very particular, and many sets do not
have the rectangular form. Nevertheless, this result gives a practical answer to the question
about what the modeler can do to achieve Dynamic Consistency and Consequentialism.

The other very popular model of ambiguity-sensitive preferences is the Smooth Ambiguity
model of Klibanoff, Marinacci and Mukerji (2005). In that model, a mapping f is evaluated
as

V (f) = ∫
∆

ϕ(∫
Ω

u(f(ω))µ(dω)) π(dµ),
where ∆ is the set of probability measures on Ω; π is a probability measure defined on ∆
(the second-order probability measure); u ∶ X → R is a utility index; and ϕ ∶ R → R is a
second-order utility. If the function ϕ is assumed to be smooth, then, unlike in the maxmin
model, this model’s evaluation functional is smooth, which is often useful in applications.

With this background, our research question can be formulated as follows: under what
conditions on the parameters π and ϕ do smooth ambiguity preferences satisfy Dynamic
Consistency and Consequentialism?

2 Formal analysis

2.1 Setup

Let Ω be the state space that we assume to be finite, and let ∆ be the space of probability
measures on (Ω,2Ω). We identify ∆ with a subset of R∣Ω∣ and endow it with the Euclidean
metric and the Borel σ-algebra.

For a set Z, let F(Z) denote the set of functions from Ω to Z; traditionally, they are called
acts. Our objects of interest are preference relations—reflexive, transitive, and complete
binary relations—over acts. For any preference relation ≿, its asymmetric part is denoted by
≻ and its symmetric part is denoted by ∼.

A functional V ∶ F(Z) → R is said to represent a preference relation ≿ if f ≿ g holds
if and only if V (f) ≥ V (g) for any f, g ∈ F(Z). We are interested in preference relations
that belong to the class of the Smooth Ambiguity preferences; that is, they are such that
there exist a nonconstant function u ∶ Z → R, a continuous and weakly increasing function

4For practical purposes, it is also useful to know that, in the rectangular case, it is sufficient to know
only the ex ante set of probability measures M ; and the sets of probability measures M1 and M2 for
conditional preferences can be computed as M1 = {µ( ⋅ ∣ E1) ∣ µ ∈ M} and M2 = {µ( ⋅ ∣ E2) ∣ µ ∈ M}, while
[α,α] = {µ(E1) ∣ µ ∈M}.

6
Date: 2023-12-11 14:40:02 Revision: e8dda11



ϕ ∶ rangeu → R, and a probability measure π on ∆ such that the preference relation admits
a representation by the functional

V (f) = ∫
∆

ϕ(∫
Ω

u(f(ω))µ(dω)) π(dµ). (3)

Regarding the function u, it is common to assume that u is convex-ranged. The outcome
space Z and the function u do not play any substantial role in our results. Thus, to simplify
the exposition, we let I ∶= rangeu and work with preferences defined on F(I) that admit a
representation by

V (f) = ∫
∆

ϕ(∫
Ω

f(ω)µ(dω)) π(dµ). (4)

Next, we want to formally introduce the properties of Dynamic Consistency and Conse-
quentialism. Following the convention, for any f,h ∈ F(I) and any E ⊆ Ω, we write f E h

for an element of F(I) such that (f E h)(ω) = f(ω) if ω ∈ E and (f E h)(ω) = h(ω) if ω ∉ E.
We say that a state ω ∈ Ω is null if, for any two functions f,h ∈ F (I), f {ω}h ∼ h; otherwise,
the state ω is non-null. Similarly, an event E ⊆ Ω is null if, for any two functions f,h ∈ F (I),
f E h ∼ h; otherwise, it is non-null.

Suppose that Ω is partitioned as Ω = E1 ⊔E2, where E1 and E2 are ≿-non-null. We say
that ≿ satisfies Dynamic Consistency and Consequentialism with respect to {E1,E2} if

f Ei h ≿ g Ei h ⇔ f Ei h
′ ≿ g Ei h

′ for all f, g, h, h′ ∈ F(I) and i = 1,2.
As elaborated in the Introduction, we are interested in two properties: 1) consistency between
ex ante decisions and decisions conditional on events E1 and E2, and 2) independence of
conditional decisions from payoffs in unrealized states. The above definition imposes both of
them jointly, and also allows us to state our assumptions succinctly by bypassing notation
for conditional preferences.

We note that the combination of these two properties is related to the Savagean Sure
Thing Principle (Axiom P2): if Dynamic Consistency and Consequentialism hold universally—
for all possible partitionings—then the Sure Thing Principle obtains. The Sure Thing Prin-
ciple is known to be very restrictive; by contrast, we are interested in the implications of
Dynamic Consistency and Consequentialism in application to one given partitioning.

2.2 The result

Let ≿ be a preference relation on F(I) for some nondegenerate open interval I ⊆ R. Fix a
partitioning {E1,E2} of Ω and, for i = 1,2, let ∆i be the space of probability measures on
Ei, Σi be the Borel σ-algebra on ∆i, and Fi(I) be the set of functions from Ei to I.

We will impose the following condition on the probability measure π on (∆,Σ).
Condition 1. ∫∆ µ(E1)p1µ(E1)>0 π(dµ) <∞ and ∫∆ µ(E2)p1µ(E2)>0 π(dµ) <∞ for all p ∈ R.

Our main result can be stated as follows.
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Theorem 1. Let ≿ admit Representation (4) for some Borel probability measure π on ∆.

Suppose that ϕ ∶ I → R is three times continuously differentiable with ϕ′ > 0 and ϕ′′ <
0. Suppose, also, that E1 and E2 each has at least two non-null states, and π satisfies
Condition 1. If ≿ jointly satisfies Dynamic Consistency and Consequentialism with respect
to {E1,E2}, then one of the following must hold.

(i) There exist α ∈ (0,1) and probability measures π1 and π2 on (∆1,Σ1) and (∆2,Σ2),
respectively, such that ≿ admits a representation via

V (f) = α∫
∆1

ϕ(∫
E1

f(ω)µ1(dω)) π1(dµ1)+
(1 − α)∫

∆2

ϕ(∫
E2

f(ω)µ2(dω)) π2(dµ2).
(ii) There exist a Borel probability measure π̃ on [0,1] and probability measures µ1 ∈ ∆1

and µ2 ∈∆2 such that ≿ admits a representation via

V (f) = ∫
[0,1]

ϕ(α∫
E1

f(ω)µ1(dω) + (1 − α)∫
E2

f(ω)µ2(dω)) π̃(dα).
(iii) There exist γ > 0, k > 0, and c ∈ R such that ϕ(z) = −ke−γz + c, and ≿ admits a

representation via

V (f) = −∫
[0,1]

v1(f,α)v2(f,1 − α) π̃(dα), (5)

where π̃ is a Borel probability measure on [0,1] and, for i = 1,2, vi ∶ F(I) × [0,1] → R

are defined as vi(f,0) = 1 and

vi(f,α) = ∫
∆i

e
−γα∫Ei

f(ω)µ(dω)
πi,α(dµ) for α ∈ (0,1], (6)

where πi,α for α ∈ (0,1] are probability measures on (∆i,Σi) derived as conditionals,

πi,α(S) = π({µ ∈ ∆ ∶ µ( ⋅ ∣ Ei) ∈ S} ∣ µ(Ei) = α) for any S ∈ Σi;

moreover, it must be that

vi(f,α) ≥ vi(g,α)⇔ vi(f,α′) ≥ vi(g,α′) for all f, g ∈ F(I) (7)

holds for π̃-almost all α,α′ ∈ (0,1].
Conversely, suppose that ϕ is strictly increasing. Suppose that ≿ admits the representation

of Case (i) for some α ∈ (0,1) and some probability measures π1 and π2 on (∆1,Σ1) and(∆2,Σ2), respectively; or admits the representation of Case (ii) for some Borel probability
measure π̃ on [0,1] such that π̃({0,1}) < 1 and probability measures µ1 and µ2 from ∆1 and
∆2, respectively; or admits the representation of Case (iii) for some γ > 0, probability measure
π̃ on [0,1] such that π̃({0,1}) < 1, and, for i = 1,2 and α ∈ (0,1], probability measures πi,α on(∆i,Σi) such that, for vi defined by (6) and vi(f,0) = 1, equivalence (7) holds for π̃-almost
all α,α′ ∈ (0,1]. Then, ≿ satisfies Dynamic Consistency and Consequentialism.
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Cases (i) and (ii) cover the situations of degenerate ambiguity. In Case (i), there is no
ambiguity about the probabilities of events E1 and E2. Indeed, for any x, y ∈ I, act f = xE1 y

that is constant on E1 and E2 is valued as V (xE1 y) = αϕ(x) + (1 − α)ϕ(y), which is an
Expected Utility evaluation (1), in which event E1 has the probability of α. In Case (ii),
there is no ambiguity after the decision maker learns E1 or E2. Indeed, for any two acts
f E1 h and gE1 h,

V (f E1 h) ≥ V (g E1 h) ⇔ ∫
E1

f(ω)µ1(dω) ≥ ∫
E1

g(ω)µ1(dω)
because the function

z ↦ ∫
[0,1]

ϕ(αz + (1 −α)∫
E2

f(ω)µ2(dω)) π̃(dα)
is strictly increasing in z (under our assumption that E1 is non-null). Therefore, after
learning E1, the decision maker compares acts by the expected utility criterion. The same
reasoning applies to E2.

Case (iii) is the main case of the theorem. Representation (5) is still a Smooth Ambiguity
representation—it can be seen by plugging the expressions for v1 and v2 there, collecting the
integrals on the outside, and observing that a product of exponentials is the exponential of
a sum. However, in the right-hand side of (5), we see a certain separation of the evaluation
of f on E1 and on E2.5 What is important is that Case (iii) has the independent combina-
tion feature due to Condition (7): the evaluation of f on E1 via integrals with respect to
various µ1 ∈ ∆1 and the evaluation of f on E2 via integrals with respect to various µ2 ∈ ∆2

are combined when the weight α varies, but the ranking of acts f by v1(f,α), as well as
by v2(f,1 − α), are independent of the value of α. From this perspective, our Case (iii)
resembles the rectangularity condition of Epstein and Schneider (2003) that we recalled in
the Introduction.

We illustrate the substance of Case (iii) with the following example.

Example 1. Let Ω = {ω1, ω2, ω3, ω4}, E1 = {ω1, ω2}, E2 = {ω3, ω4}, and I = R. To specify
the representation of a preference relation, suppose that an act f takes values x1, x2, x3, x4

in states ω1, ω2, ω3, ω4, respectively, and let

V (f) = − 1

16
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Observe that this functional captures a nondegenerate case: the probability of event E1 can
be equal to 1

3
(and this happens with probability 1

2
), and can also be equal to 2

3
(and this

5In fact, the mappings f ↦ (−v1(f,α)) and f ↦ (−v2(f,α)) can be thought of as representing the decision
maker’s preferences conditional on E1 and E2, respectively.
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also happens with probability 1

2
). For this preference relation, the functions v1( ⋅ , α) from the

statement of the theorem can be computed as

v1(f, 13) = 12e− 2

9
x1− 1

9
x2 +

1

2
e−

1

9
x1− 2

9
x2 ,

v1(f, 23) = 14e− 4

9
x1− 2

9
x2 +

1

2
e−

1

3
x1− 1

3
x2 +

1

4
e−

2

9
x1− 4

9
x2.

They are distinct functions on R4; however, they rank vectors identically. Indeed, it can be

seen that v1(f, 23) = (v1(f, 13))2 for all f ∈ R4.

3 Discussion of the result and related literature

Issues related to ambiguity in a dynamic setting

When ambiguity is brought to the multi-period setting, one of the main topics in the liter-
ature has been the question of updating—that is, a procedure for transforming an ex ante
preference relation of a particular form into a conditional preference relation that takes into
account the fact that some event has occurred. As Gilboa and Schmeidler (1993) and Eich-
berger and Kelsey (1996) noted quite early, proposing a reasonable updating procedure for
popular models of ambiguity-sensitive preferences (namely, maxmin and Choquet Expected
Utility) is a very challenging task.

Al-Najjar and Weinstein (2009) discuss at a more general level the challenges that the
dynamic setting presents to modeling ambiguity. They argue that there seems to be a genuine
tension between the entire concept of ambiguity and a number of natural requirements for
dynamic choice. This provocative paper prompted a thoughtful discussion in the literature.
Siniscalchi (2009) provides a succinct summary:

[T]he modeller interested in ambiguity can essentially pick any two out of three
ingredients : full generality in the representation of ambiguity attitudes, Conse-
quentialism, or Dynamic Consistency. She cannot have all three (however, she
can have a little bit of each).

It should also be noted that Dynamic Consistency without Consequentialism can always be
achieved.

Gumen and Savochkin (2013) focus on a different aspect of updating: a modeler typically
imposes, implicitly or explicitly, another requirement beyond those mentioned above—the
requirement that updated preferences have the same “form.” For example, if the ex ante
preferences are assumed to have the maxmin form (2), modelers wish the conditional prefer-
ences also to be maxmin, and similarly for other types of preferences (variational preferences,
confidence function preferences, multiplier preferences, and so on). This requirement further
constraints the modeler, and these constraints sometimes can be quite strong. Continuing
with the maxmin example, if one takes such a preference relation and derives conditional
preferences that satisfy Dynamic Consistency, then these preferences will not only typically
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fail Consequentialism, but will also fail to be maxmin. Gumen and Savochkin’s (2013) gen-
eral result shows the boundaries of what can be achieved for preferences that have certain
invariance properties. For maxmin and variational preferences, this invariance emerges from
weaker versions of the Independence axiom that define those classes of preferences. That re-
sult is not applicable to the Smooth Ambiguity model because it is not defined by postulating
a weaker version of the Independence axiom.

In an earlier paper, Hanany and Klibanoff (2007) propose a way to address many of
the difficulties mentioned above, including the difficulty of maintaining the same form of
preferences (what they call “closure”). Their solution is to revise what we require from
preferences. In particular, they not only discard Consequentialism,6 but also substantially
weaken the Dynamic Consistency requirement by focusing only on the best act in the set
of feasible ones. To illustrate the gist of their idea, fix a decision maker and consider a
situation in which she is asked ex ante to rank three acts: rE1 h; f E1 h; and g E1 h. Suppose,
furthermore, that she declares that rE1 h is preferred to f E1 h; f E1 h is preferred to g E1 h;
and, by transitivity, r E1 h is preferred to g E1 h. Hanany and Klibanoff’s (2007) model
requires that preferences conditional on the event E1 only respect the ranking of rE1 h above
f E1 h and the ranking of rE1 h above g E1 h, while the conditional ranking between f E1 h

and gE1 h is not restricted—according to the model, the decision maker may declare that
the conditional ranking of g E1 h is higher than that of f E1 h. By allowing this, Hanany and
Klibanoff (2007) achieve a lot in resolving various modeling difficulties. Starting with an ex
ante preference relation that is maxmin, they provide a way to have conditional preferences
that are maxmin as well, and relate probability measures that are used to compute the ex
ante and conditional values of acts. Subsequently, Hanany and Klibanoff (2009) generalize
the idea beyond the maxmin preferences to cover the Smooth Ambiguity model.

The literature discussed above is concerned mainly with the universal concept of up-
dating preferences to account for arbitrary events about which the decision maker may get
informed. As mentioned in the introduction, Epstein and Schneider (2003) pursue a practical
route of studying updating given a fixed timing and structure of the arriving information. In
the context of the maxmin model, they derive conditions that ensure Dynamic Consistency
and Consequentialism and that the maxmin form is preserved for conditional preferences.
Subsequently, this approach has been applied to other models of preferences (e.g., to varia-
tional by Maccheroni, Marinacci and Rustichini, 2006). In the present paper, we also follow
Epstein and Schneider’s (2003) route and contribute to the literature by studying the con-
ditions under which Dynamic Consistency and Consequentialism can hold for the Smooth
Ambiguity model.

Smooth Ambiguity preferences and “intuitive” updating

One intuitively appealing way to update a Smooth Ambiguity preference relation is to replace
each probability distribution in the support of π with the corresponding conditional probabil-
ity. Put differently, if the decision maker’s ex ante preferences have the Smooth Ambiguity
representation (3) with some utility index u, second-order utility ϕ, and a second-order

6Their solution does not satisfy Consequentialism because the preference relation conditional on learning
an event E1 is allowed to depend on the outcomes outside of E1 that were feasible at the ex ante stage.
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probability measure π, then one can assume that, conditional on learning an event E1, the
decision maker compares acts by using the evaluation functional V̂ defined as

V̂ (f) = ∫
∆1

ϕ(∫
Ω

u(f(ω)) µ̂(dω)) π̂(dµ̂), (8)

where the probability measure π̂ on ∆1 is defined as

π̂(µ̂) = π({µ ∈∆ ∶ µ( ⋅ ∣ E1) = µ̂}). (9)

As our Theorem 1 suggests, this way of updating preferences generally leads to dynamic
inconsistencies, in the sense that the equivalence

V (f E1 h) ≥ V (g E1 h) ⇔ V̂ (f E1 h) ≥ V̂ (g E1 h) for all f, g, h ∈ F(Z)
will typically fail, unless the ex ante preference relation falls into the first two cases of the
theorem.

To illustrate this failure, we give an example that is built upon the well-known three-color
version of Ellsberg’s (1961) paradox.

Example 2. Suppose that the state space is Ω = {R,B,Y }, where the states represent possible
colors of a ball drawn from an urn, and the decision maker’s π has the following form: when
the space ∆ is thought of as a subset of R3, let the support of π be the linear segment
connecting (1/3,2/3,0) and (1/3,0,2/3), and let π be the uniform measure on that segment.
For concreteness, assume that Z = R, u(x) ≡ x, and ϕ(x) = ln(1 + x). Then, the decision
maker evaluates any act f by

V (f) = ∫ 1

0

ln(1 + 1

3
f(R) + 2

3
pf(B) + 2

3
(1 − p)f(Y )) dp.

In turn, the updating procedure (8)–(9) conditional on the event E1 = {R,B} leads to evalu-
ation of an act f by

V̂ (f) = ∫ 1

0

ln(1 + 1

1 + 2p
f(R) + 2p

1 + 2p
pf(B)) dp.

Consider acts f , g, and h that are “bets” that pay $100 in events {B,Y }, {R,Y }, and {Y },
respectively, and nothing otherwise. That is, written as vectors from R3, f = (0,100,100),
g = (100,0,100), and h = (0,0,100).7 Then, it can be computed that V (f E1 h) ≈ 4.21 >
4.17 ≈ V (g E1 h) but V̂ (f E1 h) ≈ 3.69 < 3.98 ≈ V̂ (g E1 h). This means that if the decision
maker compares two acts, f E1 h and g E1 h, that differ only on E1, she finds that f E1 h is
better than g E1 h; however, after E1 has occurred, she reverts her choice and picks gE1 h.

As is well known, these types of preference reversals have a startling implication for the
decision maker’s willingness to pay for information. For a standard Bayesian decision maker
and in a single player environment, information always has nonnegative value. Dynamic
inconsistencies introduced by the updating procedure (8)–(9) change the way information is

7In our example, in fact, f E1 h = f and g E1 h = g.
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Figure 2: Decision tree with the choice of being informed

To make the picture more compact, we represent the final stage of the resolution
of uncertainty by writing just the name of the act instead of drawing a subtree
with branches to individual outcomes such as f(ω) for all ω ∈ E1. Choice among
decision trees under ambiguity and dynamic inconsistencies is studied in depth
by Siniscalchi (2011).

valued. In the above example, the decision maker strictly prefers not to get informed about
whether E1 occurs. The scenario of choosing whether or not to get informed is depicted in
Figure 2. When standing at the top node, the decision maker knows what she will choose in
each subtree. In the left one, she is uninformed and chooses f E1 h, as calculated earlier. In
the right subtree she is informed and chooses g E1 h. At the top node, her preferences over
acts are represented by V , and, hence, she prefers to be in the left subtree that leads to her
eventually having the (ex ante) better option f E1 h. Moreover, she is willing to pay a small
but positive amount of money to be in the left subtree and stay uninformed.

Hanany and Klibanoff’s (2009) updating rule

The question of updating in application to the Smooth Ambiguity model is the sole focus
of Hanany and Klibanoff (2009)’s (2009) analysis. As mentioned earlier, they follow the
general idea of Hanany and Klibanoff (2007) and impose a much weaker requirement on the
consistency of ex ante and conditional preferences than the dynamic consistency property
that is commonly used in the literature (and is also adopted in this paper). The essence of
their consistency condition with respect to a fixed event E1 is as follows. Let E2 be E1’s
complement in Ω, and suppose that B is a nonempty set of feasible acts, which is assumed
to be convex and compact, and g ∈ B. Furthermore, suppose that, for any f ∈ B such that
f ∣E2

= g∣E2
, we have g ≿ f—that is, among all acts that coincide with g outside of E1, g is

the best. Then, Hanany and Klibanoff allow the conditional preferences after learning E1 to
depend on B and g and denote them by ≿E1,g,B. Their weaker consistency condition requires
g ≿E1,g,B f for all f ∈ B, but otherwise does not restrict the way ≿E1,g,B ranks all other acts.

Returning to Smooth Ambiguity preferences, suppose that the conditional preference
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relation is also required to have the following Smooth Ambiguity form

VE1
(f) = ∫

∆

ϕ(∫
E1

f(ω)µ(dω ∣ E1)) πE1
(dµ),

for some probability measure πE1
on ∆, where the second-order utility function ϕ is the same

as in the Smooth Ambiguity representation of the ex ante preferences. Then, Hanany and
Klibanoff (2009) show that, with minor technical qualifications, their consistency condition
between ex ante and conditional preferences holds if and only if

∫∆ϕ′ (∫E1
g(ω)µ(dω ∣ E1))µ(ω∗ ∣ E1)πE1

(dµ)
∫∆ ϕ′ (∫E1

g(ω)µ(dω ∣ E1)) πE1
(dµ) = ∫∆ ϕ′ (∫Ω g(ω)µ(dω))µ(ω∗)π(dµ)

∫∆ ϕ′ (∫Ω g(ω)µ(dω))µ(E1)π(dµ) (10)

holds for all ω∗ ∈ E1. Subsequently, they advocate one specific updating rule (i.e., the rule
to compute πE1

) that factors in the derivative of ϕ at the expected value of g. We illustrate
the relationship between our result and their updating rule with the following example.

Example 3. As in Example 1, we let Ω = {ω1, ω2, ω3, ω4}, E1 = {ω1, ω2}, E2 = {ω3, ω4}, and
I = R, and enumerate the values of an act f in the four states as x1, x2, x3, x4. We define a
preference relation ≿ through its utility representation as

V (f) = −π̃0v2(f,1) − π̃1v1(f, 13)v2(f, 23) − π̃2v1(f, 23)v2(f, 13) − π̃3v1(f,1),
where π̃k ∈ (0,1) for k = 0, . . . ,3 are arbitrary numbers such that π̃0 + π̃1 + π̃2 + π̃3 = 1, and the
functions v1 and v2 are defined as

v1(f, 13) = 12e−
2

9
γx1− 1

9
γx2 +

1

2
e−

1

9
γx1− 2

9
γx2,

v1(f, 23) = 14e− 4

9
γx1− 2

9
γx2 +

1

2
e−

1

3
γx1− 1

3
γx2 +

1

2
e−

2

9
γx1− 4

9
γx2,

v1(f,1) = 1
8
e−

2

3
γx1− 1

3
γx2 +

3

8
e−

5

9
γx1− 4

9
γx2 +

3

8
e−

4

9
γx1− 5

9
γx2 +

1

8
e−

1

3
γx1− 2

3
γx2,

v2(f, 13) = 12e− 2

9
γx3− 1

9
γx4 +

1

2
e−

1

9
γx3− 2

9
γx4,

v2(f, 23) = 14e− 4

9
γx3− 2

9
γx4 +

1

2
e−

1

3
γx3− 1

3
γx4 +

1

2
e−

2

9
γx3− 4

9
γx4,

v2(f,1) = 1
8
e−

2

3
γx3− 1

3
γx4 +

3

8
e−

5

9
γx3− 4

9
γx4 +

3

8
e−

4

9
γx3− 5

9
γx4 +

1

8
e−

1

3
γx3− 2

3
γx4,

where γ > 0 is a parameter. After substituting v1 and v2 into the definition of V and expand-
ing, it can be seen that the preference relation has a Smooth Ambiguity representation with the

second-order utility function ϕ(x) = −e−γx. As in Example 1, note that v1(f, 23) = (v1(f, 13))2
and v1(f,1) = (v1(f, 13))3, and similar identities hold for v2. These identities establish that
the conditions of Case (iii) of Theorem 1 hold.

Next, we consider a preference relation conditional on E1 that is consistent (in the sense
of Dynamic Consistency and Consequentialism) with the ex ante relation ≿. This conditional
preference relation is unique, but it admits multiple Smooth Ambiguity representations. For

14
Date: 2023-12-11 14:40:02 Revision: e8dda11



instance, we can take VE1
(f) = −v1(f,1) as its representation. As can be seen from the

specification of v1 stated above, the second-order probability measure πE1
∈ ∆1 that arises

from the expression for (−v1( ⋅ ,1)) has four measures µ ∈ ∆ in its support and assigns
weights to them as follows:

µ = (2
3
, 1
3
,0,0) gets 1

8
,

µ = (5
9
, 4
9
,0,0) gets 3

8
,

µ = (4
9
, 5
9
,0,0) gets 3

8
,

µ = (1
3
, 2
3
,0,0) gets 1

8
.8

Our assumption of Dynamic Consistency and Consequentialism implies Hanany and
Klibanoff’s (2007) consistency condition. It can be verified directly that our probability mea-
sure πE1

satisfies their characterizing equation stated above in (10) for any ω∗ ∈ E1 and any
act g. However, Hanany and Klibanoff’s 2009 specific updating rule (the “smooth rule”)
produces a different conditional preference relation. In their relation, the probability mea-
sure πE1,g has 16 elements in its support and assigns weights to them in a more complicated
manner. For instance, if g = (a,0,0,0) for some a ∈ R, then their smooth rule assigns to
µ = (1

9
, 2
9
, 2
9
, 4
9
) the weight

πE1,g((19 , 29 , 29 , 49)) = e
2

9
γaπ̃1

(4e 2

9
γa
+ 4e

4

9
γa) π̃1 + (4e 1

9
γa
+ 8e

1

6
γa
+ 4e

2

9
γa) π̃2 + 24π̃3

.

Hanany and Klibanoff’s (2009) smooth rule provides a way to define conditional preferences
that is applicable to any smooth second-order utility function ϕ and any ex ante probability
measure π. However, this universality comes at a cost: the probability measure πE1,g in
the representation of their conditional preferences depends on the maximal element g in the
choice set and parameters of the utility function (in the current case, γ).

Recursive preferences

Klibanoff, Marinacci and Mukerji (2009) follow one aspect of Epstein and Schneider’s (2003)
ideas and bring Smooth Ambiguity to the multi-period setting using a recursive procedure.
Assuming two periods and uncertainty that is partially resolved by informing which event
of the partition {E1,E2} has been realized (see, e.g., the second decision tree in Figure 1 on
p. 4), the recursive Klibanoff et al.’s (2009) procedure prescribes that acts be evaluated by
the functional V ∗ ∶ F(Z)→ R defined as

V ∗(f) = ∫
[0,1]

ϕ(αϕ−1(V ∗1 (f)) + (1 − α)ϕ−1(V ∗2 (f))) π̃(dα), (11)

for some Borel probability measure π̃ on [0,1], where
V ∗i (f) = ∫

∆i

ϕ(∫
Ei

f(ω)µi(dω))πi(dµi) for i = 1,2
8Probability measures from ∆ in the table are represented as a vector of numbers, (µ(ω1), µ(ω2), µ(ω3),

µ(ω4)).
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represent conditional evaluations of acts after learning the event Ei (i = 1,2), and where π1

and π2 are probability measures on ∆1 and ∆2, respectively. Put differently, the decision
maker’s ex ante preferences are represented by the functional

V ∗(f E1 h) = ∫
[0,1]

ϕ(αϕ−1 [∫
∆1

ϕ(∫
E1

f(ω)µ1(dω)) π1(dµ1)]+
(1 − α)ϕ−1 [∫

∆2

ϕ(∫
E2

h(ω)µ2(dω)) π2(dµ2)]) π̃(dα). (12)

If E1 and E2 are non-null, then the decision maker’s preferences conditional on learning
E1, as well as on learning E2, have the Smooth Ambiguity structure. In addition, if we
restrict attention to acts of the form xE1 y in which x and y are constant on E1 and E2,
respectively—the so-called one-step-ahead preferences—then, the evaluation functional V ∗

also has the Smooth Ambiguity form. It can be easily seen that the preferences with the
recursive representation satisfy Dynamic Consistency and Consequentialism.

Looking at this construction, however, it is not very clear whether the recursive prefer-
ences defined by (11) or (12) generally fall within the class of Smooth Ambiguity preferences,
as defined by Klibanoff et al. (2005) and recalled earlier in this paper.9 Having the same form
of preferences—in our case, Smooth Ambiguity—at the ex ante and subsequent stages may
be very desirable both for normative and practical reasons. Therefore, it would be useful to
know when representations (3) and (12) may be in agreement and induce the same ranking of
acts. Note that Epstein and Schneider (2003) fully resolve a similar question for the maxmin
model. Indeed, if the set of probability measures in the representation of ex ante maxmin
preferences is rectangular, then the preferences satisfy Dynamic Consistency and Consequen-
tialism and also admit a recursive maxmin representation; moreover, the representations for
conditional preferences are easy to compute. Conversely, if an ex ante preference relation is
recursive maxmin, it is always maxmin as well, and its maxmin representation uses a set of
probability measures that is rectangular.

Our Theorem 1 helps to answer the above-stated question for the Smooth Ambiguity
model. If an ex ante preference relation admits both the Smooth Ambiguity and recursive
forms, then it must satisfy Dynamic Consistency and Consequentialism. Hence, our theorem
applies (subject to the conditions of nontriviality, differentiability, and the conditions on the
prior including the existence of moments). Then, the two forms can agree only in one of the
three cases. The first case of Theorem 1 captures a situation in which the preference relation
admits both representations, and π̃ in the recursive representation is a degenerate measure
that is concentrated on a single point α. The second case captures a situation in which
the probability measures π1 and π2 in the recursive representation are degenerate. With
the exception of these two cases, agreement between the Smooth Ambiguity and Recursive
Smooth Ambiguity forms requires ϕ be an exponential function. We illustrate such an
agreement in the exponential case with the following example.

Example 4. Consider the setup and the ex ante preference relation from Example 3. It can
be seen that the functional V (f) from its representation can be computed through recursive

9That is, if we look at all acts without restricting them to be constant on E1 and E2, their ranking
according to (12) may well be inconsistent with the ranking according to (3) for any choice of the probability
distribution π in the latter representation.
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Representation (11) as

V (f) = V ∗(f) = − 3

∑
k=0

π̃k exp (k
3
ln v1(f,1) + 3 − k

3
ln v2(f,1))

= −
3

∑
k=0

π̃k exp (−γ k
3
(−1/γ ln v1(f,1)) − γ 3 − k

3
(−1/γ ln v2(f,1))) .

In this representation, we have V ∗i (f) = −vi(f,1) for i = 1,2.

Appendix

A A functional equation

We establish Theorem 1 by reducing the problem to solving a functional equation

E[ϕ(z + xX + y(x, z)Y + h (1 −X − Y ))] = E[ϕ(z + h (1 −X − Y ))] (13)

that must hold for all values of z, x, and h in some open connected set, where X and Y are
random variables; ϕ(z) is an unknown function; and y(x, z) is another unknown function
such that y(0, z) = 0 and that does not depend on h.

In this Appendix, we solve this functional equation under certain assumptions on the
function ϕ and the distribution of X and Y .

Our starting assumptions are as follows.

Assumption 1. X and Y are random variables that are jointly distributed in the triangle
T ∈ R2 with the vertices (0,0), (1,0), (0,1).
Assumption 2. ϕ is a real function that is defined and three times continuously differentiable
in a neighborhood Oz0 of some point z0 ∈ R, and ϕ′(z) > 0 and ϕ′′(z) < 0 for all z ∈ Oz0.

Assumption 3. The joint distribution of X and Y has the following properties:

• P(X = 0) < 1 and P(Y = 0) < 1;
• P(0 <X + Y < 1) > 0; and
• for any c ∈ R++, P(X = cY ) < 1.

Lemma 2. Let g be a function defined as

g(x, y, z) = E[ϕ(z + xX + y Y )] − ϕ(z). (14)

Then, under Assumptions 1–3,

• g is defined and is three times continuously differentiable in some neighborhood of the
point (0,0, z0); and

• there exists a unique function y(x, z) defined in a neighborhood of (0, z0) such that
g(x, y(x, z), z) = 0 for all (x, z) in a neighborhood of (0, z0) and y(0, z0) = 0; moreover,
y is three times continuously differentiable in that neighborhood.
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Proof. First, we verify that the function g is three times continuously differentiable in some
neighborhood of the point (0,0, z0).

Let [a, b] be an interval in R such that z0 ∈ (a, b) ⊂ I. Since the variables X,Y ∈ [0,1],
we can choose a neighborhood O(0,0, z0) of the point (0,0, z0) such that a < z +xX + yY < b
for all (x, y, z) ∈ O(0,0, z0). Then, for all (x, y, z), (x1, y1, z1) ∈ O(0,0, z0), we have

Eϕ(z1 + x1X + y1Y ) −Eϕ(z + xX + yY )√(z1 − z)2 + (x1 − x)2 + (y1 − y)2 = Eϕ(z1 + x1X + y1Y ) − ϕ(z + xX + yY )√(z1 − z)2 + (x1 − x)2 + (y1 − y)2 . (15)

The value under the expectation sign in (15) is bounded from above by

∣z1 − z + (x1 − x)X + (y1 − y)Y ∣√(z1 − z)2 + (x1 − x)2 + (y1 − y)2 max
t∈[a,b]
∣ϕ′(t)∣ ≤ 3 max

t∈[a,b]
∣ϕ′(t)∣.

Hence, by the Dominated Convergence Theorem, we can pass to the limit under the expec-
tation sign as (x1, y1, z1) → (x, y, z). The proof that g(x, y, z) has continuous second and
third derivatives in a neighborhood of (0,0, z0) is similar.

Note that g(0,0, z) = 0 for any z in the neighborhood. We compute

∂

∂y
g(0,0, z) = E[ϕ′(z)Y ] = ϕ′(z)EY.

Observe that EY > 0 (since Y ≥ 0 and Y is not a.s. zero) and ϕ′(z) ≠ 0 by assumption, so
the computed derivative is non-zero. Hence, one can apply the implicit function theorem to
obtain a unique function y(x, z) such that y(0, z0) = 0 and

g(x, y(x, z), z) = 0
for all (x, z) from some neighborhood of (0, z0); moreover, y is continuously differentiable,
and

∂

∂x
y(x, z) = −E[Xϕ′(z + xX + yY )]

E[Y ϕ′(z + xX + yY )] .
The proof that y(x, z) has continuous second and third derivatives in a neighborhood of(0, z0) is similar. Note that g(0,0, z) = 0 and, hence, y(0, z) = 0 for all z from some neigh-
borhood of z0.

Lemma 3. Suppose that Eq. (13) holds for (x,h, z) in some open connected set containing
the point (0,0, z0). Under Assumptions 1–3, it can be only if, in a neighborhood of z0, ϕ has
one of the following forms

• ϕ(z) = k ln(z + b) + c for some k > 0 and b, c ∈ R;
• ϕ(z) = k(z + b)γ + c for some k, γ, b, c ∈ R such that kγ(1 − γ) > 0;
• ϕ(z) = k exp(γz) + c for some k < 0, γ < 0, c ∈ R.

Proof. Step 1. We differentiate the identity (13) by x when (x,h, z) belongs to a neighbor-
hood of (0,0, z):

E[ϕ′(z + xX + y(x, z)Y + hU)(X + Y y′x(x, z))] = 0, (16)
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where U ≡ 1 −X − Y . By setting x = h = 0, we obtain the equality

E[X + Y y′x(0, z)] = 0.
Thus, y′x(0, z) does not depend on z.

Step 2. Repeated differentiation of (16) by x produces the identity

E[ϕ′′(z + xX + yY + hU)(X + Y y′x)2] +E[ϕ′(z + xX + yY + hU)]y′′x,x = 0. (17)

By setting x = h = 0, we obtain

E[ϕ′′(z)(X + Y y′x(0, z))2] +E[ϕ′(z)Y ]y′′x,x(0, z) = 0
Thus, it must be that

ϕ′′(z)E[(X + Y y′x(0, z))2] = −ϕ′(z)y′′x,x(0, z)EY. (18)

Note that E[(X + Y y′x(0, z))2] > 0 since X ≠ y′x(0, z)Y with a positive probability by As-
sumption 3. Differentiating (17) by h and setting x = h = 0, we also obtain

ϕ′′′(z)E[(X + Y y′x(0, z))2U] + ϕ′′(z)y′′x,x(0, z)E[UY ] = 0. (19)

Step 3. Suppose that E[UY ] = 0. Then, UY = 0 a.s., and

ϕ′′′(z)E [(X + Y y′x(0, z))2U] = 0. (20)

Suppose that
E [(X + Y y′x(0, z))2U] = 0.

Expanding the left-hand side and using the fact that UY = 0, a.s., we obtain thatE[X2U] = 0,
and, hence, XU = 0 a.s. It follows that P(X = Y = 0) +P(X + Y = 1) = 1, a contradiction
to Assumption 3. Then, to satisfy (20), it must be that ϕ′′′(z) = 0 for every z in some
neighborhood of z0, and, hence, ϕ is a quadratic function.

Step 4. Suppose that E [(X + y′x(0, z)Y )2U] = 0. Then, (X + y′x(0, z)Y )2U = 0 a.s. and

ϕ′′(z)y′′x,x(0, z)E[UY ] = 0.
The case E[UY ] = 0 has been considered in the previous step. If y′′x(0, z) = 0 for every z in
some neighborhood of z0, then it follows from (18) that ϕ′′(z) = 0. The equality ϕ′′(z) = 0
contradicts Assumption 2.

Step 5. In the remaining case, we combine (18) and (19) to obtain

c1
ϕ′′(z)
ϕ′(z) = −y′′x,x(0, z) and c2

ϕ′′′(z)
ϕ′′(z) = −y′′x,x(0, z),

where

c1 ∶= E [(X + Y y′x(0, z))2]
E[Y ] , c2 ∶= E [(X + Y y′x(0, z))2U]

E[UY ] .
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It was noted in Step 1 that y′x(0, z) does not depend on z; therefore, c1 and c2 are some
positive constants.

Since ϕ′(z) > 0 and ϕ′′(z) < 0, we have

c1(lnϕ′(z))′ = c2(ln(−ϕ′′(z)))′.
As a result, for some constant c3, it must be that

c1

c2
lnϕ′(z) = ln(−ϕ′′(z)) + c3

in some neighborhood of z0. Taking the exponential, we obtain ϕ′′(z) = c̃ϕ′(z)α, where
c̃ = −e−c3 and α = c1

c2
. Since ϕ′(z) ≠ 0, we can rewrite it as

ϕ′′(z)
ϕ′(z)α = c̃.

1. If α = 1, then
ϕ(z) = d1 exp(c̃z) + d2

in some neighborhood of the point z0, where d1, d2 are some constants.

2. If α = 2, then
ϕ(z) = d1 + ln(d2z + d3)

in some neighborhood of the point z0, where d1, d2, d3 are some constants.

3. If α /∈ {1,2}, then (ϕ′(z))1−α/(1 −α) = c̃z + d1
and, in turn,

ϕ(z) = d2(d3z + d4)d5 + d6,
in some neighborhood of the point z0, where d1 and d6 are some constants and

d2 = 1(2 −α)c̃ , d3 = (1 − α)c̃, d4 = (1 − α)d1, d5 = 2 −α

1 −α
.

Lemma 4. Under Assumptions 1–3, ϕ(z) = k(z + b)γ + c for any k < 0, b, c ∈ R and γ ∈ N is
not a solution of Eq. (13).

Proof. Observe, first, that γ ≠ 1 due to Assumption 2.

Note that if a function ϕ satisfies Eq. (13), then the function

ϕ̃(z) = dϕ(z − b) − c,
where b, c, d are arbitrary constants, also satisfies the equation. Hence, we can assume
without loss of generality that b = 0, c = 0, and k = −1.
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Observe that it cannot be that z0 = 0, because otherwise either ϕ′(z) changes sign in any
neighborhood of z0 (if γ is even), or ϕ′′(z) changes sign in any neighborhood of z0 (if γ is
odd), which contradicts Assumption 2.

As follows from our equation (13),

E [(z0 + xX + y(x)Y + hU)γ] = E [(z0 + hU)γ] , (21)

where, with a slight abuse of notation, we write y(x) for y(x, z0) and, as earlier, U ≡ 1−X−Y .
Differentiating the above equation by h and setting h = 0, we obtain

E [(z0 + xX + y(x)Y )γ−nUn] = E [zγ−n
0

Un]
for all n ∈ {1, . . . , γ}. If we let n = γ − 1, we obtain

xE [XUγ−1] + y(x)E [Y Uγ−1] = 0.
Thus, y(x) = −cx for some c ∈ R.

Substituting the latter result into (21) and setting h = 0, we have

E [(z0 + x(X − cY ))γ] = zγ0
for all x in a neighborhood of zero. Differentiating it by x and setting x = 0, we obtain

E [zγ−k
0
(X − cY )n] = 0

for n = 1,2. For n = 2, this contradicts Assumption 3.

Assumption 4. The joint distribution of X and Y is such that E[(1−X −Y )p1X+Y <1] <∞
for all p ∈ R.
Lemma 5. Under Assumptions 1–4, ϕ(z) = k(z +b)γ +c for any k, b, c ∈ R and γ ∈ R/N such
that kγ(1 − γ) > 0 is not a solution of Eq. (13).

Proof. Step 1. As in the proof of Lemma 4, we can assume without loss of generality that
b = c = 0. Since z0 cannot be zero, we can also assume without loss of generality that z0 = 1.
Therefore, we have an equation

E [(1 + xX + y(x)Y + hU)γ] = E [(1 + hU)γ] (22)

that holds for all (x,h) from some neighborhood of (0,0).
Step 2. Consider the expansion of the function z ↦ (z + hu)γ for z > 0 in a Taylor series:

(z + hu)γ = ∞∑
n=0

anh
nunzγ−n, (23)

where an are the coefficients for which we have an ≠ 0 for all n ∈ N. The remainder of the
series can be expressed as

(z + hu)γ − N−1

∑
n=0

anh
nunzγ−n = h

NuN

N !

dN(xγ)
dxN

∣
x=ξ
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for some ξ between z and z +hu. If (z, h) belongs to a sufficiently small neighborhood of the
point (1,0) and u ∈ [0,1], then, due to the hN term, the remainder goes to zero uniformly over(z, h, u) when N →∞; that is, the series in the right-hand side of (23) converges uniformly.

We use this series in (22) with z = 1 + xX + y(x)Y and u = U in the left-hand side, and
z = 1 and u = U in the right-hand side, to obtain

∞

∑
n=0

anh
nE [(1 + xX + y(x)Y )γ−nUn] = ∞∑

n=0

anh
nE [Un] ,

where summation and expectation have been interchanged due to uniform convergence. We
equate the coefficients of hn to obtain

E [(1 + xX + y(x)Y )γ−nUn] = E [Un] (24)

that holds for all n ∈ N.
Step 3. For all n ∈ N, we can replace expectation with conditional expectation in (24) to

obtain
E [(1 + xX + y(x)Y )γ−nUn ∣U > 0] = E [Un ∣U > 0]

that holds for all n ∈ N. Differentiating it by x, we obtain

E [(X + y′(x)Y )(1 + xX + y(x)Y )γ−n−1Un ∣U > 0] = 0
for all n ∈ N. We rewrite it as

E [(X + y′(x)Y )(1 + xX + y(x)Y )γ−1 ( U

1 + xX + y(x)Y )
n ∣U > 0] = 0

for n ∈ N. Then,

E [(X + y′(x)Y )(1 + xX + y(x)Y )γ−1P( U

1 + xX + y(x)Y ) ∣U > 0] = 0 (25)

holds for every polynomial P such that P (0) = 0.
Step 4. Consider the function r ∶ [0,1] → R defined as r(t) = tγ−1 for t > 0 and r(0) = 0.

By Assumption 4, this function is integrable on [0,1] under the distribution of U conditional
on U > 0, that is, under the Borel measure PU defined as PU(A) = P(U ∈ A ∣ U > 0). Hence,
for the Borel measure Q defined as

Q(A) = P( U

1 + xX + y(x)Y ∈ A ∣U > 0) ,
we also have that ∫[0,1]∣r(t)∣Q(dt) < ∞. Then, the function r(t) can be approximated in

L1(Q) by a continuous integrable function that takes the value of 0 at 0, which, in turn, can
be approximated by polynomials that take the value of 0 at 0. It follows from (25) that

E [(X + y′(x)Y )(1 + xX + y(x)Y )γ−1 r( U

1 + xX + y(x)Y ) ∣U > 0] = 0,
22
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which can be simplified to

E [(X + y′(x)Y )Uγ−1 ∣U > 0] = 0.
Step 5. The latter equation can be solved for y′(x) to observe that, in fact, y′(x) does not

depend on x; in turn, y′′(x) = 0. Using these findings in Eq. (18) from the proof of Lemma 3
that follows from our main equation (13), we arrive at a contradiction to the assumptions
that P(X = cY ) < 1 for any c ∈ R+ and ϕ′′ < 0.
Lemma 6. Under Assumptions 1–4, ϕ(z) = k ln(z + b)+ c for any k > 0 and b, c ∈ R is not a
solution of Eq. (13).

Proof. The proof is similar to the one of Lemma 5, with the only change that Step 2 considers
a Tailor series for the logarithmic function, and the rest of the proof goes through with
γ = 0.
Theorem 7. Suppose that (13) holds for all (x,h, z) in some neighborhood of (0,0, z0) and
some continuous function y(x, z) with y(0, z0) = 0, and Assumptions 1–4 hold. Then, in
some neighborhood of z0, it must be that

ϕ(z) = k exp(γz) + c, (26)

where k < 0, γ < 0, and c are some constants, and the function y(x, z) must not depend on z.

Proof. Follows from Lemmas 2–6.

B Proof of Theorem 1

Lemma 8. Suppose that P is a Borel probability measure on R with compact support, u, v ∈
L1(P ), and

∫
R

u(t)e−ht P (dt) = ∫
R

v(t)e−ht P (dt)
holds for all h in a neighborhood of some point h0. Then, it must be that u(t) = v(t) for all t,
P -a.s.

Proof. Let µ1 and µ2 be Borel measures on R defined as

µ1(A) = ∫
A
u(t)P (dt), µ2(A) = ∫

A
v(t)P (dt).

With a change of variables in the Lebesgue integral, we have that

∫
R

e−hs µ1(ds) = ∫
R

e−hs µ2(ds);
that is, the Laplace transforms of the measures µ1 and µ2 coincide in some neighborhood
of zero. Both measures have compact support, and, hence, their Laplace transforms are
infinitely differentiable. This gives the equalities

∫
R

sk µ1(ds) = ∫
R

sk µ2(ds)
23

Date: 2023-12-11 14:40:02 Revision: e8dda11



that must hold for all k ∈ Z+. A finite measure with compact support is uniquely identified by
its moments (Hausdorff moment problem, see, e.g. Akhiezer, 1965, Theorem 2.6.4). Hence,
the measures µ1 and µ2 coincide; in turn, their Radon-Nikodym derivatives with respect to
the measure P must coincide, and we have that u(t) = v(t) for all t, P -a.s.

Proof of Theorem 1. The direct part. Suppose that ≿ admits Representation (4), with ϕ

and π as described in the statement of the theorem, and satisfies Dynamic Consistency and
Consequentialism with respect to the partitioning {E1,E2}. We will proceed in steps.

Step 1. Suppose, first, that µ(E1) ∈ {0,1} (π-almost surely). Note that this implies
that µ(E2) ∈ {0,1} (π-almost surely). Let α ∶= π({µ(E1) = 1}) and define probability
measures π1 and π2 on (∆1,Σ1) and (∆2,Σ2), respectively, through the conditionals of π:
πi(S) ∶= π({µ∣2Ei ∈ S} ∣ {µ(Ei) = 1}) for i = 1,2, where, for any µ ∈∆, µ∣2Ei is the restriction
of µ to 2Ei. Then, the outer integral in Representation (4) can be split into two integrals—
the integral over the set of measures µ for which µ(E1) = 1 and the integral over the set for
which µ(E2) = 1. We have obtained Case (i) from the statement of the theorem.

Step 2. Suppose, second, that, for any non-null E11 and E12 that form a partitioning of
E1, there is π-almost sure proportionality between µ(E11) and µ(E12); and similarly for E2,
for any non-null E21 and E22 that form its partitioning, there is π-almost sure proportionality
between µ(E21) and µ(E22). For a set A ⊆ E1, let c(A) denote the proportionality coefficient:
µ(A) = c(A)µ(E1/A), π-a.s., and similarly for subsets of E2.

We define the function ν1 ∶ 2E1 → [0,1] as follows. For any A ⊆ E1, we let ν1(A) = 0 if
A is null; ν1(A) = 1 if E1/A is null; and ν1(A) = c(A)/(1 + c(A)) otherwise. In all of the
three cases, we have: for any A ⊆ E1, (1 − ν1(A))µ(A) = ν1(E)(µ(E1) − µ(A)) holds for all
µ ∈ ∆, π-a.s. Then, arithmetically, for any A ⊆ E1, µ(A) = ν1(A)µ(E1) holds for all µ ∈ ∆,
π-a.s. Considering this equality for a fixed µ ∈ ∆ such that µ(E1) > 0, we observe that
ν1 is an additive set-function. Similarly, we define ν2 ∶ 2E2 → [0,1] to obtain that, for any
A ⊆ E2, µ(A) = ν2(A)µ(E2) holds for all µ ∈ ∆, π-a.s., and ν2 is additive. Now we rewrite
Representation (4) as

V (f) = ∫
∆

ϕ(∫
E1

f(ω)µ(dω) +∫
E2

f(ω)µ(dω)) π(dµ)
= ∫

∆

ϕ(µ(E1)∫
E1

f(ω)ν1(dω) + µ(E2)∫
E2

f(ω)ν2(dω)) π(dµ)
= ∫

[0,1]
ϕ(α∫

E1

f(ω)ν1(dω) + (1 − α)∫
E2

f(ω)ν2(dω)) π̃(dα),
where π̃ is a Borel probability measure on [0,1] defined as π̃(S) = π({µ(E1) ∈ S}). We have
obtained Case (ii) from the statement of the theorem.

Step 3. Suppose that the assumptions of Steps 1–2 do not hold. In particular, there exist
non-null E11 and E12 such that E1 = E11 ⊔E12, and there is no π-almost sure proportionality
between µ(E11) and µ(E12).

Step 3a. Fix an arbitrary z0 ∈ I, and consider acts f of the form f = (z + x)E11 (z +
y)E12 (z + h) for all (x, y, h, z) ∈ (−ε, ε)3 × (z0 − ε, z0 + ε), where ε > 0 is chosen so that
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f ∈ F(I). For (h, z) ∈ (−ε, ε) × (z0 − ε, z0 + ε), let Lh,z ⊂ R2 be defined as

Lh,z = {(x, y) ∈ (−ε, ε)2 ∶ (z + x)E11 (z + y)E12 (z + h) ∼ z E1 (z + h)},
where ∼ is the symmetric part of ≿. As follows from Dynamic Consistency and Consequen-
tialism, Lh,z, in fact, do not depend on h. Using Representation (4), it implies that

∫
∆

ϕ(z + xµ(E11) + yµ(E12) + hµ(E2))π(dµ) = ∫
∆

ϕ(z + hµ(E2))π(dµ)
holds for all (x, y) ∈ Lz, all h ∈ (−ε, ε), and all z ∈ (z0 − ε, z0 + ε). We use Lemma 2 to obtain
a function y(x, z) and functional equation (13), where µ(E11) plays the role of the random
variable X , and µ(E12) plays the role of the random variable Y .

Step 3b. By Theorem 7, there exist γ > 0, k > 0 and c ∈ R such that ϕ(z) = −ke−γz + c
for all z in some neighborhood of z0. Since positive affine transformations of ϕ change
neither the preferences nor our functional equation, we may assume without loss of generality
that k = 1 and c = 0. We claim that ϕ(z) = −e−γz for all z ∈ I. Indeed, suppose that
this equality fails at some z1, and assume without loss of generality that z1 > z0. We let
z2 = sup{z ≥ z0 ∶ ϕ(z) = −e−γz} and apply Theorem 7 to a neighborhood of z2 to arrive at a
contradiction.

Step 3c. We will continue using the interpretation of µ as a random vector whose prob-
ability law is π. In particular, for any f ∈ F(I) and h ∈ I, we can write the representation
functional in (4) as

V (f) = E [−e−γ ∫E1
f(ω)µ(dω)−γ ∫E2

f(ω)µ(dω)] . (27)

For any f ∈ F(I), let v1(f, ⋅) be defined according to the Doob-Dynkin lemma as a
measurable function such that

E [e−γ ∫E1
f(ω)µ(dω) ∣ µ(E1)] = v1(f,µ(E1)), (28)

where the equality holds almost surely with respect to the probability law of µ(E1). Let W1

denote the random variable µ(E1) and let PW1
be its probability law, PW1

(S) = π({µ(E1) ∈
S}) for any Borel S ⊆ R.

On E2 = Ω/E1, we define objects similarly. Note that W2 = 1 −W1, and, hence,

E [−e−γ ∫E2
f(ω)µ(dω) ∣ µ(E1)] = E [−e−γ ∫E2

f(ω)µ(dω) ∣ µ(E2)] = v2(f,µ(E2)).
Using the law of iterated expectation and changing variables in the Lebesgue integral,

we rewrite (27) as

V (f) = E [E [−e−γ ∫E1
f(ω)µ(dω)−γ ∫E2

f(ω)µ(dω) ∣ µ(E1)]] =
E[−v1(f,W1)v2(f,W2)] = −∫

[0,1]
v1(f,w)v2(f,1 −w)PW1

(dw)
to obtain representation (5). Note that the conditional expectation in (28) can be rewritten
as an integral with respect to the conditional probability measure,

v1(f,α) = ∫
Ω

e
−γ ∫E1

f(ω)µ(dω)
π(dµ ∣ µ(E1) = α),
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and rearranged to obtain expression (6) for v1. The expression for v2 obtains similarly. This
establishes the representation of Case (iii).

Step 3d. It remains to prove that vi( ⋅ , α) for i = 1,2 rank acts in the same way when α

varies in (0,1].
Let C1 ∶ F(I) → I be the conditional “certainty equivalent” functional on E1: for any

f ∈ F(I) and h ∈ I, C1(f,h) is a number such that

V (f E1 h) = E [−e−γ C1(f,h)µ(E1)−γ h (1−µ(E1))] . (29)

Note that C1(f,h) exists and is unique because of continuity and monotonicity of V , as
well as the assumption that µ(E1) > 0 with positive probability under π. Also, C1 does not
depend on h because of Dynamic Consistency and Consequentialism. We define C2 similarly
as the conditional certainty equivalent on E2.

For all h ∈ I, we have that

V (f E1 h) = ∫
[0,1]

v1(f,w)e−γh(1−w) PW1
(dw).

Comparing this with (29), it follows from Lemma 8 that v1(f,W1) = −e−γ C1(f)W1 , PW1
-a.s.

Therefore, for all f, g ∈ F(I),
v1(f,α) ≥ v1(g,α)⇔ C1(f) ≥ C1(g)⇔ v1(f,α′) ≥ v1(g,α′)

for PW1
-a.s. α,α′ ∈ (0,1]. The analysis for v2 is similar. This completes the proof of the

direct part of the theorem.

The converse part. Suppose that ϕ is strictly increasing.

(i) Suppose that ≿ admits a representation via

V (f) = α∫
∆1

ϕ(∫
E1

f(ω)µ1(dω)) π1(dµ1)+
(1 − α)∫

∆2

ϕ(∫
E2

f(ω)µ2(dω)) π2(dµ2).
for some α ∈ (0,1) and some probability measures π1 and π2 on (∆1,Σ1) and (∆2,Σ2),
respectively. Then, for arbitrary f, g, h, h′ ∈ F(I),
V (f E1 h) ≥ V (g E1 h)⇔

∫
∆1

ϕ(∫
E1

f(ω)µ1(dω)) π1(dµ1) ≥ ∫
∆1

ϕ(∫
E1

g(ω)µ1(dω)) π1(dµ1)⇔
V (f E1 h

′) ≥ V (g E1 h
′).

A similar equivalence holds for E2 and E1 interchanged. Therefore, the preference
relation satisfies Dynamic Consistency and Consequentialism.
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(ii) Suppose that ≿ admits a representation via

V (f) = ∫
[0,1]

ϕ(α∫
E1

f(ω)µ1(dω) + (1 − α)∫
E2

f(ω)µ2(dω)) π̃(dα).
for some Borel probability measure π̃ on [0,1] such that π̃({0,1}) < 1 and probability
measures µ1 and µ2 from ∆1 and ∆2, respectively. Observe that the mappings vh ∶ I → R

for h ∈ F(I) defined as

vh(t) = ∫
[0,1]

ϕ(αt + (1 −α)∫
E2

h(ω)µ2(dω)) π̃(dα)
are strictly increasing. Then, for arbitrary f, g, h, h′ ∈ F(I),
V (f E1 h) ≥ V (g E1 h)⇔ ∫

E1

f(ω)µ1(dω) ≥ ∫
E1

g(ω)µ1(dω)⇔
V (f E1 h

′) ≥ V (g E1 h
′).

A similar equivalence holds for E2 and E1 interchanged. Therefore, the preference
relation satisfies Dynamic Consistency and Consequentialism.

(iii) Suppose that ≿ admits a representation via

V (f) = −∫
[0,1]

v1(f,α)v2(f,1 − α) π̃(dα),
for some γ > 0, probability measure π̃ on [0,1] such that π̃({0,1}) < 1, and probability
measures πi,α on (∆i,Σi) for i = 1,2 and α ∈ (0,1] such that, for i = 1,2 and vi defined
as vi(f,0) = 1 and

vi(f,α) = ∫
∆i

e
−γα∫Ei

f(ω)µ(dω)
πi,α(dµ) for α > 0,

the equivalence

vi(f,α) ≥ vi(g,α)⇔ vi(f,α′) ≥ vi(g,α′) ∀f,g∈Fi(I)

holds for π̃-almost all α,α′ ∈ (0,1].
Fix arbitrary f, g, h, h′ ∈ F(I). First, suppose that v1(f,α) = v1(g,α) for π̃-almost all
α,α′ ∈ (0,1]. Then it is clear that V (f E1 h) = V (g E1 h) and V (f E1 h′) = V (g E1 h′)
simultaneously. Second, suppose without loss of generality that v1(f,α) > v1(g,α) for
π̃-almost all α,α′ ∈ (0,1]. Then it is clear that V (f E1 h) < V (g E1 h) and V (f E1 h′) <
V (g E1 h′) simultaneously. The symmetric case with E2 and E1 interchanged is analo-
gous. Therefore, the preference relation satisfies Dynamic Consistency and Consequen-
tialism.
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